
Published as a conference paper at COLM 2025

VaPR – Vision-language Preference alignment for Reasoning

Rohan Wadhawan1∗, Fabrice Harel-Canada1, Zi-Yi Dou1, Suhaila Shakiah2,
Robinson Piramuthum2, Nanyun Peng1
1Department of Computer Science, University of California Los Angeles, USA
2Amazon.com, Inc., USA

Abstract

Preference finetuning methods like Direct Preference Optimization (DPO)
with AI-generated feedback have shown promise in aligning Large Vision-
Language Models (LVLMs) with human preferences. However, existing
techniques overlook the prevalence of noise in synthetic preference annota-
tions in the form of stylistic and length biases. To this end, we introduce
a hard-negative response generation framework based on LLM-guided
response editing, that produces rejected responses with targeted errors,
maintaining stylistic and length similarity to the accepted ones. Using this
framework, we develop the VaPR dataset, comprising 30K high-quality sam-
ples, to finetune three LVLM families: LLaVA-V1.5, Qwen2VL & Qwen2.5VL
(2B-13B sizes). Our VaPR models deliver significant performance improve-
ments across ten benchmarks, achieving average gains of 6.5% (LLaVA),
4.0% (Qwen2VL), and 1.5% (Qwen2.5VL), with notable improvements on
reasoning tasks. A scaling analysis shows that performance consistently
improves with data size, with LLaVA models benefiting even at smaller
scales. Moreover, VaPR reduces the tendency to answer "Yes" in binary
questions - addressing a common failure mode in LVLMs like LLaVA. Lastly,
we show that the framework generalizes to open-source LLMs as editors,
with models trained on VaPR-OS achieving 99% of the performance of
models trained on VaPR, which is synthesized using GPT-4o. Our data,
models, and code can be found on the project page https://vap-r.github.io/

1 Introduction

Recent advances in Large Vision-Language Models (LVLMs) have greatly enhanced their
ability to perceive, reason, and generate open-ended responses to instructions (Liu et al.,
2023c;b; 2024; Ye et al., 2024; Dai et al., 2023; Awadalla et al., 2023; Tong et al., 2024; Chen
et al., 2024b; Team, 2024a; Chen et al., 2023; Zhu et al., 2023; Wang et al., 2024a). Despite the
development, LVLMs often face challenges in vision-language alignment and reasoning,
resulting in linguistically plausible texts that either contradict the visual context or lack
logical reasoning. Several studies (Sun et al., 2023; Yu et al., 2024a;b; Zhou et al., 2024a;b;
Deng et al., 2024; Li et al., 2023c; Zhao et al., 2023; Lee et al., 2023b; Sarkar et al., 2024)
have focused on improving the modality alignment capabilities of instruction-tuned LVLMs
through preference fine-tuning methods, including reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022; Schulman et al., 2017), AI feedback (RLAIF) (Lee
et al., 2023a), and direct preference optimization (DPO) (Rafailov et al., 2024).
Early preference finetuning methods for LVLMs primarily incorporated human feedback
(Sun et al., 2023; Yu et al., 2024a), but the high costs and limited scalability of this approach
have led to a growing use of AI-generated feedback and synthetic preference dataset creation
(Zhou et al., 2024a; Deng et al., 2024; Yu et al., 2024b; Zhou et al., 2024b; Lee et al., 2023b;
Zhao et al., 2023). These synthetic preference datasets have demonstrated advantages over
human-annotated versions, particularly in maintaining truthfulness (Ivison et al., 2024b)
and enhancing modality alignment (Zhou et al., 2024a; Deng et al., 2024; Yu et al., 2024b;

∗Correspondance to: rohanwadhawan7@gmail.com

1

https://vap-r.github.io/


Published as a conference paper at COLM 2025

Zhou et al., 2024b; Lee et al., 2023b; Zhao et al., 2023). However, our analysis reveals that
these methods often overlook inadvertently injected “noises”, including biases in length and
style (Zhao et al., 2023) (see Table 1). As DPO has been found to exploit both length (Park
et al., 2024; Lu et al., 2024) and stylistic biases (Yu et al., 2024a; Zhao et al., 2023; Hong et al.,
2024; Yu et al., 2024b), this noise in the dataset can consequently undermine the alignment
process.
To improve LVLMs’ alignment and reasoning, we propose a hard-negative preference data
generation framework and create VaPR, a dataset of 30K high-quality samples derived from
the LLaVA-665K SFT dataset (Liu et al., 2023b). Each preference sample in VaPR pairs a
ground truth response with a generated hard-negative response that preserves style and
length while introducing targeted perturbations to ensure deliberate misalignment (see
Fig. 1). While existing approaches (Zhou et al., 2024a; Wang et al., 2024b; Zhou et al., 2024b;
Yu et al., 2024b) rely on VLMs (the same or a large oracle VLM) to generate and/or score
sampled responses, we frame hard-negative response generation as ground truth response
editing using an LLM - implemented via constrained data generation. This editing approach
leverages LLMs’ semantic understanding of text, which is typically more reliable than the
image-text comprehension of VLMs (Guan et al., 2024). We provide the LLM with the
instruction, ground truth response, and VL task-specific information (e.g., spatial reasoning,
object attributes), and prompt it to perturb specific spans of the ground truth response.
Unlike prior works, we use task-specific information to guide the editor in minimally
editing the ground-truth response, injecting semantic errors that make the rejected response
incorrect for the task while preserving style and length (see Table 1). This prevents models
from exploiting superficial cues during preference optimization (§4.2, & §4.3.1). We also
ensure that the VaPR corpus covers diverse instructions - perception (e.g., object existence,
attribute, size, color, environment), reasoning (e.g., counting, spatial, comparison), and
captioning - to help models learn generalizable preferences. For our main results, we use
GPT-4o (OpenAI, 2024) as the LLM editor and refer to the approach as VaPR. Lastly, to
evaluate the generalizability of the pipeline across different LLMs, we also conduct an
ablation experiment using Qwen3-32b (Yang et al., 2025) as the editor, referred to as VaPR-OS
(open-source), to distinguish it from the GPT-4o–based VaPR dataset.

Instruction: How many planes are visible in
the image?
Chosen Response: There are four planes
visible in the image.
VaPR Response: There are six planes visible in
the image.
Response with length bias: There are seven
planes visible in the sky in the image, each
leaving a bright white trail behind.
Response with style bias: Five planes can be
seen in the image.

Instruction: Where is the man standing in relation to the
baby elephant?
Chosen Response: The man is standing next to the baby
elephant in the water.
VaPR Response: The man is standing far away from the
baby elephant, near the edge of the water.
Response with length bias: The man is standing far from
the baby elephant, attempting to throw water using a
bucket while standing at the edge of the water.
Response with style bias: The elephant is standing in the
water, away from the man, who is on the shore.

Figure 1: Examples from the VaPR hard-negative generation framework show instruction, image,
chosen response, and three rejected variants. (a) fine-grained perception and counting capability, and
(b) spatial reasoning. VaPR introduces targeted error - modifying only task-relevant spans - while
length-biased rejections add verbose description, and style-biased ones alter style and content. Blue
highlights relevant spans in chosen response, green shows VaPR perturbations, and red indicates
stylistic or length-biased edits.

To assess the effectiveness of the proposed framework, we fine-tune models from the LLaVA-
V1.5-Instruct(7B, 13B), Qwen2VL-Instruct (2B, 7B), and Qwen2.5VL-Instruct (3B, 7B) families
on the VaPR dataset and evaluate them across ten diverse benchmarks. These span open-
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ended instruction following, vision-centric reasoning, academic and mathematical tasks,
hallucination detection, and adversarial robustness. VaPR models outperform baselines
on 8 out of 10 benchmarks, with average gains of 6.5% for LLaVA-V1.5, 4% for Qwen2VL,
and 1.5% for Qwen2.5VL. Notably, VaPR yields consistent improvements on comprehensive
benchmarks like SEED (Li et al., 2023a) and MMStar (Chen et al., 2024a), vision-centric
reasoning benchmarks such as CV-Bench (Tong et al., 2024) (counting and spatial reasoning),
and adversarial reasoning benchmarks like NaturalBench (Li et al., 2024a), which test
compositional Visio-linguistic reasoning. Interestingly, improvements are also observed in
textual and math reasoning despite no explicit training on such data. A scaling analysis
reveals that performance scales with dataset size, with LLaVA-v1.5 models benefiting even
with small preference tuning data budget, and Qwen2VL & Qwen2.5VL variants improving
at larger scales.
We further compare VaPR to other preference datasets and empirically analyze how they
function under DPO optimization. Our findings highlight the influence of stylistic and
length differences in preference data, which can lead to spurious learning signals during
training. VaPR mitigates this issue by generating hard-negative rejected responses, which
are stylistically and length-wise similar to the chosen ones. We also observe that VaPR
reduces the tendency to answer "Yes" in binary questions, addressing a common issue in
LVLMs like LLaVA (Li et al., 2023d; Liu et al., 2023a; Guan et al., 2024; Li et al., 2024a). Lastly,
our ablation using Qwen3-32b to generate VaPR-OS show that open-source models can
follow the same prompting strategy, produce targeted perturbations, and yield models that
outperform the base instruct model and achieve 99% performance of the VaPR models.
The contributions of this work are fourfold:

• We propose VaPR, a hard-negative generation framework based on LLM-guided
response editing that constructs synthetic preference data with reduced stylistic and
length biases. Using this framework, we create a 30K sample high-quality dataset.

• We fine-tune LLaVA-V1.5, Qwen2VL, and Qwen2.5VL on VaPR and evaluate them
across ten benchmarks. VaPR outperforms SFT and preference-tuned baselines on 8
out of 10 benchmarks, with average gains of 6.5% (LLaVA), 4.0% (Qwen2VL), and
1.5% (Qwen2.5VL). Scaling analysis shows LLaVA benefits from smaller-scale data,
while Qwen models require larger-scale data to improve.

• Our analysis shows that VaPR enhances performance on reasoning tasks like
adversarial, spatial, counting, & textual, reduces the overuse of "Yes" in binary
questions, and avoids spurious learning signals by mitigating stylistic and length
biases present in prior preference datasets.

• Our ablation with Qwen3-32b as the LLM-editor, demonstrates that the framework
generalizes well to open-source LLMs, producing similarly effective hard negatives
(VaPR-OS) and preference-tuned models achieving 99% of the performance of
models trained on VaPR. Our data, models, and code can be found on the project
page https://vap-r.github.io/

2 Preliminaries

Large Vision Language Models (LVLMs) enhance the capabilities of Large Language
Models (LLMs) by adapting them to multimodal tasks. This enables the model to predict
the probability distribution for the next token in a sequence given multimodal inputs.
Specifically, given an input pair x ⟨xv, xt⟩ comprising an image xv and instruction text xt,
the LVLM generates a text response y. Preference optimization has emerged as a promising
technique for fine-tuning language models to align their outputs with desired outcomes,
which we briefly overview in this section.

2.1 Direct Preference Optimization

Given a prompt x ⟨xv, xt⟩, a large vision language model governed by policy πθ can yield a
conditional distribution πθ(y | x), where y is the generated text response. To train using
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preference data, we define the dataset D = {(x(i), y(i)w , y(i)l )}N
i=1, where y(i)w and y(i)l represent

the more and less preferred responses, in our case, chosen and hard-negative rejected
response, respectively, for a given input x(i). Preference optimization leverages this dataset
to fine-tune models effectively.

Objective Direct Preference Optimization (DPO) calculates the probability of preferring
yw over yl as:

p(yw ≻ yl) = σ(r(x, yw)− r(x, yl)),
where σ(·) is the sigmoid function. The loss function for DPO can be written as follows:

LDPO(πθ ; πref) = −E(x,yw,yl)∼D

[
log σ

(
α log

πθ(yw | x)
πref(yw | x)

−α log
πθ(yl | x)

πref(yl | x)

)]
, (1)

where πref(y | x) represents the reference policy, typically the model after SFT.

Preference Dataset There are different ways to construct the preference dataset. For
example, Sun et al. (2023) employs human annotations, which are of high quality but is
difficult to scale. On the other hand, AI annotation with LVLMs like GPT-4V (OpenAI, 2023)
scales better but risks inconsistencies and hallucinations (Zhao et al., 2023; Hong et al., 2024).
Our focus is to construct a scalable framework for preference dataset construction while
ensuring its quality.

3 VaPR Dataset Construction

Remove data with 
undesirable properties

1. Filter
Categorize tasks by keywords

Ex: contains(“where”) --> spatial

2. Categorize + Sample

Colors

Size
Back- 

ground

Counting

Spatial

Existence

General

Create hard negatives via 
task-specific prompts

3. Generate

[Instructions]
[Ground Truth]
[Penalty List] (optional)

Multiple-Choice
Short Response

OCR

SFT Dataset VaPR Dataset

Caption

Referential 
VQA

Object

Figure 2: VaPR: A three-stage pipeline that generates 30K hard-negative preference pairs from
LLaVA-v1.5-665K SFT (Liu et al., 2023b). Stage 1: Filter out irrelevant samples (e.g., MCQs). Stage
2: Categorize remaining samples based on task. Stage 3: Use task-specific prompts (with optional
penalty lists) to produce stylistically and length-wise similar but content-distinct negative responses.

We detail the design principles and construction processes of our preference dataset. Our
main idea is to construct hard negatives that are stylistically and length-wise similar to the
ground-truth samples.

3.1 Design Principles

We adhered to two key principles for constructing the VaPR dataset:

Task Diversity The dataset ensures a near-balanced distribution across a wide range
of tasks (see Fig. 3). It consists of foundational vision-language capabilities, including
perceptual (e.g., object recognition, object attribute recognition - color, size, etc., and

4



Published as a conference paper at COLM 2025

background understanding) and reasoning (e.g., spatial, counting, comparative). We also
incorporate tasks combining perception and reasoning like captioning, world knowledge
reasoning, and referential VQA (eg. region-level perception or reasoning). This diversity is
designed to improve the model’s comprehensive capabilities.

Hard Negative Rejected Responses Inspired by the role of hard negatives in enhancing
vision-language compositionality in image-text pretraining (Radford et al., 2021; Yuksekgonul
et al., 2022; Hsieh et al., 2023), we generate hard-negative responses. These are synthesized
by introducing targeted perturbations to high-quality SFT ground truth responses while
maintaining stylistic and structural similarity (e.g., length), thereby resulting in incorrect
responses given a task.

3.2 Sourcing & Processing

Sourcing We build preference samples using the high-quality LLaVA-665K SFT dataset (Liu
et al., 2023b), which has broad task coverage.

Filtering The data undergoes careful processing to filter tasks unsuitable for hard-negative
generation. We exclude tasks that lack sufficient training signals to address vision-language
misalignments, such as text-only tasks and simple response types (e.g., MCQ or bounding
box prediction). However, we retain "Yes/No" response instruction on the existence of
objects, attributes, and reasoning (e.g., count, spatial, comparative), as they correspond to
the key vision-language capabilities, and convert them to extended responses to better suit
preference optimization. We also filter out OCR instructions, as prior works emphasize the
need for larger input image resolutions and fine-grained visual perception as driving factors
in improving OCR performance (Wadhawan et al., 2024; Li et al., 2024b; Yu et al., 2024c).

Categorization We categorize the filtered corpus into ten task categories using task-specific
keywords (see Fig. 2). We subsample a portion of the SFT dataset from each category for
hard-negative response generation. Notably, for binary response instructions ("Yes"/"No"),
we enforce an equal distribution of "Yes" and "No" responses to mitigate bias towards "Yes,"
which arises from the predominance of affirmative instructions in the original SFT dataset
(Li et al., 2023d; Guan et al., 2024; Liu et al., 2023a). See Appendix §B.1 for details.

3.3 Generation Pipeline

The VaPR framework generates hard-negative responses by editing ground truth (instruction,
response) pairs from our filtered & categorized SFT subset using GPT-4o. This process is
guided by two key components: conditioning information and perturbation diversity.

Conditioning Information Task-specific prompts (e.g., attributes, spatial reasoning, count-
ing) guide edits to ensure responses remain fluent yet incorrect (see Fig. 2). These were
preferred over general prompts, which often introduced irrelevant changes given the task or
added verbosity or style changes, contributing to noise in the dataset.

Diversity of Perturbations Most categories (e.g., object type, size, existence) produced
diverse outputs with zero-shot prompting, while for others (e.g., color, counting, captioning),
we introduced a penalty list, periodically updating it with commonly used perturbation
values to prevent reuse. In captioning, we first extracted dimensions (e.g., color, spatial
relation) and applied random perturbations across them, using a penalty list to encourage a
variety of dimensions and perturbation values. See Appendix §B.2 for details.

3.4 Dataset Analysis

We perform statistical analysis of the VaPR dataset, with task-wise distribution shown in
Fig. 3. To assess annotation quality, we conducted a human evaluation on 500 stratified
samples across task categories, finding 97% alignment with hard-negative criteria and 86%
inter-annotator agreement (IAA) using Fleiss’ kappa (see Appendix §B.4).
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Figure 3: VaPR task distribution

Table 1: Comparison of the VaPR Preference Dataset
with Related Works. Lower LD and smaller length
differences indicate higher stylistic similarity. We show
the percentage of samples where chosen responses
are longer (chosen > rejected) or shorter (rejected >
chosen).

Ours HA-DPO POVID RLAIF-V CSR
Overall Samples (%) (21, 79) (41, 59) (24, 76) (45, 55) (38, 62)
- Linguistic Similarity 6 49 30 62 97
- Avg. Token Length Difference 3 18 16 15 27
- Token Length Difference (10, 1) (15, 20) (27, 13) (17, 14) (23, 29)

To quantify stylistic and length similarity, we compare VaPR against prior datasets - HA-
DPO (Zhao et al., 2023), POVID (Zhou et al., 2024a), RLAIF-V (Yu et al., 2024b), and
CSR (Zhou et al., 2024b). Linguistic similarity is measured via word-level Levenshtein
distance, where lower values indicate targeted content edits; higher values reflect broader
stylistic variation. Length similarity is computed as token-level sequence length differences.
We also report the proportion of samples where chosen or rejected responses are longer,
for both short-form (e.g., VQA) and long-form (e.g., captioning) tasks (see Appendix §B.3).
Table 1 shows that VaPR has the lowest Levenshtein distance and token length difference,
reinforcing the hard-negative nature of its rejections. In Section §4.3.1, we show that larger
stylistic and length discrepancies in other datasets lead to premature saturation in reward
accuracy, suggesting reward hacking behavior that is mitigated with VaPR.

4 Experiments

4.1 Experimental Setup

4.1.1 Models & Baselines

We preference-tune LLaVA-1.5 (Liu et al., 2023b) (7B and 13B), Qwen2VL-Instruct (Wang
et al., 2024a) (2B and 7B), and Qwen2.5VL-Instruct (3B and 7B) using Direct Preference
Optimization (DPO) (Rafailov et al., 2024). LoRA finetuning (Hu et al., 2021) is employed
during the preference learning phase. Models preference-tuned on the VaPR dataset, which
comprises 30K samples, are referred to as LLaVA-VaPR, Qwen2VL-VaPR, and Qwen2.5VL-
VaPR, respectively. Additional details on the training setup are provided in Appendix §C.1.
We compare the performance of the VaPR models with two baselines: base instruct models
and Supervised Finetuned (SFT) variants of base instruct models on the VaPR dataset. We
also compare the VaPR models with prior works involving different preference dataset
generation techniques - Human (LLaVA-RLHF (Sun et al., 2023)), AI annotations using
a large closed-source model (HA-DPO (Zhao et al., 2023), POVID (Zhou et al., 2024a)),
self-generated AI feedback (SIMA (Wang et al., 2024b), RLAIF-V (Yu et al., 2024b), and
CSR (Zhou et al., 2024b)) - using models made publicly available by the respective works.

4.1.2 Evaluation Benchmarks

We evaluate VaPR models across ten benchmarks covering diverse skills: Open-ended QA
- LLaVA-in-the-wild (LLaVAW) (Liu et al., 2023c), ConTextual (ConT) (Wadhawan et al.,
2024), & MM-VET (MMV) (Yu et al., 2023); Comprehensive vision benchmarks (reasoning &
perception) - SEED Bench (SEEDI - image split) (Li et al., 2023a) & MMStar (MMS) (Chen
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Table 2: Performance comparison of LLaVA-v1.5-Instruct, Qwen2VL-Instruct, Qwen2.5VL-Instruct,
SFT and DPO models finetuned on VaPR, and other preference datasets across 2B, 3B, 7B, and 13B
parameter sizes on ten benchmarks. Higher scores indicate better performance across all benchmarks,
with the highest score for each benchmark highlighted in bold. All models are evaluated using publicly
available checkpoints, adhering to evaluation parameters prescribed by the benchmarks. † represents
results that show statistically significant improvement via bootstrap resampling (95% CI).

Row Method LLaVAW ConT MMV SEEDI CV MV MMMU MMS POPE NB

1 LLaVA-1.5-7B 64.8 16.8 30.9 66.2 62.1 30.1 35.4 32.6 85.9 12.7
2 + Fact-RLHF 58.7 10.5 30.2 55.7 35.1 26.4 28.0 30.7 79.8 7.8
3 + HA-DPO 69.8 14.2 30.9 64.6 62.0 29.7 35.5 32.9 83.5 13.5
4 + POVID 70.1 18.6 31.8 66.3 62.3 30.6 35.6 33.3 86.0 13.1
5 + SIMA 66.4 18.0 31.4 66.1 60.1 30.1 35.6 32.5 85.8 12.6
6 + RLAIF-V 73.1 14.1 29.3 65.8 59.8 30.3 34.2 33.7 78.9 12.9
7 + CSR 69.5 15.8 30.6 65.9 61.1 30.5 35.6 32.2 86.2 13.4
8 + VaPR SFT (ours) 64.0 16.0 30.0 65.6 59.5 29.5 34.9 31.7 83.1 12.2
9 + VaPR DPO (ours) 76.2† 20.6† 32.9 66.7† 62.9† 30.8 35.7 34.7† 85.4 14.5†

10 LLaVA-1.5-13B 72.3 18.6 36.7 68.2 62.5 30.7 36.1 33.8 86.0 14.9
11 + Fact-RLHF 70.4 15.6 37.0 61.1 53.7 31.2 28.0 32.1 81.7 12.4
12 + SIMA 70.7 19.2 36.0 68.0 62.6 30.8 35.4 34.0 86.0 14.6
13 + CSR 74.2 17.8 35.6 68.2 62.4 31.3 35.9 33.9 86.8† 14.9
14 + VaPR SFT (ours) 71.4 17.4 34.7 67.2 61.5 30.4 34.5 33.3 83.9 13.7
15 + VaPR DPO (ours) 80.5† 21.2 37.3 68.7† 64.6† 32.3† 35.8 35.6† 86.3 18.2†

16 Qwen2VL-2B 83.2 27.7 53.3 73.6 66.5 51.0 38.7 43.4 86.5 24.3
17 + VaPR SFT (ours) 69.1 22.1 43.3 70.3 54.5 46.4 36.6 41.5 85.5 15.1
18 + VaPR DPO (ours) 88.1 34.8† 54.1 74.0† 69.0† 50.9 39.2 43.7 88.3† 25.7†

19 Qwen2VL-7B 92.5 39.7 62.1 76.4 75.7 57.5 50.7 56.7 87.3 30.8
20 + VaPR SFT (ours) 79.6 36.6 52.6 73.9 67.4 56.3 47.7 52.9 86.2 23.7
21 + VaPR DPO (ours) 96.2 43.9† 65.4 76.8† 76.3† 58.2 50.0 57.8† 87.3 32.5†

22 Qwen2.5VL-3B 98.1 37.2 67.3 75.0 71.5 52.5 45.7 54.7 86.3 25.4
23 + VaPR SFT (ours) 79.8 33.4 50.1 70.9 60.5 48.6 43.1 48.5 84.8 21.2
24 + VaPR DPO (ours) 97.1 40.3 67.4 75.5† 72.7† 53.4 44.9 56.1† 86.4 26.3†

25 Qwen2.5VL-7B 101.4 53.3 71.0 77.7 80.1 58.6 50.9 61.9 86.3 32.0
26 + VaPR SFT (ours) 80.2 38.9 59.0 74.9 69.4 56.8 48.1 56.1 82.8 23.8
27 + VaPR DPO (ours) 101.5 53.4 72.4 77.8 81.1† 59.8† 50.6 62.5 86.9† 32.8†

et al., 2024a); , Vision-centric reasoning (spatial reasoning, counting) - CV Bench (CV) (Tong
et al., 2024); Hallucination & Adversarial reasoning - Pope (Li et al., 2023d), NaturalBench
(NB) (Li et al., 2024a); Academic & Math Reasoning - MathVista (MV) (Lu et al., 2023) &
MMMU (Yue et al., 2024) (benchmark details provided in Appendix §C.2).

4.2 Results

Table 2 presents the core experimental findings. VaPR models outperform baseline and
prior preference-tuned models on 8 out of 10 benchmarks and remain competitive on the
rest. LLaVA-VaPR 7B and 13B achieve average gains of 7% and 6%, respectively, while
Qwen2VL-VaPR 2B and 7B improve by 5% and 3%. Despite Qwen2.5VL being a strong
baseline, preference finetuning on VaPR yields improvements of 2% (3B) and 1% (7B), with
gains concentrated in vision-centric benchmarks (CV-Bench, MMStar, SeedBench), and the
adversarial benchmark (NaturalBench).
These improvements in vision-centric and adversarial benchmarks are consistent across all
VaPR models, indicating that preference finetuning on VaPR strengthens visio-linguistic
compositionality - particularly in perception (e.g., fine-grained object-attribute identification)
and reasoning tasks such as spatial relationships and counting (see Appendix §D.2). Notably,
improvements also extend to textual and mathematical reasoning benchmarks (ConTextual
and MathVista), despite not being explicitly trained on OCR, textual reasoning, or math
tasks, VaPR models achieve strong performance in these areas. We attribute this to their
enhanced fine-grained perception, spatial reasoning, and counting capabilities, which is
consistent with prior work (Fu et al., 2024). In contrast, all models show limited or no
improvement on MMMU, aligning with prior findings (Ivison et al., 2024a) that preference
optimization primarily enhances alignment and truthfulness, rather than factuality.
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Lastly, we observe that While VaPR demonstrates strong effectiveness under DPO optimiza-
tion, supervised finetuning (SFT) on the same dataset does not yield comparable gains.
Specifically, SFT results in gentle performance degradation for LLaVA, and more for the
Qwen2VL and Qwen2.5VL families. This outcome suggests that SFT on a relatively small
dataset like VaPR- particularly in comparison to the original large-scale SFT corpora - may
lead to overfitting, especially in models with strong pretrained priors like Qwen2.5VL,
thereby limiting their generalization capabilities. In contrast, preference optimization with
carefully constructed, length and stylistically similar hard-negative pairs enables more
robust and generalizable representation learning. These findings indicate that the gains
observed in VaPR models stem not from the selection of samples, but from the preference
signal induced by VaPR preference pairs.

4.3 Analysis

4.3.1 Preference Dataset Comparison

We compare VaPR with two alternatives: (1) POVID, which uses GPT-4V to generate rejected
responses given an SFT sample, and (2) SIMA, a self-preference method that composes
preference pairs from greedy and sampled outputs generated and critiqued by the same
LVLM to be preference tuned. VaPR consistently outperforms both LLaVA and Qwen2VL
families, showing 4-6% average gains over POVID and SIMA.
To analyze how the different datasets affect the DPO optimization process, let us rewrite
the loss:LDPO = − log σ (α(∆θ − ∆ref)), where ∆θ = log πθ(yw | x) − log πθ(yl | x) and
∆ref = log πref(yw | x) − log πref(yl | x). We observe that POVID exhibits higher ∆ref
than VaPR despite similar chosen log-probabilities (see Fig. 4a), indicating that its rejected
responses are less likely under the reference model most likely due to greater stylistic and
length differences (see Table 1). We further observe that the POVID model rapidly attains a
reward accuracy of 1 (see Fig. 4b), suggesting that the model may be overfitting based on
preference signals derived from length and stylistic differences, unlike VaPR models, which
improve more gradually without saturating, indicating reduced overfitting due to exposure
to more challenging preference pairs.
SIMA, on the other hand, shows ∆re f ≈ 0 (see Fig. 4a), with chosen and rejected responses
often near-identical - including 20% duplicates. In such cases, the loss depends entirely
on ∆θ , removing reference-guided regularization and amplifying noisy or weak signals.
This leads to poor reward accuracy ( 50%) and degraded generalization (see Fig. 4). While
self-preference methods like CSR and RLAIF-V can mitigate some issues via multi-step
scoring, like POVID, they can still reward hack due to length and stylistic differences (see
Table 1). Detailed methodology, results & analysis is provided in Appendix §D.3.
VaPR addresses both issues by explicitly generating hard negatives that are stylistically
and length-wise similar to positives, ensuring DPO learns from content differences. In
low-resource settings where high-quality SFT data is scarce, VaPR can complement self-
preference methods by using confident responses from approaches like CSR or RLAIF-V
as positives and generating hard negatives via the VaPR pipeline, allowing the curation of
high-quality preference data in an unsupervised manner - a promising future direction

4.3.2 Scaling analysis

We investigate the impact of dataset size on model performance by conducting a data scaling
analysis using three training budgets: 3K, 10K, and 30K samples from the VaPR dataset.
Detailed results are provided in Appendix §D.1. As shown in Fig. 5, all VaPR models exhibit
improved performance with increasing data. Interestingly, LLaVA-VaPR models achieve
substantial gains even at the lowest data budget (3K), with diminishing returns at higher
scales. In contrast, Qwen2VL and Qwen2.5VL models- being stronger base instruct models-
show more modest improvements at 3K but benefit more as dataset size increases. This
trend aligns with their stronger pretrained priors compared to LLaVA-v1.5, which may
require more supervision to meaningfully shift under preference tuning.
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Figure 4: Comparison of preference datasets. (a) Average reference model log-probabilities for
chosen vs. rejected responses across VaPR, SIMA, and POVID - lower values indicate lower reference
likelihood. (b) Reward accuracy trends over training steps show that SIMA improves gradually while
POVID saturates quickly.

4.3.3 VaPR models do not overconfidently say "Yes" to "Yes/No" questions

In this section, we examine the response patterns of large vision-language models (LVLMs),
which tend to answer "Yes" more frequently than "No" for binary "Yes/No" questions (Li
et al., 2023d; 2024a; Liu et al., 2023a; Guan et al., 2024). Specifically, we analyze model outputs
on NaturalBench, an adversarial benchmark comprising paired instructions and paired
images. As shown in Fig. 6, base SFT variants of LLaVA-v1.5, Qwen2VL, and Qwen2.5VL
exhibit a clear tendency to favor "Yes" responses, even for questions where the correct answer
is "No" (highlighted in red). However, the VaPR models demonstrate a notable reduction
in this bias, with an emergent shift towards answering "No" more frequently than "Yes."
This behavior is most pronounced in LLaVA-VaPR 13B. We attribute these improvements to
enhanced perception and reasoning capabilities, which manifest as improved visio-linguistic
compositionality and a reduced bias towards "Yes" responses.

4.3.4 VaPR-OS: Ablation Study using open-source LLM Editor

We conduct an ablation using Qwen3-32B as the open-source LLM editor to evaluate the
generalizability of the VaPR pipeline beyond closed models like GPT-4o (see Appendix §D.4).
The resulting dataset, VaPR-OS, is constructed from the same subset as the 10K version
of VaPR. Analyzing the data, we find that VaPR-OS exhibits comparable hard-negative
characteristics to VaPR, with a token length gap of 6 (vs. 3 in VaPR) and a Levenshtein
distance of 10 (vs. 6). We fine-tuned LLaVA-v1.5-Instruct-7B, Qwen2VL-Instruct-2B, and
Qwen2.5VL-Instruct-3B on VaPR-OS and evaluated their performance against models
trained on the GPT-4o-based VaPR (10K subset) across benchmarks (§D.4). Results show
that models trained on VaPR-OS achieve 99% of the performance of their GPT-4o-based
counterparts (VaPR), with both consistently outperforming base instruct models. These
findings demonstrate that the VaPR pipeline generalizes well to open-source editors, allowing
researchers to apply the VaPR framework to their own SFT datasets without relying on
closed-source APIs.

5 Related Work

Large Vision Language Models (LVLMs) LVLMs combine visual inputs from pre-trained
vision encoders (Radford et al., 2021; Zhai et al., 2023) with large language models (LLMs)
(Team, 2024b; Touvron et al., 2023; Dubey et al., 2024; Cai et al., 2024) via projection modules
(Liu et al., 2023b; Ye et al., 2024; Li et al., 2023b; Tong et al., 2024). They are typically trained
in two stages: pretraining on large-scale image-text data to align modalities and instruction
tuning or supervised finetuning on vision-language datasets for open-ended tasks.
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Preference Optimization in LVLMs Preference optimization, typically the third training
stage for LVLMs, improves modality alignment and reduces hallucinations. It relies on
reference datasets sourced via human annotation (Yu et al., 2024a; Sun et al., 2023), AI
annotation (Zhou et al., 2024a; Li et al., 2023c; Zhao et al., 2023), or self-curation (Yu et al.,
2024b; Zhou et al., 2024b; Deng et al., 2024; Wang et al., 2024b). While human labels
are high-quality but expensive, AI annotations using models like GPT-4V (OpenAI, 2023)
are scalable but may introduce stylistic or length inconsistencies and distill hallucinations.
Self-curated approaches generate multiple responses, rank them heuristically or with LVLMs,
and select preference pairs, but often fail to control for stylistic or length biases - leading to
noise, as both chosen and rejected responses may seem equally plausible (Yan et al., 2024).
Our method builds on Direct Preference Optimization (DPO) (Rafailov et al., 2024) and
introduces a post-SFT data construction pipeline that addresses these challenges. Unlike
prior works (Zhou et al., 2024a; Yu et al., 2024b; Zhou et al., 2024b; Deng et al., 2024; Wang
et al., 2024b) that use VLMs for generation or scoring, we employ LLM-guided response
editing to inject task-aware semantic errors into rejected responses while explicitly preserving
style and length. This reduces the risk of DPO exploiting superficial cues. In contrast to
Chen et al. (2025), which uses LLMs to generate hard negatives for multilingual embedding
training, our approach targets post-SFT preference alignment in English, where fine-grained
semantic and stylistic control is crucial.

6 Conclusion

In this work, we address challenges in the alignment and reasoning capabilities of LVLMs by
introducing VaPR, a hard-negative preference data generation framework. By constructing
a high-quality preference dataset of 30K samples, we mitigate length and stylistic biases
prevalent in existing synthetic datasets. We demonstrate significant improvements across
benchmarks, particularly excelling in reasoning tasks and adversarial scenarios. Our analysis
highlights the effectiveness of VaPR in improving vision-linguistic compositionality and
reducing binary question bias, paving the way for more reliable and generalizable LVLMs.
Future work includes extending the framework to larger and more diverse datasets, applying
it to broader reasoning tasks, and refining hard-negative generation to better target nuanced
reasoning errors. Another promising direction is combining VaPR with self-preference
methods in low-resource settings - using confident responses as positives and generating
hard negatives via the VaPR pipeline to enable unsupervised preference data creation. We
also plan to explore integrating VaPR with online preference optimization methods such as
PPO and GRPO, particularly for complex reasoning tasks like math.
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A Appendix Overview

The appendix is organized into the following sections and subsections:

• Detailed Methodology of VaPR Data Generation (§B):
– Task Categories (§B.1): Definition of the task categories included in the VaPR

dataset.

– Prompt Design & Examples (§B.2): Specific prompts used for data generation
for each task category and corresponding qualitative examples illustrating the
generated data.

– Fine-grained length & Stylistic analysis (§B.3)

– Human Study (§B.4): Annotation and evaluation setup.

• Experimental Setup (§C):
– Training Setup (§C.1): Details of the training setup for our models are provided

here.

– Evaluation Setup (§C.2): Implementation of the evaluation benchmarks.

• Extended Results (§D):
– Data Scaling (§D.1): Detailed results for VaPR model with increasing training

dataset size.

– Benchmark detailed results (§D.2): Fine-grained evaluation across benchmark
categories, for CVBench and MMStar.

– Preference Dataset Comparison (§D.3): Detailed results for the comparison of
base models trained on VaPR and other preference datasets.
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B Detailed Methodology of VaPR Data Generation

In this section, we provide the breakdown of VaPR dataset into task categories, prompt
design & examples for each category, setup for human study and linguistic & length analysis
study.

B.1 Task Categories

An essential component of our data generation pipeline is the categorization of filtered
samples (~270K) from the LLaVA-665K SFT set into distinct task categories. This ensures
comprehensive coverage of perception, reasoning, and composite tasks (perception &
reasoning) in the final VaPR dataset. The VaPR dataset comprises ten task categories: object
(like type, material, action), color, size, background (like weather, time of day, surrounding
lighting), counting, spatial reasoning, existence, referential VQA (like color of an object on
the left, etc), general reasoning (like abstract & knowledge-based), and image captioning, as
outlined in Table 3. The categorization process is carried out in the following three steps:

• Task-specific keywords (see Table 3) are applied to the instructions in the filtered
SFT set to assign a task category to each sample containing those keywords.

• Categorization follows a defined order:
– Samples are initially tagged into the categories: color, size, counting, spatial

reasoning, background, existence, captioning, referential VQA (comparative
reasoning) and general reasoning (in no specific order). Specifically for the
existence category, we check the first word in the instruction.

– Remaining samples are assigned to the object category. This approach is
necessary because object-related tasks, encompassing types and knowledge,
require a broad, non-generalizable keyword list.

• Resolving Multiple Task Categories for a sample: Samples tagged with multiple
task categories are categorized as referential VQA (qualitative examples shown in
§B.2.8). Thus, referential VQA consists of samples tagged as comparative reasoning
and the above samples.

Task Task Type Keyword
Color Perception color(s)
Size Perception size(s)
Background Perception environment, time of, day, year, weather, lighting,
Counting Reasoning many, count(s), instance(s), counting
Spatial Reasoning Reasoning where, located, placed, positioned, left, right,

in front of, down, above, below
Existence Perception & Reasoning are, is, can, do, does, would, will
General Reasoning Perception & Reasoning could, would, might, purpose, reason, based, should
Referential VQA Perception & Reasoning Samples with keywords from more than one task

Comparative Reasoning: comparison, difference,
closer, nearer, bigger

Image Captioning Perception & Reasoning analyze, describe, write, elaborate, description, snapshot

Table 3: Overview of tasks, task types (perception & reasoning), and task-specific keywords
used for VaPR dataset categorization. Keyword list is shortened for clarity. Note untagged
samples are grouped together into the object category.
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B.2 Prompt Design & Examples

In this section, we provide a detailed walkthrough of hard-negative generation for each
task category, accompanied by additional examples from each category - object (§B.2.1),
color (§B.2.2), size (§B.2.3), background (§B.2.4), counting (§B.2.5), spatial reasoning (§B.2.6),
existence (§B.2.7), referential VQA (§B.2.8), image captioning (§B.2.9), general reasoning
(§B.2.10). In the prompt figures, spans of the chosen responses are highlighted in blue, while
the corresponding perturbed spans in the generated hard-negative responses are highlighted
in green. Lastly, we also provide the algorithm and additional examples showing generation
steps for task categories with penalty list (e.g. color) in §B.2.11.

B.2.1 Object

Prompt:
You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The instruction asks about the objects, or actions. Your task is as follows:

1. Modify the "objects" or "action" to make the "Original Response" about "objects" or "actions"
incorrect.

2. "New Response" must be linguistically very similar to "Original Response" and must be incorrect.

3. You must ensure changes must be realistic given world knowledge.

4. You can minimally change other spans of the sentence to grammatical correctness and fluency.

5. The output format should be "New Response:"

Instruction: What type of flooring is in the room?

Original Response: The room has hard wood floors.

Your Turn
New Response:

Chosen Response: The room has hard wood floors.

Hard-negative Rejected Response: The room has carpeted floors.

Figure 7: Example prompt and generated hard-negative for VaPR sample of object task
category.
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Instruction: What type of airplane is displayed
in the image?

Chosen Response: The image displays a World
War era airplane with a propeller hanging in a
museum.

Rejected Response: The image displays a
World War era airplane with jet engines hang-
ing in a museum.

(a) Task requiring perception of an object’s com-
ponents

Instruction: What is the woman doing in the
image?

Chosen Response: The woman is sitting at a
desk or table, working on a laptop computer.

Rejected Response: The woman is standing
next to a desk or table, working on a laptop
computer.

(b) Task requiring perception of an object’s action

Instruction: What type of cake is on the plate?

Chosen Response: There is a slice of chocolate
cake on the plate.

Rejected Response: There is a slice of straw-
berry cake on the plate.

(c) Task requiring perception of an object’s type

Instruction: What is the cat doing in the image?

Chosen Response: The cat is sitting on the
edge of a bathroom sink.

Rejected Response: The cat is sleeping on the
edge of a bathroom sink.

(d) Task requiring perception of an object’s action

Figure 8: Qualitative examples of the object task category, like object perception, its type,
components, and associated actions.

19



Published as a conference paper at COLM 2025

B.2.2 Color

Prompt:
You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The instruction asks about the colors of objects, environments, or themes.
Your task is as follows:

1. Modify the "colors" of all objects, environments, or themes in the response to make "Original
Response" about "colors" incorrect.

2. You must only change the "colors", so that "New Response" is linguistically very similar to
"Original Response" and is incorrect.

3. The "New colors" you use to replace original colors must be unique and not be too descriptive.

4. The "New colors" must be realistically possible, considering the object they describe.

5. You cannot use colors in the penalty list.

6. You can minimally change other spans of the sentence to grammatical correctness and fluency.

7. List the "New colors" you replace within the response.

Penalty list: [white, blue]

Instruction: What color is the kitchen counter where the vegetables are placed?

Original Response: The kitchen counter where the vegetables are placed is green.

Your Turn
New Response:
New Colors:

Chosen Response: The kitchen counter where the vegetables are placed is green.

Hard-negative Rejected Response: The kitchen counter where the vegetables are placed is yellow.

New Colors: [yellow]

Figure 9: Example prompt and generated hard-negative for VaPR sample of color task
category. Here, the penalty list is simulated for illustration. New colors represent additional
information generated alongside the hard-negative rejected response to maintain the penalty
list. We maintain a list of most perturbed color values (size 2), updated after every 10
hard-negative rejected response generations. Note, if more than one color is perturbed,
"New Colors" will have more elements in the list.
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Instruction: What color are the couches in the
living room?

Chosen Response: The couches in the living
room are black.

Rejected Response: The couches in the living
room are orange.

(a) Task requiring color perception of an object.

Instruction: What are the colors of the flowers
in the vase?

Chosen Response: The colors of the flowers in
the vase are red, green, and purple.

Rejected Response: The colors of the flowers
in the vase are yellow, blue, and orange.

(b) Task requiring color perception of mulitple
objects.

Instruction: What is the color of the surfboard
the dog is sitting on?

Chosen Response: The color of the surfboard
the dog is sitting on is blue.

Rejected Response: The color of the surfboard
the dog is sitting on is orange.

(c) Task requiring color perception of an object.

Instruction: What is the overall color theme of
the living room?

Chosen Response: The overall color theme of
the living room is predominantly white, with
white furniture and white elements on the brick
wall.

Rejected Response: The overall color theme
of the living room is predominantly turquoise,
with turquoise furniture and turquoise ele-
ments on the brick wall.

(d) Task requiring color perception of the theme
of a background setting.

Figure 10: Qualitative examples of the color task category, like perception of colors of a
single object, multiple objects and background theme.
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B.2.3 Size

Prompt:
You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The instruction asks about the "size" of objects or themes. Your task is as
follows:

1. Modify the "size" of the objects or themes to make the "Original Response" about the "size" incorrect.

2. "New Response" must be linguistically very similar to "Original Response" and must be incorrect.

3. You must ensure changes must be realistic given world knowledge.

4. You can minimally change other spans of the sentence to grammatical correctness and fluency.

5. The output format should be "New Response:"

Instruction: How is the cheeseburger described in terms of size and ingredients?

Original Response: The cheeseburger is described as massive and containing double cheese layers.

Your Turn
New Response:

Chosen Response: The cheeseburger is described as massive and containing double cheese layers.

Hard-negative Rejected Response: The cheeseburger is described as small and containing a single
cheese layer.

Figure 11: Example prompt and generated hard-negative for VaPR sample of size task
category.
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Instruction: What is the general size of the
room?

Chosen Response: The room is described as a
small living area, which implies that it is not
very large or spacious.

Rejected Response: The room is described as
an expansive living area, which implies that it
is quite large and spacious.

(a) Task requiring thematic size perception, here
room.

Instruction: How would you describe the size
of the group of people flying kites?

Chosen Response: The group of people flying
kites is large, indicating that it is a popular and
well-attended event or gathering.

Rejected Response: The group of people fly-
ing kites is small, indicating that it is a more
intimate and possibly less publicized event or
gathering.

(b) Task requiring thematic size perception, here
gathering of people.

Instruction: What’s the size of the refrigerator
in the image?

Chosen Response: The refrigerator in the im-
age is a small or mini-sized refrigerator.

Rejected Response: The refrigerator in the
image is a large, full-sized refrigerator.

(c) Task requiring size perception of an object.

Instruction: What is the size of the cake in the
image?

Chosen Response: The cake in the image is
quite large and tall, comprising multiple layers.

Rejected Response: The cake in the image is
small and flat, consisting of a single layer.

(d) Task requiring size perception of an object.

Figure 12: Qualitative examples of the size task category, like size perception of an object or
broadly a theme (eg. room, gathering of people)
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B.2.4 Background

Prompt:
You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The instruction asks about the "time", "weather", or "environment" of
events, surroundings, or themes. Your task is as follows:

1. Modify the "time", "weather", or "environment" of events, surroundings, or themes to make the
"Original Response" about the "time", "weather", or "environment" incorrect.

2. "New Response" must be linguistically very similar to "Original Response" and must be incorrect.

3. You must ensure changes must be realistic given world knowledge.

4. You can minimally change other spans of the sentence to grammatical correctness and fluency.

5. The output format should be "New Response:"

Instruction: What time of day is it in the image?

Original Response: It is nighttime in the image, as evidenced by the dark sky background.

Your Turn
New Response:

Chosen Response: It is nighttime in the image, as evidenced by the dark sky background.

Hard-negative Rejected Response: It is twilight in the image, as evidenced by the darkening sky
background.

Figure 13: Example prompt and generated hard-negative for VaPR sample of background
task category. Notably, the slight linguistic change from "dark" to "darkening" has significant
change in semantics.
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Instruction: What’s the weather like in the
image?

Chosen Response: The weather in the image is
rainy, creating a wet atmosphere on the street.

Rejected Response: The weather in the image
is snowy, creating a cold atmosphere on the
street.

(a) Task requiring perception of weather.

Instruction: What kind of environment is the
giraffe in?

Chosen Response: The giraffe is in a dry, arid
environment with brown vegetation, scrub
bushes, and sand in the field. It appears to be
a somewhat harsh, wild habitat that the giraffe
is navigating.

Rejected Response: The giraffe is in a lush,
green environment with dense vegetation,
leafy bushes, and a grassy field. It appears
to be a somewhat fertile, wild habitat that the
giraffe is navigating.

(b) Task requiring perception of environment.

Instruction: What type of lighting is featured
in the living room?

Chosen Response: The living room features
spot lighting, which provides a focused illumi-
nation on specific areas or objects within the
room.

Rejected Response: The living room features
ambient lighting, which provides a general,
diffused illumination throughout the room.

(c) Task requiring perception of background light-
ing.

Instruction: What are the weather conditions
in the image?

Chosen Response: The weather conditions
in the image are rainy, as evidenced by the
group of people holding umbrellas to protect
themselves from the pouring rain.

Rejected Response: The weather conditions
in the image are rainy, as evidenced by the
group of people holding umbrellas to protect
themselves from the light drizzle.

(d) Task requiring perception of weather.

Figure 14: Qualitative examples of the background task category, like perception of weather,
environment, lighting, and time of the day.
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B.2.5 Counting

Prompt:
You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The instruction asks about the counts of objects. Your task is as follows:

1. Modify the "counts" of all objects in the response to make "Original Response" about "counts"
incorrect.

2. You must only change the "counts", so that "New Response" is linguistically very similar to
"Original Response" and is incorrect.

3. The "New counts" you use to replace original colors must be unique and not be too descriptive.

4. The "New counts" must be realistically possible, considering the object they describe.

5. You cannot use counts in the penalty list, neither the word form in the penalty nor its numerical
form.

6. You can minimally change other spans of the sentence to grammatical correctness and fluency.

7. List the "New counts" you replace within the response.

Penalty list: [two, seven]

Instruction: How many people are visible near the truck in the image?

Original Response: There are four people visible near the truck in the image. Three people are
standing in front of the truck, while another person is in the background.

Your Turn
New Response:
New Colors:

Chosen Response: There are four people visible near the truck in the image. Three people are
standing in front of the truck, while another person is in the background.

Hard-negative Rejected Response: There are six people visible near the truck in the image. Five
people are standing in front of the truck, while another person is in the background.

New Counts: [six, five]

Figure 15: Example prompt and generated hard-negative for VaPR sample of counting task
category. Here, the penalty list is simulated for illustration. New counts represent additional
information generated alongside the hard-negative rejected response to maintain the penalty
list. Similar to color task category, We maintain a list of most perturbed count values (size 2),
updated after every 10 hard-negative rejected response generations. Note, if more than one
count is perturbed, "New Counts" will have more elements in the list.
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Instruction: How many motorcycles are in the
image?

Chosen Response: There are three motorcycles
in the image.

Rejected Response: There are six motorcycles
in the image.

(a) Task requiring counting capability.

Instruction: How many bears are present in
the image?

Chosen Response: There are three bears
present in the image - an adult bear and two
bear cubs.

Rejected Response: There are seven bears
present in the image - an adult bear and six
bear cubs.

(b) Task requiring counting capability.

Instruction: How many women are in the
image holding teddy bears?

Chosen Response: There are three women in
the image holding teddy bears.

Rejected Response: There are two women in
the image holding teddy bears.

(c) Task requiring counting ability.

Instruction: How many road signs are there
in the image?

Chosen Response: There are several road signs
in the image, including two One Way signs,
one of which is upside down.

Rejected Response: There are no road signs
in the image, and the streets are empty of any
directives.

(d) Task requiring counting capability.

Figure 16: Qualitative examples of the counting task category.
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B.2.6 Spatial Reasoning

Prompt:
You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The instruction asks about the "spatial relation", of objects. Your task is as
follows:

1. Modify the "spatial relation" of objects to make the "Original Response" about the "spatial
relation" incorrect.

2. "New Response" must be linguistically very similar to "Original Response" and must be incorrect.

3. You must ensure changes must be realistic given world knowledge.

4. You can minimally change other spans of the sentence to grammatical correctness and fluency.

5. The output format should be "New Response:"

Instruction: Where is the toilet located in the image?

Original Response: The toilet is located outdoors, surrounded by a field of grass and trees, in the
middle of the woods.

Your Turn
New Response:

Chosen Response: The toilet is located outdoors, surrounded by a field of grass and trees, in the
middle of the woods.

Hard-negative Rejected Response: The toilet is located indoors, surrounded by white-tiled walls
and a sink, in the corner of a bathroom.

Figure 17: Example prompt and generated hard-negative for VaPR sample of spatial
reasoning task category.
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Instruction: What position is the cat in while
laying on the rug?

Chosen Response: The cat is laying on its back
on the rug.

Rejected Response: The cat is laying on its
side on the rug.

(a) Task requiring instance location.

Instruction: Where is the person riding the
bicycle in the image?

Chosen Response: The person is riding the
bicycle on a city street, specifically in a bicycle
lane near many street signs.

Rejected Response: The person is riding the
bicycle on a dirt path in a park, far away from
any street signs.

(b) Task requiring instance location.

Instruction: How are the motorcycles arranged
in the image?

Chosen Response: The motorcycles are ar-
ranged in rows or parked together in a row,
which creates an organized and neat appear-
ance.

Rejected Response: The motorcycles are ar-
ranged in a circle, with each facing outwards,
which creates a symmetrical and organized
appearance.

(c) Task requiring relative spatial reasoning.

Instruction: What is the position of the skier’s
ski poles?

Chosen Response: The skier has tucked his
ski poles under his arms while racing through
the snow.

Rejected Response: The skier is holding his
ski poles parallel on either side, with each pole
pointing outward from his body as he navigates
through the snow.

(d) Task requiring relative spatial reasoning.

Figure 18: Qualitative examples of the spatial reasoning task category, involve instance
location or relative spatial reasoning.
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B.2.7 Existence

Prompt:

You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The instruction asks about an "existence" of an object, object attribute, object
count, object spatial relation, object comparison, background or theme. Your task is as follows:

1. Modify the original response to change the polarity of the response, that is, make "Yes" a "No"
and "No" a "Yes".

2. Paraphrase both the "Original Response" and the "New Response", such that it says, "Yes" or "No"
followed by the ask in the question.

3. "New Response" must be linguistically very similar to "Original Response" and must be incorrect.

4. You must ensure changes must be realistic given world knowledge.

5. You can minimally change other spans of the sentence to grammatical correctness and fluency.

6. The output format should be "Original Response: " "New Response

Instruction: Would this man score a touchdown?

Original Response: No, the man would not score a touchdown.

Your Turn
New Response:

Chosen Response: No, the man would not score a touchdown..

Hard-negative Rejected Response: Yes, the man would score a touchdown.

Figure 19: Example prompt and generated hard-negative for VaPR sample of object task
category.
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Instruction: Are there any people in the pic-
ture?

Chosen Response: No, there are no people
shown in the picture.

Rejected Response: Yes, there are people visi-
ble in the image.

(a) Task requiring object perception

Instruction: Are the batters ankles twisted?

Chosen Response: Yes, the batter’s ankles are
twisted.

Rejected Response: No, the batter’s ankles are
not twisted.

(b) Task requiring perception of an object’s state
and action

Instruction: Does the elbow pad to the right
of the other elbow pad have black color?

Chosen Response: No, the elbow pad to the
right of the other elbow pad does not have a
black color.

Rejected Response: Yes, the elbow pad to the
right of the other elbow pad has a black color.

(c) Task requiring color perception spatial reason-
ing

Instruction: Does the light say it is ok to walk?

Chosen Response: Yes, the light indicates it’s
safe to walk.

Rejected Response: No, the light says it’s not
safe to walk.

(d) Task requiring object perception and knowl-
edge

Figure 20: Qualitative examples of the existence task category.
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B.2.8 Referential VQA

Prompt:

You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The instruction asks about counts, color, spatial location, comparison or
existence of objects. More than one of the tasks can be asked in an instruction. Your task is as
follows:

1. Identify the different tasks asked in the question. You do not have to output this, only understand
the intent.

2. Modify the spans in the response which answer the different tasks in the instruction to make
"Original Response" incorrect.

3. You must only change the "spans", so that "New Response" is linguistically very similar to
"Original Response" and is incorrect, while maintaining rest of the response.

4. You can minimally change other spans of the sentence to semantic correctness, grammatical
correctness and fluency.

5. If the task is about colors or counts, ensure that you change the span with wide range of colors
and counts respectively.

6. The "New colors" or "New Counts" must be realistically possible, considering the object they
describe.

7. If the response is one word or small phrase, paraphrase both the "Original Response" and
the "New Response", such that it says "New Response" is incorrect with respect to the "Original
Response" while being semantically sensible. Both "Original Response" and "New Response" must
now be full sentences.

Instruction: What is the size difference between these two boats?

Original Response: There is a noticeable size difference between the two boats, with one being
considerably larger than the other smaller boat.

Your Turn
New Response:

Chosen Response: There is a noticeable size difference between the two boats, with one being
considerably larger than the other smaller boat.

Hard-negative Rejected Response: There is no noticeable size difference between the two boats, as
they appear to be identical in size.

Figure 21: Example prompt and generated hard-negative for VaPR sample of referential
VQA task category.
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Instruction: What is the size of the dog com-
pared to the child?

Chosen Response: The dog is described as
large in comparison to the child. This implies
that the dog may be of a bigger breed or per-
haps a fully-grown adult dog.

Rejected Response: The dog is described as
small in comparison to the child. This implies
that the dog may be a smaller breed or perhaps
still a puppy.

(a) Task requiring object perception

Instruction: How many people are in the im-
age and where are they located?

Chosen Response: There are two people, a
man and a woman, in the image, and they are
located in a kitchen.

Rejected Response: There are five people,
consisting of three men and two women, in the
image, and they are located in a living room.

(b) Task requiring perception of an object’s state
and action

Instruction: How many colors are the cows in
the image?

Chosen Response: There are three main colors
of cows in the image: black, brown, and white.

Rejected Response: There are four main colors
of cows in the image: black, gray, tan, and
white.

(c) Task requiring color perception spatial reason-
ing

Instruction: How many giraffes are visible in
the image, and what are their relative sizes?

Chosen Response: There are two giraffes vis-
ible in the image: a large adult giraffe and a
smaller kid giraffe, likely its offspring.

Rejected Response: There are three giraffes
visible in the image: a medium-sized adult
giraffe along with two smaller giraffes, possibly
its offspring.

(d) Task requiring object perception and knowl-
edge

Figure 22: Qualitative examples of the existence task category.
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B.2.9 Image Captioning

Prompt:

You are a ResponseAnalyzerGPT who is given an instruction and a response generated by a
vision-language model. The response will consist of one or more visual elements - objects, object
relationships, object attributes, environment information or actions. Each visual element is modified
by one or more dimension, where a dimension belongs to the set ("Color", "Number", "Size",
"Shape", "Other object physical attribute", "Weather Time", "Background", "Spatial relationship",
"Comparative relationship", "Other object relationship")
Your task is to list (visual element, dimension, phrase) triplet, where visual element is an element in
the response, dimension modifies the visual element and phrase is a span from the response that
shows how dimension modified the visual element.

You must follow the guidelines given below:

1. Do not repeat the same triplet.

2. The dimension must always belong to the set ("Color", "Number", "Size", "Shape", "Other
object physical attribute", "Weather Time", "Background", "Spatial relationship", "Comparative
relationship", "Other object relationship")

3. Output format Must be "Triplet List : []" where "[]" is a list of triplets

Instruction: Write a detailed description of the given image.

Original Response: The image features a unique scene of a green jetfighter airplane on display in
an open area of the city. The airplane has white and pink accents painted on its design, making it
visually striking. It is situated in the middle of the road, with tall buildings surrounding the area.

There are several people admiring and standing next to the green plane. Some of them can be
found on the right side of the image, while another person is seen closer to the plane on the left side.
In addition to the airplane, there is a truck parked nearby on the left side of the road.

Your Turn
Triplet List: []

Triplet List: [("jetfighter airplane", "color", "green jetfighter airplane"), ("airplane", "color", " white
and pink accent"), ("it", "spatial relationship", "in the middle of the road"), ("buildings", "size", "tall
buildings"),("people", "counting", "several people"),("some", "spatial relationship", " right side of
the image"),("people", "spatial relationship", "standing next to the green plan"), ("person", "spatial
relationship", " closer to the plane on the left side"), ("truck", "spatial relationship", " truck parked
nearby on the left side of the road")]

Figure 23: Example prompt for extracting the different possible dimensions of perturbing an
image caption (perception & reasoning). Note, we simulate the dimension extraction in this
example.
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Prompt:
You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The response will consist of one or more visual elements - objects, object
relationships, object attributes, environment information or actions. Each visual element is modified
by one or more dimension, where a dimension must belong to the set ("Color", "Number", "Size",
"Shape", "Other object physical attribute", "Weather Time", "Background", "Spatial relationship",
"Comparative relationship", "Other object relationship"). You will also be given a list of (visual
element, dimension, phrase) triplets, where visual element is an element in the response, dimension
modifies the visual element and phrase is a span from the response that shows how dimension
modified the visual element.

Your task is as follows:

1. For each triplet, modify the phrase in the "Original response" corresponding to each triplet along
the dimension mentioned in the triplet to make the "Original response" incorrect.

2. "New Response" must be linguistically very similar to "Original response" and must be incorrect.

3. You must ensure changes must be realistic given world knowledge.

4. You can minimally change other spans of the sentence to grammatical correctness and fluency.

5. The output format should be "Original Response: " "New Response

Instruction: Write a detailed description of the given image.

Original Response: The image features a unique scene of a green jetfighter airplane on display in
an open area of the city. The airplane has white and pink accents painted on its design, making it
visually striking. It is situated in the middle of the road, with tall buildings surrounding the area.

There are several people admiring and standing next to the green plane. Some of them can be
found on the right side of the image, while another person is seen closer to the plane on the left side.
In addition to the airplane, there is a truck parked nearby on the left side of the road.

Triplet List: [("jetfighter airplane", "color", "green jetfighter airplane"), ("airplane", "color", " white
and pink accent"), ("it", "spatial relationship", "in the middle of the road"), ("buildings", "size", "tall
buildings"),("people", "spatial relationship", "standing next to the green plan"), ("person", "spatial
relationship", " closer to the plane on the left side"), ("truck", "spatial relationship", " truck parked
nearby on the left side of the road")]
Your Turn
New Response:

Chosen Response: The image features a unique scene of a green jetfighter airplane on display in an
open area of the city. The airplane has white and pink accents painted on its design, making it
visually striking. It is situated in the middle of the road, with tall buildings surrounding the area.

There are several people admiring and standing next to the green plane. Some of them can be found
on the right side of the image, while another person is seen closer to the plane on the left side. In
addition to the airplane, there is a truck parked nearby on the left side of the road.

Hard-negative Rejected Response: The image features a unique scene of a yellow jetfighter airplane
on display in an open area of the city. The airplane has purple and orange accents painted on its
design, making it visually striking. It is situated on the side of the road, with short buildings
surrounding the area.

There are several people admiring and standing in the distance from the yellow plane. Some of them
can be found on the right side of the image, while another person is seen farther from the plane on
the left side. In addition to the airplane, there is a truck parked far from the right side of the road.

Figure 24: Example prompt for generating hard-negative rejected response for image
captioning category. We randomly select 50% to 75% triplets and feed them to the prompt
as shown above. Similar to colors and counting task categories, we maintain a list of most
perturbed dimensions (size 2), updated after every 10 hard-negative rejected response
generations. If a dimension is used more than once, its frequency is proportionately
increased. Note image is the same as the previous prompt (see Fig. 23).
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Instruction: Analyze the image in a comprehensive and detailed manner.

Chosen Response: The image presents an orange and white motor scooter with two passengers
riding down the middle of a wet street. The person in the front is driving the scooter, while the
person sitting behind them is holding a purple umbrella over both of them, providing protection
from rain.

There are potted plants on the sidewalk, adding some greenery to the scene. Cars can be seen
parked or driving in the background, sharing the road with the scooter. The scene depicts a typical
rainy day on an urban street with vehicles and pedestrians going about their daily routine.

Rejected Response:
The image presents a black and white motor scooter with two passengers riding down the middle
of a dry street. The person in the front is driving the scooter, while the person sitting behind them is
holding a red umbrella over both of them, providing protection from the sun.

There are potted plants on the sidewalk, adding some greenery to the scene. Cars can be seen
parked or driving in the background, sharing the road with the scooter. The scene depicts
a typical sunny day on a suburban street with vehicles and pedestrians going about their daily routine.

(a) Task requiring color, object, and background perception.

Figure 25: Qualitative example of the image captioning task category.
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B.2.10 General Reasoning

Prompt:

You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The instruction asks about the "reasoning" of objects, events, environments,
or themes. Your task is as follows:

1. Make the reasoning in the original response incorrect.

2. You can modify the objects, their attributes, related objected, or action and make the "original
response" about "reasoning" is incorrect.

3. "New Response" must be linguistically very similar to "Original response" and must be incorrect.

4. You must ensure changes must be realistic given world knowledge.

5. You can minimally change other spans of the sentence to grammatical correctness and fluency.

6. The output format should be "Original Response: " "New Response

Instruction: What might be a possible reason for the man taking a picture of the dirt cake?

Original Response: A possible reason for the man taking a picture of the dirt cake could
be that the cake is a unique and creative design, which features a construction scene on
top. He might want to capture the design and decoration before it is served or share the
photo with others to showcase the artistic and aesthetic aspects of the cake. Additionally, the
image could be used as a memory of a special occasion or event for which the cake has been prepared.

Your Turn
New Response:

Chosen Response: A possible reason for the man taking a picture of the dirt cake could be that the
cake is a unique and creative design, which features a construction scene on top. He might want to
capture the design and decoration before it is served or share the photo with others to showcase the
artistic and aesthetic aspects of the cake. Additionally, the image could be used as a memory of a
special occasion or event for which the cake has been prepared.

Hard-negative Rejected Response: A possible reason for the man taking a picture of the dirt cake
could be that the cake is a rare and delicate design featuring an underwater scene on top. He might
want to capture the design and the aquatic elements before it is served or share the photo with
others to highlight the intricate and sea-themed aspects of the cake. Additionally, the image could
be used as a memory of a beach-themed event or occasion for which the cake has been prepared.

Figure 26: Example prompt and generated hard-negative for VaPR sample of general
reasoning task category.
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B.2.11 Examples Showing Generation Steps for Task Categories with Penalty List

In this section, we use the color task as an example to illustrate generation steps involving
the penalty list (counting task will have a similar way of prompting). We use a penalty list
of size K=10, updated every 10 samples, with one retry generation attempt possible. Note,
until we have atleast K (here =10) distinct colors, the penalty list can be < K.
Stochastic Generation: Since generation is stochastic, the exact penalty list used for a given
sample may vary. Therefore, we simulate several cases:

• Case-1: Empty list When the penalty list is empty.
• Case-2 When the penalty list is non-empty, with sub-cases:

– Case-2a: First Attempt The generation succeeds on the first attempt without
conflicting with the penalty list.

– Case-2b: Second Attempt The generation initially conflicts but succeeds on a
retry attempt.

– Case-2c: Rerun Script If both attempts fail due to conflicts, the sample is put
back into the pool. This situation happens neglibible number of times and the
solution is to re-run the script. When re-running, it typically encounters a new
penalty list because:
‗ Some samples may have already been processed and help seed the penalty

list.
‗ The script randomizes sample order, ensuring that failed samples do not

repeatedly see the same penalty list.

For the purpose of illustration, we assume no generation failures by the LLM and K=10,
when penalty list is not empty. The ✓rejected response (new response) is actually a sample
from the dataset, and hence is kept as the correct response across scenarios. Now, we provide
two examples showcasing different cases:
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Prompt:
You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The instruction asks about the colors of objects, environments, or themes.
Your task is as follows:

1. Modify the "colors" of all objects, environments, or themes in the response to make "Original
Response" about "colors" incorrect.

2. You must only change the "colors", so that "New Response" is linguistically very similar to
"Original Response" and is incorrect.

3. The "New colors" you use to replace original colors must be unique and not be too descriptive.

4. The "New colors" must be realistically possible, considering the object they describe.

5. You cannot use colors in the penalty list.

6. You can minimally change other spans of the sentence to grammatical correctness and fluency.

7. List the "New colors" you replace within the response.

Penalty list:

Instruction: What colors are present on the subway train in the image?

Original Response: The subway train in the image is orange, blue, and silver.

Your Turn
New Response:
New Colors:
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Original Response: The subway train in the image is orange, blue, and silver.

Case-1: Empty list

Penalty List: []

New Response: The subway train in the image is pink, turquoise, and white. ✓
New Colors: [’pink’, ’turquoise’, ’white’] ✓

Case-2a: First Attempt

Penalty List: [’yellow’, ’black’, ’beige’, ’teal’, ’green’, ’burgundy’, ’sepia’, ’lavender’, ’purple’, ’orange’]

New Response: The subway train in the image is pink, turquoise, and white. ✓
New Colors: [’pink’, ’turquoise’, ’white’] ✓

New Response: The subway train in the image is pink, black, white. ✗
New Colors: [’pink’, ’black’, ’white’] ✗
Reason: Color black conflicts with penalty list, retry.

Case-2b: Second Attempt

Penalty List: [’yellow’, ’black’, ’beige’, ’teal’, ’green’, ’burgundy’, ’sepia’, ’lavender’, ’purple’, ’orange’]

New Response: The subway train in the image is pink, turquoise, and white. ✓
New Colors: [’pink’, ’turquoise’, ’white’] ✓

New Response: The subway train in the image is yellow, green, white. ✗
New Colors: [’yellow’, ’green’, ’white’] ✗
Reason: Colors yellow & green conflict with penalty list, put sample back to un-annotated pool and
rerun the script with un-annotated samples.

Case-2c: Rerun-script (penalty list updates

Penalty List: [’yellow’, ’black’, ’beige’, ’blue’, ’green’, ’red’, ’silver’, ’lavender’, ’purple’, ’orange’]

New Response: The subway train in the image is pink, turquoise, and white. ✓
New Colors: [’pink’, ’turquoise’, ’white’] ✓

New Response: The subway train in the image is red, turquoise, white. ✗
New Colors: [’red’, ’turquoise’, ’white’] ✗
Reason: Color red conflicts with penalty list, go to Case-2b.
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Prompt:
You are a ResponseEditorGPT who is given an instruction and a response generated by a
vision-language model. The instruction asks about the colors of objects, environments, or themes.
Your task is as follows:

1. Modify the "colors" of all objects, environments, or themes in the response to make "Original
Response" about "colors" incorrect.

2. You must only change the "colors", so that "New Response" is linguistically very similar to
"Original Response" and is incorrect.

3. The "New colors" you use to replace original colors must be unique and not be too descriptive.

4. The "New colors" must be realistically possible, considering the object they describe.

5. You cannot use colors in the penalty list.

6. You can minimally change other spans of the sentence to grammatical correctness and fluency.

7. List the "New colors" you replace within the response.

Penalty list:

Instruction: What color are the bags or packages containing the office supplies?

Original Response: The office supplies are contained in small pink packages or a pink envelope.

Your Turn
New Response:
New Colors:
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Original Response: The office supplies are contained in small pink packages or a pink envelope.

Case-1: Empty list

Penalty List: []

New Response: The office supplies are contained in small teal packages or a teal envelope. ✓
New Colors: [’teal’] ✓

Case-2a: First Attempt

Penalty List: [’purple’, ’yellow’, ’white’, ’orange’, ’green’, ’brown’, ’silver’, ’red’, ’pink’, ’maroon’]

New Response: The office supplies are contained in small teal packages or a teal envelope. ✓
New Colors: [’teal’] ✓

New Response: The office supplies are contained in small white packages or a white envelope. ✗
New Colors: [’white’] ✗
Reason: Color white conflicts with penalty list, retry.

Case-2b: Second Attempt

Penalty List: [’purple’, ’yellow’, ’white’, ’orange’, ’green’, ’brown’, ’silver’, ’red’, ’pink’, ’maroon’]

New Response: The office supplies are contained in small teal packages or a teal envelope. ✓
New Colors: [’teal’] ✓

New Response: The office supplies are contained in small orange packages or a transparent envelope.
✗
New Colors: [’orange’, ’transparent’] ✗
Reason: Color orange conflicts with penalty list, even when transparent is reasonable and has no
conflict. Put sample back to un-annotated pool and rerun the script with un-annotated samples.

Case-2c: Rerun-script (penalty list updates

Penalty List: [’yellow’, ’gold’, ’blue’, ’black’, ’brown’, ’silver’, ’red’, ’pink’, ’maroon’]

New Response: The office supplies are contained in small teal packages or a teal envelope. ✓
New Colors: [’teal’] ✓

New Response: The office supplies are contained in small silver packages or a silver envelope. ✗
New Colors: [’silver’] ✗
Reason: Color silver conflicts with penalty list, go to Case-2b.
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Table 4: Comparison of the VaPR Preference Dataset with Related Works: We compare VaPR to
HA-DPO (Zhao et al., 2023), POVID (Zhou et al., 2024a), RLAIF-V (Yu et al., 2024b), and CSR (Zhou et al.,
2024b) based on stylistic and length analysis, using linguistic similarity via word-level Levenshtein
distance (LD) and token-level sequence length differences, respectively. We report the percentage of
samples where chosen responses are longer (chosen > rejected) or shorter (rejected > chosen) for each
overall, short, and long response category, with corresponding token differences following the same
color notation. A lower LD stands for higher stylistic similarity, and lower token-level sequence length
differences stand for higher length similarity. Note CSR only had long responses.

Ours HA-DPO POVID RLAIF-V CSR
Overall Samples (%) (21, 79) (41, 59) (24, 76) (45, 55) (38, 62)
- Linguistic Similarity 6 49 30 62 97
- Avg. Token Length Difference 3 18 16 15 27
- Token Length Difference (10, 1) (15, 20) (27, 13) (17, 14) (23, 29)

Short Response Samples (%) (19, 81) (49, 51) (10, 90) (43, 57) -
- Linguistic Similarity 3 24 16 17 -
- Avg. Token Length Difference 4 16 10 10 -
- Token Length Difference (7, 1) (14, 18) (11, 10) (14, 7) -

Long Response Samples (%) (33, 67) (35, 65) (46, 54) (45, 55) (38, 62)
- Linguistic Similarity 19 65 53 76 97
- Avg. Token Length Difference 8 20 27 18 27
- Token Length Difference (17, 4) (19, 21) (32, 23) (19, 17) (23, 29)

B.3 Fine-grained length & Stylistic analysis

We analyze stylistic and length similarity between chosen and rejected responses, both
overall and split by response length (see Table 4). We define responses with <=100 tokens
as short and >100 tokens as long. Notably, even for long responses - where other methods
exhibit higher dissimilarity and greater length differences - VaPR maintains higher linguistic
similarity and lower token-level differences through its targeted response editing approach.
This highlights the hard-negative nature of VaPR rejections and the nuanced distinctions its
models are trained to optimize for.
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B.4 Human Study

To evaluate the dataset, we conducted a human annotation study with three annotators per
sample, including the authors of this paper. The setup and process are detailed as follows:

• Sample Selection:
– A total of 500 samples were randomly stratified across ten task categories.
– To prevent bias from task repetition, consecutive samples were ensured to come

from different task categories.
• Annotation Procedure:

– The study spanned two days, with 250 annotations collected per day.
– Each day consisted of four hours of annotation, divided into one-hour sessions,

with a 30-minute break after each session to mitigate annotator fatigue.
– Annotators were presented with the following elements for each sample:

‗ An image.
‗ An instruction.
‗ A chosen response.
‗ A rejected response.

– The task required a binary annotation to determine whether the rejected
response qualified as a hard-negative or was similar to the chosen response.

• Annotation Criteria:
– Annotators were instructed to evaluate the content of the responses exclusively.
– Factors such as response length or linguistic similarity were explicitly excluded,

as these were analyzed in prior studies (see §3.4) to avoid the confounding
factors of human subjectivity in length and linguistic preference.

• Quality Assurance:
– Results indicated that 97% of the samples aligned with the hard-negative

response criteria.
– Inter-annotator agreement (IAA), calculated using Fleiss’ kappa, was 86%,

signifying a high level of consistency among annotators.

These findings demonstrate that the dataset achieves high quality and reliability, despite
being synthetically generated.
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C Experimental Setup

C.1 Training Setup

This section outlines the training setup and hyperparameters, summarized in Table 5.
Consistent hyperparameters were applied across all VaPR models, including LLaVA-VaPR
(7B and 13B), Qwen2VL-VaPR (2B and 7B) and Qwen2.5VL-VaPR (3B and 7B). A shallow
hyperparameter search was conducted for the learning rate, with 1e-6 yielding optimal
results; 1e-5 caused model forgetting, while 1e-7 was insufficient for effective learning. An
effective batch size of 32 was selected for training efficiency. The models were trained for 5
epochs using two A100 GPUs.

Hyperparameter Value
Learning rate 1e-6
Learning rate Scheduler Cosine
Warmup Ratio 0.03 (LLaVA) & 0.1 (Qwen2VL & 2.5VL)
Batch size 32
Lora r 128
Lora alpha 256
DPO Loss sigmoid
DPO β 0.1
Max Sequence Length 2048

Table 5: Overview of training hyperparameters

C.2 Evaluation Benchmarks & Setup

C.2.1 Benchmarks

Open-ended & Descriptive Benchmarks : This includes LLaVAW (LLaVA-in-the-
wild) (Liu et al., 2023c), ConTextual (ConT) (Wadhawan et al., 2024), & MM-VET (MMV) (Yu
et al., 2023). LLaVAW assesses open-world visual reasoning and description. ConTextual
tests joint reasoning over embedded text and visual elements across diverse text-rich image
scenarios. MM-VET evaluates how well LVLMs perform on tasks integrating core-VL
capabilities like OCR, spatial reasoning, and math. We report the GPT-4 scores obtained
using the respective LLM-as-a-judge prompts of LLaVAW, ConTextual, and MM-VET.

Vision-Centric Benchmarks : This includes SEEDI (SEED Bench image split) (Li et al.,
2023a), CV (CV Bench) (Tong et al., 2024) and MMStar (MMS) (Chen et al., 2024a). SEED &
MMS comprehensively evaluate perception and reasoning. CV assesses counting, spatial
reasoning, and comparative reasoning (depth & distance). We report the overall accuracy
for each benchmark.

Academic & Math Reasoning: This category includes MathVista (MV) (Lu et al., 2023),
testmini subset, which evaluates mathematical reasoning across diverse problem types, and
MMMU (Yue et al., 2024), which tests college-level academic reasoning across domains such
as physical sciences, social sciences, finance, etc. For MMMU and MathVista we report the
overall accuracy.

Hallucination & Adversarial : This category includes POPE (Li et al., 2023d) and Nat-
uralBench (Li et al., 2024a). POPE assesses object hallucination by testing scenarios of
object presence and absence. NaturalBench measures visio-linguistic compositionality and
vision-blind behavior (bias to provide identical answers regardless of the image) of LVLMs
by pairing two questions with two similar images yielding different answers. For POPE, we
report the overall F1 score across three categories. For NaturalBench, we provide overall
accuracy, per-image accuracy across two questions, per-question accuracy across paired
images, and group accuracy, reflecting the model’s ability to answer all four image-question
combinations correctly.
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C.2.2 Evaluation Setup

Model Generation Settings : To ensure consistency and equitable comparison with prior
works (Liu et al., 2023b; Zhou et al., 2024a;b; Zhao et al., 2023; Wang et al., 2024b; Sun et al.,
2023; Yu et al., 2024b), we set the generation temperature to 0 and the number of beams to 1
for all base, prior work and VaPR models.

LLM-as-a-Judge : For benchmarks such as LLaVA-bench, ConTextual, and MM-Vet, which
require OpenAI APIs for evaluation, we utilize GPT-4 to align with prior methodologies.
It is important to note that GPT-4 versions evolve due to periodic updates. For instance,
prior works may have used GPT-4-0314, which was deprecated in June 20241. To ensure
consistency, we fix the version to GPT-4-0613, the current stable release, and calculate scores
for these benchmarks across all baseline and VaPR models. Further, MathVista utilizes
GPT-4-Turbo calls for answer extraction. To minimize our costs, we instead used GPT-4o,
which is a more performant OpenAI model that is significantly cheaper. This evaluation
incurred a total cost of approximately $800 (in addition to $300 for data generation using
GPT-4o).

Significance analysis For statistical significance analysis, we employ bootstrap resampling
(Koehn, 2004), which involves randomly sampling 50% of each benchmark’s data and
evaluating model performance over 1,000 iterations for comparing two models. We assess
each preference-tuned baseline and VaPR model against the base SFT model, reporting
statistical significance when the win rate is ≥ 95% (p = 0.05). Notably, VaPR models
demonstrate improvements over base SFT models, with most results achieving statistical
significance. In contrast, while showing improvements, prior works fail to meet the 95%
confidence threshold under the bootstrap test (except CSR-13B on the Pope dataset), as
shown in Table 2.

1GPT4 Depracation History
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Table 6: Performance comparison of LLaVA-v1.5-Instruct, Qwen2VL-Instruct, Qwen2.5VL-
Instruct, and DPO models finetuned on VaPR at three data scales 3K, 10K 30K, on ten
benchmarks. Higher scores indicate better performance across all benchmarks, with the
highest score for each benchmark highlighted in bold. PFT size refers to the preference for
fine-tuning dataset size, where "-" represents no additional dataset. Each model is trained
under identical hyperparameter settings.

Row Method PFT LLaVAW ConT MMV SEEDI CV MV MMMU MMS POPE NB

1 LLaVA-1.5-7B - 64.8 16.8 30.9 66.2 62.1 30.1 35.4 32.6 85.9 12.7
2 + VaPR DPO 3K 69.9 19.2 31.4 66.1 61.9 30.1 35.4 32.9 85.1 13.6
3 + VaPR DPO 10K 74.4 20.2 32.3 66.4 62.3 30.4 35.6 34.0 85.2 14.0
4 + VaPR DPO 30K 76.2 20.6 32.9 66.7 62.9 30.8 35.7 34.7 85.4 14.5

5 LLaVA-1.5-13B 30.7 72.3 18.6 36.7 68.2 62.5 30.7 36.1 33.8 86.0 14.9
6 + VaPR DPO 3K 75.6 19.4 36.3 68.3 63.5 31.1 35.2 34.9 86.0 15.8
7 + VaPR DPO 10K 78.9 20.3 37.0 68.4 64.2 31.8 35.6 35.3 86.2 17.4
8 + VaPR DPO 30K 80.5 21.2 37.3 68.7 64.6 32.3 35.8 35.6 86.3 18.2

9 Qwen2VL-2B - 83.2 27.7 53.3 73.6 66.5 51.0 38.7 43.4 86.5 24.3
10 + VaPR DPO 3K 83.8 31.6 52.6 73.6 67.5 50.2 38.7 43.4 87.6 24.9
11 + VaPR DPO 10K 84.3 33.2 53.4 73.8 68.3 50.5 39.0 43.5 88.2 25.2
12 + VaPR DPO 30K 88.1 34.8 54.1 74.0 69.0 50.9 39.2 43.7 88.3 25.7

13 Qwen2VL-7B - 92.5 39.7 62.1 76.4 75.7 57.5 50.7 56.7 87.3 30.8
14 + VaPR DPO 3K 92.8 41.9 63.0 76.4 75.8 57.2 50.6 57.1 87.0 31.7
15 + VaPR DPO 10K 93.6 42.3 64.4 76.5 76.0 57.4 50.5 57.5 87.2 32.0
16 + VaPR DPO 30K 96.2 43.9 65.4 76.8 76.3 58.2 50.0 57.8 87.3 32.5

17 Qwen2.5VL-3B - 98.1 37.2 67.3 75.0 71.5 52.5 45.7 54.7 86.3 25.4
18 + VaPR DPO 3K 95.1 38.0 66.8 75.0 71.6 52.5 45.3 55.0 86.0 25.5
19 + VaPR DPO 10K 96.5 39.3 66.9 75.3 72.0 52.7 45.1 55.6 86.1 25.7
20 + VaPR DPO 30K 97.1 40.3 67.4 75.5 72.7 53.4 44.9 56.1 86.4 26.3

21 Qwen2.5VL-7B - 101.4 53.3 71.0 77.7 80.1 58.6 50.9 61.9 86.3 32.0
22 + VaPR DPO 3K 100.6 53.1 71.2 77.6 80.5 58.6 50.9 62.0 86.4 32.0
23 + VaPR DPO 10K 100.8 53.2 71.8 77.7 80.7 58.8 50.8 62.2 86.7 32.2
24 + VaPR DPO 30K 101.5 53.4 72.4 77.8 81.1 59.8 50.6 62.5 86.9 32.8

D Extended Results

D.1 Data Scaling
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D.2 Benchmark detailed results

We provide the breakdown of model performance across different task categories for two
comprehensive dataset MMStar and CV Bench.

Table 7: MMStar: Performance is compared across LLaVA-v1.5-Instruct, Qwen2VL-Instruct,
Qwen2.5VL-Instruct, and DPO models - preference finetuned on VaPR (30K subset created
with GPT-4o). Higher scores indicate better performance, with the top result for each
benchmark shown in bold. All models share the same hyperparameters. Abbreviations: CP
= Coarse Perception, FGP = Fine-grained Perception, IR = Instance Reasoning, LR = Logical
Reasoning, S&T = Science & Technology.

Model Final Score CP FGP IR LR S&T Math
LLaVA-v1.5-Instruct-7B 32.6 58.8 26.8 40.0 26.0 17.2 26.8
VaPR-LLaVA-7B 34.7 62.0 27.2 44.0 27.2 18.0 30.0
LLaVA-v1.5-Instruct-13B 33.8 58.0 27.2 42.4 26.4 21.2 27.6
VaPR-LLaVA-13B 35.6 60.8 28.4 47.6 28.0 23.6 25.2
Qwen2VL-Instruct-2B 43.4 52.4 41.6 51.6 43.2 31.2 40.4
VaPR-Qwen2VL-2B 43.7 53.6 45.6 50.0 42.0 31.6 39.6
Qwen2VL-Instruct-7B 56.7 67.2 50.4 62.8 56.4 46.4 57.2
VaPR-Qwen2VL-7B 57.8 67.6 51.2 63.2 57.6 49.2 58.0
Qwen2.5VL-Instruct-3B 54.7 66.4 46.4 60.8 54.8 39.6 60.4
VaPR-Qwen2.5VL-3B 56.1 68.4 47.2 63.6 55.2 39.6 62.4
Qwen2.5VL-Instruct-7B 61.9 72.0 54.0 70.8 63.2 44.8 66.4
VaPR-Qwen2.5VL-7B 62.5 71.6 55.2 70.0 64.4 45.6 68.4

Table 8: CV Bench: Performance is compared across LLaVA-v1.5-Instruct, Qwen2VL-
Instruct, Qwen2.5VL-Instruct, and DPO models - preference finetuned on VaPR (30K subset
created with GPT-4o). Higher scores indicate better performance, with the top result for
each benchmark shown in bold. All models share the same hyperparameters. Abbreviations:
Overall = Overall Accuracy, Count = Count Accuracy, Spatial = Spatial Relation Accuracy,
Depth = Depth (Order) Accuracy, Distance = Relative Distance Accuracy. Depth: Determine
which of the two distinct objects is closer to the camera, and Relative Distance: Determine
which of the two distinct objects is closer to the anchor object.

Model Overall Count Spatial Depth Distance
LLaVA-v1.5-Instruct-7B 62.2 54.3 71.2 70.0 56.3
VaPR-LLaVA-7B 62.9 57.2 70.8 71.7 54.3
LLaVA-v1.5-Instruct-13B 62.5 58.8 68.2 69.7 55.8
VaPR-LLaVA-13B 64.6 58.9 69.9 72.7 59.7
Qwen2VL-Instruct-2B 66.5 66.6 67.5 65.8 67.5
VaPR-Qwen2VL-2B 69.0 68.2 68.3 68.5 72.2
Qwen2VL-Instruct-7B 75.7 67.0 79.5 85.5 72.8
VaPR-Qwen2VL-7B 76.3 66.6 81.9 82.7 76.3
Qwen2.5VL-Instruct-3B 71.5 68.5 74.8 78.2 66.3
VaPR-Qwen2.5VL-3B 72.7 68.9 75.1 79.3 69.2
Qwen2.5VL-Instruct-7B 80.1 68.5 90.0 86.7 78.5
VaPR-Qwen2.5VL-7B 81.1 69.2 90.6 86.8 81.2

From Tables 2,7 & 8, we observe that VaPR models consistently improve on perception tasks
(particularly fine-grained perception), and reasoning tasks, such as spatial relationships (even
complex ones like distance and depth) and counting. These gains align with their improved
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performance on SeedBench and NaturalBench, both of which emphasize visio-linguistic
compositionality, perception, and reasoning.
Notably, despite not being explicitly trained on OCR, textual reasoning, or math tasks, VaPR
models achieve strong performance in these areas. We attribute this to their enhanced
fine-grained perception, spatial reasoning, and counting capabilities, which demonstrates
that improvements in these areas support interpretation of embedded text (consistent with
prior work (Fu et al., 2024)) and geometric figures. This trend is further corroborated by gains
on ConTextual and MathVista benchmarks. Interestingly, VaPR-Qwen2VL-2B achieves the
largest gains on Pope, which can be explained by pronounced improvements in fine-grained
perception (as evident in MMStar). On the other hand, it shows slight degradation in math,
logical reasoning tasks, which can explain why it does not improve on MathVista, where the
other models do (see Table 2).
Lastly, prior work (Ivison et al., 2024a) indicates that preference optimization primarily
enhances truthfulness and alignment, rather than factuality, which aligns with our observed
improvements in perception and reasoning but not in purely knowledge-based tasks. We
hypothesize that limited gains in MMMU (see Table 2) can be attributed to the alignment
tax VaPR models possibly pay in knowledge based tasks.
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D.3 Preference Dataset Comparison

D.3.1 Training Setup

We compare VaPR with two alternative preference data generation techniques: (1) POVID,
which uses GPT-4V to generate rejected responses given the image, instruction, and ground
truth response, and (2) SIMA, which follows a self-preference generation paradigm by
synthesizing two responses - one via greedy decoding and another via sampling (temperature
= 1) - and using the same VLM as a critic to select the preferred response. For SIMA, we
apply the generation method to the 10K subset of VaPR dataset; for POVID, we use the
publicly released data (17K). For VaPR we select the 10K subset for training to ensure a
fair comparison. We preference finetune LLaVA-v1.5 and Qwen2VL models on the above
datasets. To ensure consistency, all models are trained for 50K steps, under identical
hyperparameter settings. This setup enables a balanced and computationally efficient
comparison, allowing us to evaluate all methods under a fixed training budget without an
excessive number of experiments.

Table 9: Performance comparison of LLaVA-v1.5, Qwen2VL-Instruct, DPO models finetuned
on VaPR, SIMA & POVID across 2B, 7B, and 13B parameter sizes on ten benchmarks. Higher
scores indicate better performance across all benchmarks, with the highest score for each
benchmark highlighted in bold. PFT size refers to the preference for fine-tuning dataset
size, where "-" represents no additional dataset.

Row Method PFT LLaVAW ConT MMV SEEDI CV MV MMMU MMS POPE NB

1 LLaVA-1.5-7B - 64.8 16.8 30.9 66.2 62.1 30.1 35.4 32.6 85.9 12.7
2 + VaPR-SIMA + DPO 10K 68.5 17.2 31.6 66.0 60.9 29.4 35.2 32.7 85.2 12.9
3 + Povid DPO 17K 67.2 18.0 30.9 66.1 61.6 30.1 35.4 33.3 85.9 13.2
4 + VaPR DPO 10K 74.4 20.2 32.3 66.4 62.3 30.4 35.6 34.0 85.2 14.0

5 LLaVA-1.5-13B - 72.3 18.6 36.7 68.2 62.5 30.7 36.1 33.8 86.0 14.9
6 + VaPR-SIMA + DPO 10K 73.3 18.2 35.5 67.7 61.0 31.2 34.5 33.6 86.0 13.1
7 + Povid DPO 17K 74.5 19.8 34.6 68.1 63.9 31.5 34.9 34.1 86.2 15.3
8 + VaPR DPO 10K 78.9 20.3 37.0 68.4 64.2 31.8 35.6 35.3 86.2 17.4

9 Qwen2VL-2B - 83.2 27.7 53.3 73.6 66.5 51.0 38.7 43.4 86.5 24.3
10 + VaPR-SIMA + DPO 10K 81.6 29.2 49.1 73.4 66.7 50.0 38.8 43.1 86.8 23.4
11 + Povid DPO 17K 82.7 30.7 49.3 73.7 67.1 50.2 38.9 43.2 87.1 23.6
12 + VaPR DPO 10K 84.3 33.2 53.4 73.8 68.3 50.5 39.0 43.5 88.2 25.2

13 Qwen2VL-7B - 92.5 39.7 62.1 76.4 75.7 57.5 50.7 56.7 87.3 30.8
14 + VaPR-SIMA + DPO 10K 90.1 38.5 62.9 76.1 75.4 56.5 50.0 57.0 87.2 30.5
15 + Povid DPO 17K 90.9 37.4 63.5 76.2 75.8 57.0 50.4 57.2 87.6 31.1
16 + VaPR DPO 10K 93.6 42.3 64.4 76.5 76.0 57.4 50.5 57.5 87.2 32.0

D.3.2 Analysis

From Table 9, we observe that VaPR models consistently outperform both SIMA and POVID
across model families. SIMA yields minimal to no improvements over base models and
often degrades performance, especially for Qwen2VL. POVID achieves moderate gains for
LLaVA but underperforms on Qwen2VL. On average, VaPR outperforms SIMA by 5-6% on
LLaVA and 3-4% on Qwen2VL, and POVID by 4-5% and 2-3%, respectively. To understand
these differences, we analyze DPO optimization using LLaVA-1.5-7B as a representative
model.
The DPO loss can be re-written as:

LDPO = − log σ (α [log πθ(yw | x)− log πθ(yl | x)− (log πref(yw | x)− log πref(yl | x))]) ,
(2)

where πθ is the learned policy, πref is the fixed reference model, and α is the temperature
scaling factor. Let:

∆θ = log πθ(yw | x)− log πθ(yl | x),
∆ref = log πref(yw | x)− log πref(yl | x).
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Figure 27: Comparison of preference datasets. (a) Average reference model log-probabilities for
chosen vs. rejected responses across VaPR, SIMA, and POVID - lower values indicate lower reference
likelihood. (b) Reward accuracy trends over training steps show that SIMA improves gradually while
POVID saturates quickly. Repeating the figure for ease of reference

the loss simplifies to: LDPO = − log σ (α(∆θ − ∆ref)) .

For POVID, we observe that ∆ref is already higher than VaPR while having a similar log
probability of chosen response under the reference model (see Fig. 27a), indicating that
POVID rejected responses are substantially less likely under the reference model as compared
VaPR’s. This can be attributed to the higher linguistic and stylistic differences in POVID
preference pairs as compared to VaPR (see Table 1). From Fig. 27b, we observe that the
POVID model rapidly attains a reward accuracy of 1, suggesting that the model may be
overfitting based on preference signals derived from length and stylistic differences instead
of content differences alone. In contrast, VaPR achieves its highest reward accuracy more
gradually and does not converge to 1, indicating reduced overfitting due to exposure to
more challenging preference pairs.
In contrast, for SIMA, we observe ∆ref ≈ 0 on average (see Fig. 27a), indicating that chosen
and rejected responses are often nearly identical. Manual inspection confirms this, with
∼ 20% of pairs being exact duplicates and many others highly similar. When ∆ref ≈ 0, the
DPO loss is driven entirely by ∆θ , removing the reference model’s regularizing influence.
This causes the optimizer to treat weak or noisy preference signals as informative, leading to
overconfident updates based on superficial differences. Consequently, the model struggles to
distinguish between responses - reflected in 50% reward accuracy (see Fig. 27b), potentially
learning undesirable behaviors that harm downstream performance. Other self-preference
methods, such as RLAIF-V and CSR, which employ multi-step generation and scoring
procedures and generate preference pairs with greater stylistic and linguistic variation (see
Table 1), can mitigate the above issue, but similar to POVID, they may also inadvertently
exploit the stylistic and length biases.
On the other hand, VaPR explicitly controls for stylistic and length similarity when construct-
ing preference pairs, ensuring that DPO learns from content-level differences. However, in
low-resource settings where high-quality SFT data may be limited (as required by VaPR),
our method can complement self-preference generation approaches. For instance, one could
leverage high-confidence responses from methods like CSR or RLAIF-V as chosen responses,
and apply the VaPR pipeline to generate targeted hard negative - creating high-quality
preference pairs in an unsupervised manner. We view this as a promising direction for
future work and invite the community to explore such hybrid strategies.
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Table 10: Performance is compared across LLaVA-v1.5-Instruct, Qwen2VL-Instruct,
Qwen2.5VL-Instruct, and DPO models, all preference finetuned on VaPR (10K subset
created with GPT-4o) or VaPR-OS (8K samples generated by the Open-source model Qwen3-
32b). Aside from the model used for generation, the framework and prompts are identical.
All models share the same hyperparameters. Higher scores indicate better performance,
with the top result for each benchmark shown in bold. In case two models get the top
scores, both are bolded, otherwise top score is bolded and the second highest score(s) is
underlined.

Row Method LLaVAW ConT MMV SEEDI CV MV MMMU MMS POPE NB

1 LLaVA-1.5-7B-Instruct 64.8 16.8 30.9 66.2 62.1 30.1 35.4 32.6 85.9 12.7
2 + VaPR-OS DPO 73.3 18.7 32.1 66.3 62.3 30.2 35.6 33.7 83.6 13.9
3 + VaPR DPO 74.4 20.2 32.3 66.4 62.3 30.4 35.6 34.0 85.2 14.0

4 Qwen2VL-2B-Instruct 83.2 27.7 53.3 73.6 66.5 51.0 38.7 43.4 86.5 24.3
5 + VaPR-OS DPO 84.1 32.8 53.3 73.7 67.9 50.2 38.9 43.5 88.0 25.2
6 + VaPR DPO 84.3 33.2 53.4 73.8 68.3 50.5 39.0 43.5 88.2 25.2

7 Qwen2.5VL-3B-Instruct 98.1 37.2 67.3 75.0 71.5 52.5 45.7 54.7 86.3 25.4
8 + VaPR-OS DPO 95.7 39.0 65.4 75.3 72.0 52.4 45.5 55.4 86.2 25.7
9 + VaPR DPO 96.5 39.3 66.9 75.3 72.0 52.7 45.1 55.6 86.1 25.7

D.4 Open-Source Editor data results

We preference finetuned LLaVA-v1.5-Instruct-7B, Qwen2VL-Instruct-2B and Qwen2.5-VL-
Instruct-3B on VaPR-OS (VaPR Open source), where the difference between the models are
two aspects: (a) is missing reasoning and captioning samples (1K each), reason shared below
(b) uses an open-weight model for generating responses. Key findings include:

Dataset Quality: VaPR-OS rejected responses exhibit similar hard-negative properties to
those generated by GPT-4o, with an average token length difference of 6 (compared to 3 in
VaPR) and a Levenshtein distance of 10 (vs. 6 in VaPR).

Model Performance: From Table 10, we observe that models trained on the open-weight
dataset achieve 99% of the performance of those generated with GPT-4o, with both
consistently outperforming the baseline on most benchmarks. This is expected, as VaPR-OS
samples overlap with VaPR and exhibit similar linguistic properties and average token
length. These results highlight that the VaPR pipeline generalizes effectively and is not
limited to closed-weight models.
Interestingly, we find that the contribution of captioning and abstract reasoning tasks to
preference learning is limited, which is consistent with prior work (Lai et al., 2024) suggesting
that complex tasks like reasoning may benefit stepwise decomposition of preference datasets.
In our case, captioning and abstract reasoning tasks (e.g. Considering the presence of
two clocks on the building, what purpose might this architectural design serve?), can be
decomposed into simpler components like fine-grained perception (e.g., attribute recognition)
and spatial reasoning (e.g., object location). Training models using these atomic tasks as
step-wise preference samples may collectively support learning for more complex tasks, a
direction we plan to investigate further.

Limitations and Future Directions for OS editors: We observed that data generated using
Qwen3 sometimes fails to consistently perturb dependent spans (e.g., object perturbation: “...
bathroom . . . has a large bathtub . . . ” → “... kitchen . . . has a large bathtub . . . ”, whereas
GPT-4o correctly changes it to “... kitchen . . . has a large oven . . . ”), with this issue being
prominent in captioning and abstract reasoning tasks. This could potentially add noise to
the dataset and thus we omit these samples in our analysis. To mitigate this issue, we plan to
experiment with more open-source models and generation of step-wise preference datasets.
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