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A B S T R A C T

Advances in semi-supervised methods for image classification significantly boosted
performance in the learning with noisy labels (LNL) task. Specifically, by dis-
carding the erroneous labels (and keeping the samples), the LNL task becomes
a semi-supervised one for which powerful tools exist. Identifying the noisy sam-
ples, however, heavily relies on the success of a warm-up stage where standard
supervised training is performed using the full (noisy) training set. This stage
is sensitive not only to the noise level but also to the choice of hyperparameters.
In this paper, we propose to solve this problem by utilizing self-supervised pre-
training. Our approach, which we name Contrast to Divide, offers several important
advantages. First, by removing the labels altogether, our pre-trained features be-
come agnostic to the labels’ amount of noise, allowing accurate noisy separation
even under high noise levels. Second, as recently shown, semi-supervised meth-
ods significantly benefit from self-supervised pre-training. Moreover, compared
with standard pre-training approaches (e.g., supervised training on ImageNet),
self-supervised pre-training does not suffer from a domain gap. We demonstrate
the effectiveness of the proposed method in various settings with both synthetic
and real noise. Our results indicate that Contrast to Divide brings a new state-
of-the-art by a significant margin to both CIFAR-10 and CIFAR-100. For ex-
ample, in the high-noise regime of 90%, we get a boost of more than 27% for
CIFAR-100 and more than 17% for CIFAR-10 over the previous state-of-the-art.
Moreover, we achieve comparable performance on Clothing-1M without using
ImageNet pre-training. Code for reproducing our experiments is available at
https://github.com/ContrastToDivide/C2D.

1 I N T R O D U C T I O N

Many deep learning-based methods owe their success to the availability of large data sources with
reliable labels. Quality annotation at scale, however, is often prohibitively expensive. This is
especially true in cases when the annotation requires domain expertise such as medical training.
Two common approaches that address this challenge are semi-supervised learning and learning with
noisy labels (LNL). The former assumes the availability of a limited amount of high-quality labeled
data as well as a large amount of unlabeled data of the same distribution. The main challenge is to
propagate the labels to the unlabeled samples to allow gleaning knowledge from them as well. In
contrast, the latter approach suggests acquiring cheap annotations at scale at the cost of having a large
portion of mislabeled data. Examples of such processes include web crawling (Xiao et al., 2015;
Li et al., 2017), automatic annotation based on meta-data (Mahajan et al., 2018), and un-curated
crowdsourcing (Kuznetsova et al., 2020). Though seemingly different, the two approaches are in fact
closely related. Many semi-supervised learning approaches are based on predicting pseudo-labels for
the unlabeled data, which can be seen as noisy labels. From the other end, converting an LNL setting
to a semi-supervised one can be done by identifying and discarding the noisy labels.

Based on these insights, a recently introduced LNL method named DivideMix (Li et al., 2020) has
achieved impressive results. Specifically, DivideMix addresses the LNL problem as a semi-supervised
one by (a) identifying the samples with noisy labels and (b) learning from the resulting partially
labeled dataset. These two procedures alternate repeatedly, benefiting each other. Thanks to the
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Figure 1: A UMAP (McInnes et al., 2018) of features extracted from CIFAR-10 using C2D (upper
row) vs. DivideMix (lower row) for 20% and 90% noise at the end of warm-up stage, as well as
self-supervised pre-training. Colors show ground-truth label.

powerful semi-supervised methods, the second stage can be solved efficiently. Yet, to achieve good
separation, DivideMix relies on a warm-up stage where standard supervised training is performed on
the full noisy dataset. As such, this stage is sensitive to training time, prone to overfitting to noise,
and may generate inferior representations. To overcome this, some researchers have suggested using
supervised pre-trained features (Xiao et al., 2015; Jiang et al., 2019). However, as will be seen later,
it may bring little performance boost.

Instead, we propose to solve this issue by using unsupervised pre-training. Building on the recent
success of contrastive learning (Hénaff et al., 2019; Chen et al., 2020a; Tian et al., 2020), we
generate high-quality pre-trained features by training on the unlabeled train set samples. Thus, we
benefit simultaneously from three effects: by ignoring the labels, we eliminate noise influence on
the pre-training stage; we utilize self-supervised pre-training, which has been shown to enhance
semi-supervised training (Chen et al., 2020b); and finally, by operating on the training set, we avoid a
domain gap. Combining contrastive learning with DivideMix, we observe better noise detection and
superior initialization for the semi-supervised stage. Altogether, we achieve a significant boost over
DivideMix, with much better consistency across different noise levels. In particular, our approach
stands out at high noise rates. For example, with 90% symmetric noise, we achieve a more than 27%
accuracy boost for CIFAR-100 and more than 17% for CIFAR-10 with PreAct ResNet-18.

Below, we outline our main contributions and the organization of the remaining sections.

• We present “Contrast to Divide” (C2D), an LNL algorithm that utilizes pre-trained self-
supervised features for learning with noisy labels.

• Building on the success of DivideMix, we demonstrate that C2D improves both of its
components: noise detection and semi-supervised learning, making the warm-up stage 2–6×
shorter and more robust to different noise rates.

• C2D significantly outperforms state-of-the-art results on standard benchmarks across various
noise levels. Remarkably, on CIFAR-100 with up to 90% noise, C2D almost matches the
performance of the equivalent semi-supervised method trained without noise. We provide
an ablation study and qualitative analysis of the effect of the pre-trained features.

2



Under review as a conference paper at ICLR 2021

2 R E L AT E D W O R K

Semi-supervised learning. Given a partially labeled dataset, semi-supervised techniques aim at
utilizing the unlabeled samples for boosting the learning procedure beyond what is achievable with
just the labeled set. A simple yet efficient baseline for this problem is pseudo-labeling (Lee, 2013;
Arazo et al., 2019b; Xie et al., 2019b; Yalniz et al., 2019). In its basic form, this solution uses a
network trained on the labeled subset to predict labels for the unlabeled set. These, in turn, are
used to refine the network (or a larger one) on the now fully labeled set. Another popular approach
to semi-supervised learning is consistency regularization where in addition to the cross-entropy
loss, consistency is enforced between different perturbations of unlabeled (and possibly labeled)
samples. Various implementations of those perturbation were studied including predictions by
different networks (Tarvainen & Valpola, 2017), adversarial examples (Miyato et al., 2017), and
augmentations (Xie et al., 2019a; Berthelot et al., 2019; Sohn et al., 2020; French et al., 2020). Recent
methods have shown competitive results, with as little as 1% of labels for CIFAR-100. Most relevant
to this work is MixMatch (Berthelot et al., 2019) which processes a batch of augmented labeled and
unlabeled examples together with their guessed labels via a MixUp procedure (Zhang et al., 2018).

Self-supervised learning. The goal of self-supervised learning is to learn representations that are
meaningful in some general sense, without externally provided labels. Usually, this is done by solving
a pretext task. One family of methods is based on reconstructing a corrupted version of the input
(Vincent et al., 2008; Zhang et al., 2016; Pathak et al., 2016; Zhang et al., 2017) Instead, follow-up
methods opted for a classification task based on context prediction (Doersch et al., 2015; Noroozi
& Favaro, 2016; Gidaris et al., 2018; Kolesnikov et al., 2019b), or clustering (Caron et al., 2018).
Nevertheless, these impose an inherent problem when facing a particular downstream task which
may not be well correlated with the self-supervised objective. Thus, there is no guarantee that the key
information is kept and can be extracted from the features (Misra & van der Maaten, 2020). Some
methods have proposed remedying the problem by making the self-supervised task aware of the
downstream one (Zhai et al., 2019; Khosla et al., 2020).

Recently, a revival in self-supervised techniques based on contrastive loss (Hadsell et al., 2006) has
shown markedly improved performance in large-scale computer vision tasks (Hénaff et al., 2019;
Chen et al., 2020a; Tian et al., 2020; Xie et al., 2020). Most relevant to our method is the result
reported by Chen et al. (2020b): self-supervised features obtained by contrastive learning can improve
semi-supervised classification tasks after fine-tuning.

Learning with noisy labels. There are many variants to the problem of learning with noisy labels.
While some methods (Veit et al., 2017; Litany & Freedman, 2018; Zhang et al., 2019) assume the
availability of a small subset of clean labels, we do not make those assumptions. We also consider
closed-set noisy labels, i.e., where the mislabeled images belong to one of the training classes as
opposed to the open-set setup (Wang et al., 2018; Zhang & Sabuncu, 2018).

Existing methods for LNL can be divided into two broad categories: loss modification and noise
detection. The former includes techniques that account for noise distribution (Patrini et al., 2016; Xia
et al., 2019; Yao et al., 2020). Alternatively, the loss itself may be replaced by a more robust version,
such as mean absolute error (Ghosh et al., 2017), generalized cross-entropy (Zhang & Sabuncu,
2018), determinant-based mutual information (Xu et al., 2019), or a meta-learning objective (Li
et al., 2019a). Differently, noise detection methods aim to discover which samples are mislabeled
to either relabel or discard them. Techniques for detecting noisy labels include utilizing multiple
networks in a teacher-student (Jiang et al., 2018) or mutual teaching (Han et al., 2018; Yu et al., 2019)
framework, geometry (Han et al., 2019), mixture models (Arazo et al., 2019a; Li et al., 2020), and
quantiles of counterfactual loss distribution of samples (Song et al., 2020). These are often based
on the observation that samples with noisy labels converge slower than those with clean ones (Arpit
et al., 2017; Cicek et al., 2018; Li et al., 2019b; Pleiss et al., 2020). Hybrid methods that try to mix
both noise detection and loss modification were also proposed (Song et al., 2019; Liu et al., 2020).

DivideMix. While noise detection methods have shown success in LNL problems, the two ways
to deal with the detected noise both have disadvantages. Discarding the noisy samples means that
valuable data may be lost, leading to poor sample variability (selected samples are usually easier than
discarded ones, which leads to slow learning (Chang et al., 2017)) and overfitting to the small training
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set (Song et al., 2019). On the other hand, in the case of relabeling, all the samples are given the
same weight, ignoring the fact that some of them are more likely to be noisy than the others. Instead,
DivideMix proposed to keep the samples detected as noisy discarding only their labels, thereby
effectively converting the LNL task into a semi-supervised one. The method can be broken down into
three stages: (a) a warm-up phase, where standard supervised training is performed using the noisy
set; (b) a division stage, where clean and noisy samples are split based on a mixture of Gaussians fitted
to the loss distribution and a threshold value τ ; and (c) a semi-supervised stage, where the noisy labels
are discarded and MixMatch (Berthelot et al., 2019) is applied to the partially labeled data. Stages (b)
and (c) are complementary since better splits would lead to improved semi-supervised performance,
which would increase the accuracy of the noise classification, resulting in better separation.

3 M E T H O D

3 . 1 T H E WA R M - U P T R A D E - O F F

Albeit crucial to the algorithm’s success, the warm-up stage of DivideMix did not receive much
attention. In particular, we identify two goals that need to be achieved by this stage: separable loss
values and feature extraction. The former is clearly of utmost importance to the labeled subset’s
successful choice to be used by the semi-supervised stage. Despite a few measures for increasing
resilience to noise (e.g., label smoothing), the algorithm assumes a relatively clean labeled subset.
Regarding the latter, as was recently shown by Chen et al. (2020b), good features can significantly
boost the performance of semi-supervised learning. These two competing goals create a trade-off
between training longer to generate better features and early stopping to allow better separation
between the clean and noisy samples. This limitation calls for other means to generate good features,
which we propose to achieve via self-supervised pre-training. Notably, our proposed solution of
self-supervised pre-trained features benefits both tasks: separation and semi-supervised learning,
achieving a significant overall performance boost.

3 . 2 C O N T R A S T T O D I V I D E

As discussed above, strong pre-trained features can further boost the already powerful semi-supervised
stage of DivideMix. In this section, we focus on the effect of these features on the critical warm-up
phase. Specifically, we argue that by initializing the warm-up with good features, only mild adaptation
is required. This effectively breaks the trade-off between feature extraction and noisy label detection,
allowing faster and more accurate separation. Furthermore and most importantly, since the most
demanding part of learning feature extraction is done without labels, the warm-up stage becomes
much more robust to the noise level, saving the need for careful training time fine-tuning per problem.

Semi-supervised performance. Since DivideMix repeatedly converts the LNL task into a semi-
supervised learning task, much of its strength comes from the underlying semi-supervised method,
MixMatch. This implies that any improvement made to this stage would potentially boost its overall
performance. In particular, recently, there has been encouraging evidence that self-supervised methods
can help semi-supervised learning. We adopt the same approach and use contrastive learning to
pre-train the network on the dataset at hand. Indeed, we observe that this network adapts very quickly
to the task (as can be seen from Fig. 1), boosting the classification accuracy at every epoch, which in
turn helps the separation and the overall performance.

Supervised vs. self-supervised pre-training. Since utilizing pre-trained features for improved
performance is very common, it is important to distinguish between supervised pre-training on a
large cleanly labeled data source and self-supervised pre-training on the given training set. In the
context of LNL, we highlight the following aspects: dataset size and domain vs. task gaps.

It is far from trivial to assume access to a large dataset for a same task from a similar domain. A
common example of such cases is using ImageNet for natural image classification (Kolesnikov
et al., 2019a). Often domains do not have an ImageNet equivalent, necessitating a compromise
on either quantity or domain similarity and resulting in lesser quality pre-trained features. Using
self-supervision, on the other hand, eliminates the domain gap. Additionally, since noisy labels are
often a result of large-scale annotation, this suggests the availability of massive amounts of data,
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Table 1: C2D achieves consistently high classification accuracy (%, in form mean± std over five runs)
on CIFAR-10 under different noise rates and types, with markedly improved performance under
very-high noise conditions. Meta-Learning results provided by Li et al. (2020).

Method Architecture Noise rate
20% 50% 80% 90% 95% Asym. 40%

Meta-Learning PreAct ResNet-32 Peak 92.9 89.3 77.4 58.7 - 89.2
(Li et al., 2019a) Final 92.0 88.8 76.1 58.3 - 88.6

ELR+ ResNet-34 Peak 94.6 93.8 91.1 75.2 - 92.7
(Liu et al., 2020) Final - - - - - -

DivideMix PreAct ResNet-18 Peak 96.1 94.6 93.2 76.0 - 93.4
(Li et al., 2020) Final 95.7 94.4 92.9 75.4 - 92.1

C2D (our) PreAct ResNet-18 Peak 96.43± 0.07 95.32± 0.12 94.40± 0.04 93.57± 0.09 89.24± 0.75 93.45± 0.07

Final 96.23± 0.09 95.15± 0.16 94.30± 0.12 93.42± 0.09 87.72± 2.21 90.75± 0.35

Table 2: Peak and final classification accuracy (%, in form mean± std over five runs) on CIFAR-
100. Unlike previous methods that suffer from rapid degradation, C2D was able to maintain good
performance even under severe noise. Meta-Learning results provided by Li et al. (2020). ∗ denotes
results acquired by us based on published code.

Method Architecture Noise rate
20% 50% 80% 90% 95% Asym. 40%

Meta-Learning PreAct ResNet-32 Peak 68.5 59.2 42.4 19.5 - -
(Li et al., 2019a) Final 67.7 58.0 40.1 14.3 - -

- ELR+ ResNet-34 Peak 77.5 72.4 58.2 30.8 - 76.5
(Liu et al., 2020) Final - - - - - -

ODD WRN-28-10 Peak 79.1± 0.1 - - - - -
(Song et al., 2020) Final - - - - - -

DivideMix PreAct ResNet-18 Peak 77.3 74.6 61.6∗ 31.5 - 72.2∗

(Li et al., 2020) Final 76.9 74.2 61.3∗ 31.0 - 72.4∗

C2D (our) PreAct ResNet-18 Peak 78.69± 0.17 76.43± 0.25 67.78± 0,30 58.70± 0,31 37.39± 3.80 75.48± 0.16

Final 78.32± 0.35 76.07± 0.41 67.43± 0,30 58.45± 0,30 36.83± 4.29 75.06± 0.16

C2D (our) ResNet-50 Peak 81.60 79.54 71.65 64.30 - 77.92
Final 80.89 79.20 71.53 63.91 - 77.78

which fits the data-hungry self-supervised setup well. On the other hand, contrastive pre-training
is agnostic to the downstream task, inevitably creating a larger task gap. However, albeit being
similar to CIFAR in both task and domain, ImageNet pre-training was unable to give the expected
performance improvement. For further discussion we refer the reader to Section 4.1.

4 E X P E R I M E N TA L R E S U LT S

We perform an extensive evaluation of our method both on synthetic and real noise. We follow
common practice in synthetic noise benchmarks and use CIFAR-10 and CIFAR-100 (Krizhevsky,
2009) varying the amount of injected noise. For the real noise setting, we use Clothing1M (Xiao
et al., 2015), a dataset of ∼1 million images of 14 classes of clothing acquired by web crawling.

4 . 1 C I FA R - 1 0 A N D C I FA R - 1 0 0

We conducted experiments with two types of label noise: symmetric and asymmetric. Symmetric
noise is generated by randomly replacing the labels in a percentage of the training data with a random
label drawn from a uniform distribution over all labels. Asymmetric noise is designed to mimic the
structure of real-world label errors, where classes that are generally similar in appearance are more
likely to switch labels. In this case, we follow a scheme proposed by Patrini et al. (2016).

Implementation details. We used two variants of ResNet (He et al., 2015): PreAct ResNet-18
and ResNet-50. Following the setup proposed by DivideMix, we used an SGD optimizer with a
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Figure 2: Training time ROC-AUC scores (left) and effective noise rates. C2D demonstrates higher
initial score, faster rise, and more stable decrease in effective noise level.

momentum of 0.9, a weight decay of 0.0005, and an initial learning rate of 0.02, which is reduced
by a factor of 10 after 150 epochs. The only modifications to the training hyper-parameters are: (a)
to accommodate ResNet-50 in GPU memory, we reduced the batch size from 128 to 64 and (b) we
observed that our network kept improving after 300 epochs and thus increased train length to 360
epochs. For self-supervised pre-training, we used a SimCLR implementation1 in PyTorch (Paszke
et al., 2019). The self-supervised model was trained for 1000 epochs on 4 NVIDIA 2080 Ti GPUs.

Using a small subset of the training set, we tuned the unlabeled loss weight λU , the number of
warm-up epochs, and the threshold for noisy label prediction τ . We chose a value of λU out of
{0, 25, 50, 150, 500, 1000}. We observed that increasing λ also benefits the baseline DivideMix
solution in high noise settings: for CIFAR-100 with 80% noise, increasing λU from 150 to 500
improved DivideMix accuracy from 60.2% to 61.3%. As discussed in Section 3.2, strong pre-trained
features are expected to reduce the required warm-up length. We found that five epochs were
sufficient, both for CIFAR-10 and CIFAR-100 at all noise levels. As a reference, DivideMix uses 10
epochs for CIFAR-10 and 30 epochs for CIFAR-100. Lastly, we set the GMM threshold to τ = 0.03,
which is significantly lower than the 0.5 used by DivideMix. This can be explained by the fact our
model is able to determine most of the noisy examples with high confidence.

Results. Table 1 presents the comparison of our method with prior state-of-the-art for symmetric
and asymmetric noisy labels on the CIFAR-10 dataset. Following Li et al. (2020), we present
accuracy at the end of training together with the highest one achieved during training. In addition
to maintaining consistently high classification accuracy across all noise levels, C2D significantly
outperforms prior methods at high noise levels (> 80%). We attribute this desired behavior to the
fact that our pre-trained features are agnostic to the noise-level. When presented with asymmetric
noise, both DivideMix and C2D have a degradation between peak and final accuracy. Even though
C2D shows stronger degradation, it performed on-par with previous art in terms of peak accuracy.

Table 2 shows classification accuracy on CIFAR-100. Compared with CIFAR-10, this task is more
complex, resulting in a steeper drop in performance of prior methods as noise rates increase. In
contrast, C2D demonstrates a graceful degradation, achieving a remarkable gain of more than 30% in
accuracy at 80% noise level. We, therefore, decided to stress test C2D by subjecting it to an extreme
noise level of 95%. Despite a higher variance in the results (measured across 5 noise realization),
C2D still achieved a final accuracy of above 35% (and at least 30% in each individual run), surpassing
the performance achieved by DivideMix at a noise rate of 90% with the same architecture (PreAct
ResNet-18). In asymmetric noise, C2D performed similarly to prior art, with the smaller network,
and achieved about 1.5% improvement over ELR+ (Liu et al., 2020) with ResNet-50.

Supervised vs. self-supervised pre-training. Transferring supervised pre-trained features from
a source to a target domain (transfer learning) is widely used in deep learning. The large increase
in performance due to self-supervised features raises a natural question: Can similar behavior be
achieved by supervised pre-training on a different dataset?

1https://github.com/HobbitLong/SupContrast
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Figure 3: Loss distribution of clean and noisy samples after warm-up on CIFAR-100 with 80% noise
for DivideMix, DivideMix with ImageNet pre-training, and C2D. As seen in the zoom-in, ImageNet
pre-training damages the seperability whereas self-supervised pre-training (C2D), improves it.

Table 3: C2D nearly closes the gap with semi-
supervised training on the same clean set size.

Method
Missing/noisy

label rate
80% 90%

MixMatch (SimCLR init.) 71.86 66.10
MixMatch 70.46 64.60
C2D (our) 71.65 64.30

Table 4: Comparison with state-of-the-art meth-
ods in test accuracy (%) on Clothing1M. Results
for baselines are copied from original papers.

Method Test accuracy

Cross-Entropy 69.21
F-correction (Patrini et al., 2016) 69.84
Meta-Learning (Li et al., 2019a) 73.47
Self-learning (Han et al., 2019) 74.45
DivideMix (Li et al., 2020) 74.76
ELR+ (Liu et al., 2020) 74.81

C2D (our) 74.30

To answer this question, we ran DivideMix on CIFAR-100 with PreAct ResNet-18 initialized with
ImageNet pre-trained weights. In light of the discussion in Section 3.2, one expects a small domain
gap and no task gap, making this an almost ideal setup. Indeed, in addition to an expected shortening
in the required warm-up length from 30 to 10 epochs, at the end of warm-up, on 80% noise we
observed an increase both in the ROC-AUC score from 82% to 88% and classification accuracy
from 26% to 36%. Although impressive, these improvements are quite far from the striking 97%
ROC-AUC score and 59.4% classification accuracy achieved by C2D after warm-up.

Yet, most concerning was the almost immediate failure of DivideMix when entering the second stage
of training. More specifically, after the warmup the loss values of the clean and noisy samples were
almost indistinguishable, which resulted in a severe decrease in classification accuracy as depicted
in Fig. 3. Despite our attempts to mend this behavior, this phenomenon persisted across various
threshold values ranging from 0.03 (C2D) to 0.5 (DivideMix), using either fixed or linearly increased
values. While a full analysis of supervised transfer learning under noise conditions is outside the
scope of this work, we suspect that the fast-adaptation property of the pre-trained network may
instead have damaged the network resilience to noise.

4 . 2 I N I T I A L AU C A N D A C C U R A C Y A F T E R WA R M - U P

As discussed in Section 3.2, the self-supervised pre-training serves a dual purpose: boosting the
separability between clean and noisy samples and providing a better initialization for the classification
task. In the following, we analyze these properties. First, we qualitatively compare the features
learned on the CIFAR-10 data by C2D at the end of the warm-up with features learned from scratch
(as done in DivideMix). We visualize both in Fig. 1 using the dimensionality-reduction technique
UMAP (McInnes et al., 2018). Colored using the ground-truth labels, C2D features (upper row) are
clearly better clustered and easier to separate than the baseline (bottom row) at both noise levels.
Furthermore, at high noise rates the baseline features suffer from acute degradation, while C2D
features maintain some fidelity.

To evaluate the quality of noise detection, in Fig. 2 we present the ROC-AUC score and the effective
noise rate, defined as the share of noisy samples in the labeled part of the dataset. C2D demonstrates
multiple desired properties including a higher initial score, a much faster rise in separability score as

7



Under review as a conference paper at ICLR 2021

well as a more stable decrease in effective noise level, and eventually a higher overall score and lower
noise level. Moreover, even though C2D and the baseline both suffer from decrease in the ROC-AUC
score due to overfitting, C2D demonstrated a lower gap between the peak and final scores than the
baseline. Difference between loss histograms shown in Fig. 3 supports those claims.

4 . 3 G A P B E T W E E N L N L A N D S E M I - S U P E RV I S E D L E A R N I N G

Having significantly strengthened the noise separation ability along with the improved initialization,
one may ask what is the remaining gap between LNL and semi-supervised learning – the effective
upper bound on the performance for this family of methods. To answer this question, we compared
the performance of C2D with MixMatch – a semi-supervised method – provided with the same
amount of labels as the clean portion of the C2D training set. This procedure is roughly equivalent
to replacing the DivideMix noise separation procedure with an oracle. The result for 80% and 90%
noise levels in CIFAR-100 are reported in Table 3. Remarkably, C2D is on par with MixMatch and
less than 2% below MixMatch with self-supervised pre-training. Even though the LNL setup has
strictly less information than the semi-supervised one, those results indicate that good features can
compensate for this lack of information even under severe noise conditions.

4 . 4 C L O T H I N G 1 M

We conclude the experimental section by testing our method on real-life noise present in the Clothing-
1M dataset (Xiao et al., 2015). As some of the manually labeled images have both clean and noisy
labels, we can estimate the noise level as approx. 38.5%. This also allows computing noise-related
metrics such as the ROC-AUC of noise detection.

Implementation details. As most previous works, we used ResNet-50 architecture, but did not
utilize ImageNet pre-training. For self-supervised pre-training, we used a SimCLR implementation2

in PyTorch (Paszke et al., 2019), trained on 8 NVIDIA 2080 Ti GPUs for 750 epochs. We trained
the network using the AdamW optimizer (Loshchilov & Hutter, 2017) with a weight decay of 0.001,
and a batch size of 32. As in the case of CIFAR, the warm-up period is five epochs. We trained the
network for 120 epochs, with initial learning rate of 0.002, reduced by a factor of 10 after 40 epochs.
For each epoch, we sampled 1000 mini-batches from the training data with same amount of samples
of every class (according to noisy label). We set λU = 0. Since a large amount of data is available,
we found that increasing value of the threshold to τ = 0.7 improves the performance of the network.

Results. A comparison with state-of-the-art methods is reported in Table 4. C2D achieves a 0.5%
accuracy gap from the current state-of-the-art. Importantly, all the compared methods use ImageNet
pre-trained features. As discussed in Section 3.2, supervised pre-training may compensate for the
(already minor) domain gap by eliminating the task gap, which may explain why C2D observes no
additional gain. Moreover, C2D excels at high noise rates, which is not the case for Clothing1M.
Interestingly, though, C2D did show a 3% improvement in the ROC-AUC score compared to baseline
(81% vs. 78%). This suggests that the self-supervised features did help in separation but are less
suited for classification than the supervised ones explicitly trained for that purpose on a richer dataset.
We also emphasize that C2D is unique in that it did not require any additional external data.

5 C O N C L U S I O N

In this paper, we proposed Contrast to Divide (C2D), a simple yet powerful modification to DivideMix
– a method for learning with noisy labels – which leverages high-quality self-supervised features. In
particular, we have shown that contrastive-learning-based pre-training can boost the crucial warm-up
stage, dramatically improving noise detection. Along with providing strong initialization for the
semi-supervised stage, C2D demonstrates consistently high performance across various noise levels.
C2D shows stable performance under severe noise, outperforming prior art by more than 20% for
90% noise on CIFAR-100 and nearly closing the gap with semi-supervised learning trained on the
same amount of labeled samples as the clean portion. In particular, we believe C2D has high potential
in domains where no large-scale annotated datasets exist, such as medical images.

2https://github.com/HobbitLong/SupContrast
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