
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ERROR BROADCAST AND DECORRELATION AS A
POTENTIAL ARTIFICIAL AND NATURAL LEARNING
MECHANISM

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the Error Broadcast and Decorrelation (EBD) algorithm, a novel
learning framework that addresses the credit assignment problem in neural net-
works by directly broadcasting output error to individual layers. The EBD algo-
rithm leverages the orthogonality property of the optimal minimum mean square
error (MMSE) estimator, which states that estimation errors are orthogonal to any
nonlinear function of the input, specifically the activations of each layer. By defin-
ing layerwise loss functions that penalize correlations between these activations
and output errors, the EBD method offers a principled and efficient approach to
error broadcasting. This direct error transmission eliminates the need for weight
transport inherent in backpropagation. Additionally, the optimization framework
of the EBD algorithm naturally leads to the emergence of the experimentally ob-
served three-factor learning rule. We further demonstrate how EBD can be inte-
grated with other biologically plausible learning frameworks, transforming time-
contrastive approaches into single-phase, non-contrastive forms, thereby enhanc-
ing biological plausibility and performance. Numerical experiments demonstrate
that EBD achieves performance comparable to or better than state-of-the-art meth-
ods on benchmark datasets. Our findings suggest that EBD offers a promising,
principled direction for both artificial and natural learning paradigms, providing a
biologically plausible and flexible alternative for neural network training with in-
herent simplicity and adaptability that could benefit future developments in neural
network technologies.

1 INTRODUCTION

Neural networks have been central to both biological and artificial intelligence research, providing
key models for understanding cognitive functions. One major challenge in these networks is deter-
mining how to adjust individual synaptic weights to optimize a global objective, a problem referred
to as the credit assignment problem. In Artificial Neural Networks (ANNs), the most common so-
lution to this problem is the backpropagation (BP) algorithm (Rumelhart et al., 1986). This method
involves propagating errors—calculated at the network’s output—back through the network using a
distinct layered pathway, employing the same synaptic values used during forward processing.

In contrast to ANNs, the global mechanisms for credit assignment within biological neural net-
works remain less understood. Although there are dynamical models for local synaptic changes
(Magee & Grienberger, 2020), a comprehensive and biologically feasible theory of credit assign-
ment that integrates these dynamics remains unresolved. The backpropagation algorithm, despite
its effectiveness in training ANNs, is not directly implementable in biological systems. This is due
to biologically implausible requirements, such as weight symmetry between forward and backward
pathways (Crick, 1989), meaning that the same weights must be used in both signal transmission
and error feedback—a condition not observed in biological neurons, as illustrated by Figure 1a.

To address the credit assignment problem in biological networks, researchers have proposed a set
of methods collectively known as error broadcasting (Williams, 1992; Werfel et al., 2003; Nok-
land, 2016; Baldi et al., 2018; Whittington & Bogacz, 2019; Clark et al., 2021). These approaches
distribute error information throughout the network without relying on precise backward pathways

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

or symmetric weights, thereby eliminating the weight symmetry issue inherent in backpropagation.
This elimination of weight symmetry not only makes error broadcasting potentially useful for mod-
eling biological neural networks but also offers practical advantages for hardware implementations.
As recently demonstrated by Wang et al. (2024), the straightforward mechanism of error broadcast-
ing enables efficient hardware implementations of neural networks, raising hopes for future neu-
romorphic systems. Despite promising developments in both theory and applications (Bordelon &
Pehlevan, 2022; Launay et al., 2019), error broadcasting schemes still require further theoretical
support to confirm and enhance their effectiveness in training networks.

In this context, we introduce a novel learning paradigm termed the Error Broadcast and Decor-
relation (EBD) algorithm. The fundamental principle of EBD is to adjust the network weights to
minimize the correlation between the broadcast errors and the activations of each layer. This method
is grounded on two key observations: first, that the output error of an optimal minimum mean square
error (MMSE) estimator is orthogonal to any nonlinear function of the input; and second, that each
network layer represents a specific nonlinear function of the input. By viewing the network as a
nonlinear MMSE estimator and leveraging the orthogonality property of optimal estimators, we de-
fine layer-specific training losses that adjust individual layer parameters to make their activations
orthogonal to the broadcast errors.

(a) BP (b) EBD
(c) Correlation between layer activa-
tions and output error.

Figure 1: Comparison of backpropagation and error broadcast and decorrelation mechanisms
in multilayer perceptron networks, along with the correlation dynamics during BP training. (a)
Depicts the traditional backpropagation approach, where errors are transmitted sequentially through
symmetric backward pathways. (b) Represents the Error Broadcast and Decorrelation (EBD)
approach, where output errors are broadcast to each layer via cross-correlation matrices between
the errors and layer activations. (c) Shows the evolution of the average absolute correlation between
layer activations and the error signal during backpropagation training of an MLP with three hidden
layers (with MSE criterion) on CIFAR-10 dataset, illustrating how this correlation decreases over
epochs (see Appendix G for details).

The EBD algorithm directly connects the output errors to the network layers, simplifying the mech-
anism for credit assignment and enabling parallel synaptic updates that may accelerate training. In
providing a framework for biologically realistic networks, the EBD algorithm has two key advan-
tages. First, optimizing the loss function of EBD naturally leads to the experimentally observed
three-factor learning rule (Gerstner et al., 2018; Kuśmierz et al., 2017). Second, by broadcasting er-
rors directly to the layers as shown in Figure 1b, it overcomes the weight transport problem inherent
in backpropagation and some more biologically plausible credit assignment approaches (Whitting-
ton & Bogacz, 2017; Qin et al., 2021).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We demonstrate the utility of the EBD algorithm by applying it to both artificial and biologically
realistic neural networks. Our experiments show that the EBD method achieves performance com-
parable to, or better than, state-of-the-art approaches on benchmark datasets, offering a promising
direction for theoretical and practical advancements in neural network training.

1.1 RELATED WORK AND CONTRIBUTIONS

Several frameworks have been proposed as alternatives to the backpropagation algorithm for mod-
eling credit assignment in biological networks (Whittington & Bogacz, 2019). These include pre-
dictive coding (Rao & Ballard, 1999; Whittington & Bogacz, 2017; Golkar et al., 2022), similarity
matching (Qin et al., 2021; Bahroun et al., 2023), time-contrastive approaches (Ackley et al., 1985;
O’Reilly, 1996; Scellier & Bengio, 2017), forward-only methods (Hinton, 2022; Farinha et al., 2023;
Dellaferrera & Kreiman, 2022), target propagation (Le Cun, 1986; Bengio, 2014; Lee et al., 2015),
random feedback alignment (Lillicrap et al., 2016), and learned feedback weights (Kolen & Pollack,
1994; Ji-An & Benna, 2024).

Another significant alternative is error-broadcast methods, where output errors are directly trans-
mitted to network layers without relying on precise backward pathways or symmetric weights. Two
important examples of this approach are weight and node perturbation algorithms Williams (1992);
Dembo & Kailath (1990); Cauwenberghs (1992); Fiete & Seung (2006), in which global error
signals are broadcast to all network units. These signals reflect the change in overall error caused by
individual perturbations in the network’s weights or units. A more recent and prominent example
of error-broadcast is Direct Feedback Alignment (DFA) (Nokland, 2016). In DFA, the output
errors are projected onto the hidden layers through fixed random weights, effectively replacing the
symmetric backward weights required in traditional backpropagation. This approach first emerged
as a modification to the feedback alignment approach (which replaced the symmetric weights of
the backpropagation algorithm with random ones). DFA has been extended and analyzed in several
studies (Bartunov et al., 2018; Han & Yoo, 2019; Launay et al., 2019; 2020; Bordelon & Pehlevan,
2022), demonstrating its potential in training neural networks with less biologically implausible
mechanisms. Clark et al. (2021) introduced another broadcast approach for a network with vector
units and nonnegative weights for which three factor learning based update rule is applied.

Our proposed framework for error broadcasting differentiates itself through

• a principled method based on the orthogonality property of nonlinear MMSE estimators,

• error projection weights determined by the cross-correlation between the output errors
and the layer activations as opposed to random weights of DFA,

• dynamic Hebbian updating of projection weights as opposed to fixed weights of DFA,

• updates involving arbitrary nonlinear functions of layer activities, encompassing a
family of three-factor learning rules,

• the option to project layer activities forward to the output layer.

In summary, our approach provides a theoretical grounding for the error broadcasting mechanism
and enhances its effectiveness in training networks.

2 ERROR BROADCAST AND DECORRELATION METHOD

2.1 PROBLEM STATEMENT

To illustrate our approach, we first assume a multi layer perceptron (MLP) network with L layers,
including the output layer. Later on, we will demonstrate generalizations to other architectures. We
label the input and layer activations of the network with h(k) ∈ RN(k)

, for k = 0, . . . , L. Here, k
is the layer index, N (k) is the size of the layer k, h(0) = x is the input of the network, and h(L)

represents the output of the network.

The layer activations can be written as

h(k) = f (k)(u(k)), u(k) = W(k)h(k−1) + b(k), (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

for k = 1, . . . , L, where f (k) are activation functions, W(k) are synaptic weights and b(k) are biases.

We assume that the performance criterion is the mean square of the output error (ϵ = h(L) − y)
between the final layer activations h(L) and the desired output y:

E(∥ϵ∥2) = E(∥h(L) − y∥22). (2)

2.2 ERROR BROADCAST AND DECORRELATION LOSS FUNCTIONS

At the core of our approach lies the well-known orthogonality property of minimum mean square
error (MMSE) estimators (Papoulis & Pillai, 2002) (see Appendix A for a brief summary):

Let ŷ∗ be the optimal nonlinear MMSE estimator of the desired vector y given the input x, and let
ϵ∗ = y− ŷ∗ denote the corresponding estimation error. Then, for any properly measurable function
g of the input x, we have

E(g(x)ϵT∗) = 0. (3)

In other words, the estimation error of the optimal nonlinear MMSE estimator is orthogonal to
any arbitrary nonlinear transformation of the input. In linear MMSE estimation, the orthogonality
principle states that the estimation error is orthogonal to the observations and their linear functions.
Mathematically, this is expressed equivalent to restricting g(·) to be a linear function. Using this
orthogonality condition in reverse to derive linear estimators is a standard practice in the field (see,
for example,Kailath et al. (2000)). Techniques such asKalman Filtering are based on this principle,
which is firmly grounded in the Hilbert space projection theorem.

For nonlinear MMSE estimation, the orthogonality condition in (3) is even stronger: the estimation
error is orthogonal to any nonlinear function of the input. Exploiting this stronger condition to
construct nonlinear MMSE estimators is an open problem, primarily because it raises questions
about which nonlinear functions to choose and how many are needed.

In the proposed framework, we model the neural network as a parameterized nonlinear MMSE
estimator and seek as many equations from the orthogonality principle as possible to determine these
parameters. This is exactly the same principle as how the orthogonality condition is used in reverse
to find parameters for linear estimators. To address the challenge of selecting nonlinear functions
that yield informative equations for determining network parameters, we choose the activations of
the hidden layers in the neural network as these functions. This choice is natural because these
activations are directly related to the network’s parameters through differentiation. Therefore, if the
network converges to the optimal nonlinear MMSE estimator, the hidden layer activations should be
orthogonal to the output errors. We formalize this observation with the following equations:

Rg(k)(h(k))ϵ = E(g(k)(h(k))ϵT∗) = 0, for k = 0, . . . , L, (4)

where g(k) is an arbitrary function of layer activations.

Figure 1c illustrates this phenomenon by showing the evolution of the average absolute correlation
between layer activations and the error signal during backpropagation training of an MLP with three
hidden layers on the CIFAR-10 dataset, based on the MSE criterion. The observed decrease in
correlation between layer activations and output errors during MSE training is consistent with the
orthogonality property stated in Equations (3) and (4).

Building upon this orthogonality property, we propose to define layer-specific surrogate loss func-
tions. As shown in Section 2.3, these losses can be used to derive an alternative to backpropagation,
where the output errors are broadcast directly to the network nodes, as depicted in Figure 1b.

Specifically, based on the orthogonality condition in Equation (4), we propose minimizing the Frobe-
nius norm of the cross-correlation matrices Rg(k)(h(k)),ϵ as a replacement for the standard MSE loss.
To this end, we define the estimated cross-correlation matrix between a function g(k) of layer acti-
vations and the output error for batch m and layer k as

R̂g(k)(h(k))ϵ[m] = λR̂g(k)(h(k))ϵ[m− 1] +
1− λ
B

G(k)[m]E[m]T ,

where λ ∈ [0, 1] is the forgetting factor used in the autoregressive estimation, B is the batch size,
R̂g(k)(h(k))ϵ[0] is the initial value for the correlation matrix, which is an algorithm hyperparameter,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and

G(k)[m] =
[
g(k)(h(k)[mB + 1]) g(k)(h(k)[mB + 2]) . . . g(k)(h(k)[(m+ 1)B])

]
, (5)

is the matrix of nonlinearly transformed activations of layer k for batch m, while

E[m] = [ϵ[mB + 1] ϵ[mB + 2] . . . ϵ[(m+ 1)B]] , (6)

is the error matrix for batch m.

We then define the layer-specific loss function based on the orthogonality condition for layer k as

J (k)(h(k), ϵ)[m] =
1

2

∥∥∥R̂g(k)(h(k))ϵ[m]
∥∥∥2
F
, (7)

where ∥ · ∥F denotes the Frobenius norm. This loss function captures the sum of the squared mag-
nitudes of all cross-correlations between the components of the output error and the activations of
layer k. Therefore, we refer to the minimization of this loss function as decorrelation.

2.3 ERROR BROADCAST AND DECORRELATION ALGORITHM

The set of functions in (7) defines individual loss functions for each hidden layer of the network,
which are used to adjust the layer parameters. These loss functions can be minimized using a
gradient descent-based algorithm.

To minimize the loss for layer k, we compute the gradient of the loss function J (k)(h(k), ϵ) with
respect to the weight W (k)

ij . The derivative can be decomposed into two terms:

∂J (k)(h(k), ϵ)

∂W
(k)
ij

[m] =
1− λ
B

Tr

(
R̂g(k)(h(k))ϵ[m]E[m]

∂G(k)[m]T

∂W
(k)
ij

)
︸ ︷︷ ︸

[∆W
(k)
1 [m]]ij

+
1− λ
B

Tr

(
R̂g(k)(h(k))ϵ[m]

∂E[m]

∂W
(k)
ij

G(k)[m]T

)
︸ ︷︷ ︸

[∆W
(k)
2 [m]]ij

.

Similarly, the derivative with respect to the bias b(k)i is given by:

∂J (k)(h(k), ϵ)

∂b
(k)
i

[m] =
1− λ
B

Tr

(
R̂g(h(k))ϵ[m]E[m]

∂G(k)[m]T

∂b
(k)
i

)
︸ ︷︷ ︸

[∆b
(k)
1 [m]]i

+
1− λ
B

Tr

(
R̂g(k)(h(k))ϵ[m]

∂E[m]

∂b
(k)
i

G(k)[m]T

)
︸ ︷︷ ︸

[∆b
(k)
2 [m]]i

.

Here ∆W
(k)
1 ,∆b

(k)
1 [m] (∆W

(k)
2 ,∆b

(k)
2 [m]) represent the components of the gradients contain-

ing derivatives of activations (output errors) with respect to the layer parameters. As derived in
Appendix B.1, we obtain the closed-form expressions for ∆W

(k)
1 [m] and ∆b

(k)
1 [m]:

[∆W
(k)
1 [m]]ij =

1− λ
B

(m+1)B∑
n=mB+1

g′
(k)
i (h

(k)
i [n])f ′

(k)
(u

(k)
i [n])q

(k)
i [n]h

(k−1)
j [n], (8)

[∆b
(k)
1 [m]]i =

1− λ
B

(m+1)B∑
n=mB+1

g′
(k)
i (h

(k)
i [n])f ′

(k)
(u

(k)
i [n])q

(k)
i [n], (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where g′(k)i and f ′(k) denote the derivatives of the nonlinearity g(k) and the activation function f (k),
respectively. The term q(k)[m] is defined as:

q(k)[m] = R̂g(k)(h(k)), ϵ[m] ϵ[m],

representing the projection of the output error onto the layer activations, with the cross-correlation
matrix R̂g(k)(h(k)), ϵ[m] as the transformation matrix. These projections are shown in Figure 1b.

The update terms ∆W
(k)
1 [m] and ∆b

(k)
1 [m] aim to adjust the activations so they gradually become

orthogonal to ϵ as they are based on the derivatives of the layer activations with respect to the layer
parameters. Simultaneously, ∆W

(k)
2 [m] and ∆b

(k)
2 [m], derived from the derivatives of the output

error with respect to the layer parameters, work to adjust the output errors, pushing them into a
configuration more orthogonal to the activations. While both types of updates strive to decorrelate
activations and output errors, there is a critical distinction: ∆W

(k)
1 [m] and ∆b

(k)
1 [m] depend only

on the layer activations and the broadcast output error signals, whereas ∆W
(k)
2 [m] and ∆b

(k)
2 [m]

rely on signals that propagate backward from the output layer to the current layer, resembling back-
propagation (as shown in Appendix B.1).

By focusing solely on ∆W
(k)
1 [m] and ∆b

(k)
1 [m], we can eliminate the need for propagation terms,

resulting in a completely localized update mechanism for training the neural network. Therefore,
we prescribe the Error Broadcast and Decorrelation (EBD) update mechanism as:

W(k)[m+ 1] = W(k)[m]− µ(k)[m]∆W
(k)
1 [m],

b(k)[m+ 1] = b(k)[m]− µ(k)[m]∆b
(k)
1 [m],

for k = 1, . . . , L − 1, where µ(k)[m] is the learning rate for layer k at batch m. For the final layer
(k = L), we utilize the standard MMSE gradient update:

W(L)[m+ 1] = W(L)[m]− µ(L)[m]
1

B

(m+1)B∑
n=mB+1

(
f ′

(k)
(u(L)[n])⊙ ϵ[n]

)
h(L−1)[n]T ,

b(L)[m+ 1] = b(L)[m]− µ(L)[m]
1

B

(m+1)B∑
n=mB+1

f ′
(k)

(u(L)[n])⊙ ϵ[n],

where f ′(L) is the derivative of the activation function of the output layer.

2.4 FURTHER EBD ALGORITHM EXTENSIONS

We propose further extensions to the EBD framework to address potential activation collapse,
which can arise when minimizing correlations is the sole objective. To prevent unit-level collapse,
we introduce power regularization, while entropy regularization is employed to prevent dimensional
collapse. Both regularizations can be implemented in ANNs as well as biologically plausible
networks. Although CorInfoMax-EBD inherently includes entropy regularization, it can also
benefit from the addition of power regularization for enhanced stability. Additionally, we introduce
forward layer activation projections to improve the algorithm’s versatility. We also extend the EBD
formulations to more complex architectures, including Convolutional Neural Networks (CNNs) and
Locally Connected (LC) networks. Detailed implementations and evaluations of these extensions
are provided in Appendix C.

2.4.1 AVOIDING COLLAPSE

A critical challenge when applying the EBD algorithm to MLPs is the potential for activation col-
lapse, where layer decorrelation losses defined in (7) are minimized by driving all layer activations
to zero, even in the presence of non-zero output errors. This unintended minimization undermines
the network’s ability to learn meaningful representations, as all activations become inactive.

To counteract activation collapse, we introduce two complementary algorithmic remedies:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Power normalization A straightforward safeguard against total activation collapse is to regulate the
power of layer activations through a power normalization loss function:

J
(k)
P (h(k)) =

N(k)∑
l=1

 1

B

(m+1)B∑
n=mB+1

h
(k)
l [n]2 − P (k)

2

,

where P (k) is a hyperparameter representing the desired power level for activations in layer k. This
loss ensures activations maintain a consistent power level, preventing collapse.

Layer entropy While power normalization prevents total collapse, it does not address the issue of
activations collapsing into low-dimensional subspaces, which can restrict the network’s expressive-
ness. To mitigate this dimensional degeneracy, we propose the incorporation of the layer-entropy
objective, which has been utilized in self-supervised learning (Ozsoy et al., 2022) and principled
biologically more realistic neural network formulations (Bozkurt et al., 2024):

J
(k)
E (h(k))[m] =

1

2
log det(Rh(k) [m] + ε(k)I),

In this expression, Rh(k) [m] represents the layer auto-correlation matrix for layer k at batch m,
which is obtained through an auto-regressive update (as proposed in Ozsoy et al. (2022))

Rh(k) [m] = λERh(k) [m− 1] + (1− λE)
1

B
H(k)[m]H(k)[m]T , where,

H(k)[m] =
[
h(k)[mB + 1] h(k)[mB + 2] . . . h(k)[(m+ 1)B]

]
, (10)

is the activation matrix, and λE is the forgetting factor for the autoregressive averaging.

We note that, while the use of entropy and power regularizers may not be entirely novel, they play a
significant role in preventing the collapse problem.

2.4.2 FORWARD BROADCAST

In the EBD algorithm (Section 2.3), output errors are broadcast to layers to adjust weights and reduce
correlations with activations. To complement this, we introduce forward broadcasting, projecting
hidden layer activations onto the output layer to optimize the decorrelation loss by adjusting the
final layer’s parameters. Details are provided in Appendix B.3.

2.4.3 EXTENSIONS TO OTHER NETWORK ARCHITECTURES

The EBD approach relies on the orthogonality of output errors to node activations , independent of
network topology. We extend EBD to convolutional neural networks (CNNs) in Appendix C.1 and
to locally connected (LC) networks in Appendix C.2.

3 EBD FOR BIOLOGICALLY MORE REALISTIC NETWORKS

In the previous section, we introduced the Error Broadcast and Decorrelation (EBD) algorithm
within the context of MLP networks. While MLPs can resemble biologically plausible networks
depending on the credit assignment mechanism, in this section, we extend the application of the
EBD approach to neural networks that exhibit more biologically realistic dynamics and architec-
tures. This extension is motivated by two key properties of the EBD framework: first, the error is
broadcast directly to the layers, naturally eliminating the weight symmetry issue observed in the BP
algorithm; second, the EBD synaptic update rules mimic the form of extended Hebbian updates with
modulatory components. In the following subsections, we explore how EBD relates to the biologi-
cally plausible three-factor learning rule and demonstrate its integration with the biologically more
realistic CorInfoMax networks (Bozkurt et al., 2024).

3.1 THREE FACTOR LEARNING RULE AND EBD

The three-factor learning rule proposed for biological neural networks extends the traditional two-
factor Hebbian rule by incorporating a modulatory signal into synaptic updates based on presynaptic

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

and postsynaptic activity (Frémaux & Gerstner, 2016; Gerstner et al., 2018). Upon closer examina-
tion of the EBD update expression in (8), we observe that it conforms to the three-factor update form:

∆W
(k)
ij ∝ g

′(k)
i (h

(k)
i)f ′

(k)
(u

(k)
i)︸ ︷︷ ︸

Postsynaptic

q
(k)
i︸︷︷︸

Modulatory

h
(k−1)
j︸ ︷︷ ︸

Presynaptic

,

where the modulatory component q(k)i is the linearly projected version of the error. This observation
indicates that the EBD formulation inherently supports a variety of three-factor update rules,

depending on the choice of the nonlinearity g(k). For instance, selecting g(k)i (h
(k)
i) = h

(k)
i

2
leads

to the error-modulated Hebbian update (Loewenstein & Seung, 2006; Bordelon & Pehlevan, 2022):

∆W
(k)
ij ∝ h

(k)
i f ′

(k)
(u

(k)
i)︸ ︷︷ ︸

Postsynaptic

q
(k)
i︸︷︷︸

Modulatory

h
(k−1)
j︸ ︷︷ ︸

Presynaptic

.

By inherently supporting a variety of three-factor update rules through different choices of nonlinear
functions, EBD offers flexibility and potential for modeling neural learning processes in a manner
consistent with biological observations.

3.2 CORINFOMAX-EBD: CORINFOMAX WITH THREE FACTOR LEARNING RULE

One of the significant advantages of the EBD framework is its flexibility to broadcast output errors
into network nodes, which can be leveraged to transform time-contrastive, biologically plausible
approaches into non-contrastive forms. To illustrate this property, we propose a modification of the
recently introduced CorInfoMax framework (Bozkurt et al., 2024) (see Appendix D for a summary).
The CorInfoMax-EBD scheme proposed in this section is more biologically realistic than the MLP-
based EBD approach in Section 2 due to multiple factors: Unlike the batch-mode operation required
by the MLP-based EBD, CorInfoMax operates in an online optimization setting which naturally
integrates entropy gradients into lateral weights, resulting in biologically plausible updates, whereas
the MLP approach uses entropy regularization without ensuring biological plausibility. Besides, it
employs a neuron model and network architecture that closely mirror biological neural networks.

The CorInfoMax approach uses correlative information flow between layers as its objective function:

JCI [m] =

L−1∑
k=1

(→
Î(εk)(h(k−1),h(k))[m] +

←
Î(εk)(h(k),h(k+1))[m]

)
, where,

→
Î(εk)(h(k),h(k+1))[m] =

1

2
log det(R̂h(k+1) [m] + εkI)−

1

2
log det(R̂→

e
(k+1)

∗
[m] + εkI),

←
Î(εk)(h(k),h(k+1))[m] =

1

2
log det(R̂h(k) [m] + εkI)−

1

2
log det(R̂←

e
(k)

∗
[m] + εkI),

are alternative forms of correlative mutual information between nodes, defined in terms of the corre-
lation matrices of layer activations, i.e., R̂h(k) and the correlation matrices of forward and backward
prediction errors (R̂→

e
(k+1)

∗
and R̂←

e
(k)

∗
). Here, forward/backward prediction errors are defined by

→
e
(k+1)

∗ [n] = h(k+1)[n]−W(f,k)[m]h(k)[n],
←
e
(k)

∗ [n] = h(k)[n]−W(b,k)[m]h(k+1)[n],

respectively. Here, W(f,k)[m] (W(b,k)[m]) is the forward (backward) prediction matrix for layer k.

Maximizing this objective via gradient ascent leads to network dynamics corresponding to a struc-
ture with feedforward and feedback connections, analogous to forward and backward predictive
coding, and lateral connections that maximize layer entropy. In the original work (Bozkurt et al.,
2024), the time-contrastive equilibrium propagation (EP) approach (Scellier & Bengio, 2017) is
proposed to train the network weights, requiring a two-phase adaptation process.

As an alternative, we propose employing the EBD update rule to replace the two-phase EP adap-
tation. In this direction, assuming that layer activations h(k), k = 1, . . . , L are computed by the
CorInfoMax network dynamics in Bozkurt et al. (2024), the proposed CorInfoMax-EBD algorithm
is described by the following update equations defined in Algorithm 1:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 1 CorInfoMax-EBD Algorithm for Updating Weights in Layer k
Input: Batch size B, layer index k, iteration step m, learning rates µ(f,k), µ(b,k), µ(df ,k), µ(db,k), µ(dl,k),
factors λd, λE , γE , activations H(k) in (10), the nonlinear function of layer activations G(k) in (5), the
derivative of the nonlinear function of layer activations G(k)

d in (11), the derivative of activations F(k)
d in (12),

output error E in (6), prediction errors
←
E and

→
E

(k)

in (31-32), lateral weight outputs Z(k) in (33).
Output: Updated weights W(f,k), W(b,k), B(k).

Step 1: Update error projection weights for layer k:

Rg(k)(h(k))ϵ[m] = λdRg(k)(h(k))ϵ[m− 1] + 1−λd
B

G(k)[m]E[m]T

Step 2: Project errors to layer k:

Q(k)[m] = R
(k)

g(k)(h(k))ϵ
[m]E[m]

Step 3: Find the gradient of the nonlinear function of activations for layer k:

Φ(k)[m] = F
(k)
d [m]⊙Q(k)[m]⊙G

(k)
d [m]

Step 4: Update forward, backward and lateral weights for layer k:

W(f,k)[m] = W(f,k)[m− 1] +

(
µ(f,k)[m]

B

→
E

(k)

[m]− µ(df ,k)[m]

B
Φ(k)[m]

)
H(k−1)[m]T

W(b,k)[m] = W(b,k)[m− 1] +

(
µ(b,k)[m]

B

←
E

(k)

[m]− µ(db,k)[m]

B
Φ(k)[m]

)
H(k+1)[m]T

B(k)[m] =
1

λE
B(k−1)[m]− γE

B
Z(k)[m]Z(k)[m]T − µ(dl,k)[m]

B
Φ(k)[m]H(k)[m]T

Here, we assume layer activations H(k), output error E(k), forward (backward) prediction errors
→
E

(k)

(
←
E

(k)

) and lateral weight outputs Z(k) are computed by the CorInfoMax network dynam-
ics specified in Bozkurt et al. (2024) (see also Appendix D). By integrating EBD, we enable a
single-phase update per input, streamlining the training process while achieving comparable or even
superior performance compared to the EP-based implementation, as demonstrated in Section 4.

In conclusion, the CorInfoMax-EBD algorithm demonstrates that merging EBD with other learning
frameworks can enhance biological realism and offer greater implementational flexibility in training
biologically plausible neural networks.

4 NUMERICAL EXPERIMENTS AND DISCUSSION OF RESULTS

In this section, we evaluate the performance of the proposed Error Broadcast and Decorrelation
(EBD) approach on two benchmark datasets: MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky
et al., 2009). For experiments involving MLP, CNN and LC, we consider the same network archi-
tectures used in Clark et al. (2021). We also tested the proposed CorInfoMax-EBD model in com-
parison to the CorInfoMax-EP model of Bozkurt et al. (2024). More details about architectures, im-
plementations, hyperparameter selections, and experimental outputs are provided in the Appendix E.

4.1 RESULTS

The test accuracy results of our EBD algorithm compared to BP and three error-broadcast methods:
DFA without and with entropy regularization (DFA-E) (Nokland, 2016), nonnegative global error
vector broadcasting (NN-GEVB) (Clark et al., 2021), and mixed-sign global error vector broad-
casting (MS-GEVB) (Clark et al., 2021) —are summarized in Table 1 for MNIST and Table 2 for
CIFAR-10. In addition, the test accuracy results for biologically more realistic CorInfoMax net-
works trained with EP and EBD learning methods are shown in Table 3.

These results confirm that the networks trained with EBD approach achieves equivalent performance
on the MNIST dataset and significantly better performance on the CIFAR-10 dataset. The improve-
ments of EBD in Table 2 over DFA can be attributed to the fact that error projection weights are

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Accuracy (%) results for MLP, CNN, and LC networks on the MNIST dataset. Columns
marked with [*] are from reference Clark et al. (2021).

DFA DFA+E (ours) NN-GEVB [*] MS-GEVB [*] BP EBD (ours)

MLP 98.09 98.21 98.13 97.68 98.72 98.24
CNN 99.06 99.07 97.67 98.17 99.46 99.08
LC 98.92 98.90 98.22 98.16 99.13 98.92

Table 2: Accuracy (%) results for MLP, CNN, and LC networks on the CIFAR-10 dataset. Columns
marked with [*] are from reference Clark et al. (2021).

DFA DFA+E (ours) NN-GEVB [*] MS-GEVB [*] BP EBD (ours)

MLP 52.09 52.22 52.38 51.14 56.37 55.47
CNN 58.39 58.56 66.26 61.57 75.24 66.42
LC 62.19 62.12 58.92 59.89 67.81 64.23

adaptable in EBD, and the improvement of CorInfoMax-EBD over CorInfoMax-EP in Table 3 can
be attributed to the fact that CorInfoMax-EBD incorporates error decorrelation in updating lateral
weights, whereas CorInfoMax-EP relies only on anti-Hebbian updates.

Table 3: Accuracy results (%) for EP and EBD CorInfoMax algorithms. Column marked with [*] is
from reference Bozkurt et al. (2024).

CorInfoMax-EP [*] CorInfoMax-EBD (Ours) CorInfoMax-EBD (Ours)
(batch size : 20) (batch size : 20) (batch size : 1)

MNIST 97.58 97.53 94.7
CIFAR-10 50.97 55.79 53.4

5 CONCLUSIONS, EXTENSIONS AND LIMITATIONS

Conclusions and Extensions. In this article, we introduced the Error Broadcast and Decorrela-
tion (EBD) framework as a biologically plausible alternative to traditional backpropagation. EBD
addresses the credit assignment problem by minimizing correlations between layer activations and
output errors, offering fresh insights into biologically realistic learning. This approach not only pro-
vides a theoretical foundation that could explain existing error broadcast mechanisms observed in
biological neural networks but also facilitates flexible implementations in neuromorphic systems and
artificial neural networks. The principled error-broadcasting mechanism of EBD aligns with biolog-
ical processes where global error signals modulate local synaptic updates, potentially bridging the
gap between artificial learning algorithms and natural neural computations. Moreover, the simplic-
ity and parallelism inherent in EBD make it suitable for efficient hardware implementations, such as
neuromorphic computing systems, which aim to emulate the brain’s architecture and function.

We also believe that the orthogonality property, which underpins proposed EBD framework, has
great potential for developing new algorithms, deepening theoretical understanding, and analyzing
neural networks in both artificial and biological contexts.

Limitations. The current implementation of EBD involves several hyperparameters, including
multiple learning rates for decorrelation and regularization functions, as well as forgetting factors for
correlation matrices. Although these parameters offer flexibility, they add complexity to the tuning
process. Additionally, the use of dynamically updated error projection matrices and the potential in-
tegration of entropy regularization may increase memory and computational demands. Future work
could explore more efficient methods for managing these components, potentially automating or
simplifying the tuning process to enhance usability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY

To facilitate the reproducibility of our results, we have included the following:

i. Detailed information on the derivation of the weight and bias updates of the Error Broadcast
and Decorrelation (EBD) Algorithm for various networks in Appendix B for MLPs, C.1 for
CNNs, C.2 for LCs,

ii. Full list of hyperparameter sets used in these experiments in Appendix E.3.6, E.4.4, E.5.4,
E.6.4,

iii. Algorithm descriptions for CorInfoMax Error Broadcast and Decorrelation (CorInfoMax-
EBD) Algorithm in pseudo-code format in Appendix E.3.2,

iv. Python scripts, Jupyter notebooks, and bash scripts for replicating the individual experi-
ments and reported results are included in the supplementary zip file.

7 ETHICS STATEMENT

We do not identify any immediate ethical concerns regarding the algorithmic framework proposed
in this article. Furthermore, to the best of our knowledge, the datasets used in this work do not have
any known or reported ethical issues.

REFERENCES

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive Science, 9(1):147–169, 1985.

Yanis Bahroun, Shagesh Sridharan, Atithi Acharya, Dmitri B Chklovskii, and Anirvan M Sengupta.
Unlocking the potential of similarity matching: Scalability, supervision and pre-training. arXiv
preprint arXiv:2308.02427, 2023.

Pierre Baldi, Peter Sadowski, and Zhiqin Lu. Learning in the machine: Random backpropagation
and the deep learning channel. Artificial Intelligence, 260:1–35, July 2018. doi: 10.1016/j.artint.
2017.06.003.

Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy
Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms and archi-
tectures. Advances in Neural Information Processing Systems, 31, 2018.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv preprint arXiv:1407.7906, 2014.

Blake Bordelon and Cengiz Pehlevan. The influence of learning rule on representation dynamics in
wide neural networks. In International Conference on Learning Representations, 2022.

Bariscan Bozkurt, Cengiz Pehlevan, and Alper T. Erdogan. Correlative information maximization:
a biologically plausible approach to supervised deep neural networks without weight symmetry.
Advances in Neural Information Processing Systems, 36, 2024.

Gert Cauwenberghs. A fast stochastic error-descent algorithm for supervised learning and optimiza-
tion. Advances in Neural Information Processing Systems, 5, 1992.

Tony F Chan, Gene H Golub, and Randall J LeVeque. Updating formulae and a pairwise algorithm
for computing sample variances. In COMPSTAT 1982 5th Symposium held at Toulouse 1982:
Part I: Proceedings in Computational Statistics, pp. 30–41. Springer, 1982.

David Clark, L.F. Abbott, and SueYeon Chung. Credit assignment through broadcasting a global
error vector. In Advances in Neural Information Processing Systems, 2021.

Francis Crick. The recent excitement about neural networks. Nature, 337:129–132, 1989.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: Solving the credit as-
signment problem without a backward pass. In International Conference on Machine Learning,
pp. 4937–4955. PMLR, 2022.

Amir Dembo and Thomas Kailath. Model-free distributed learning. IEEE Transactions on Neural
Networks, 1(1):58–70, 1990.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Matilde Tristany Farinha, Thomas Ortner, Giorgia Dellaferrera, Benjamin Grewe, and Angeliki Pan-
tazi. Efficient biologically plausible adversarial training. arXiv preprint arXiv:2309.17348, 2023.

Ila R Fiete and H Sebastian Seung. Gradient learning in spiking neural networks by dynamic per-
turbation of conductances. Physical Review Letters, 97(4):048104, 2006.

Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and
theory of three-factor learning rules. Frontiers in Neural Circuits, 9:85, 2016.

Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. Eligibility
traces and plasticity on behavioral time scales: experimental support of neohebbian three-factor
learning rules. Frontiers in Neural Circuits, 12:53, 2018.

Siavash Golkar, Tiberiu Tesileanu, Yanis Bahroun, Anirvan Sengupta, and Dmitri Chklovskii. Con-
strained predictive coding as a biologically plausible model of the cortical hierarchy. Advances in
Neural Information Processing Systems, 35:14155–14169, 2022.

Donghyeon Han and Hoi-jun Yoo. Efficient convolutional neural network training with direct feed-
back alignment. arXiv preprint arXiv:1901.01986, 2019.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Leena Ali Ibrahim, Shuhan Huang, Marian Fernandez-Otero, Mia Sherer, Yanjie Qiu, Spurti Vemuri,
Qing Xu, Robert Machold, Gabrielle Pouchelon, Bernardo Rudy, et al. Bottom-up inputs are
required for establishment of top-down connectivity onto cortical layer 1 neurogliaform cells.
Neuron, 109(21):3473–3485, 2021.

Li Ji-An and Marcus K Benna. Deep learning without weight symmetry. arXiv preprint
arXiv:2405.20594, 2024.

Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear estimation. Prentice-Hall information and
system sciences series. Prentice Hall, 2000. ISBN 9780130224644.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

John F Kolen and Jordan B Pollack. Backpropagation without weight transport. In Proceedings of
1994 IEEE International Conference on Neural Networks (ICNN’94), volume 3, pp. 1375–1380.
IEEE, 1994.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Technical Report Technical Report, University of Toronto, 2009.

Łukasz Kuśmierz, Takuya Isomura, and Taro Toyoizumi. Learning with three factors: modulating
hebbian plasticity with errors. Current Opinion in Neurobiology, 46:170–177, 2017.

Julien Launay, Iacopo Poli, and Florent Krzakala. Principled training of neural networks with direct
feedback alignment. arXiv preprint arXiv:1906.04554, 2019.

Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. Advances in Neural Information Process-
ing Systems, 33:9346–9360, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yann Le Cun. Learning process in an asymmetric threshold network. In Disordered Systems and
Biological Organization, pp. 233–240. Springer, 1986.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propaga-
tion. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I 15, pp. 498–
515. Springer, 2015.

Alex TL Leong, Russell W Chan, Patrick P Gao, Ying-Shing Chan, Kevin K Tsia, Wing-Ho Yung,
and Ed X Wu. Long-range projections coordinate distributed brain-wide neural activity with
a specific spatiotemporal profile. Proceedings of the National Academy of Sciences, 113(51):
E8306–E8315, 2016.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications, 7
(1):13276, 2016.

Yonatan Loewenstein and H Sebastian Seung. Operant matching is a generic outcome of synaptic
plasticity based on the covariance between reward and neural activity. Proceedings of the National
Academy of Sciences, 103(41):15224–15229, 2006.

Jeffrey C Magee and Christine Grienberger. Synaptic plasticity forms and functions. Annual Review
of Neuroscience, 43(1):95–117, 2020.

Arild Nokland. Direct feedback alignment provides learning in deep neural networks. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016.

Randall C O’Reilly. Biologically plausible error-driven learning using local activation differences:
The generalized recirculation algorithm. Neural Computation, 8(5):895–938, 1996.

Serdar Ozsoy, Shadi Hamdan, Sercan O Arik, Deniz Yuret, and Alper T. Erdogan. Self-supervised
learning with an information maximization criterion. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Athanasios Papoulis and S Unnikrishna Pillai. Probability, Random Variables, and Stochastic Pro-
cesses. McGraw-Hill Europe: New York, NY, USA, 2002.

Shanshan Qin, Nayantara Mudur, and Cengiz Pehlevan. Contrastive similarity matching for super-
vised learning. Neural Computation, 33(5):1300–1328, 2021.

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpreta-
tion of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79–87, 1999.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986. doi: 10.1038/323533a0.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in Computational Neuroscience, 11:24, 2017.

Daniel Soudry, Elad Hoffer, and Nathan Srebro. The implicit bias of gradient descent on separable
data. In International Conference on Learning Representations, 2018.

Ziao Wang, Kilian Müller, Matthew Filipovich, Julien Launay, Ruben Ohana, Gustave Pariente,
Safa Mokaadi, Charles Brossollet, Fabien Moreau, Alessandro Cappelli, et al. Optical training of
large-scale transformers and deep neural networks with direct feedback alignment. arXiv preprint
arXiv:2409.12965, 2024.

Justin Werfel, Xiaohui Xie, and H Seung. Learning curves for stochastic gradient descent in linear
feedforward networks. Advances in Neural Information Processing Systems, 16, 2003.

James CR Whittington and Rafal Bogacz. An approximation of the error backpropagation algorithm
in a predictive coding network with local hebbian synaptic plasticity. Neural Computation, 29(5):
1229–1262, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain. Trends
in Cognitive Sciences, 23(3):235–250, 2019.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A PRELIMINARIES ON NONLINEAR MINIMUM MEAN SQUARE ERROR
ESTIMATION

Let y ∈ Rp and x ∈ Rn represent two non-degenerate random vectors with a joint probability
density function fyx(y,x) and conditional density fy|x(y|x). The goal of nonlinear minimum
mean square error (MMSE) estimation is to find an estimator function b : Rn → Rp that minimizes
the mean squared error (MSE), which is defined as:

MSE(b) = E(∥y − b(x)∥22).

Lemma A.1. The best linear MMSE estimate of y given x is:

bMMSE(x) = Ey|x(y|x).

The proof of Lemma A.1 relies on the following fundamental result (see, for example, the textbook
by Papoulis & Pillai (2002)), which is central to the development of the entire EBD framework in
the current article:
Lemma A.2. The estimation error for bMMSE(x) = Ey|x[y|x], denoted as eMMSE = y −
bMMSE(x), is orthogonal to any vector-valued function g : Rn → Rk of x. Formally, we have:

E(eMMSEg(x)
T) = 0.

Proof. (Lemma A.2) The proof follows simple steps:

E(eMMSEg(x)
T) = Ex

(
Ey|x

(
(y − Ey|x(y|x))g(x)T |x

))
= Ex(

(
Ey|x(y|x)− Ey|x(y|x))g(x)T

)
= 0.

Using Lemma A.2, we can now prove Lemma Lemma A.1:

Proof. (Lemma A.1) Let b : Rn → Rp be any arbitrary function. The corresponding MSE can be
written as:

MSE(b) = E(∥y − b(x)∥22).

By adding and subtracting Ey|x[y|x], we can decompose the error as:

MSE(b) = E(∥y − Ey|x(y|x) + Ey|x(y|x)− b(x)∥22)
= E(∥y − Ey|x∥22) + E(∥Ey|x(y|x)− b(x)∥22)
+ 2E((y − Ey|x)

T (Ey|x(y|x)− b(x)))

= E(∥y − Ey|x∥22) + E(∥Ey|x(y|x)(y|x)− b(x)∥22)
+ 2E(Tr((y − Ey|x(y|x))(Ey|x(y|x)− b(x))T))

= E(∥y − Ey|x∥22) + E(∥Ey|x(y|x)(y|x)− b(x)∥22)
+ 2Tr(E(eMMSE(Ey|x(y|x)− b(x))T)).

The third term, representing the cross product, vanishes by Lemma A.2, leaving us with:

MSE(b) = E(∥y − bMMSE(x)∥22) + E(∥bMMSE(x)− b(x)∥22).

Since the second term is always non-negative, the MSE is minimized when b(x) = bMMSE(x).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B THE DERIVATION OF UPDATE TERMS

In this section, we present the detailed derivations for the EBD algorithm and its variations, as
introduced in Section 2.3.

B.1 ∆W1 AND ∆b1 CALCULATION

In Section 2.3, we defined the weight update elemet [∆W1]ij as follows:

1− λ
B

Tr

(
R̂g(k)(h(k))ϵ[m]E[m]

∂G(k)[m]T

∂W
(k)
ij

)
.

The derivative term in this expression can be expanded as

∂G(k)[m]

∂W
(k)
ij

= ei


g′

(k)
i (h

(k)
i [mB + 1])f ′

(k)
(u

(k)
i [mB + 1])h

(k−1)
j [mB + 1]

g′
(k)
i (h

(k)
i [mB + 2])f ′

(k)
(u

(k)
i [mB + 2])h

(k−1)
j [mB + 2]

...
g′

(k)
i (h

(k)
i [(m+ 1)B])f ′

(k)
(u

(k)
i [(m+ 1)B])h

(k−1)
j [(m+ 1)B]


T

,

where ei represents the standard basis vector with all elements set to zero, except for the element at
index i, which is equal to 1.

By defining the matrix

Q(k)[m] = R̂g(k)(h(k))ϵ[m]E[m] =
[
q(k)[mB + 1] . . . q(k)[(m+ 1)B]

]
,

which represents the projection of the output error onto layer k, we can express the weight update
as:

[∆W
(k)
1 [m]]ij =

1− λ
B

(m+1)B∑
n=mB+1

g′
(k)
i (h

(k)
i [n])f ′

(k)
(u

(k)
i [n])q

(k)
i [n]h

(k−1)
j [n].

To further simplify this expression, we introduce the matrices:

G
(k)
d [m] =

[
g(k)′(h(k)[mB + 1]) g(k)′(h(k)[mB + 2]) . . . g(k)′(h(k)[(m+ 1)B])

]
, (11)

F
(k)
d [m] =

[
f (k)
′
(u(k)[mB + 1]) f (k)

′
(u(k)[mB + 2]) . . . f (k)

′
(u(k)[(m+ 1)B])

]
, (12)

and Z(k)[m] = G
(k)
d [m] ⊙ F

(k)
d [m] ⊙Q(k)[m], which allows us to express the weight update in a

more compact form:

∆W
(k)
1 [m] =

1− λ
B

Z(k)[m]H(k−1)[m]T .

Following a similar procedure, the bias update is given by:

∆b
(k)
1 [m] =

1− λ
B

Z(k)[m]1L×Nk−1
.

B.2 ∆W2 AND ∆b2 CALCULATION

In Section 2.3, we defined the weight update element [∆W2]ij involving the derivative of the output
error as

1− λ
B

Tr

(
R̂g(k)(h(k))ϵ[m]

∂E[m]

∂W
(k)
ij

G(k)[m]T

)
.

To begin, we consider the derivative term:

∂ϵ

∂W
(k)
ij

,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

which can be expanded as

∂ϵ

∂W
(k)
ij

=
∂ϵ

∂h(L)︸ ︷︷ ︸
I

∂h(L)

∂u(L)︸ ︷︷ ︸
diag(f ′(k)(u(L)))

∂u(L)

∂h(L−1)︸ ︷︷ ︸
W(L)

∂h(L−1)

∂u(L−1)︸ ︷︷ ︸
diag(f ′(k)(u(L−1)))

. . .

. . .
∂h(k+1)

∂u(k+1)︸ ︷︷ ︸
diag(f ′(k)(u(k+1)))

∂u(k+1)

∂h(k)︸ ︷︷ ︸
W(k+1)

∂h(k)

∂u(k)︸ ︷︷ ︸
diag(f ′(k)(u(k)))

∂u(k)

∂W
(k)
ij︸ ︷︷ ︸

eih
(k−1)
j

This expression reflects propagation terms, from the output back to the layer k. Defining Φ(L)[n] =

diag(f (L)′(u(L)[n])), and

Φ(k)[n] = Φ(k+1)[n]W(k+1)[m]diag(f ′(k)(u(k)[n])),

we obtain

∂ϵ[n]

∂W
(k)
ij

= Φ(k)[n]h
(k−1)
j [n]ei.

Thus, the derivative of the error at time step n with respect to W (k)
ij can be written as:

1− λ
B

Tr

(
Rg(k)(h(k))ϵ[m]

∂E[m]

∂W
(k)
ij

G(k)[m]T

)
=

1− λ
B

Tr

Rg(k)(h(k))ϵ[m]

(m+1)B∑
n=mB+1

∂ϵ[n]

∂W
(k)
ij

g(k)(h(k)[n])T

 .

Substituting the definition g̃(k)[n] = Rg(k)(h(k))ϵ[m]Tg(k)(h(k)[n]), we obtain:

1− λ
B

Tr

(
Rg(h(k))ϵ[m]

∂E[m]

∂W
(k)
ij

G(k)[m]T

)
,

=
1− λ
B

Tr

 (m+1)B∑
n=mB+1

h
(k−1)
j [n]Φ(k)[n]eig̃

(k)[n]T

 ,

=
1− λ
B

(m+1)B∑
n=mB+1

eTj h
(k−1)[n]g̃(k)[n]TΦ(k)[n]ei,

= eTi

1− λ
B

(m+1)B∑
n=mB+1

Φ(k)[n]T g̃(k)[n]h(k−1)T

 ej .

Now, defining:

ψ(k)[n] = Φ(k)[n]T g̃(k)[n],

and assembling these into the matrix:

Ψ(k)[m] =
[
ψ(k)[mB + 1] ψ(k)[mB + 2] . . . ψ(k)[(m+ 1)B]

]
,

we can compactly express the weight and bias updates as:

∆W
(k)
2 [m] =

1− λ
B

Ψ(k)[m]H(k−1)[m]T ,

∆b
(k)
2 [m] =

1− λ
B

Ψ(k)[m]1L×Nk−1
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.3 ON EBD WITH FORWARD PROJECTIONS

In the EBD algorithm introduced in Section 2.3 , output errors are broadcast to individual layers
to modify their weights, thereby reducing the correlation between hidden layer activations and out-
put errors. To enhance this mechanism, we introduce forward broadcasting, where hidden layer
activations are projected onto the output layer. This projection facilitates the optimization of the
decorrelation loss by adjusting the parameters of the final layer more effectively.

The purpose of forward broadcasting is to enhance the network’s ability to minimize the decor-
relation loss by directly influencing the final layer’s weights using the activations from the hidden
layers. By projecting the hidden layer activations forward onto the output layer, we establish a direct
pathway for these activations to impact the adjustments of the final layer’s weights. This mechanism
allows the final layer to update its parameters in a way that reduces the correlation between the out-
put errors and the hidden layer activations. Consequently, the errors at the output layer are steered
toward being orthogonal to the hidden layer activations.

This mechanism could potentially be effective because the final layer is responsible for mapping the
network’s internal representations to the output space. By incorporating information from earlier
layers, we enable the final layer to align its parameters more closely with the features that are most
relevant for reducing the overall error.

While the proposed forward broadcasting mechanism is primarily motivated by performance op-
timization, it can conceptually be related to the long-range (Leong et al., 2016) and bottom-up
(Ibrahim et al., 2021) synaptic connections in the brain, which allow certain neurons to influence
distant targets. These long-range bottom-up connections are actively being researched, and incorpo-
rating similar mechanisms into computational models could enhance their alignment with biological
neural processes. By integrating mechanisms that mirror these neural pathways, forward broadcast-
ing may be useful for modeling how information is transmitted across different neural circuits.

B.3.1 GRADIENT DERIVATION FOR THE EBD WITH FORWARD PROJECTIONS

We derive the gradients of the layer decorrelation losses with respect to the parameters of the final
layer. The partial derivative of the objective function J (k)(h(k), ϵ) with respect to the final layer
weights can be written as:

∂J (k)(h(k), ϵ)

∂W
(L)
ij

[m] =
1− λ
B

Tr

(
R̂g(h(k))ϵ[m]

∂(E[m]G(k)[m]T)

∂W
(L)
ij

)

=
1− λ
B

Tr

(
R̂g(h(k))ϵ[m]

∂E[m]

∂W
(L)
ij

G(k)[m]T

)
︸ ︷︷ ︸

[∆W(L,k),f [m]]ij

,

=
1− λ
B

Tr

Rg(h(k))ϵ[m]

(m+1)B∑
n=mB+1

∂ϵ[n]

∂W
(L)
ij

g(h(k)[n])T

 .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Substituting the definition g̃(k)[n] = Rg(h(k))ϵ[m]Tg(h(k)[n]), we can further express the partial
derivative as:

∂J (k)(h(k), ϵ)

∂W
(L)
ij

[m] =
1− λ
B

Tr

 (m+1)B∑
n=mB+1

h
(L−1)
j [n]Φ(L)[n]eig̃

(k)[n]T

 ,

=
1− λ
B

(m+1)B∑
n=mB+1

eTj h
(L−1)[n]g̃(k)[n]TΦ(L)[n]ei,

= eTi

1− λ
B

(m+1)B∑
n=mB+1

Φ(L)[n]T g̃(k)[n]h(L−1)T

 ej ,

= eTi

1− λ
B

(m+1)B∑
n=mB+1

(f ′(u(L)[n])⊙ g̃(k)[n])h(L−1)T

 ej .

Next, defining the following terms:

ψ(k,L)[n] = f ′(u(L)[n])⊙ g̃(k)[n],

and assembling them into the matrix:

Ψ(k,L)[m] =
[
ψ(k,L)[mB + 1] ψ(k,L)[mB + 2] . . . ψ[(m+ 1)B]

]
,

we can write the weight update as:

∆W(L,k),f [m] =
1− λ
B

Ψ(k,L)[m]H(k−1)[m]T .

Following a similar procedure, the bias update can be written as:

∆b(L,k),f [m] =
1− λ
B

Ψ(k,L)[m]1L×Nk−1
.

Based on these expressions, we can write

[∆W(L,k),f [m]]ij =
1− λ
B

(m+1)B∑
n=mB+1

f (L)′(u
(L)
i [n])g̃

(k)
i [n]h

(L−1)
j

[∆b(L,k),f [m]]i =
1− λ
B

(m+1)B∑
n=mB+1

f (L)′(u
(L)
i [n])g̃

(k)
i [n].

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXTENSIONS OF EBD APPROACH

C.1 EXTENSIONS TO CONVOLUTIONAL NEURAL NETWORKS (CNNS)

Let H(k) ∈ RP (k)×M(k)×N(k)

represent the output of the kth layer of a Convolutional Neural Net-
work (CNN), where P (k) is the number of channels and the layer’s output is M (k) × N (k) dimen-
sional. Furthermore, we use W(k,p) ∈ RP (k−1)×Ω(k)×Ω(k)

and b(k,p) ∈ R to represent the filter
tensor weights and bias coefficient respectively for the channel-p of the kth layer, and Ω(k) is the
symmetric convolution kernel size. Then a convolutional layer can be defined as

H(k,p) = f(U (k,p)), (13)

U (k,p) = (H(k−1) ∗W(k,p)) + b(k,p), (14)

where the symbol ”∗” represents the convolution 1 operation that acts upon both the spatial and
channel dimensions to generate the pth channel of kth layer output H(k,p), and f is the nonlinearity
acted on the convolution output.

C.1.1 ERROR BROADCAST AND DECORRELATION FORMULATION

Similar to equation 4, we have the cross-correlation between output errors ϵ and the arbitrary func-
tion of the kth layer activation of the pth channel denoted as g(k)(H(k,p)), for each layer and spatial
indexes r ∈ Z : 1 ≤ r ≤M (k) and s ∈ Z : 1 ≤ s ≤ N (k) as

Rg(k)(H(k,p))ϵ[q, r, s] = E(g(k)(H(k,p)[r, s])ϵq) = 0. (15)

Then this cross-correlation must ideally be zero due to the orthogonality condition. We can then
write the loss for layer-k at batch-m as:

J (k)(H(k,p), ϵ)[m] =
1

2

nc∑
q=1

∥∥∥R̂g(k)(H(k,p))ϵ[m, q, :, :]
∥∥∥2
F
, (16)

where R̂g(H(k),p)ϵ is the recurrently estimated cross-correlation using the training batches. Then
we can optimize the network by taking the derivative of the loss function with respect to the weight
W

(k,p)
hij corresponding to input channel h and weight spatial indexes i, j ∈ Z : 1 ≤ i, j ≤ Ω(k) as

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p)
hij

=
1− λ
B

nc∑
q=1

(m+1)B∑
n=mB+1

ϵq[n] · Tr

(
(R̂g(k)(H(k,p))ϵ[m, q, :, :]

T ∂g
(k)(H(k,p)[n, :, :])

∂W
(k,p)
hij

)

=
1− λ
B

nc∑
q=1

(m+1)B∑
n=mB+1

∑
r,s

ϵq[n]

[
(R̂g(k)(H(k,p))ϵ[m, q, :, :]⊙

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p)
hij

]
[r,s]

,

(17)

in which nc is the error dimension, N (k) and M (k) are the width and height of the kth layer, and the
derivative with respect to the ϵ term is neglected. The inner partial derivative term can be written as

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p)
hij

= g′
(k)

(H(k,p)[n, :, :])⊙ ∂H(k,p)[n, :, :]

∂W
(k,p)
hij

, (18)

and using the Equations (13) and (14),

∂H(k,p)[n, :, :]

∂W
(k,p)
hij

= f ′(U (k,p)[n, :, :])⊙ (E(k)hij ∗H
(k−1)[n, :, :]). (19)

1Although we call it as convolution, in CNNs, the actual operation used is the correlation operation where
the kernel is unflipped.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

where E(k)hij ∈ RP (k−1)×Ω(k)×Ω(k)

is a Kronecker delta tensor that occurs as the gradient of W(k,p)

with respect to W
(k,p)
hij . Combining the expressions, we have

ϕ[n, p, :, :] =

nc∑
q=1

ϵq[n] ·
(
R̂g(k)(H(k,p))ϵ[n, q, :, :]⊙ g(k)(H(k,p)[n, :, :])⊙ f ′(U (k,p)[n, :, :])

)
.

(20)
Then, combining the Equations (17), (18), (19), and then writing the convolution explicitly, we have

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p)
hij

=
1− λ
B

(m+1)B∑
n=mB+1

∑
r,s

[
ϕ[n, p, :, :]⊙ (E(k)hij ∗H

(k−1)[n, :, :])
]
[r,s]

=
1− λ
B

(m+1)B∑
n=mB+1

∑
r,s

ϕ[n, p, r, s] ·

 ∑
h′,i′,j′

E(k)hij [h
′, i′, j′] ·H(k−1,h′)[n, r + i′, s+ j′]

 .

By the definition of the delta function E(k)hij and writing the resulting expression as a 2D convolution
between H(k−1) and ϕ respectively, we have

=
1− λ
B

(m+1)B∑
n=mB+1

∑
r,s

ϕ[n, p, r, s] ·H(k−1,h)[n, r + i, s+ j]

=
1− λ
B

(m+1)B∑
n=mB+1

[
ϕ[n, p, :, :] ∗H(k−1,h)[n, :, :]

]
[i,j]

.

The resulting expression for the weight update is:

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p)
h

=
1− λ
B

(m+1)B∑
n=mB+1

(ϕ[n, p, :, :] ∗H(k−1,h)[n, :, :]). (21)

Similarly, it can be shown that the bias update:

∂J (k)(H(k,p), ϵ)[m]

∂b(k,p)
=

1− λ
B

(m+1)B∑
n=mB+1

N(k)∑
r=1

M(k)∑
s=1

ϕ[n, p, r, s].

The convolutional layer parameters can be trained using these gradient formulas for each layer sep-
arately, and can be calculated by utilizing the batched convolution operation.

C.1.2 WEIGHT ENTROPY OBJECTIVE

The layer entropy objective is computationally cumbersome for a convolutional layer that has mul-
tiple dimensions. Therefore, we propose the weight-entropy objective to avoid dimensional collapse

J
(k)
E (W(k)) =

1

2
log det(R

W
(k) + ε(k)I),

where we define W
(k) ∈ RP (k)×P (k−1).Ω(k).Ω(k)

as the unraveled version of the full size weight
tensor W(k), and the covariance matrix R

W
(k) is conditionally defined as:

R
W

(k) =

{
W

(k)T
W

(k)
, if P (k) ≥ P (k−1).Ω(k).Ω(k),

W
(k)

W
(k)T

, otherwise,
to decrease its dimensions and reduce the computational costs for further steps. Then, the derivative
of this objective can be written as:

∆J
(k)
E (W(k)) =

W
(k)

R−1
W

(k) , if P (k) ≥ P (k−1).Ω(k).Ω(k),

R−1
W

(k)W
(k)
, otherwise.

Therefore, ∂JE(W(k))

∂W
(k,p)
hij

can be obtained by reshaping ∆J
(k)
E (W(k)) as the weight tensor W(k).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.1.3 ACTIVATION SPARSITY REGULARIZATION

To further regularize the model, we enforce the layer activation sparsity loss that is given as

J
(k)
ℓ1

(H(k,p)) =
∥H(k,p)∥1
|H(k,p)∥2

. (22)

The gradient of the sparsity loss with respect to the hidden layer can be written as:

∆J
(k)
ℓ1

(H(k,p)) =
1

∥H(k,p)∥2
sign(H(k,p))− ∥H

(k,p)∥
∥H(k,p)∥32

H(k,p). (23)

Then, the gradient of the loss with respect to the model weights can be calculated in a similar manner
as the Equation (21):

∂J
(k)
ℓ1

(H(k,p))[m]

∂W
(k,p)
h

=
1

B

(m+1)B∑
n=mB+1

(
∆J

(k)
ℓ1

(H(k,p))[n, p, :, :] ∗H(k−1,h)[n, :, :]

)
.

C.2 EXTENSIONS TO LOCALLY CONNECTED (LC) NETWORKS

Let H(k) ∈ RP (k)×M(k)×N(k)

represent the output of the kth layer of a Locally Connected Network
(LC), where P (k) is the number of channels and the layer’s output is M (k)×N (k) dimensional. We
use W(k,p,r,s) ∈ RP (k−1)×Ω(k)×Ω(k)

and b(k,p,r,s) ∈ R to represent the filter tensor weights and
bias coefficient at spatial locations r ∈ Z : 1 ≤ r ≤M (k) and s ∈ Z : 1 ≤ s ≤ N (k), for channel-p
of the kth layer, where Ω(k) is the local receptive field size. Then a locally connected layer can be
defined as

H(k,p) = f(U (k,p)), (24)

U (k,p) = (H(k−1) ⊛W(k,p)) + b(k,p), (25)
where the symbol ”⊛” represents the locally connected operation which acts upon both the spatial
and channel dimensions, but without weight sharing across spatial locations, generating the pth

channel of the kth layer output H(k,p), and f is the nonlinearity applied to the result.

C.2.1 ERROR BROADCAST AND DECORRELATION FORMULATION

For the LC network, the orthogonality condition and the corresponding loss J (k)(H(k,p), ϵ)[m] for
layer-k at batch-m can be written equivalently as Equations (15) and (16) respectively. Then the
optimization can be performed by taking the derivative of the loss function with respect to W

(k,p,r,s)
hij

corresponding to input channel h, weight spatial indexes i, j ∈ Z : 1 ≤ i, j ≤ Ω(k) as

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p,r,s)
hij

=
1− λ
B

nc∑
q=1

(m+1)B∑
n=mB+1

ϵq[n] · Tr

(
(R̂g(k)(H(k,p))ϵ[m, q, :, :]

T ∂g
(k)(H(k,p)[n, :, :])

∂W
(k,p,r,s)
hij

)

=
1− λ
B

nc∑
q=1

(m+1)B∑
n=mB+1

∑
r,s

ϵq[n]

[
(R̂g(k)(H(k,p))ϵ[m, q, :, :]⊙

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p,r,s)
hij

]
[r,s]

.

(26)

The inner partial derivative term can be written as

∂g(k)(H(k,p)[n, :, :])

∂W
(k,p,r,s)
hij

= g′
(k)

(H(k,p)[n, :, :])⊙ ∂H(k,p)[n, :, :]

∂W
(k,p,r,s)
hij

, (27)

and using Equations (24) and (25), we obtain:

∂H(k,p)[n, :, :]

∂W
(k,p,r,s)
hij

= f ′(U (k,p)[n, :, :])⊙ (E(k)hij ⊛H(k−1)[n, :, :]). (28)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Here, E(k,r,s)hij ∈ RP (k−1)×Ω(k)×Ω(k) ×M (k) × N (k) is a Kronecker delta tensor that occurs as the

gradient of W(k,p) with respect to W
(k,p,r,s)
hij . Combining the expressions in (26), (27), (28), and

the expression for ϕ as in (20) which is equivalent for both CNNs and LCs, and then writing the
locally connected operation explicitly, we have

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p,r,s)
hij

=
1− λ
B

(m+1)B∑
n=mB+1

∑
r,s

[
ϕ[n, p, :, :]⊙ (E(k,r,s)hij ⊛H(k−1)[n, :, :])

]
[r,s]

=
1− λ
B

(m+1)B∑
n=mB+1

ϕ[n, p, r, s] ·

 ∑
h′,i′,j′

r′,s′

E(k,r,s)hij [h′, i′, j′, r′, s′] ·H(k−1,h′)[n, r′ + i′, s′ + j′]

 .

Then, by the definition of the Kronecker delta, the resulting expression for the weight update is:

∂J (k)(H(k,p), ϵ)[m]

∂W
(k,p,r,s)
hij

=
1− λ
B

(m+1)B∑
n=mB+1

(
ϕ[n, p, r, s] ·H(k−1,h)[n, r + i, s+ j]

)
. (29)

Similarly, it can be shown that the bias update is:

∂J (k)(H(k,p), ϵ)[m]

∂b(k,p,r,s)
=

1− λ
B

(m+1)B∑
n=mB+1

ϕ[n, p, r, s].

C.2.2 WEIGHT ENTROPY OBJECTIVE

Similar to CNNs, we propose the weight-entropy objective to avoid dimensional collapse in LCs

J
(k)
E (W(k)) =

1

2
log det(R

W
(k) + ε(k)I),

where we define W
(k) ∈ RP (k)×P (k−1).M(k).N(k).Ω(k).Ω(k)

as the unraveled version of the full size
weight tensor W(k), then the covariance matrix R

W
(k) is defined as:

R
W

(k) = W
(k)T

W
(k)
.

Then, the derivative of this objective can be written as:

∆J
(k)
E (W(k)) = W

(k)
R−1

W
(k)

∂JE(W(k))

∂W
(k,p,r,s)
hij

can be obtained by reshaping ∆J
(k)
E (W(k)) as the weight tensor W(k).

C.2.3 ACTIVATION SPARSITY REGULARIZATION

The layer activation sparsity loss for the LC is the same as the one given for the CNN in (22), with
its gradient with respect to the activations as in (23). Then, the gradient of the loss with respect to
the model weights can be calculated in a similar manner as the expression (29):

∂J
(k)
ℓ1

(H(k))[m]

∂W
(k,p,r,s)
hij

=
1

B

(m+1)B∑
n=mB+1

(
∆J

(k)
ℓ1

(H(k))[n, p, r, s]⊛H(k−1,h)[n, r + i, s+ j]

)
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D BACKGROUND ON ONLINE CORRELATIVE INFORMATION MAXIMIZATION
BASED BIOLOGICALLY PLAUSIBLE NEURAL NETWORKS

Bozkurt et al. (2024) recently proposed a framework, which we refer as CorInfoMax-EP, to address
weight symmetry problem corresponding to backpropagation algorithm. In this section, we provide
a brief summary of this framework.

The CorInfoMax-EP framework utilizes an online optimization setting to maximize correlative in-
formation between two consequitive layers:

L−1∑
k=0

Î(ϵ)(h(k),h(k+1))[m]− β

2
∥y[m]− h(L)[m]∥22,

where Î(ϵ)(h(k),h(k+1))[m] is the correlative mutual information between layers k and k + 1, and
the term on the left corresponds to the mean square error between the network output h(L)[m]
and the training label y[m]. This framework utilizes two alternative but equivalent forms for the
correlative mutual information

→
Î(εk)(h(k),h(k+1))[m] =

1

2
log det(R̂h(k+1) [m] + εkI)−

1

2
log det(R̂→

e
(k+1)

∗
[m] + εkI),

←
Î(εk)(h(k),h(k+1))[m] =

1

2
log det(R̂h(k) [m] + εkI)−

1

2
log det(R̂←

e
(k)

∗
[m] + εkI),

defined in terms of the correlation matrices of layer activations, i.e., R̂h(k) and the correlation
matrices of forward and backward prediction errors (R̂→

e
(k+1)

∗
and R̂←

e
(k)

∗
) between two consequitive

layers. Here, forward/backward prediction errors are defined by
→
e
(k+1)

∗ [n] = h(k+1)[n]−W(f,k)[m]h(k)[n],
←
e
(k)

∗ [n] = h(k)[n]−W(b,k)[m]h(k+1)[n],

respectively. Here, W(f,k)[m] (W(b,k)[m]) is the forward (backward) prediction matrix for layer k.

In order to enable online implementation, the exponentially weighted correlation matrices for hidden
layer activations and prediction errors are defined as follows:

R̂h(k) [m] =
1− λ
1− λm

m∑
i=1

λm−ih(k)[m]h(k)[m]
T
,

R̂→
e

(k) [m] =
1− λ
1− λm

m∑
i=1

λm−i
→
e
(k)

[m]
→
e
(k)

[m]
T

,

R̂←
e

(k) [m] =
1− λ
1− λm

m∑
i=1

λm−i
←
e
(k)

[m]
←
e
(k)

[m]
T

.

Through the trace approximation of log det(·) function, we obtain:

log det
(
R̂→

e
(k+1) [m] + εI

)
≈ 1

εk

t∑
i=1

λt−i∥h(k+1)[i]−W
(k)
ff,∗[m]h(k)[i]∥22 + εk∥W (k)

ff,∗[m]∥2F +Nk+1 log(εk)

log det
(
R̂←

e
(k) [m] + εkI

)
≈ 1

εk

t∑
i=1

λt−i∥h(k)[i]−W
(k)
fb,∗[m]h(k+1)[i]∥22 + εk∥W (k)

fb,∗[m]∥2F +Nk log(εk),

D.1 THE DERIVATION OF THE CORINFOMAX NETWORK

Based on the definitions above, the following layerwise objectives can be defined:

Ĵk(h
(k))[m] =

→
Î(ϵk−1)(h(k−1),h(k))[m] +

←
Î(εk)(h(k),h(k+1))[m], for k = 1, . . . , L− 1,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

i.e., correlative information maximization objectives for the hidden layers, and the mixture of corre-
lation maximization and MSE objectives for the final layer

ĴL(h
(L))[m] =

→
Î(ϵL−1)(h(L−1),h(L))[m]− β

2
∥h(L)[m]− y[m]∥22.

The gradient of the hidden layer objective functions with respect to the corresponding layer activa-
tions can be written as:

∇h(k) Ĵk(h
(k))[m] = 2γBh(k) [m]h(k)[m]− 1

ϵk−1

→
e
(k)

[m]− 1

εk

←
e
(k)

[m], (30)

where γ = 1−λ
λ , and Bh(k) [m] = (R̂h(k) [m] + ϵk−1I)

−1, i.e., the inverse of the layer correlation
matrix.

For the output layer, we can write the gradient as

∇h(L) ĴL(h
(L))[m] = γBh(L) [m]h(L)[m]− 1

ϵL−1

→
e
(L)

[m]− β(h(L)[m]− y[m]).

The gradient ascent updates corresponding to these expressions can be organized to obtain CorInfo-
Max network dynamics:

τu
du(k)[m; s]

ds
= −glku(k)[m; s] +

1

εk
M (k)[m]h(k)[m; s]− 1

ϵk−1

→
e
(k)

u [m; s]− 1

ϵk

←
e
(k)

u [m; s],

→
e
(k)

u [m; s] = u(k)[m; s]−W
(k−1)
ff [t]h(k−1)[m; s],

←
e
(k)

u [m; s] = u(k)[m; s]−W
(k)
fb [m]h(k+1)[m; s],

h(k)[m; s] = σ+(u
(k)[m; s]),

wherem is the sample index, s is the time index for the network dynamics, τu is the update time con-
stant, M (k)[t] = εk(2γBh(k) [t] + glkI), and σ+ = min(1,max(u, 0)) represents the elementwise
clipped-ReLU function, which is the projection operation corresponding to the combination of the
nonnegativity constraint h(k) ≥ 0 and the boundedness constraint ∥h(k)∥∞ ≤ 1 on the activations
of the network.

Note that Bozkurt et al. (2024) takes one more step to organize the network dynamics into a form that
fits into the form of a network with three compartment (soma, basal dendrite and appical dendrite
compartments) neuron model.

D.2 CORINFOMAX-EP LEARNING DYNAMICS

The CorInfoMax-EP framework in Bozkurt et al. (2024) employs equilibrium propagation(EP) to
update feedforward and feedback weights of the CorInfoMax network.

D.2.1 FEEDFORWARD AND FEEDBACK WEIGHTS

In the CorInfoMax objective, feedforward and feedback weights correspond to forward and back-
ward predictors corresponding to the regularized least squares objectives

Cff (W
(k)
ff [m]) = εk∥W (k)

ff [m]∥2F + ∥→e
(k+1)

[m]∥22,

and

Cfb(W
(k)
fb [m]) = εk∥W (k)

ff [m]∥2F + ∥←e
(k)

[m]∥22,

respectively. The derivatives of these functions with respect to forward and backward synaptic
weights can be written as

∂Cff (W
(k)
ff [m])

∂W
(k)
ff [m]

= 2εkW
(k)
ff [m]− 2

→
e
(k+1)

[m]h(k)[m]T ,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

and

∂Cfb(W
(k)
fb [m])

∂W
(k)
fb [m]

= 2εkW
(k)
fb [m]− 2

←
e
(k)

[m]h(k+1)[m]T .

The EP based updates of the feedforward and feedback weights are obtained by evaluating these
gradients in two different phases: the nudge phase (β = β′ > 0), and the free phase (β = 0):

δW
(k)
ff [m] ∝ 1

β′

(
(
→
e
(k+1)

[m]h(k)[m]T)
∣∣∣
β=β′

− (
→
e
(k+1)

[m]h(k)[m]T)
∣∣∣
β=0

)
,

δW
(k)
fb [m] ∝ 1

β′

(
(
←
e
(k)

[m]h(k+1)[m]T)
∣∣∣
β=β′

− (
←
e
(k)

[m]h(k+1)[m]T)
∣∣∣
β=0

)
.

D.2.2 LATERAL WEIGHTS

The lateral weight updates derived from the weight correlation matrices of the layer activations,
using the matrix inversion lemma (Kailath et al., 2000):

B(k)[m+ 1] = λ−1r (B(k)[m]− γz(k)[m]z(k)[m]T), where z(k)[m] = B(k)[m]r(k)[m]
∣∣
β=β′

.

D.3 CORINFOMAX-EP

Although the CorInfoMax-EP algorithm derivation above is based on single input sample based
updates, it can be extendable to batch updates. Assuming a batch size of B, and we define the
following matrices:

H(k)[m] =
[
h(k)[mB + 1] h(k)[mB + 2] . . . h(k)[(m+ 1)B]

]
,

as the activation matrix for the layer-k,

←
E

(k)

[m] =
[
←
e
(k)

[mB + 1]
←
e
(k)

[mB + 2] . . .
←
e
(k)

[(m+ 1)B]

]
, (31)

as the backward prediction matrix for the layer-k,

→
E

(k)

[m] =
[
→
e
(k)

[mB + 1]
→
e
(k)

[mB + 2] . . .
→
e
(k)

[(m+ 1)B]

]
, (32)

as the forward prediction matrix for the layer-k,

Z(k)[m] =
[
z(k)[mB + 1] z(k)[mB + 2] . . . z(k)[(m+ 1)B]

]
, (33)

as the lateral weights’ output matrix for the layer-k, and

E = [ϵ[mB + 1] ϵ[mB + 2] . . . ϵ[(m+ 1)B]] ,

as the output error matrix.

In terms of these definitions, Algorithm 2 lays out the details of the CorInfoMax-EP algorithm:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 2 CorInfoMax Equilibrium Propagation (CorInfoMax-EP) Update for Layer k

Require: Learning rate parameters λE , µ(f,k)[m], µ(b,k)[m]
Require: Previous synaptic weights W(f,k)[m − 1] (forward), W(b,k)[m − 1] (backward), B(k)

(lateral)
Require: Batch size B
Require: Layer activations H(k)[m], preactivations U(k)[m], output errors E(k)[m], lateral weight

outputs Z(k)[m], forward prediction errors
→
E

(k)

[m] and backward prediction errors
←
E

(k)

[m]
computed by CorInfoMax network dynamics described in Bozkurt et al. (2024)

Ensure: Updated weights W(f,k)[m], W(b,k)[m] ,B(k)[m]

1 γE ← 1−λE

λE

Update forward weights for layer k:

2 ∆W
(f,k)
EP [m]← −µ

(df ,k)[m]

Bβ′

(
(
→
E

(k+1)

[m]H(k)[m]T)
∣∣∣
β=β′

− (
→
E

(k+1)

[m]H(k)[m]T)
∣∣∣
β=0

)
3 W(f,k)[m]←W(f,k)[m− 1] + ∆W

(f,k)
EP [m]

Update backward weights for layer k:

4 ∆W
(b,k)
EP [m]← −µ

(db,k)[m]

Bβ′

(
(
←
E

(k)

[m]H(k)[m]T)
∣∣∣
β=β′

− (
←
E

(k)

[m]H(k)[m]T)
∣∣∣
β=0

)
5 W(b,k)[m]←W(b,k)[m− 1] + ∆W

(b,k)
EP [m]

Update Lateral weights for layer k:
6 ∆B

(k)
E [m]← −γE

B
Z(k)[m]Z(k)[m]T

7 B(k)[m]← 1
λE

B(k)[m] + ∆B
(k)
E [m]

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E SUPPLEMENTARY ON NUMERICAL EXPERIMENTS

The models were trained on an NVIDIA Tesla V100 GPU, using the hyperparameters detailed in the
sections below. Each experiment was conducted five times under identical settings, and the reported
results reflect the average performance. We used the standard train/test splits for the datasets, with
MNIST comprising 60,000 training examples and CIFAR-10 comprising 50,000, while both datasets
included 10,000 test examples. Rather than utilizing automatic differentiation tools, we manually
implemented the gradient calculations for the EBD algorithm, utilizing batched operations to ensure
computational efficiency. As a side note, the (1−λ) factors present in the derived update expressions
are absorbed into the learning rate constants and thus eliminated. In our experiments, we trained the
MLP models for 120 epochs and the CNN and LC models for 100 epochs on MNIST and 200 epochs
on CIFAR-10. Also, we trained the CorInfoMax-EBD model for 60 epochs.

E.1 ARCHITECTURES

The architectural details of MLP, CNN and LC networks for the MNIST and CIFAR-10 datasets are
shown in Tables 4 and 5, respectively. The structure of the models are the same as in the reference
Clark et al. (2021). In all architectures, we used ReLU as the nonlinear functions except the last
layer.

Table 4: MNIST architectures. FC: fully connected layer. Conv: convolutional layer. LC: lo-
cally connected layer. For fully connected layers, layer size is shown which corresponds to
the size of the hidden layer. For convolutional and locally connected layers, (num channels,
kernel size, stride, padding) are shown.

MLP
FC1 1024
FC2 512

Convolutional
Conv1 64, 3× 3, 1, 1

AvgPool 2× 2
Conv2 32, 3× 3, 1, 1

AvgPool 2× 2
FC1 1024

Locally connected
LC1 32, 3× 3, 1, 1

AvgPool 2× 2
LC2 32, 3× 3, 1, 1

AvgPool 2× 2
FC1 1024

Table 5: CIFAR-10 architectures. Conventions are the same as in Table 4.

MLP
FC1 1024
FC2 512
FC3 512

Convolutional
Conv1 128, 5× 5, 1, 2

AvgPool 2× 2
Conv2 64, 5× 5, 1, 2

AvgPool 2× 2
Conv3 64, 2× 2, 2, 0
FC1 1024

Locally connected
LC1 64, 5× 5, 1, 2

AvgPool 2× 2
LC2 32, 5× 5, 1, 2

AvgPool 2× 2
LC3 32, 2× 2, 2, 0
FC1 512

The architectural details of the biologically more realistic CorInfoMax network for the MNIST
and CIFAR-10 datasets are shown in Table 6. These techniques are the same as the examples in
Appendix J.5 of Bozkurt et al. (2024).

Table 6: CorInfoMax architectures. Conventions are the same as in Table 4.

MNIST
FC1 500
FC2 500

CIFAR-10
FC1 1000
FC2 500

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

E.2 ACCURACY AND LOSS CURVES

Figures 2 and 3 present the training/test accuracy and MSE loss curves over epochs for the CIFAR-
10 and MNIST datasets. Solid lines represent test curves; dashed lines denote training curves.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Train and test accuracies plotted as a function of algorithm epochs for training with various
update rules (averaged over n = 5 runs associated with the corresponding ± std envelopes) for the
(a) MLP on MNIST dataset (b) MLP on CIFAR-10 dataset (c) CNN on MNIST dataset (d) CNN on
CIFAR-10 dataset (e) LC on MNIST dataset (f) LC on CIFAR-10 dataset (g) CorInfoMax-EBD on
MNIST dataset (h) CorInfoMax-EBD on CIFAR-10 dataset

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Train and test mean squared errors (MSE) plotted as a function of algorithm epochs for
training with various update rules (averaged over n = 5 runs associated with the corresponding
± std envelopes) for the (a) MLP on MNIST dataset (b) MLP on CIFAR-10 dataset (c) CNN on
MNIST dataset (d) CNN on CIFAR-10 dataset (e) LC on MNIST dataset (f) LC on CIFAR-10
dataset (g) CorInfoMax-EBD on MNIST dataset (h) CorInfoMax-EBD on CIFAR-10 dataset

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

E.3 CORINFOMAX-EBD

In this section, we offer additional details regarding the numerical experiments conducted with the
CorInfoMax Error Broadcast and Decorrelation (CorInfoMax-EBD) algorithm. Appendix E.3.1
elaborates on the general implementation details. Appendix E.3.2 presents the fundamental learning
steps of the algorithm, which are based on the EBD method. Appendices E.3.3 and E.3.4 discuss the
initialization of the algorithm’s variables and describe the hyperparameters. Finally, Appendix E.3.6
details the specific hyperparameter configurations used in our numerical experiments for the MNIST
and CIFAR-10 datasets. In Appendix E.2 we present the accuracy and loss learning curves for the
CorInfoMaxEBD, shown in Figures 2.(g)-(h) and Figures 3.(g)-(h), respectively.

E.3.1 IMPLEMENTATION DETAILS

We implemented the CorInfoMax-EBD algorithm based on the repository available at:

https://github.com/BariscanBozkurt/Supervised-CorInfoMax

This repository was referenced in Bozkurt et al. (2024). The following modifications were made to
the original code:

• Reduction to a Single Phase: We simplified the algorithm by reducing it to a single phase.
Specifically, we removed the nudge phase, during which the label is coupled to the network
dynamics. In this modified version, the network operates solely in the free phase, where
the label is decoupled from the network. This change aligns with the removal of time-
contrastive updates from the CorInfoMax-EP algorithm.

• Algorithmic Updates: We incorporated the updates outlined in Algorithm 3.
• Hyperparameters: We maintained the same hyperparameters for the neural dynamics as

in the original code. Additionally, new hyperparameters specific to the learning dynamics
were introduced, which are detailed in Appendix E.3.4.

In the CorInfoMax-EBD implementation the following loss and regularization functions are used

• EBD loss: J (k),

• Power normalization loss: J (k)
P ,

• ℓ2 weight regularization (weight decay): J (k)
ℓ2

,

• Activation sparsity regularization: J (k)
ℓ1

= ∥H(k)∥1.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

E.3.2 ALGORITHM

The CorInfoMax-EBD algorithm follows the same neural dynamics framework detailed in Bozkurt
et al. (2024) for computing neuron activations. Consequently, we only outline the steps specific to
the learning process, which distinguishes it from the original CorInfoMax-EP algorithm described
in Bozkurt et al. (2024). The full iterative process for updating weights in the CorInfoMax-EBD
algorithm is provided in Algorithm 3.

Algorithm 3 CorInfoMax Error Broadcast and Decorrelation (CorInfoMax-EBD) Update for Layer k

Require: Learning rate parameters λd,λE , µ(d,k)[m], µ(f,k)[m], µ(b,k)[m]
Require: Previous synaptic weights W(f,k)[m−1] (forward), W(b,k)[m−1] (backward), B(k)[m−

1] (lateral)
Require: Previous error projection weights Rg(h(k))ϵ[m− 1]
Require: Batch size B
Require: Layer activations H(k)[m] in (10), the derivative of activations F(k)

d in (12), in (6), predic-

tion errors
←
E and

→
E

(k)

in (31-32), lateral weight outputs Z(k) in (33) computed by CorInfoMax
network dynamics described in Bozkurt et al. (2024) (and Appendix D)

Require: The nonlinear function of layer activations G(k) in (5) and the derivative of the nonlinear
function of layer activations G(k)

d in (11)
Ensure: Updated weights W(f,k)[m], W(b,k)[m], B(k)[m]

Error projection weight update for layer k:

1 R̂g(k)(h(k))ϵ[m]← λd R̂g(k)(h(k))ϵ[m− 1] +
1− λd
B

G(k)[m]E(k)[m]T

Project errors to layer k:
2 Q(k)[m]← R̂g(k)(h(k))ϵ[m]E(k)[m]

Find the gradient of the nonlinear function of activations for layer k:
3 Φ(k)[m] = F

(k)
d [m]⊙Q(k)[m]⊙G

(k)
d [m]

Update forward weights for layer k:

4 ∆W
(f,k)
EBD [m]← −µ

(df ,k)[m]

B
Φ(k)[m]H(k−1)[m]

⊤

5 ∆W
(f,k)
Pred [m]← µ(f,k)[m]

B

→
E

(k)

[m]
(
H(k−1)[m]

)⊤
6 W(f,k)[m]←W(f,k)[m− 1] + ∆W

(f,k)
EBD [m] + ∆W

(f,k)
Pred [m]

Update backward weights for layer k:

7 ∆W
(b,k)
EBD [m]← −µ

(db,k)[m]

B
Φ(k)[m]H(k+1)[m]

⊤

8 ∆W
(b,k)
Pred [m]← µ(b,k)[m]

B

←
E

(k)

[m]H(k+1)[m]⊤

9 W(b,k)[m]←W(b,k)[m− 1] + ∆W
(b,k)
EBD [m] + ∆W

(b,k)
Pred [m]

Update Lateral weights for layer k:

10 ∆B
(k)
EBD[m]← −µ

(dl,k)[m]

B
Φ(k)[m]H(k)[m]⊤

11 ∆B
(k)
E [m]← −γE

B
Z(k)[m]Z(k)[m]T

12 B(k)[m]← 1
λE

B(k)[m] + ∆B
(k)
E [m] + ∆B

(k)
EBD[m]

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

E.3.3 INITIALIZATION OF ALGORITHM VARIABLES

We initialize the variables W(f,k), W(b,k), and Rh(k)ϵ using PyTorch’s Xavier uniform initialization
with its default parameters for the MNIST dataset. For the CIFAR-10 dataset is initialized with gain
0.25. For the lateral weights B(k), we first generate a random matrix J(k) of the same dimensions,
also using the Xavier uniform distribution, with gain= 1 for the MNIST dataset and with gain= 0.5

for the CIFAR-10 dataset. We then compute B(k)[0] = J(k)J(k)T , ensuring that B(k)[0] is a positive
definite symmetric matrix.

E.3.4 DESCRIPTION OF HYPERPARAMETERS

Table 7 presents a description of the hyperparameters used in the CorInfoMax-EBD implementation.

Table 7: Detailed explanation of hyperparameter notations for the CorInfoMax-EBD algorithm

Hyperparameter Description

α[m] Learning rate dynamic scaling factor
α2[m] Learning rate dynamic scaling factor 2
µ(df ,k) Learning rate for decorrelation loss (forward weights)
µ(db,k) Learning rate for decorrelation loss (backward weights)
µ(dl,k) Learning rate for decorrelation loss (lateral weights)
µ(f,k) Learning rate for forward prediction
µ(b,k) Learning rate for backward prediction
µ(p,k) Learning rate for power normalization loss
p(k) Target power level
µ
(k)
f,ℓ1

Learning rate for activation sparsity (forward weights)
µ
(k)
b,ℓ1

Learning rate for activation sparsity (backward weights)
µ
(k)
f,w−ℓ2 Forward weight ℓ2-regularization coefficent
µ
(k)
b,w−ℓ2 Backward weight ℓ2-regularization coefficent
λE Layer correlation matrix update forgetting factor
λd Error-layer activation cross-correlation forgetting factor
m(d) Momentum factor for decorrelation forward weight gradient
B Batch size

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

E.3.5 HYPERPARAMETERS FOR MNIST AND CIFAR-10 DATASETS FOR 20 BATCH SIZE

Table 8 and 9 list the hyperparameters used in the CorInfoMax-EBD numerical experiments for the
MNIST and CIFAR-10 datasets with a batch size of 20, where m denotes the iteration index in both.

Table 8: CorInfoMax-EBD hyperparameters: MNIST dataset, 20-batch size.

Hyperparameter Value

α[m] 1
3×10−3×⌊m

10 ⌋+1

α2[m] 1
3×⌊m

10 ⌋+1

µ(df ,k)[m] [96 60 1e5]α[m]
µ(db,k)[m] [96 60 1e5]α[m]
µ(dl,k)[m] [0.25 0.25 0.25]α[m] for epoch= 0

[0.5 0.5 0.5]α[m] for epoch> 0
µ(f,k)[m] [0.11e− 18 0.06e− 18 0.035e− 18]α[m]
µ(b,k)[m] [1.125e− 18 0.375e− 18]α[m]
µ(p,k)[m] [4.4e− 3 6e− 3 3.5e− 12]α2[m]
p(k) [2.5 2.5 0.1]

µ
(k)
f,ℓ1

[m] [0.008 0.135 0]α2[m]

µ
(k)
b,ℓ1

[m] [0 0.35 0.05]α2[m]

µ
(k)
f,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

µ
(k)
b,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

λE 0.999999
λd 0.99999
m(d)[m] 0.99 1

⌊m
10 ⌋+1 + 0.999(1− 1

⌊m
10 ⌋+1)

B 20

Table 9: CorInfoMax-EBD hyperparameters: CIFAR-10 dataset, 20-batch size.

Hyperparameter Value

α[m] 1
3×10−3×⌊m

10 ⌋+1

α2[m] 1
3×⌊m

10 ⌋+1

µ(df ,k)[m] [80 50 1e5]α[m] for epoch= 0
[320 400 1e5]α[m] for epoch> 0.

µ(db,k)[m] [0 0 0]α[m]
µ(dl,k)[m] [0.5 0.5 0.5]α[m] for epoch= 0

[2.0 2.0 2.0]α[m] for epoch> 0
µ(f,k)[m] [0.11e− 18 0.06e− 18 0.035e− 18]α[m]
µ(b,k)[m] [1.125e− 18 0.375e− 18]α[m]
µ(p,k)[m] [4.4e− 3 6e− 3 3.5e− 12]α2[m]
p(k) [2.5 2.5 0.1]

µ
(k)
f,ℓ1

[m] [0.008 0.135 0]α2[m]

µ
(k)
b,ℓ1

[m] [0 0.35 0.05]α2[m]

µ
(k)
f,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

µ
(k)
b,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

λE 0.999999
λd 0.99999
m(d)[m] 0.99 1

⌊m
10 ⌋+1 + 0.999(1− 1

⌊m
10 ⌋+1)

B 20

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

E.3.6 HYPERPARAMETERS FOR MNIST AND CIFAR-10 DATASETS FOR 1 BATCH SIZE

Table 10 and 11 list the hyperparameters used in the CorInfoMax-EBD numerical experiments for
the MNIST and CIFAR-10 datasets with a batch size of 1, where m denotes the iteration index in
both.

Table 10: CorInfoMax-EBD hyperparameters: MNIST dataset, 1-batch size.

Hyperparameter Value

α[m] 1
3×10−3×⌊m

10 ⌋+1

α2[m] 1
3×⌊m

10 ⌋+1

µ(df ,k)[m] [4.8 3.0 5e3]α[m]
µ(db,k)[m] [4.8 3.0 5e3]α[m]
µ(dl,k)[m] [0.0125 0.0125 0.0125]α[m] for epoch= 0

[0.025 0.025 0.025]α[m] for epoch> 0
µ(f,k)[m] [0.11e− 18 0.06e− 18 0.035e− 18]α[m]
µ(b,k)[m] [1.125e− 18 0.375e− 18]α[m]
µ(p,k)[m] [2.2e− 4 3e− 4 3.5e− 12]α2[m]
p(k) [2.5 2.5 0.1]

µ
(k)
f,ℓ1

[m] [0.0004 0.00675 0]α2[m]

µ
(k)
b,ℓ1

[m] [0 0.0175 0.0025]α2[m]

µ
(k)
f,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

µ
(k)
b,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

λE 0.99999995
λd 0.99999
m(d)[m] 0.99 1

⌊m
10 ⌋+1 + 0.999(1− 1

⌊m
10 ⌋+1)

B 1

Table 11: CorInfoMax-EBD hyperparameters: CIFAR-10 dataset, 1-batch size.

Hyperparameter Value

α[m] 1
3×10−3×⌊m

10 ⌋+1

α2[m] 1
3×⌊m

10 ⌋+1

µ(df ,k)[m] [4 2.5 5e3]α[m] for epoch= 0
[16 20 5e3]α[m] for epoch> 0.

µ(db,k)[m] [0 0 0]α[m]
µ(dl,k)[m] [0.025 0.025 0.025]α[m] for epoch= 0

[0.1 0.1 0.1]α[m] for epoch> 0
µ(f,k)[m] [0.11e− 18 0.06e− 18 0.035e− 18]α[m]
µ(b,k)[m] [1.125e− 18 0.375e− 18]α[m]
µ(p,k)[m] [2.2e− 4 3e− 4 3.5e− 12]α2[m]
p(k) [0.125 0.125 0.005]

µ
(k)
f,ℓ1

[m] [0.0004 0.000675 0]α2[m]

µ
(k)
b,ℓ1

[m] [0 0.0175 0.0025]α2[m]

µ
(k)
f,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

µ
(k)
b,w−ℓ2 [m] 8e−2

10−2×⌊m
10 ⌋+1

λE 0.99999995
λd 0.99999
m(d)[m] 0.99 1

⌊m
10 ⌋+1 + 0.999(1− 1

⌊m
10 ⌋+1)

B 1

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

E.4 MULTI-LAYER PERCEPTRON

In this section, we provide additional details about the numerical experiments conducted to train
Multi-layer Perceptrons (MLPs) using the EBD algorithm (MLP-EBD). Appendix E.4.1 outlines
the implementation details of these experiments, while Appendix E.4.2 discusses the initialization of
algorithm variables. Information about hyperparameters and their values for the MNIST and CIFAR-
10 datasets can be found in Appendices E.4.3-E.4.4. In Appendix E.2 we present the accuracy and
loss learning curves for the MLP architecture, shown in Figures 2.(a)-(b) and Figures 3.(a)-(b),
respectively.

E.4.1 IMPLEMENTATION DETAILS

For the MLP experiments using the proposed EBD approach, we adopted the same network archi-
tecture as described in Clark et al. (2021), detailed in Tables 4 and 5.

In the MLP-EBD implementation, the following loss and regularization functions were employed:

• EBD loss: J (k),

• Power normalization loss: J (k)
P ,

• Entropy objective: J (k)
E ,

• ℓ2 weight regularization (weight decay): J (k)
ℓ2

,

• Activation sparsity regularization: J (k)
ℓ1

= ∥H(k)∥1.

Additionally, we imposed a weight-sparsity constraint by setting WS percent of the weights to zero
during the initialization phase and maintaining these weights at zero throughout training.

E.4.2 INITIALIZATION OF ALGORITHM VARIABLES

We use the Pytorch framework’s Xavier uniform initialization with gain value 10−2 on the Rh(k)ϵ

variables, and Kaiming uniform distribution with gain 0.75 for synaptic weights W(k).

E.4.3 DESCRIPTION OF HYPERPARAMETERS

Table 12 provides the description of the hyperparameters for the MLP-EBD implementation.

Table 12: Description of the hyperparameter notations for MLP-EBD.

Hyperparameter Description

α[m] Learning rate dynamic scaling factor
α2[m] Learning rate dynamic scaling factor 2
µ(d,b,k) Learning rate for (backward projection) decorrelation loss
µ(d,f,k) Learning rate for (forward projection) decorrelation loss
µ(E,k) Learning rate for entropy objective
µ(p,k) Learning rate for power normalization loss
p(k) Target power level
µ
(k)
ℓ1

Learning rate for activation sparsity
µ
(k)
w−ℓ2 Weight ℓ2-regularization coefficent
λE Layer autocorrelation matrix update forgetting factor
λd Error-layer activation cross-correlation forgetting factor
m(d) Momentum factor for decorrelation gradient
B Batch size
WS Weight Sparsity

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

E.4.4 HYPERPARAMETERS FOR MNIST AND CIFAR-10 DATASETS

Table 13 and 14 list the hyperparameters used in the MLP-EBD numerical experiments for the
MNIST and CIFAR-10 datasets respectively, where m denotes the iteration index in both.

Table 13: Hyperparameters for MLP-EBD for the MNIST dataset.

Hyperparameter Value

α[m] 1
1.5×⌊m

10 ⌋+1

α2[m] ⌊m10⌋/3e4 + 1
µ(d,b,k)[m] 18000α[m]α2[m] for k = 0, 1

20000α[m]α2[m] for k = 2
µ(d,f,k)[m] 0.005α[m]α2[m] for k = 0, 1
µ(E,k)[m] [2.5e− 4 1.5e− 3 0]α[m]
µ(p,k)[m] [4e− 3 6e− 3 1e− 10]α[m]
p(k)[m] [2.5e− 1 2.5e− 1 0.1]α[m]

µ
(k)
ℓ1

[8e− 1 3e− 1 0]α[m]

µ
(k)
w−ℓ2 1.6e− 4α[m] for all layers
λE 0.99999
λd 0.999999
m(d) 0.9999 for all layers
B 20
WS 55

Table 14: Hyperparameters for MLP-EBD for the CIFAR-10 dataset.

Hyperparameter Value

α[m] 1
1.5×⌊m

10 ⌋+1

α2[m] ⌊m10⌋/3e4 + 1
µ(d,b,k)[m] [4000 2000 2000 3500]α[m]α2[m]
µ(d,f,k)[m] 0.005α[m]α2[m] for k = 0, 1
µ(E,k)[m] [2.5e− 4 1.5e− 3 1.5e− 3 0]α[m]
µ(p,k)[m] [4e− 3 6e− 3 6e− 3 1e− 10]α[m]
p(k)[m] [2.5e− 1 2.5e− 1 2.5e− 1 0.1]α[m]

µ
(k)
ℓ1

[8e− 1 3e− 1 3e− 1 0]α[m]

µ
(k)
w−ℓ2 1.6e− 4α[m] for all layers
λE 0.99999
λd 0.999999
m(d) 0.9999 for all layers
B 20
WS 40

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

E.5 CONVOLUTIONAL NEURAL NETWORK

In this section, we offer additional details regarding the numerical experiments for training Convolu-
tional Neural Neural Networks (CNNs) using EBD algorithm (CNN-EBD). Section E.5.1 provides
information about implemetation details. Appendices E.5.2 and E.5.3 discuss the initialization of the
algorithm’s variables and describe the hyperparameters. Finally, Appendix E.5.4 detail the specific
hyperparameter configurations used in our numerical experiments for the MNIST and CIFAR-10
datasets. In Appendix E.2 we present the accuracy and loss learning curves for the CNN, shown in
Figures 2.(c)-(d) and Figures 3.(c)-(d), respectively.

E.5.1 IMPLEMENTATION DETAILS

The architectures we utilized for the CNN networks can be found in tables 4 and 5 respectively for
the MNIST and CIFAR10 datasets. In the training, we used the Adam optimizer with hyperparam-
eters β1 = 0.9, β2 = 0.999, and ϵ = 10−8 (Kingma & Ba, 2015). Also, the model biases are
not utilized. In the CNN-EBD implementation the following loss and regularization functions as
detailed in section C.1 are used:

• EBD loss: J (k),

• Entropy objective: J (k)
E ,

• Activation sparsity regularization: J (k)
ℓ1

.

E.5.2 INITIALIZATION OF ALGORITHM VARIABLES

We use the Kaiming normal initialization for the weights, with a common standard deviation scal-
ing parameter σW, on both the linear and convolutional layers. Furthermore, the estimated cross-
correlation variable Rh(k)ϵ (linear layers) and Rg(k)(H(k,p))ϵ (convolutional layers) are initialized
with zero mean normal distributions with standard deviations σRlin

and σRconv
respectively.

E.5.3 DESCRIPTION OF HYPERPARAMETERS

Table 15 describes the notation for the hyperparameters used to train CNNs using the Error Broad-
cast and Decorrelation (EBD) approach.

Table 15: Description of the hyperparameter notations for CNN-EBD.

Hyperparameter Description

α[i] Learning rate dynamic scaling factor where i is the epoch index
µ(d,b,k) Learning rate for (backward projection) decorrelation loss
µ(E,k) Learning rate for entropy objective
µ
(k)
ℓ1

Learning rate for activation sparsity
σW Standard deviation of the weight initialization.
σRlin

Std. dev. of Rh(k)ϵ initialization in linear layers
σRconv

Std. dev. of Rg(k)(H(k,p))ϵ initialization in convolutional layers
σRlocal

Gain parameter for Rg(k)(H(k,p))ϵ initialization in locally connected layers
λE Layer autocorrelation matrix update forgetting factor
λd Error-layer activation cross-correlation forgetting factor
λR Convergence parameter for λ as in Equations (34), (35)
ϵL Entropy objective epsilon parameter for linear layers
ϵ Entropy objective epsilon parameter for conv. or locally con. layers
β Adam Optimizer weight decay parameter
B Batch size

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

We also introduce a convergence parameter λR which increases the estimation parameter for the
decorrelation loss λd, together with the estimation parameter for the layer entropy objective λE , to
converge to 1 as the training proceeds with the following Equations (34), (342) where i is the epoch
index:

λ
(i+1)
d = λ

(i)
d + λR ·

(
1− λ(i)d

)
, i ≥ 0. (34)

λ
(i+1)
E = λ

(i)
E + λR ·

(
1− λ(i)E

)
, i ≥ 0. (35)

E.5.4 HYPERPARAMETERS FOR MNIST AND CIFAR-10 DATASETS

Table 16, lists the hyperparameters as defined in Table 15, used in the CNN-EBD training experi-
ments.

Table 16: Hyperparameters for CNN-EBD for both the MNIST and CIFAR-10 datasets, where i
denotes the epoch index.

Hyperparameter MNIST CIFAR-10

α[i] 10−4 · 0.97−i 10−4 · 0.97−i
µ(d,b,k)[i] 0.1α[i] for k = 0, 1, 2, 3 0.1α[i] for k = 0, 1, 2, 3

10α[i] for k = 4 10α[i] for k = 4
µ(E,k)[i] [1 1 1 10 0] 10−7α[i] [1 1 1 1 1] 10−6α[i]

µ
(k)
ℓ1

[i] [1 1 1 10 0] 10−11α[i]
[
1 1 1 102 0

]
10−10α[i]

σW

√
1
6

√
1
6

σRlin
1e− 2 1e− 2

σRconv
1e− 2 1e− 2

λd 0.99999 0.99999
λE 0.99999 0.99999
λR 2e− 2 2e− 2
β 1e− 8 1e− 5
ϵL 1e− 8 1e− 8
ϵ 1e− 5 1e− 5
B 16 16

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

E.6 LOCALLY CONNECTED NETWORK

In this section, we offer additional details regarding the numerical experiments for the training of
Locally Connected Networks (LCs) using EBD algorithm (LC-EBD). Appendix E.6.1 provides in-
formation about implemetation details. Appendices E.6.2 and E.6.3 discuss the initialization of the
algorithm’s variables and describe the hyperparameters. Finally, Appendix E.6.4 detail the specific
hyperparameter configurations used in our numerical experiments for the MNIST and CIFAR-10
datasets. In Appendix E.2 we present the accuracy and loss learning curves for the LCs, shown in
Figures 2.(e)-(f) and Figures 3.(e)-(f), respectively.

E.6.1 IMPLEMENTATION DETAILS

The training procedure mirrors the CNN approach described in Section E.5.1 for CNNs. In the
LC-EBD implementation, the loss and regularization functions detailed in section C.2 are used:

• EBD loss: J (k),

• Entropy objective: J (k)
E ,

• Activation sparsity regularization: J (k)
ℓ1

.

E.6.2 INITIALIZATION OF ALGORITHM VARIABLES

We use the Kaiming uniform initialization for the weights, with a common standard deviation scaling
parameter σW, on both the linear and locally connected layers. The estimated cross-correlation
variable Rh(k)ϵ (linear layers) is initialized with a normal distribution with zero mean and standard
deviation σRlin

. Also, the parameter Rg(k)(H(k,p))ϵ (locally connected layers) is initialized with
Pytorch framework’s Xavier uniform initialization with the gain parameter equal to σRlocal

.

E.6.3 DESCRIPTION OF HYPERPARAMETERS

Table 15 in the CNN section, again describes the notation for the hyperparameters used to train
LCs using the Error Broadcast and Decorrelation (EBD) approach. The convergence parameter λR
introduced in equations (34) and (34) is used as well.

E.6.4 HYPERPARAMETERS FOR MNIST AND CIFAR-10 DATASETS

Table 17, lists the hyperparameters as defined in Table 15, used in the LC-EBD training experiments.

Table 17: Hyperparameters for LC-EBD for both the MNIST and CIFAR-10 datasets, where i de-
notes the epoch index.

Hyperparameter MNIST CIFAR-10

α[i] 10−4 · 0.96−i 10−4 · 0.98−i
µ(d,b,k)[i] 0.1α[i] for k = 0, 1, 2, 3 0.5α[i] for k = 0, 1, 2, 3

10α[i] for k = 4 5α[i] for k = 4
µ(E,k)[i]

[
1 1 1 102 0

]
10−9α[i]

[
1 1 1 10 103

]
10−11α[i]

µ
(k)
ℓ1

[i] [1 1 1 10 0] 10−11α[i] [1 1 1 10 0] 10−13α[i]

σW

√
1
6

√
1
6

σRlin
1 1e− 3

σRlocal
1 1e− 1

λd 0.99999 0.99999
λE 0.99999 0.99999
λR 3e− 2 3e− 2
β 1e− 8 1e− 6
ϵL 1e− 8 1e− 8
ϵ 1e− 5 1e− 5
B 16 16

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

E.7 IMPLEMENTATION DETAILS FOR DIRECT FEEDBACK ALIGNMENT AND
BACKPROPAGATION BASED TRAINING

This section presents further details on the numerical experiments comparing Direct Feedback
Alignment (DFA) and Backpropagation (BP) methods, conducted under the same training condi-
tions and number of epochs as those used for our proposed EBD algorithm. The results of these
experiments are provided in Tables 1 and 2. We also include the DFA+E method, which extends
DFA by incorporating correlative entropy regularization similar to the EBD. Note that, when the
update on the Rh(k)ϵ is fixed to its initialization, the EBD algorithm reduces to standard DFA.

For BP-based models trained on MNIST and CIFAR-10, we used the Adam optimizer with hyperpa-
rameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8 (Kingma & Ba, 2015). For DFA and DFA+E models,
we again used the Adam optimizer for CNN and LC models, while MLP models were trained using
SGD with momentum.

In Tables 18 and 19, we detail the hyperparameters for models trained with BP, DFA, and DFA+E
update rules on MNIST and CIFAR-10 respectively. Some of the learning rate and the learning rate
decay values or methodologies are linked to the tables corresponding to the hyperparameter details
of its EBD counterpart, where the same method is also utilized for its DFA or DFA+E counterpart.
Unlinked values denote a constant value applied to each layer, or the step decay multiplier applied
per epoch. Additionally, sparsity inducing losses are not utilized for BP, DFA and DFA+E models.

Model Method Learning Rate (µ(d,b,k)) L2 Reg. Coef. LR Decay Epochs
BP 5e− 5 1e− 5 0.96 120

MLP DFA Table-13 Table-13 Table-13 120
DFA+E Table-13 Table-13 Table-13 120

BP 5e− 5 1e− 8 0.97 100
CNN DFA Table-16 1e− 8 0.97 100

DFA+E Table-16 1e− 8 0.97 100
BP 5e− 5 1e− 8 0.96 100

LC DFA Table-17 1e− 8 0.96 100
DFA+E Table-17 1e− 8 0.96 100

Table 18: Hyperparameter details for models trained on the MNIST dataset, including learning rate,
L2 regularization coefficient, learning rate decay, and number of epochs for MLP, CNN, and LC
models using BP, DFA, and DFA+E methods.

Model Method Learning Rate (µ(d,b,k)) L2 Reg. Coef. LR Decay Epochs
BP 5e− 5 1e− 5 0.85 120

MLP DFA Table-14 0 Table-14 120
DFA+E Table-14 0 Table-14 120

BP 5e− 5 1e− 5 0.92 200
CNN DFA Table-16 1e− 5 0.97 200

DFA+E Table-16 1e− 5 0.97 200
BP 1e− 4 1e− 6 0.90 200

LC DFA Table-17 1e− 6 0.96 200
DFA+E Table-17 1e− 6 0.96 200

Table 19: Hyperparameter details for models trained on the CIFAR-10 dataset, including learning
rate, L2 regularization coefficient, learning rate decay, and number of epochs for MLP, CNN, and
LC models using BP, DFA, and DFA+E methods.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

E.8 RUNTIME COMPARISON FOR THE UPDATE RULES

In this section, we present the relative average runtimes from the simulations, normalized to BP
for the MNIST and CIFAR-10 models in Tables 20 and 21 respectively, for the models that we
implemented and demonstrated their performance in Tables 1 and 2.

The results show that entropy regularization in both EBD and DFA+E more than doubles the average
runtime. However, these runtimes could be significantly improved by optimizing the implementation
of the entropy gradient terms, specifically by avoiding repeated matrix inverse calculations. A more
efficient approach would involve directly updating the inverses of the correlation matrices instead
of recalculating both the matrices and their inverses at each step. This strategy aligns with the
CorInfoMax-(EP/EBD) network structure. Nonetheless, we chose not to pursue this optimization,
as CorInfoMax networks already employ it effectively.

The efficiency of the DFA, DFA+E, and EBD methods can be further enhanced through low-level
optimizations and improved implementations.

Table 20: Average Runtimes in MNIST (relative to BP)

Model DFA DFA+E BP EBD
MLP 3.40 7.68 1.0 8.06
CNN 1.68 2.95 1.0 3.85
LC 1.61 3.57 1.0 3.54

Table 21: Average Runtimes in CIFAR-10 (relative to BP)

Model DFA DFA+E BP EBD
MLP 2.85 6.94 1.0 7.61
CNN 2.10 3.24 1.0 4.11
LC 1.35 2.01 1.0 2.41

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

F ON THE SCALING OF THE ORTHOGONALITY CONDITIONS

The orthogonality principle in our method is defined as the uncorrelatedness of a given hidden layer
neuron’s activation with all components of the output error. Specifically, for the ith neuron of layer-k
and the jth component of the output error, ϵj , the orthogonality condition is expressed as,

R
h
(k)
i ϵj

= E(h
(k)
i ϵj) = 0, j = 1, . . .m, i = 1, . . . n (36)

where m is the number of output components, and n is the size of activations for layer k.

Based on Equation 36 above, for each hidden layer, there arem x n orhogonality constraints. There-
fore, even if the hidden layer dimensions and/or the network depth increase, the total number of
constraints also increases, making our system less underdetermined. We use constraints for differ-
ent neurons separately to adjust their corresponding weight/bias parameters. In other words, the
constraints in (Eq. A) are used to update the ith row of the jth column of W(k), i.e. W(k)

i,j and the
bias compoent bi.

Note that, more generality of the orthogonality condition for nonlinear estimators offers potential
to increase the number of constraints per hidden layer neuron: We can increase the number of
the orthogonality conditions per neuron even further by considering the fact that uncorrelatedness
requirement is for any function g of hidden layer neuron activations, i.e.,

R
g(h

(k)
i)ϵj

= E(g(h
(k)
i)ϵj) = 0, j = 1, . . .m i = 1, . . . n

Therefore, the number of uncorrelatedness (orthgonality) constraints per hidden layer/output neuron
can be increased by introducing multiple g functions. However, in our numerical experiments we
haven’t pursued this path.

Although the orthogonality conditions scale with the increasing parameter size, the total number of
parameters in the network is in general larger than the number of decorrelation conditions. This re-
sults in fewer constraints than parameters, leading to an overparameterized system, where a unique
optimal estimator cannot be determined solely based on these conditions. Your concern about in-
finite samples or learning time in overparameterized networks is valid, but our results show that
the learning rule converges effectively within practical timeframes. Particularly in the case of using
Locally Connected Networks (LC), which are highly overparameterized, the improved performance
and generalization observed strongly validate the practicality of our approach to successfully train
in the overparametrized regime.

Importantly, this issue of overparameterization also exists in standard backpropagation, where the
number of parameters often exceeds the number of training samples, leading to an overparameter-
ized and underdetermined system. In both cases, this overparameterization does not hinder learning;
rather, it is a fundamental characteristic of deep learning. Research has demonstrated that the im-
plicit bias in gradient descent introduces a regularization effect, steering the optimization process
toward solutions that generalize well to unseen data (Soudry et al., 2018).

Similarly, in our method, while the number of orthogonality constraints is smaller than the total
number of network parameters, the system is guided by the statistical properties of the error and
activations. While we cannot claim to fully characterize the implicit regularization effect in our
method, we suggest that these statistical constraints play a role similar to the implicit regularization
observed in regular backpropagation. This helps ensure that the learned parameters are not arbitrary
but are shaped by the decorrelation principles inherent to our framework, contributing to the model’s
generalization capabilities. We believe that investigating the inherent implicit bias in Error Broadcast
and Decorrelation (EBD) opens the door to further understanding how this framework naturally
regularizes the learning process.

To further adress limited-data problems, our method incorporates several regularization techniques:
entropy regularization (encourages the network to utilize the full feature space by spreading acti-
vations), sparsity regularization (enforces sparse activations to reduce redundancy), weight decay
(prevents overfitting by penalizing large weights). These regularizers supplement the orthogonality-
based learning rule, particularly in the limited-data regime, improving generalization and stability.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

G CALCULATION OF THE CORRELATION BETWEEN LAYER ACTIVATIONS
AND OUTPUT ERROR.

Figure 4: The evolution of the average
absolute correlation between layer acti-
vations and the error signal during back-
propagation training of an MLP with two
hidden layers (using the MSE criterion)
on the MNIST dataset, showing the cor-
relation decrease over epochs, on both the
training and test sets.

Figure 1c illustrates the decrease in the average abso-
lute correlation between hidden activations and output
error during backpropagation, using a Multi-layer Per-
ceptron (MLP) model with the architecture outlined in
Table 5, on the CIFAR-10 dataset. Additionally, the fig-
ure 1c shows the correlation throughout training on the
MNIST dataset, employing the MLP model detailed in
Table 4. Details for the MSE based training and the
Cross-Entropy based training are explained in Appen-
dices G.1 and G.2 respectively.

G.1 CORRELATION IN MEAN SQUARED
ERROR (MSE) CRITERION-BASED TRAINING

The MLP models are trained using the Stochastic Gra-
dient Descent (SGD) optimizer with a small learning
rate of 10−4 and the MSE criterion. In both plots, the
initial value represents the correlation before training
begins. The reduction in correlation observed during
training provides insight into the core principle of the
EBD algorithm.

To compute these correlations, we apply a batched ver-
sion of Welford’s algorithm (Chan et al., 1982), which
efficiently calculates the Pearson correlation coefficient
between hidden activations and errors in a memory-
efficient way by using streaming statistics.

Welford’s algorithm works by accumulating the neces-
sary statistics (e.g., sums and sums of squares) across
batches of data and finalizing the correlation computa-
tion only after all data has been processed, avoiding the
need to store all hidden activations simultaneously.

Given the hidden activations h(k) ∈ Rb×N(k)

, where b
is the batch size andN (k) is the number of hidden units,
and the errors ϵ ∈ Rb×k, where k is the number of
output dimensions (e.g., classes); the goal is to compute the Pearson correlation coefficient between
activations hi for each hidden unit i and the corresponding error values across all samples as:

ρ(k) =
Cov(h(k), ϵ)√
σ2
h(k)

√
σ2
ϵ + ϵ

where ϵ is a small constant for numerical stability. Finally, we compute the average of the absolute
values of the correlation coefficients for each hidden layer k to generate the corresponding plots.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

G.2 CORRELATION IN CROSS-ENTROPY CRITERION-BASED TRAINING

Although the orthogonality property is specifically associated with the MSE loss, we also explored
the dynamics of cross-correlation between layer activations and output errors when cross-entropy is
used as the training criterion.

With the same experimental setup as described in Appendix G.1, but replacing the MSE loss with
cross-entropy, we obtained the correlation evolution curves shown in Figure 5a for CIFAR-10 and in
Figure 5b for MNIST dataset. Notably, the correlation between layer activations and output errors
still decreases over epochs, despite the change in the loss function.

(a) (b)

Figure 5: Evolution of the average absolute correlation between layer activations and output errors
during backpropagation training of an MLP with three hidden layers, trained using cross-entropy
loss. (a) CIFAR-10 dataset and (b) MNIST dataset. Despite the use of cross-entropy, correlation
decreases similarly to the MSE criterion.

45

	Introduction
	Related work and contributions

	Error broadcast and decorrelation method
	Problem Statement
	Error broadcast and decorrelation loss functions
	Error broadcast and decorrelation algorithm
	 Further EBD algorithm extensions
	Avoiding collapse
	Forward broadcast
	Extensions to other network architectures

	EBD for biologically more realistic networks
	Three factor learning rule and EBD
	CorInfoMax-EBD: CorInfoMax with three factor learning rule

	Numerical experiments and discussion of results
	Results

	Conclusions, extensions and limitations
	Reproducibility
	Ethics Statement
	Preliminaries on nonlinear minimum mean square error estimation
	The derivation of update terms
	Delta W1 and Delta b1 Calculation
	Delta W2 and Delta b2 Calculation
	On EBD with forward projections
	Gradient derivation for the EBD with forward projections

	Additional extensions of EBD approach
	Extensions to convolutional neural networks (CNNs)
	Error broadcast and decorrelation formulation
	Weight entropy objective
	Activation sparsity regularization

	Extensions to locally connected (LC) networks
	Error broadcast and decorrelation formulation
	Weight entropy objective
	Activation sparsity regularization

	Background on online correlative information maximization based biologically plausible neural networks
	The derivation of the CorInfoMax network
	CorInfoMax-EP Learning Dynamics
	Feedforward and feedback weights
	Lateral weights

	CorInfoMax-EP

	Supplementary on numerical experiments
	Architectures
	Accuracy and loss curves
	CorInfoMax-EBD
	Implementation details
	Algorithm
	Initialization of algorithm variables
	Description of hyperparameters
	Hyperparameters for MNIST and CIFAR-10 datasets for 20 batch size
	Hyperparameters for MNIST and CIFAR-10 datasets for 1 batch size

	Multi-Layer perceptron
	Implementation details
	Initialization of algorithm variables
	Description of hyperparameters
	Hyperparameters for MNIST and CIFAR-10 datasets

	Convolutional neural network
	Implementation details
	Initialization of algorithm variables
	Description of hyperparameters
	Hyperparameters for MNIST and CIFAR-10 datasets

	Locally connected network
	Implementation Details
	Initialization of algorithm variables
	Description of hyperparameters
	Hyperparameters for MNIST and CIFAR-10 datasets

	ımplementation Details for Direct Feedback Alignment and Backpropagation based Training
	Runtime Comparison for the Update Rules

	On the scaling of the orthogonality conditions
	Calculation of the correlation between layer activations and output error.
	Correlation in mean squared error (MSE) criterion-based training
	Correlation in cross-entropy criterion-based training

