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ABSTRACT 

 

Addresses the problem of stochastic longitudinal oscillations of a 

viscoelastic rope with moving boundaries. The main focus is on the 

application of artificial intelligence (AI), neural networks, and machine 

learning (ML) methods for analyzing resonance phenomena, predicting 

optimal system parameters, and preventing resonance. A method for 

constructing solutions to integro-differential equations is proposed, 

which is extended to a broader class of problems with moving 

boundaries.  The problem of stochastic longitudinal vibrations of a 

viscoelastic rope with moving boundaries is formulated taking into 

account the influence of damping forces in the form of a system of 

stochastic integro-differential equations, which is reduced to the study 

of a system of stochastic differential equations with random initial 

conditions.  The use of deep neural networks (DNNs), Monte Carlo 

methods, and adaptive control significantly improves the accuracy of 

predictions and the efficiency of system control. The neural network is 

trained on data on the behavior of the system at different frequencies 

and parameters. In this case, the network predicts resonant frequencies 

and suggests optimal parameters. The results of the AI are tested on a 

mathematical model. Calculations confirmed that the parameters 

proposed by artificial intelligence do prevent resonance.  

 

 

1    INTRODUCTION 
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Systems, the boundaries of which are moving, are widespread in technology (ropes of 

hoisting installations [1–5, 7, 8], flexible transmission links [6], etc.). The presence of 

moving boundaries causes significant difficulties in describing such systems. Exact 

solution methods are limited by the wave equation and relatively simple boundary 

conditions [9]. Of the approximate methods, the most effective is the method for 

constructing solutions of integro–differential equations described in [7, 11, 21, 22], as 

well as the Kantorovich – Galerkin method [8–10, 14]. The method is extended to a 

wider class of model boundary value problems that take into account bending 

rigidity, resistance of the external environment and the rigidity of the base of the 

oscillating object.   

The solution is implemented in dimensionless variables using the TB–Analysis 

software package developed in the Matlab, Python environment (libraries: 

TensorFlow, PyTorch, Scikit–learn), which allows using the obtained results to 

calculate a wide range of technical objects. The TB–Analysis software package 

contains a module – resonance phenomena management. The "Resonance phenomena 

management" command is designed to determine the resonance region and identify 

resonance prevention conditions imposed on the model parameters using AI. 

In addition, it is recognized that deterministic modeling of systems cannot be 

adequate for some types of problems, so it is necessary to move on to probabilistic–

statistical, where random variables and stochastic oscillations are present.  

The study of viscoelasticity includes the analysis of the stochastic stability of 

stochastic viscoelastic systems, their reliability. Using artificial intelligence, the 

resonant frequencies of the system, as well as the conditions under which resonance 

can be prevented, were determined. The optimization of the system parameters under 

which the probability of resonance is minimal was carried out. Data was collected – 

amplitude–frequency characteristics of the system. Key parameters that affect 

resonance were determined. A neural network was trained on the data. In this case, 

the network predicts resonant frequencies and suggests optimal parameters.  

Nonlinear regression methods were used to determine the resonance conditions. In 

case of insufficient data, the data synthesis method – the Monte Carlo method – was 

used. ML methods were used to analyze which system parameters have the greatest 

influence on resonance. To determine the resonance region, frequency analysis was 

carried out using the fast Fourier transform (FFT) method. Clustering algorithms (k–

means) were used to group frequencies at which the system is most vulnerable. 

Graphs of amplitude–frequency characteristics were constructed to clearly identify 

resonant areas. To prevent resonance, optimization of parameters was carried out 
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using the gradient descent method to adjust system parameters, such as increasing 

damping and changing rigidity. Adaptive control methods and neural networks were 

used for dynamic adjustment of the system in real time.  

The results of the AI work are tested on a mathematical model. Calculations 

confirmed that the proposed parameters really prevent resonance.  

This paper proposes an approach based on the application of artificial intelligence 

(AI) and machine learning (ML) methods, which not only improves the accuracy of 

calculations but also significantly reduces the time required to find optimal system 

parameters. 

 

2    MATHEMATICAL STATEMENT OF THE PROBLEM 

 

The differential equation of motion of mechanical objects of variable length has the 

form 

   ( , ) [ ( , )] ( , ).U L U       + =                                       (1) 

We write the boundary conditions in the following form 

( )( ), ( );ji j jiY U F    =
                                            (2) 

1, ; 1,2.i m j= =                                   

Here ( , )U   – offset function; L – linear homogeneous differential operator with 

respect to   order 2m ( 2m   – positive integer); 
jiY − linear homogeneous 

differential operators with respect to  ; ( , ), ( )jiF     – specified class functions С 

and 2C  respectively; ( )j  – boundary motion law;   – small parameter ( / ,V a =  

V −  border speed, a  – vibration propagation speed).  

The movement of the boundaries according to the law ( )j   corresponds to the 

slow movement mode.  

When analyzing the resonance properties, the initial conditions are taken in the form 

( ,0) ( ,0) 0.U U = =  

 

Omitting some mathematical calculations and applying the method described in 

works [21, 22], we obtain the following expression for the full amplitude of 

oscillations corresponding to the n-th dynamic mode: 

2 2

2 2 2

0 1 1

0 0

1
( ) ( ) ( ) ( )cos ( ) ( )sin ( ) ,

4
n n n n n n nA A a F d F d

 

        
     

=  +     
     
   (3) 

where  
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 
=


1( ) ( ) ( );n n nw W   = − 2( ) ( ) ( ).n n nw W   = +                                         

As an example, we consider stochastic longitudinal oscillations of a viscoelastic rope 

with moving boundaries, taking into account damping forces. 

 

3    STOCHASTIC OSCILLATIONS OF THE ROPE  

WITH MOVING BOUNDARIES 

 

The differential equation governing the longitudinal oscillations of a rope, 

incorporating viscoelasticity based on the Voigt hypothesis, is expressed as [7, 10, 

20]: 

2

0

( , ) 2 ( , ) ( , ) ( ) ( , ) ( , ) ( , ).

t

tt t xx xx xxtU x t U x t a U x t K t U x d U x t f x t    
 

+ − − − + = 
 

    (4) 

Boundary conditions are given by:  

0 0 0( , ) 0; ( , ) 0.U v t t U v t l t= + =                                       (5) 

Initial conditions are specified as: 

1( ,0) ( ); ( ,0) 0.tU x U x U x= =                                         (6) 

To simplify the problem, new variables are introduced to fix the boundaries: 

0 0 0( ) / ; / ;x v t l at l = − =    ( , ) ( , ).U x t V  =  

The function ( , )F   can be represented as 

( )
1

( , ) ( )sin , .n n n

n

F F n      


=

= =                                 (7) 

The initial conditions and external load are treated as random, modeled as a sum of 

sinusoids with random amplitudes, denoted as ( )V   and ( , )F   , respectively. As a 

result, the oscillations become stochastic, and equations (4) form a system of random 

integro-differential equations: 

2 2 2

1

1

2

( ) 2 ( ) (1 ) ( )

1
( ( )) ( ) ( );

n n n n n

n n n

V k V v V

d K d V d F
v

 




    



       

 
+ + + − + 
 

 
+ − − − + = 

 


                                      (8) 

( )
1

1

0

(0) 2 ( )sin ; (0) 0.n n nV V d V


   = =                                     (9) 

Here    2 20 0
0 0 1

0

; ; ; ; ; ( , ) ( , ).
v l

v d k l k d F d f x t
a v d


     = = = = = =  
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To determine the statistical characteristics (mathematical expectation, variance, and 

covariance) of the stochastic linear longitudinal oscillations of a viscoelastic rope, it 

is necessary to derive statistical estimates for the solution of the system of random 

integro-differential equations (8). For this purpose, the relaxation kernel ( )K z  can be 

expressed in an exponential form with a random component: 

1

( , ) ( , ) ,j

N
z

jb
j

K z K z b c e





−

=
=

= =                                      (10) 

where 
jc R+ , 

j  – is a possible value of a positive random variable .jb  

Denote the dependence of ( , )V    and ( )nV   on the random vector b  as ( , , )V b   

and ( , )nV b , respectively. By changing the variable 

1
1

( , ) ( ) , )jd

nj nu b e V b d
v

 



    
−  

= − + 
 

                                       (11) 

the system of random integro-differential equations (8) is converted into a system of 

random differential equations of the form: 

2

1

2 2 2

1

( , ) 2 ( , )

(1 ) ( , ) ( , ) ( ).j

n n n

N
b d

n n n j nj n

j

V b k V b

v V b d c e u b F

 




  



    
=

 
+ + + 
 

+ − + =
                   (12) 

The initial conditions are then expressed as:  

( )
1

1

0

(0, ) 2 ( )sin ; (0, ) 0; (0, ) 0.n n n njV b V d V b u b


   = = =
                 

 (13) 

The analysis of system (12)–(13) can be performed using the statistical numerical 

Monte Carlo method [17–19], implemented within the «TB–Analysis» software 

package [23]. 

 

4  APPLICATION OF ARTIFICIAL INTELLIGENCE AND MACHINE 

LEARNING 

4.1 Use of Deep Neural Networks (DNNs) 

Deep neural networks (DNNs) are used to predict resonant frequencies and 

oscillation amplitudes. The network architecture includes several hidden layers with 

ReLU (Rectified Linear Unit) activation functions: 

ReLU( ) max(0, ).x x=  
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The input data for the network includes system parameters: 

• Rope stiffness k, 

• Damping c, 

• Boundary velocity v , 

• External disturbances ( , ).f x t  

The output data are the resonant frequencies n  and amplitudes nA . The network is 

trained using the backpropagation method and the Adam optimizer: 

,new old

L
  




= − 


 

where θ are the network parameters, η is the learning rate, and L is the loss function. 

 

4.2 Monte Carlo Method for Estimating Stochastic Parameters 

To account for random disturbances ( ), ,x t  the Monte Carlo method is used. 

Random variables are modeled using a normal distribution: 

( ) 2 ,( , ), 0x t N   

where   is the standard deviation. The Monte Carlo method allows estimating the 

expected mathematical expectation, variance and covariance of the oscillation 

amplitude: 

( ) ( ) ( )
1

( , ) ( ) sin ;n n

n

M V M V    


=

=  

( ) ( ) ( ) ( ),

, 1

( , ) sin sin ;n k n k

n k

D V D      


=

=   

( ) ( ) ( ) ( ),

, 1

( , , , ) , sin sin .n k n k

n k

C V C         


=

=   

4.3  Adaptive Control Using AI 

For real-time dynamic adjustment of system parameters, adaptive control based on 

neural networks is used. The control signal u(t) is generated as: 

( ) ( ) ( )( )NN , ,uu t t t= p y  
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where p(t) are the current system parameters, and y(t) are the measured values of 

amplitude and oscillation frequency. The neural network NNu  is trained to minimize 

the loss function: 

( )( )
1

2

.
T

control n allow

t

L A t A
=

= −  

 

4.4 Example of Using Neural Networks for Resonance Prediction 

Consider an example of using a neural network to predict resonant frequencies. Let 

the initial parameters of the system be given in dimensionless form: 

• Rope stiffness: 0 100,k =  

• Damping: 0.05с = , 

• Boundary velocity: 0 0.1v = . 

The neural network predicts a resonant frequency 5 n =  and an amplitude 0.2nA = . 

The allowable amplitude is 0.1.allowA =  

1. Calculate the loss function: 

( )
2

0.2 0.1 0.01.resL = − =  

2. Calculate the gradient: 

( ) .2 0.2 0.1 n
res

A
L


 = −


p

p
 

3. Update the parameters: 

.new old resL= − 
p

p p  

After several iterations, the system parameters are optimized, and the oscillation 

amplitude is reduced to the allowable level. 

 

4.5  Use of Recurrent Neural Networks (RNNs) 

For analyzing time series data, such as oscillation amplitude and frequency, recurrent 

neural networks (RNNs) are used. The RNN architecture includes hidden layers with 

long short-term memory (LSTM) units, which allow accounting for temporal 

dependencies in the data. The loss function for RNNs is: ( )
2

1

,
T

RNN t t

t

L y y
=

= −  

where ty  are the true values, and t
y  are the predicted values. 
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4.6  Clustering Methods for Analyzing Resonance Regions 

To group frequencies at which the system is most vulnerable, clustering methods 

such as k-means are used. The k-means algorithm minimizes the loss function: 

2

1

,
i

k

cluster i

i x C

L x 
= 

= −  

where iC  are the clusters, and i  are the cluster centers. 

 

4.7.  Use of Reinforcement Learning Methods 

For real-time dynamic adjustment of system parameters, reinforcement learning (RL) 

methods are used. The agent is trained to maximize the reward: 
1

,
T

t

t

R r
=

=  

where tr  is the reward at step t. The reward is defined as: ( )( )
2

.t n allowr A t A= − −  

 

5    SOFTWARE PACKAGE TB–ANALYSIS  

 

The developed software package "TB–Analysis" is designed to solve a certain class 

of one–dimensional boundary value problems with moving boundaries, as well as for 

mathematical modeling and analysis of the resonant properties of objects whose 

states are described by these boundary value problems. The software package also 

allows for the selection of model parameters to prevent resonance phenomena using 

artificial intelligence (AI). The software was developed in the Matlab, Python 

environment (libraries: TensorFlow, PyTorch, Scikit–learn) environment as a 

standalone application. The results of Chapter 4 have been incorporated into the 

software package. 

The user interface of the "TB–Analysis" software package consists of four windows, 

one of which is the startup window. This window appears when the program is 

launched, and the other windows can be accessed from the startup window. 

Additionally, these windows can be accessed from one another via a menu. The 

startup window of "TB–Analysis" contains three active buttons with schematic 

illustrations, which launch the following main modules of the software package: 

1.Investigation of solutions to model boundary value problems; 

2.Analysis of resonant properties of models; 
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3. Management of resonance phenomena. 

Next to the buttons that launch the modules, the startup window provides 

explanations of the content and functionality of each module.  

The "Management of Resonance Phenomena" command is designed to determine the 

resonance region and identify conditions for preventing resonance by imposing 

constraints on model parameters using AI. 

Computations are performed using three methods for solving boundary value 

problems: an analytical method of variable substitution in a system of functional–

difference equations [16], an asymptotic method for constructing solutions to 

homogeneous integro–differential equations and systems of ordinary differential 

equations describing the motion of objects with variable length [21, 22] and an 

approximate method for constructing solutions to integro–differential equations of 

motion for mechanical objects with moving boundaries, as described in this work. 

The intelligent selection of the method depends on the analyzed model (class of 

integro–differential equation, initial and boundary conditions). 

The computation of solutions to boundary value problems using the analytical 

method is implemented in the internal function "TBNumAnal." 

The computation using the asymptotic method is implemented in the internal function 

"TBAsym." 

The computation using the approximate method for constructing solutions to integro–

differential equations also utilizes the results of this work, which are implemented in 

the function "TBNum." 

An example of the module's operation is shown in Figure 1. 

 

 

Fig. 1. Graph of the solution function for a boundary value problem 

 of transverse vibrations of a cable. 
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The expression for the amplitude of the system's oscillations in the n-th dynamic 

mode when passing through resonance has the following form: 

2 2

1 1

2 2

2 2

1 2 2( , ) ( ) ( )cos ( ) ( )sin ( ) .n n n n n nA E F Ф d F Ф d

 

 

        
    

= +    
        

           (17) 

The described algorithm for numerical investigation of steady–state resonance and 

the phenomenon of passing through resonance is implemented in the function 

"met_ampl_max." Figure 2 shows a graph of the dependence of the maximum 

amplitude of cable oscillations when passing through resonance on the speed of 

boundary movement for various values of the environmental resistance coefficient. 

 

 
Fig. 2. Graph of the dependence of the maximum amplitude on the speed of boundary 

 movement for various values of the environmental resistance coefficient. 

 

In the internal function "met_ampl," which is a sub–function of the function 

"met_ampl_max," the computation of the oscillation amplitude expression (17) is 

implemented as a function of time. The results of "test" computations of the 

amplitude of transverse vibrations of a variable–length cable when passing through 

resonance on the first dynamic mode, with given initial model parameters, are 

illustrated in Figure 3. 

In addition to their functional purpose, the graphs presented in Figure 3 also illustrate 

the characteristics of the oscillation amplitude behavior, which form the basis of the 

methodology for calculating the maximum amplitude. 



11 
 

 
Fig. 3. Graph of the dependence of amplitude on time. 

 

6    CONCLUSION 

 

Thus, with the help of the software package “TB–Analysis” artificial intelligence was 

utilized to identify the resonant frequencies of the system and the conditions under 

which resonance could be avoided. The system's parameters were optimized to 

reduce the probability of resonance. Data on the system's amplitude–frequency 

characteristics were collected, and key parameters affecting resonance were 

determined. A neural network was trained on this data to predict resonant frequencies 

and amplitudes. Nonlinear regression methods were applied to define resonance 

conditions, and the Monte Carlo method was used for data synthesis when data was 

insufficient. Machine learning techniques were employed to analyze which system 

parameters most significantly influence resonance. Frequency analysis using the Fast 

Fourier Transform (FFT) was conducted to identify resonance regions, and clustering 

algorithms (k–means) were used to group frequencies where the system is most 

vulnerable. Amplitude–frequency characteristic graphs were plotted to clearly 

delineate resonance areas. To mitigate resonance, system parameters such as damping 

and stiffness were optimized using gradient descent. Adaptive control methods and 

neural networks were implemented for real–time system tuning. AI was also used to 

forecast conditions that could lead to resonance and to prevent it. 

The problem of stochastic longitudinal vibrations in a viscoelastic cable with moving 

boundaries, considering damping forces, was formulated as a system of stochastic 

integro–differential equations. This system was simplified to a set of stochastic 

differential equations with random initial conditions. The Monte Carlo method was 

proposed for estimating expansion coefficients. The neural network was trained on 

data reflecting the system's behavior across various frequencies and parameters, 
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enabling it to predict resonant frequencies and recommend optimal parameters. The 

AI's predictions were validated using a mathematical model, confirming that the 

suggested parameters effectively prevent resonance. 

The use of deep neural networks, Monte Carlo methods and adaptive control not only 

improves the accuracy of forecasting, but also significantly reduces the time required 

to find the optimal system parameters. 
 

REFERENCES 

 

1. Kolosov L.B., Zhigula T.I. Longitudinal–transverse vibrations of the rope of the 

lifting installation // Izv. Universities. Mining Journal. 1981. No. 3. P. 83–86. 

2. Zhu W.D., Chen Y. Theoretical and experimental investigation of elevator cable 

dynamics and control // J. Vibr. Acoust. 2006. No. 1. P. 66–78. 

3. Shi Y., Wu L., Wang Y. Nonlinear analysis of natural frequencies of a tether 

system // J. Vibr. Eng. 2006. No. 2. P.173–178. 

4. Wang L., Zhao Y. Multiple internal resonances and non–planar dynamics of 

shallow suspended cables to the harmonic excitations // J. Sound Vib. 2009. No. 

1–2. P. 1–14. 

5. Zhao Y., Wang L. On the symmetric modal interaction of the suspended cable: 

three–to one internal resonance // J. Sound Vib. 2006. No. 4–5. P.1073–1093. 

6. Vesnitsky A.I. Waves in systems with moving boundaries and loads. Moscow: 

Fizmatlit, 2001. 320 p. 

7. Goroshko O.A., Savin G.N. Introduction to the mechanics of deformable one–

dimensional bodies of variable length. Kiev: Nauk. dumka, 1971. 290 p. 

8. Litvinov V.L., Anisimov V.N. Transverse vibrations of a rope moving in a 

longitudinal direction // Bulletin of the Samara Scientific Center of the Russian 

Academy of Sciences. 2017. T. 19.No. 4. – P.161–165. 

9. Litvinov V.L., Anisimov V.N. Mathematical modeling and research of 

oscillations of one–dimensional mechanical systems with moving boundaries: 

monograph / V. L. Litvinov, V. N. Anisimov – Samara: Samar. state tech. un–t, 

2017 .– 149 p. 

10. Lezhneva A.A. Free bending vibrations of a beam of variable length // Uchenye 

zapiski. Perm: Perm. un–t, 1966. No. 156. P. 143–150. 

11. Savin G.N., Goroshko O.A. Variable length thread dynamics. Kiev: Nauk. 

Dumka, 1962. 332 p. 

12. Litvinov V.L. Investigation of free vibrations of mechanical objects with moving 

boundaries using the asymptotic method // Zh. Middle Volga Mathematical 



13 
 

Society. 2014. T. 16.No. 1. P.83–88. 

13. Liu Z., Chen G. Analysis of  Plane Nonlinear Free Vibrations of a Carrying Rope 

Taking into Account the Influence of Flexural Rigidity // J. Vibr. Eng. 2007. No. 

1. P. 57–60. 

14. Litvinov V.L., Anisimov V.N. Application of the Kantorovich – Galerkin method 

for solving boundary value problems with conditions on moving boundaries // 

Bulletin of the Russian Academy of Sciences. Rigid Body Mechanics. 2018. No. 

2. P. 70–77. 

15. Litvinov V.L., Anisimov V.N. Transverse vibrations of a rope moving in a 

longitudinal direction // Bulletin of the Samara Scientific Center of the Russian 

Academy of Sciences. 2017. T. 19. No. 4. – P.161–165. 

16. Litvinov V.L., Anisimov V.N. Mathematical modeling and research of 

oscillations of one –dimensional mechanical systems with moving boundaries: 

monograph / V. L. Litvinov, V. N. Anisimov – Samara: Samar. state tech. un–t, 

2017 .– 149 p. 

17. Elepov B. S., Kronberg A. A., Mikhailov G. A. and Sabelfeld K. K. Solution of 

boundary value problems by the Monte Carlo method. – Novosibirsk: Nauka, 

1980. – 174 p. 

18. Ermakov S. M. Monte Carlo Method in Computational Mathematics: An 

Introductory Course. – St. Petersburg: Nevsky Dialect; M.: BINOM. Knowledge 

Laboratory, 2009. – 192 pp. 

19. Fishman G. S. Monte Carlo. Concepts, Algorithms, and Applications. — 

SpringerVerlag, 1995 (Corrected 3 rd printing, 1999). — 718 pp.  

20. Litvinov V.L. Stochastic longitudinal oscillations of a viscoelastic rope with 

moving boundaries taking into account the action of damping forces // Probability 

Theory and Its Applications, RAS, 2022, Vol. 67, No. 4, pp. 835–836. 

21. Litvinov V.L. Solution of boundary value problems with moving boundaries 

using an approximate method for constructing solutions of integro–differential 

equations // Tr. Institute of Mathematics and Mechanics, Ural Branch of the 

Russian Academy of Sciences. 2020.Vol. 26, №. 2. P. 188–199. 

22. Litvinov V.L., Litvinova K.V. An approximate method for solving boundary 

value problems with moving boundaries by reduction to integro–differential 

equations// Computational Mathematics and Mathematical Physics, 2022, vol. 62, 

no. 6, pp. 945–954. 

23. Litvinov V.L. Certificate of state registration of a computer program. Automated 

software package for studying oscillations and resonance phenomena in 

mechanical systems with moving boundaries "TB-Analysis-7" No. 2025613649, 



14 
 

published 13.02.2025. 

 


