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ABSTRACT

Large language models (LLMs) have emerged as promising tools for assisting in
medical tasks, yet processing Electronic Health Records (EHRs) presents unique
challenges due to their longitudinal nature. While LLMs’ capabilities to perform
medical tasks continue to improve, their ability to reason over temporal dependen-
cies across multiple patient visits and time frames remains unexplored. We intro-
duce TIMER (Temporal Instruction Modeling and Evaluation for Longitudinal
Clinical Records), a synthetic data generation framework that incorporates tempo-
ral distribution of instructions as a critical dimension in both instruction evaluation
and tuning for longitudinal clinical records. We develop TIMER-Bench, the first
time-aware benchmark that evaluates temporal reasoning capabilities over longi-
tudinal EHRs, as well as TIMER-Instruct, an instruction-tuning methodology for
LLMs to learn reasoning over time. We demonstrate that models fine-tuned with
TIMER-Instruct improve performance by 7.3% on human-generated benchmarks
and 9.2% on TIMER-Bench, indicating that temporal instruction-tuning improves
model performance for reasoning over EHR. Our code is available at TIMER.

1 INTRODUCTION

While many language models now handle context lengths of hundreds of thousands of tokens, their
ability to reason across longitudinal documents and follow complex instructions remains limited Li
et al. (2024b); Kuratov et al. (2024). This limitation is particularly critical in healthcare, where
physicians routinely analyze electronic health records (EHRs) spanning multiple years and thou-
sands of entries Huguet et al. (2020). While biomedical LLMs have shown promising results on
well-structured tasks like answering USMLE questions and medical knowledge retrieval Singhal
et al. (2023); Lu et al. (2024); Lucas et al. (2024), recent evaluations reveal their significant limita-
tions in processing longitudinal patient information and in making clinical decisions over time Hager
et al. (2024); Bedi et al. (2024). The gap between isolated question-answering performance and tem-
poral reasoning ability impacts the practical utility of LLMs in healthcare.

Instruction tuning has proven useful for domain-specific tasks Zhang et al. (2023a), but data curation
for instruction tuning over longitudinal clinical records faces significant challenges. The cognitive
demands of processing lengthy medical documentation make physician instruction-answer pair gen-
eration both time-intensive and difficult to scale Wu et al. (2024b). While synthetic data generation
offers a promising solution for data access challenges, the temporal aspects of instruction evalu-
ation and tuning—particularly how information distribution across patient timelines affects model
performance—remain poorly understood Scheller (2022). Moreover, deploying language models in
high-stakes domains like healthcare requires rigorous evaluation in controlled settings.

To address these challenges, we introduce TIMER, a framework for evaluating and enhancing tem-
poral reasoning capabilities of LLMs using synthetic data generated from longitudinal EHRs. We
develop TIMER-Bench, a novel evaluation benchmark that leverages LLM-generated instruction-
response pairs with explicit temporal evidence to enable systematic evaluation across different tem-
poral distributions. Our analysis reveals critical limitations in existing LLMs’ temporal reasoning
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capabilities, including poor temporal boundary adherence, inaccurate trend analysis, and chrono-
logical confusion. Building on these insights, we propose TIMER-Instruct, a methodology for
synthetic temporal instruction tuning. Through careful analysis of synthetic data generation pat-
terns, we identified a ”lost-in-the-middle” bias where models overlook mid-timeline events. To
address this, we investigated different temporal distributions of instructions: recency-focused, edge-
focused, and uniform. Our evaluation demonstrates that while distribution alignment between train-
ing and evaluation generally improves performance, uniform distribution exhibits particular strength
in mid-timeline reasoning tasks. Models tuned with our synthetic instruction data show promising
improvements: 7.3% on MedAlign and 9.2% on TIMER-Bench.

This work advances synthetic data applications in healthcare through three key contributions: (1)
identification of temporal distribution as a critical yet overlooked dimension in clinical language
model evaluation and instruction-tuning, demonstrating how synthetic data uncovers temporal rea-
soning limitations, (2) TIMER-Bench, a synthetic benchmark that systematically assesses longitu-
dinal reasoning capabilities across temporal distributions, and (3) TIMER-Instruct, a framework for
temporal instruction tuning using synthetic data that achieves state-of-the-art performance on both
human-curated and synthetic benchmarks. Our code is available at TIMER. TIMER-Bench will be
released under a research data use agreement to support responsible evaluation.

2 RELATED WORK

2.1 SYNTHETIC DATA GENERATION

Instruction tuning has emerged as a useful method for aligning models with user preferences Ouyang
et al. (2022); Zhang et al. (2023a). While high-quality instruction-response pairs are essential for
this process, their limited availability has led researchers to explore synthetic data generation as a
scalable alternative Dubois et al. (2024); Long et al. (2024). Self-instruct demonstrates the feasibility
of bootstrapping instruction-following capabilities through LLM-generated data Wang et al. (2023);
Zhang et al. (2023b), enabling knowledge distillation from larger models to smaller yet capable
ones Shirgaonkar et al. (2024). Recent research has further expanded the field by exploring tech-
niques to enhance the quality and diversity of synthetic datasets Ge et al. (2024); Li et al. (2024a);
van Breugel et al. (2024a), achieving promising results on benchmarks. Despite these advancements,
challenges remain in ensuring the quality of synthetic data, including detecting and mitigating sys-
tematic biases and developing rigorous evaluation protocols van Breugel et al. (2024b).

2.2 TEMPORAL CHALLENGES IN REASONING WITH EHR

Electronic Health Records (EHRs) serve as digital repositories of patient care, containing structured
data, unstructured clinical notes, and temporal data across visits Theodorou et al. (2023). Healthcare
providers need to synthesize complex information to track disease progression, treatment responses,
and temporal relationships between medical events Carrasco-Ribelles et al. (2023); Allam et al.
(2021). However, existing EHR evaluation benchmarks inadequately assess temporal reasoning.
MIMIC-derived datasets predominantly focus on single ICU visits averaging 7.2 days Wu et al.
(2024b), while physician-curated benchmarks like MedAlign Fleming et al. (2024) show strong
recency bias, with 55.3% of instructions concentrated in the last quarter of 10.7-year patient histo-
ries. In addition to the lack of temporal evaluation benchmarks, current medical instruction tuning
approaches primarily focus on brief instruction responses and simple retrieval tasks Zhang et al.
(2023b); Tran et al. (2024); Rohanian et al. (2024). These highlight the need for systematic evalua-
tion and instruction-tuning for models’ capabilities across comprehensive patient histories.

3 TIMER

We introduce TIMER, a framework for synthetic data generation which evaluates and enhances tem-
poral reasoning capabilities of LLMs on longitudinal EHRs, as present in Figure 1. TIMER consists
of two components: (1) TIMER-Bench, which generates evaluation sets with explicit time evi-
dence integration, and (2) TIMER-Instruct, which improves models’ longitudinal reasoning through
temporal-aware synthetic instruction tuning.
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TIMER-Bench

Benchmark Generation : 
Your instructions should emphasize the temporal progression 
of clinical events, reflecting … evolve over time. 
[EHR]
When creating instructions and responses, please include 
time evidence to support your generation (e.g., 02/15/2016)

1/15/2020

…

Initial Oncology Visit

12/10/2022

…

Oncology Follow-up

[Patient Visits]

[Instruction Response Pairs]
Instruction: Explain how the patient's response 
to lung cancer treatment changed after 
discovering the EGFR mutation, and why they 
ultimately returned to the initial therapy.
Response: Patient started chemotherapy for lung 
cancer in 01/2020 with good response. Genetic 
testing in 05/2020 revealed EGFR mutation,  …
Evidence: 01/2020, 05/2020, 06/2021, 09/2021 …

⋯

Clinician Verification

TIMER-Instruct

Instruction: When was the patient first 
diagnosed with type II diabetes…
Response: Patient was first diagnosed in …

Temporal Distribution
• Recency-focused instruction
• Edge-focused instruction
• Uniformly-distributed instruction

Instruction Tuning

Time-Aware Instruction Response Pairs Time Evidence Integration

Evaluate

- Existing Medical Finetuned LLMs
- TIMER-Instruct with Different Base

<record>
<visit type="Oncology Visit" 
start="01/15/2020 09:00">
<person>
Birth: 5/23/1962
Race: Asian
</person>
<condition_occurrence>
<code>[ICD/C34.11] Malignant 
neoplasm of upper lobe, right 
bronchus or lung</code>
</condition_occurrence>
<note>
Patient presents with 3-month 
history of persistent cough, 
…
</visit>
</record>

EHR
</>

[Longitudinal Records]

<record> 
<visit type="Primary Care 
Visit" start="03/15/2019
09:00"> 
<code>[ICD/E11.9] Type 2 
diabetes mellitus without 
complications</code>
.。。

EHR
</>

Temporal Reasoning 
Benchmark

LLM Judge Automatic Metrics Head-to-Head

LLM

Figure 1: Overview of TIMER framework. Left: TIMER-Bench covers questions with explicit tem-
poral evidence across different time periods in patient histories to assess longitudinal EHR reason-
ing. Right: TIMER-Instruct enables temporal instruction tuning with temporally-diverse examples.

3.1 TIMER-BENCH: EVALUATION BENCHMARK FOR LLM LONGITUDINAL REASONING

Benchmark generation process. We develop an approach for generating benchmarks that inte-
grates time evidence. This method explicitly preserves and utilizes temporal relationships during
the creation process, reflecting how clinicians interact with EHRs. As shown in the left panel of Fig-
ure 1, we begin by aggregating patient visits and converting them into XML-formatted longitudinal
records. These records are then used as input for a language model to generate synthetic instruction-
response pairs. We instruct the language model to provide date-time evidence Ti = {Ti,1, ..., Ti,ni

}
for each instruction-response pair (Qi, Ai) in the benchmark. This evidence connects the instance to
related visits in the patient’s timeline, resulting in tuples of (Qi, Ai,Ti). This temporal grounding
enables us to filter benchmark instances by the number of evidence timestamps it generates, so we
can ensure that each question evaluates temporal reasoning between visits in a patient record.

We use real patient data from a single medical center to synthetically generate questions, assuring
that raw patient data matches the layout of real patients in hospitals. The raw de-identified EHR
data utilized in our study has been made accessible through a gated institutional portal on Redivis
to promote transparency and responsible research practices. Data access is subject to approval via a
user-level Data Use Agreement (DUA) and verification of valid CITI training certification. Institu-
tional patients had previously consented, through an institutional privacy notice, to the research use
of their fully de-identified medical records.

Clinical validation. To ensure benchmark quality, we conducted validation with three clinicians
who reviewed 100 randomly sampled instruction-response pairs from TIMER-Bench. The clini-
cians evaluated three key aspects: clinical relevance, which measures alignment with real-world
medical scenarios; temporal reasoning complexity, which assesses the depth of temporal synthesis
required; and factual accuracy, which verifies perceived medical correctness. The evaluation results
included average scores of 95/100 for clinical relevance, 80/100 for temporal reasoning complexity,
and 98/100 for factual accuracy. Three clinicians evaluated each question, providing three scores
for each axis: clinical relevance, complexity, and accuracy. The results show high inter-rater agree-
ment (86% clinical relevance, 93% accuracy) with low standard deviations (4.32, 1.89 respectively).
Complexity scoring, being qualitative, showed more variability but remained significantly above
chance (53% observed agreement vs. 12.5% random chance; standard deviation 14.87 of the to-
tal assigned score). This validation process confirms that TIMER-Bench maintains high clinical
authenticity while effectively testing models’ long context temporal reasoning capabilities.

All clinicians completed mandatory CITI training covering the use of de-identified patient data, fully
mirroring established ethical standards used in datasets such as MIMIC and PhysioNet. The clini-
cians voluntarily participate in annotation tasks, without any compensation or other incentives and
agree to the public release of annotations. The clinicians interacted exclusively with de-identified
data compliant with HIPAA Safe Harbor standards and their involvement was limited to data anno-
tation. As such, their participation does not constitute human subjects research under 45 CFR 46
(the Common Rule).

3



Published as a SynthData workshop paper at ICLR 2025

3.2 TIMER-INSTRUCT: INSTRUCTION TUNING FOR LONGITUDINAL CLINICAL RECORDS

To improve model performance on temporal reasoning tasks, we develop TIMER-Instruct, a syn-
thetic instruction tuning methodology with time-aware instruction data.

Temporal variability in clinical records. A key challenge in analyzing temporal patterns across
patient records is that even with fixed context lengths, the actual time spans can vary significantly due
to irregular intervals between clinical events. In clinical records, events like diagnoses, medications,
laboratory results, and procedures are distributed irregularly across time, reflecting the reality of
patient care where visits may be clustered during acute episodes or spread out during stable periods.

Temporal distribution analysis. We introduce a normalized position metric to account for these
varying timescales. For each time evidence Tj ∈ Ti of instruction-response pair (Qi, Ai), we define
the relative temporal position Pj as:

Pj =
Tj − Tmin

Tmax − Tmin
(1)

where Tj represents an evidence timestamp of this pair, and Tmin and Tmax are date time of visits
that bound the context window. This normalization enables us to compare temporal patterns across
patient records with different absolute time spans while maintaining relative temporal relationships.
Using our normalized temporal position metric, we analyze the distribution of temporal evidence
in model-generated instructions across patient timelines. Figure 2 reveals a striking “lost-in-the-
middle” phenomenon in the default generation pattern.

Such edge-focused distribution indicates that when generating data, LLMs tend to pay more atten-
tion to early and recent events in long contexts, while neglecting the intermediate period. These
inherent biases in temporal focus during the synthetic data generation process could result in tuned
models that overlook important developments in patient timeline journeys.

Instruction tuning with various temporal distribution patterns. Motivated by the temporal
biases observed in both model-generated and physician-generated instructions, we explore how
temporal distributions in tuning data affect model performance. We construct three instruction-
tuning sets from the same set of patient longitudinal records, each reflecting a distinct dis-
tribution of instructions’ relative temporal position, as demonstrated in Figure 1 right panel:

Figure 2: Using our normalized temporal posi-
tion metric (x-axis: 0% to 100% of the timeline),
we find that instructions strongly favor timeline
edges, indicating middle periods receive signifi-
cantly less attention.

• Recency: a recency-focused set that concen-
trates instructions in the last quartile of the
timeline, similar to the temporal patterns ob-
served in human-annotated datasets

• Edge: an edge-focused set which exhibits
higher instruction density regarding visits at
the context boundaries Tmin and Tmax of pa-
tient timelines, similar to the natural temporal
patterns generated by large language models

• Uniform: a uniformly-distributed set that en-
sures balanced temporal coverage by main-
taining consistent instruction density across
all relative positions

By maintaining consistent size and patient
timelines across these instruction sets and vary-
ing only their temporal distributions over the timeline, we isolate temporal positioning as the key
variable of how training data patterns influence models’ ability to reason across time points.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. TIMER-Bench and TIMER-Instruct utilize patient data from an academic medical cen-
ter’s research data repository, which contains records from its associated healthcare system, includ-
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Table 1: Performance (%) of baselines and TIMER-Instruct on MedAlign and TIMER-Bench bench-
marks, reported as mean ± std from bootstrap resampling (n=10,000) over test set of 100 samples.

Model Name
MedAlign TIMER-Bench

LLM-as-Judge Automatic Metrics LLM-as-Judge Automatic Metrics
Correct Complete BERTScore ROUGE-L Correct Complete BERTScore ROUGE-L

Existing Medical Finetuned Model
Meditron-7B* 3.63 ± 2.15 1.32 ± 1.16 60.60 ± 1.20 3.10 ± 0.50 2.99 ± 1.62 1.00 ± 0.87 65.23 ± 1.00 5.39 ± 0.61

MedAlpaca* 12.87 ± 3.63 4.29 ± 2.15 65.90 ± 1.10 4.80 ± 0.90 7.21 ± 2.49 1.49 ± 1.12 72.06 ± 0.74 9.25 ± 0.79

AlpaCare* 27.72 ± 4.95 12.87 ± 3.80 66.50 ± 2.70 11.30 ± 1.20 7.71 ± 2.61 1.24 ± 1.12 75.07 ± 0.10 14.39 ± 0.75

MMed-LLaMA-3-8B* 9.24 ± 3.30 4.29 ± 2.15 65.60 ± 0.80 4.90 ± 0.60 17.66 ± 3.73 6.72 ± 2.36 72.77 ± 0.55 10.80 ± 0.60

PMC-LLaMA-13B* 11.88 ± 3.63 4.62 ± 2.48 65.00 ± 1.10 3.70 ± 0.60 1.24 ± 1.12 0.50 ± 0.62 29.17 ± 2.81 0.77 ± 0.35

MedLM-Large*† 41.30 ± 5.60 20.80 ± 4.60 75.86 ± 0.99 13.78 ± 1.27 22.44 ± 4.11 8.73 ± 2.75 82.19 ± 0.44 22.43 ± 1.16

MedLM-Medium† 50.50 ± 5.60 29.40 ± 5.30 75.61 ± 0.90 13.21 ± 1.34 47.76 ± 4.73 22.64 ± 4.10 83.27 ± 0.47 24.33 ± 1.26

MedInstruct‡ 45.90 ± 5.60 27.70 ± 5.10 70.90 ± 0.70 8.70 ± 0.60 59.45 ± 4.73 38.81 ± 4.73 80.14 ± 0.47 18.86 ± 0.73

TIMER-INSTRUCT Tuned Model with Different Base
Qwen2.5-7B-Instruct 58.42 ± 5.61 41.91 ± 5.61 73.57 ± 0.54 9.51 ± 0.62 67.41±4.48 53.48±4.85 80.81±0.34 18.40±0.64
w/ TIMER-INSTRUCT Tuning 60.40 ± 5.61 43.23 ± 5.61 73.39 ± 0.54 9.36 ± 0.62 69.15±4.48 52.99±4.85 81.53±0.35 19.12±0.66
Llama3.1-8B-Instruct 46.53 ± 5.45 29.70 ± 5.12 70.50 ± 0.70 8.50 ± 0.70 57.96 ± 4.85 34.58 ± 0.46 79.49 ± 0.45 17.78 ± 0.70
w/ TIMER-INSTRUCT Tuning 53.47 ± 5.61 37.29 ± 5.61 76.70 ± 0.80 14.60 ± 1.40 64.68 ± 4.73 46.27 ± 4.85 83.20 ± 0.40 22.60 ± 1.07
*These models have a maximum context length ≤ 8K. We truncated the most recent records to fit within their maximum size.
†MedLM are powered by Med-PaLM 2, which is a medical fine-tuned version of Google PaLM.
‡We instruct-tuned MedInstruct w/ Llama3.1-8B-Instruct as the base model.

Table 2: Performance analysis of instruction-tuning the same base models with different temporal
distribution of instructions: recency-focused (pi > 0.75), edge-focused (higher density at tmin

and tmax), and uniform distribution. We show head-to-head model comparisons, with Model B
having an aligned temporal distribution with the benchmark, and individual model metrics for each
benchmark. Bold numbers indicate the best performance in comparison.

Head-to-Head Comparison LLM-as-Judge Metrics
Benchmark Model A vs. Model B Win Rate (A / B %) Tie (%) Model Correctness Completeness

MedAlign (Recency)
Human-Annotated, Recency-Focused Distribution

Edge vs. Recency
Uniform vs. Recency

42.24 / 43.89
41.42 / 42.57

13.86

16.01

Recency 55.54 34.32
Edge 53.47 37.29

Uniform 50.83 33.70

TIMER-Bench (Edge)
Model-Generated, Higher Density at Tmin and Tmax

Recency vs. Edge
Uniform vs. Edge

47.89 / 48.76
47.26 / 47.64

3.36

5.10

Recency 63.93 40.55
Edge 64.68 46.27

Uniform 65.17 42.54

TIMER-Bench (Uniform)
Model-Generated, Balanced Distribution on Timelines

Recency vs. Uniform
Edge vs. Uniform

45.16 / 51.01
47.58 / 48.39

3.83

4.03

Recency 63.71 39.92
Edge 61.69 43.55

Uniform 64.52 43.55

ing both adult and children’s hospitals. The repository follows the OMOP-CDM (Observational
Medical Outcomes Partnership Common Data Model) OHD structure and encompasses 3.67M
unique patients with records spanning from 1990 to 2023. We preprocessed patient timelines into
chunks that fit the instruction-tuning model’s context window. Using Gemini-1.5-Pro Team et al.
(2024), we generated 5000 instruction response pairs with temporal evidence supporting the gen-
erated answer1. For TIMER-Bench, we sampled separate patient timelines with no overlap with
the instruction-tuning set. We filtered the benchmark questions by selecting those that have mul-
tiple time-stamped pieces of evidence, which require synthesis of the patient record. The prompt
for benchmark generation can be found in Appendix A. Three clinicians validated a subset on their
clinical relevance, temporal reasoning, and accuracy, which is detailed in Appendix B.

Evaluation metrics. We evaluate models’ open-text responses using LLM-Judge that assesses re-
sponse correctness and completeness2, which is verified through correlation analysis with clinician
evaluation data released alongside the MedAlign benchmark. The human data consists of 9 clini-
cians that rank models with binary completeness and correctness scores. Our LLM-Judge frame-
work demonstrates strong alignment with human judgment with |ρcorr| = 0.94 for correctness and
|ρcorr| = 0.89 for completeness, as shown in Appendix I. We also employ head-to-head compar-
isons and automated metrics derived from token-level representations, including BertScore Zhang
et al. (2019) (using distilbert-based-uncased), ROUGE-L Lin (2004), CHRF Popović (2015), and
METEOR Banerjee & Lavie (2005)3 to provide standard assessment of response quality. All LLM-
based evaluations use GPT-4o-mini as the judge.

1The prompt for instruction-tuning data generation can be found in Appendix C
2Prompts detailed in Appendix H
3Results for these additional metrics are in Appendix M.
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4.2 MODEL EVALUATION AND ANALYSIS

Baselines. We evaluate our approach against several baselines. These include existing medical
fine-tuned models from the literature: Meditron-7B Chen et al. (2023) with a 2K context, MedAl-
paca Han et al. (2023) with a 2K context, AlpaCare Zhang et al. (2023b) with a 4K context, MMed-
LlaMa-3-8B Qiu et al. (2024) with an 8K context, PMC-LlaMa-13B Wu et al. (2024a) with an 8K
context, and MedLM-Large Cloud (2024) with an 8K context alongside MedLM-Medium Cloud
(2024) with a 16K context. For those models unable to process the entire EHR within their con-
text window, we truncated the most recent K tokens to fit the maximum context size. To identify
the effectiveness of conventional medical instruction tuning for long-context reasoning, we include
MedInstruct as an additional baseline, applying MedInstruct QA tuning Zhang et al. (2023b) to
the long-context capable Llama-3.1-8B-Instruct. We evaluate the role of instruction tuning with
TIMER-Instruct by applying it to different base models. Specifically, we tune both Qwen2.5-7B-
Instruct Qwen et al. (2025) and Llama3.1-8B-Instruct with TIMER-Instruct, comparing their per-
formance before and after tuning. For further reference, we evaluate several proprietary models
(GPT4-32k, GPT-4o, Claude 3.5 Sonnet) and report their performance in Appendix L.

Results. The main results are in Table 1 and head-to-head comparison is shown in Appendix K.
Analysis reveals three key findings. First, despite domain-specific training on various medical
datasets (e.g., MedQA, medical papers, clinical text), existing medical models with limited con-
text windows struggle with long EHR tasks - even the best performing MedLM-Large achieves only
41.3% correctness on MedAlign. While long-context models like MedLM-Medium and Llama3.1-
8B-Instruct perform better, there remains significant room for improvement in temporal reasoning
capabilities. Second, simply applying short-form medical instruction tuning, i.e., MedInstruct QA to
a long-context model, shows minimal gains over the base Llama3.1-8B-Instruct, showing 1.5% im-
provement in correctness on TIMER-Bench and even hurts performance on MedAlign, suggesting
that traditional medical QA instruction tuning alone is insufficient for complex temporal reasoning
in EHRs. Finally, our temporal-aware instruction-tuning approach TIMER-Instruct demonstrates
consistent improvements across model architectures. With Llama3.1-8B-Instruct as the base model,
TIMER-Instruct improves MedAlign correctness from 46.53% to 53.47% and completeness from
29.70% to 37.29% (average improvement of 7.3%), while improving TIMER-Bench performance
from 57.96% to 64.68% in correctness and 34.58% to 46.27% in completeness (average improve-
ment of 9.2%). These improvements generalize to other architectures: for Qwen2.5-7B-Instruct,
TIMER-Instruct improves MedAlign correctness from 58.42% to 60.40% and completeness from
41.91% to 43.23%, while similarly enhancing TIMER-Bench performance with correctness and au-
tomatic metrics. These gains across architectures demonstrate that our temporal-aware instruction
tuning approach robustly enhances temporal reasoning and EHR understanding across models.

4.3 IMPACT OF TEMPORAL DISTRIBUTION STRATEGIES

Figure 3: We evaluate on benchmarks with vary-
ing temporal distributions: recent-focused, edge-
focused, and uniform.

Settings. Existing long-context EHR bench-
marks primarily focus on questions about
the most recent portions of patient timelines,
creating an unintended distribution shift in
evaluation. We create TIMER-Bench with
two controlled temporal distributions: (1)
an edge-focused distribution where evaluation
instruction-response pairs are randomly sam-
pled from the natural model-generated distribu-
tion and (2) a uniform distribution where the
evaluation instruction-response pairs are sam-
pled with equal frequency across all patient vis-
its. As shown in Figure 3, these constructed dis-
tributions provide complementary evaluation
settings to MedAlign, the recency-biased physician-generated longitudinal EHR benchmark, where
over half of the instructions focus on visits from the most recent quarter of patient histories.

Results. Table 2 analyzes how different temporal distributions in instruction-tuning affect model
performance across various evaluation settings. Results show that instruction tuning with the match-
ing distribution performs best on head-to-head comparison metrics for all three benchmark distri-
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butions. For MedAlign and TIMER-Bench Edge Cases, instruction tuning with the same temporal
distribution as the evaluation data showed better performance than out-of-temporal-distribution tun-
ing data. However, for the uniform evaluation cases, uniform instruction tuning demonstrated a
more dramatic advantage, outperforming recency tuning by a margin 3.5 times larger than the per-
formance gaps observed in any other evaluation scenario. These results highlight two key insights:
(1) the importance of aligning instruction-tuning temporal distributions with the intended evaluation
distribution, and (2) uniformly distributed evaluation sets benefit most from this distributional align-
ment compared to evaluation sets with inherent temporal biases, illustrating the role of instruction
tuning in enhancing model temporal capabilities across a full patient record.

5 CONCLUSION AND DISCUSSION

This work reveals the ability to reason over temporal dependencies as a critical dimension in evaluat-
ing and instruction-tuning language models for clinical use. We uncover temporal biases in existing
benchmarks that limit our understanding of model capabilities. To address this, we introduce a new
temporal benchmark TIMER-Bench, which explicitly includes time evidence and enables controlled
evaluation across different temporal distributions. TIMER-Instruct, our method for temporal instruc-
tion tuning, shows significant improvements on both physician-generated benchmarks and temporal
reasoning benchmarks. While our experiments primarily focus on clinical records, the principles of
temporal modeling apply to developing large language models in other fields that require reasoning
over documents or sequences of events with complex temporal relationships.
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A PROMPT FOR TIMER-BENCH GENERATION

You are an expert of a practicing medical doctor.

Your task is to interpret the provided electronic health record (EHR) data and generate synthetic instruction-response pairs 
based on your medical specialization and expertise. Your instructions should emphasize the temporal progression of clinical 
events, reflecting a deep understanding of how medical conditions, treatments, and outcomes evolve over time. Formulate all 
instructions from the perspective of a doctor interacting with the EHR and seeking information to reason over a patient's 
longitudinal medical history.

[EHR Data Description] Patient EHR data is provided in XML format. This XML document contains comprehensive, timestamped 
information covering a patient's medical history, including diagnoses, treatments, medications, test results, and clinical 
notes. All clinical events are ordered ascending by time.

[Instruction Response Guidelines] The generated instructions and responses must conform to these guidelines:
Instructions:
- Ground all instructions in the context of the provided EHR and ensure they are relevant to the patient’s specific case.
- Prioritize instructions that involve reasoning over the timeline of the patient's care (e.g., comparing test results over 
time, evaluating the progression or resolution of a condition, or assessing treatment impacts).
- Highlight the relationships between past events and their implications on current or future clinical decisions.
- Avoid generating generic or irrelevant instructions that do not utilize the temporal nature of the EHR.

Responses:
- Provide accurate, temporally-aware responses that directly address the posed instructions.
- Use the patient's longitudinal medical history to support your responses with precise and relevant details.
- Refer to specific timestamps (dates only, in the format MM/DD/YYYY) to justify responses and highlight temporal reasoning 
(e.g., "On 02/15/2016, the patient's lab results showed a significant increase in XYZ levels, indicating...").
- Ensure responses are coherent, structured, and clinically valuable, using specialized terminology as appropriate.

Review the provided EHR and generate five instruction-response pairs that meet all outlined guidelines.
Ensure these pairs reflect comprehensive use of the patient’s timeline and involve reasoning over the entire EHR context 
window.
Explicitly include evidence for your generation by referencing dates of relevant visits or events in the EHR.

[EHR] 
{ehr}

[Output] 

Prompt Template for TIMER-Bench Generation

Figure 4: Prompt template for TIMER-Bench generation.

Figure 4 illustrates the prompt template used to generate TIMER-Bench, which guided Gemini-1.5-
Pro to create temporal instruction-response pairs with time evidence from longitudinal records.

B TIMER-BENCH CLINICIAN VERIFICATION

We ask three clinicians to verify the relevance, quality, and accuracy of a randomly selected subset
of the TIMER-Bench instruction-response pairs. We note that the clinicians identified the generated
instructions to have high relevance and the responses to be contextually accurate/reasonable, as
they were not provided with the patient-protected information to do a complete factual accuracy
evaluation. We also note that the majority of questions are considered to be medically complex by
the clinicians, thus verifying that the synthetically generated questions are of reasonable complexity
to capture model performance. The clinician-verified results are present in Table 3.

Table 3: Clinician Verification
Annotator Clinical Relevance Complexity Accuracy
Annotator 1 97/100 77/100 100/100
Annotator 2 89/100 63/100 96/100
Annotator 3 99/100 99/100 100/100

C PROMPT FOR INSTRUCTION-TUNING DATA GENERATION

Figure 5 shows the prompt template used to generate our instruction-tuning dataset, which guides
Gemini-1.5-Pro in creating diverse instruction-response pairs that span different parts of patient
records.

D RECENCY BIAS OF MEDALIGN

MedAlign Fleming et al. (2024) is introduced as the first benchmark created by clinicians covering
realistic clinical instructions. However, physician-curated benchmarks show a natural bias toward
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You are an expert of a practicing medical doctor.

Your task is to interpret the provided electronic health record (EHR) data and generate synthetic instruction-response pairs 
based on your medical specialization and expertise. Formulate all instructions from the perspective of a doctor interacting the 
EHR and seeking information from the record.

[EHR Data Description] Patient EHR data is provided in XML format. This XML document contains comprehensive, timestamped 
information covering a patient's medical history, including diagnoses, treatments, medications, test results, and clinical 
notes. All clinical events are ordered ascending by time.

[Instruction Response Guidelines] The generated instructions and responses must conform to these guidelines:
Instructions:
- Ensure that the instructions are grounded in the context of the provided EHR and are relevant to the patient's specific case
- Formulate questions that are meaningful and valuable for clinicians in their decision-making process
- Avoid generating generic or irrelevant instructions that do not contribute to the understanding of the patient's condition

Responses:
- Provide accurate and informative responses that directly address the posed instructions
- Utilize the expertise and specialized terminology contained within the EHR to deliver precise and targeted answers
- Refrain from using vague or non-specialized language that lacks depth and specificity
- Ensure that the responses are coherent, well-structured, and easy to understand

Review the provided EHR and generate ten instruction-response pairs that conform to all outlined guidelines. Ensure these pairs 
cover the entire EHR context window.
When creating instructions and responses, please include evidence to support your generation. Specifically, provide the date of 
the relevant visit from the EHR on which the instructions and responses are based, using the format MM/DD/YYYY (e.g., 
02/15/2016). Do not include the time (e.g., 12:00 AM). 

[EHR] 
{ehr}

[Output] 

Prompt Template for Instruction-Tuning Data Generation

Figure 5: Prompt template for instruction-tuning pairs generation.

Figure 6: MedAlign instruction benchmark for longitudinal records emphasizes recent portions of
each patient’s longitudinal record.

recent records, as reviewing long patient histories is cognitively demanding, and creating instruction
data manually from scratch is time-consuming. Despite covering a substantial average timespan of
3,895.06 days (approximately 10.7 years), the distribution of clinical instructions is concentrated
on recent patient visits. Figure 6 illustrates the distribution of physician-created instruction and
the actual patient visits across timelines. The time evidence information is extracted from human-
written rationales accompanying the human-written responses in the dataset. It shows that 55.3%
of all clinical instructions (n=396) are concentrated in just the last quarter of the patient timeline,
with an even more pronounced 47.0% in the last 15% and 29.5% in the final 5%. While this partly
reflects clinical practice—where recent summaries capture trajectory information—it may overlook
crucial reasoning during earlier periods. Moreover, 71.3% of questions in MedAlign are retrieval-
based, focusing on “needle-in-the-haystack” capabilities rather than evaluating the model’s ability
to synthesize over the full patient timeline.

E DATASET INFORMATION OF EXISTING EHR INSTRUCTION BENCHMARKS
AND TIMER-BENCH

Table 4: Dataset information of existing EHR instruction benchmarks and TIMER-Bench.
Dataset Multi-Visit Avg Time Span Raw Record Modality Curation Size Scalable Attribute
MIMIC-Instr (Test) No 7.2 days Notes Only Model-Synthetic Yes (200) Instruction + Response
MedAlign Yes 3895.06 days Structured Data & Notes Human-Created No (303) Instruction + Response + Rationale
TIMER-Bench Yes 1294.88 days Structured Data & Notes Model-Synthetic Yes (402) Instruction + Response + Time Evidence
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Table 4 presents a detailed comparison between TIMER-Bench and existing EHR instruction bench-
marks. MIMIC-Instr focuses on single-visit scenarios with an average time span of only 7.2 days
and relies solely on clinical notes, limiting its ability to capture longitudinal patient histories. While
MedAlign incorporates both structured data and clinical notes across multiple visits with the longest
average time span (3895.06 days), its manually curated nature restricts scalability with only 303
cases. In contrast, TIMER-Bench bridges these limitations by combining multi-visit support with
both structured and unstructured data over a substantial time span of 1294.88 days. Moreover,
TIMER-Bench leverages model-synthetic curation to enable scalability while uniquely incorporat-
ing temporal evidence in its instruction-response pairs, making it suitable for evaluating temporal
reasoning capabilities in clinical settings.

F DATA STATISTICS

Table 5: Lengths of questions and responses in each benchmark and instruction dataset.
Dataset Count instructions Responses

Q1 Median Q3 Q1 Median Q3

MedAlign 303 8 11 17 14 31 56
TIMER-Bench (Edge) 402 14 18 22 42.25 59 82
TIMER-Bench (Uniform) 248 14 18 21 42.75 61.5 82

TIMER-Instruct (Recency) 5000 51 64 77 97 167 272
TIMER-Instruct (Edge) 5000 52 64 77 100 167 259
TIMER-Instruct (Uniform) 5000 54 65 78 103 168 259

Table 5 shows the length distributions of instructions and responses across evaluation benchmarks,
MedAlign and TIMER-Bench, and the three sets of instruction-tuning datasets, TIMER-Instruct.

G HYPER-PARAMETER TUNING

Table 6: Llama-3.1-8B-Instruct hyperparameter grid search.
Name Values Best Value
Learning Rate 0, 5e-6, 1e-5, 1e-4 1e-5
Gradient Accumulation 4, 8, 16, 32 16
Weight Decay 0, 1e-2, 1e-3,1e-4 1e-4

Table 6 presents the hyperparameter search space and optimal values for instruction-tuning Llama-
3.1-8B-Instruct, where the best performance is achieved with a learning rate of 1e-5, gradient accu-
mulation steps of 16, and weight decay of 1e-4.

H LLM JUDGE PROMPT

Figure 7 shows the prompt template used for the LLM-as-Judge evaluation, which we use to assess
model outputs for correctness and completeness according to reference responses.

I THE CORRELATION OF LLM-JUDGE WITH HUMAN ANNOTATED RANK

To validate our LLM judge, we performed a correlation analysis between the scores from the LLM
Judge and the model rankings annotated by clinicians based on the instructions of the MedAlign
benchmark, where human evaluators assigned rankings to different models’ responses to the same
instructions. As shown in Table 7, the LLM-judge metrics demonstrate strong agreement with hu-
man judgments, achieving high negative correlations for both correctness (ρcorr = −0.94) and
completeness (ρcorr = −0.89). This inverse relationship aligns with our scoring scheme, where
higher LLM scores and lower human ranks indicate better performance. Specifically, the ranking of
models by LLM-judge scores consistently matches human preferences—GPT-4 variants are ranked
highest, followed by Vicuna models, and then MPT-7B. This strong correlation suggests that our
LLM-based evaluation framework provides a reliable proxy for human judgment in assessing tem-
poral reasoning capabilities, enabling us to conduct larger-scale evaluations efficiently.
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You are an expert in electronic health records (EHR) analysis. Your task is to evaluate responses generated by AI models based on given instructions 
and EHR. You will assess the quality of the responses based on specific criteria, comparing them to provided reference answers (ground truth). Aim to 
be fair and balanced in your evaluation, recognizing both strengths and limitations in the model's response.

EHR Data:
{ehr_data}

Instruction:
{instruction}

Model Response:
{model_response}

Reference Answer:
{reference_answer}

Evaluation Criteria:
1. Correctness (0/1):
- Score 1 if the response is generally accurate and aligns with the key points in the reference answer, even if there are minor discrepancies or 
omissions.
- Score 0 only if the response contains significant factual errors or clearly misinterprets the EHR data.
2. Completeness (0/1):
- Score 1 if the response addresses the main aspects of the given instruction and covers the essential points present in the reference answer.
- Score 0 only if the response misses critical information or fails to address the core of the instruction.

Please provide your evaluation in the following JSON format:
{{

"evaluation": {{
"correctness": {{
"score": 0 or 1,
"explanation": "Your reasoning here, including comparison to reference answer"
}},
"completeness": {{
"score": 0 or 1,
"explanation": "Your reasoning here, including comparison to reference answer"
}}

}},
"overall_comments": "Brief summary comparing the model's response to the reference answer, highlighting strengths and areas for improvement"

}}
Ensure your output is valid JSON that can be parsed programmatically. Do not include any text outside of the JSON structure.

Prompt Template of LLM Judge

Figure 7: Prompt template for LLM-as-Judge.

Table 7: Correlation between LLM-Judge evaluation and human judgments. Higher LLM scores
and lower human ranks indicate better performance. Spearman correlation shows strong agreement
between LLM scores and human ranks (ρ = −0.97 for average score, ρ = −0.94 for correctness,
ρ = −0.89 for completeness).

Model LLM Score Human LLM
Correctness Completeness Rank↓ Rank↓

GPT4-32k 0.419 0.360 2.309 1
GPT4-32k-Multi-Step 0.383 0.365 2.292 2
Vicuna-13B 0.343 0.292 3.259 3
Vicuna-7B 0.318 0.299 3.304 4
MPT-7B-instruct 0.193 0.149 3.688 5

J HEAD-TO-HEAD COMPARISON PROMPT

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question displayed below. 
Your evaluation should consider correctness and helpfulness. You will be given a reference answer, assistant A's answer, and assistant B's answer. 
Your job is to evaluate which assistant's answer is better. Begin your evaluation by comparing both assistants' answers with the reference answer. 
Identify and correct any mistakes. Avoid any position biases and ensure that the order in which the responses were presented does not influence your 
decision. 
Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. 
After providing your explanation, output your final verdict by strictly following this format: "[[A]]" if assistant A is better, "[[B]]" if assistant 
B is better, and "[[C]]" for a tie. You must begin with [[A]] or [[B]] or [[C]].
Assigning "[[C]]" should be a very last resort; used only if you absolutely cannot discern any difference in the quality of the two responses.

Instruction:
{instruction}

Reference:
{ground truth response}

Response 1:
{response of model A}

Response 2:
{response of model B}

Prompt Template of Head-to-Head Comparison

Figure 8: Prompt template for head-to-head comparison.
Figure 8 displays the prompt template used for the head-to-head comparison between model outputs,
where responses from different models are compared to evaluate their relative performance given the
instruction and the reference answer.

K HEAD-TO-HEAD RESULTS

Our head-to-head evaluation in Table 8 reveals that TIMER-Instruct consistently outperforms ex-
isting medical models across both benchmarks. Against specialized medical models like Meditron-
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Table 8: Head-to-head comparison between various models and TIMER-Instruct. Each row shows
the winning margin (additional wins by TIMER-Instruct) and tie rates for both benchmarks.

MedAlign TIMER-Bench
Model Win% Tie% Win% Tie%

Existing Medical Finetuned Models
Meditron-7B +83.10 2.30 +95.02 0.50
MedAlpaca +72.80 2.80 +86.41 0.37
AlpaCare +84.40 1.00 +73.82 0.01
MMed-LlaMa +80.14 2.60 +81.71 0.87
PMC-LlaMa +74.40 4.10 +96.14 0.12
MedLM-L +27.80 6.60 +52.49 1.00
MedLM-M +39.50 5.90 +20.65 1.99

Models with the Same Base
MedInstruct +6.30 6.90 +8.45 1.99
Llama3.1 +23.80 5.60 +17.67 1.99

7B, MedAlpaca, and AlpaCare, TIMER-Instruct achieves substantial winning margins ranging from
+72% to +95%. The performance gap is particularly pronounced on the TIMER-Bench dataset,
where TIMER-Instruct demonstrates even stronger advantages, notably achieving a +95.02% win-
ning margin against Meditron-7B and +96.14% against PMC-LLaMa. TIMER-Instruct also main-
tains a clear edge with winning margins of +6.30% to +23.80%. This consistent superiority across
different model comparisons demonstrates the effectiveness of our instruction-tuning approach for
temporal medical reasoning.

L PROPRIETARY MODEL PERFORMANCE

Table 9: Proprietary model performance (%) on MedAlign and LongEHR-Bench: reference as cap.

Model Open Source

MedAlign LongEHR-Bench
LLM-as-a-Judge NLP Metrics LLM-as-a-Judge NLP Metrics

Correct.↑ Complete.↑ BERTScore↑ ROUGE-L↑ Correct.↑ Complete.↑ BERTScore↑ ROUGE-L↑
Proprietary Long Context Model Performance
GPT4-32k ✗ 62.73±5.61 39.60±5.61 78.12±0.69 15.77±1.33 72.89±4.35 58.46±4.85 81.79±0.45 22.19±0.97
GPT-4o ✗ 63.37±5.45 45.21±5.61 76.87±0.71 14.23±1.21 85.32±3.48 70.65±4.35 83.51±0.34 22.60±0.89
Claude 3.5 Sonnet ✗ 68.98±5.28 57.76±5.45 77.17±0.55 12.21±0.86 89.55±2.99 88.31±3.11 81.41±0.29 16.91±0.57

For reference purposes only, we present the performance of several proprietary large language mod-
els on both MedAlign and LongEHR-Bench datasets in Table 9. It is important to note that direct
comparisons between these models and open-source alternatives would not be appropriate due to
several factors: (1) the proprietary models have significantly larger model sizes and more extensive
pretraining data, (2) their architectures and training procedures are not publicly available, and (3)
their training costs are orders of magnitude higher than open-source alternatives. We include these
results primarily to establish approximate performance ceilings for these benchmarks and to provide
reference points for future research. The performance metrics are reported with standard deviations
to account for the inherent variability in model outputs.

M ADDITIONAL METRICS RESULTS

Table 10 presents additional automatic evaluation metrics (METEOR, CHRF, and Google BLEU) for
our model and baselines across MedAlign and TIMER-Bench benchmarks, where TIMER-Instruct
consistently improves performance across all metrics compared to the base model and medical QA
fine-tuning.

N ADDITIONAL TIMER-BENCH RESULTS

Table 11 shows model performance on the uniformly distributed version of TIMER-Bench, where
TIMER-Instruct demonstrates consistent advantages over both medical-finetuned baselines and gen-
eral long-context models, achieving the best performance across all metrics.
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Table 10: Additional automatic metrics results (%) of baseline models and TIMER-Instruct, re-
ported as mean ± standard deviation from bootstrap resampling (n=10,000) over the test set with
100 samples.

Model MedAlign TIMER-Bench (Edge) TIMER-Bench (Uniform)
METEOR CHRF Google BLEU METEOR CHRF Google BLEU METEOR CHRF Google BLEU

Existing Medical Finetuned Model
Meditron-7B* 6.22±0.98 11.10±0.80 1.19±0.20 9.20±1.14 16.64±0.88 3.40±0.31 8.23±1.11 15.75±1.07 3.24±0.41

MedAlpaca* 7.65±1.04 11.30±1.18 2.28±0.60 12.81±1.36 18.99±0.98 5.52±0.50 12.13±1.36 18.50±12.54 5.47±0.67

AlpaCare* 17.69±1.13 20.39±1.51 5.46±0.70 20.41±1.35 25.43±1.06 7.93±0.57 20.08±1.35 25.04±1.27 7.55±0.65

MMed-LLaMA-3-8B* 10.16±1.00 13.21±0.92 1.76±0.30 19.99±1.24 24.71±0.91 5.69±0.41 19.31±1.20 24.36±1.13 5.49±0.51

PMC-LLaMA-13B* 6.66±0.43 8.84±1.09 1.70±0.30 1.04±0.36 1.34±0.52 0.51±0.22 0.66±0.33 0.87±0.46 0.33±0.19

MedLM-Large*† 19.45±1.66 21.99±1.456 6.66±0.78 27.73±1.55 32.08±1.15 14.24±0.94 34.68±1.55 31.15±1.401 13.50±1.12

MedLM-Medium† 17.84±1.73 20.51±1.59 6.60±0.85 34.68±1.44 38.48±1.20 17.57±1.07 35.18±1.33 38.23±1.41 16.75±1.10

MedInstruct‡ 19.30±1.20 20.66±1.11 3.60±0.40 35.18±1.33 38.11±0.91 11.89±0.68 37.76±1.32 37.30±1.15 11.73±0.68

TIMER-INSTRUCT Tuned Model with Different Base
Qwen2.5-7B-Instruct 21.43±1.15 22.23±1.05 4.11±0.38 36.24±0.94 38.96±0.79 11.76±0.54 35.51±1.22 38.45±1.01 11.62±0.71

w/ TIMER-INSTRUCT Tuning 21.64±1.13 21.73±1.08 4.06±0.39 37.38±0.98 39.84±0.84 12.61±0.58 36.35±1.24 39.32±1.07 12.53±0.74

Llama3.1-8B-Instruct 17.89±1.02 19.63±1.12 3.26±0.40 33.84±1.02 36.77±0.91 10.80±0.57 33.64±1.44 36.41±1.18 10.76±0.59

w/ TIMER-INSTRUCT Tuning 22.91±1.04 25.43±1.57 7.88±1.00 37.76±1.32 41.17±1.06 16.82±0.96 37.10±1.10 40.19±1.29 16.23±1.10
*These models have a maximum context length ≤ 8K. We truncated the most recent records to fit within their maximum size.
†MedLM are powered by Med-PaLM 2, which is a medical fine-tuned version of Google PaLM.
‡We instruct-tuned MedInstruct w/ Llama3.1-8B-Instruct as the base model.

Table 11: Performance (%) of baseline models and TIMER-Instruct on TIMER-Bench (Uniform),
reported as mean ± standard deviation from bootstrap resampling (n=10,000) over the test set with
100 samples.

Model TIMER-Bench (Uniform)
LLM Judge Metrics NLP Metrics
Correct Complete BERTScore ROUGE-L

Medical Finetuned Model
Meditron-7B* 3.23±2.22 0.40±0.60 64.38±1.38 4.91±0.75

MedAlpaca* 6.85±3.02 1.61±1.41 71.49±0.97 8.82±1.03

AlpaCare* 7.26±3.23 1.21±1.41 75.20±1.21 13.89±0.83

MMed-LLaMA-3-8B* 17.74±4.64 6.85±3.02 72.84±0.71 10.37±0.75

PMC-LLaMA-13B* 0.81±1.01 0.40±0.60 29.01±3.44 0.44±0.29

MedLM-Large*† 19.35±4.84 6.05±3.02 81.97±0.56 21.24±1.25

MedLM-Medium† 48.79±6.05 24.60±5.44 82.99±0.59 23.18±1.41

MedInstruct‡ 58.47±6.05 36.69±6.05 79.93±0.63 18.37±0.94

TIMER-INSTRUCT Tuned Model with Different Base
Qwen2.5-7B-Instruct 64.52±6.05 50.81±6.05 80.65±0.46 17.84±0.77
w/ TIMER-INSTRUCT Tuning 66.13±5.85 47.58±6.25 81.44±0.45 18.55±0.85
Llama3.1-8B-Instruct 58.47±6.05 33.47±6.05 79.30±0.59 17.62±0.95
w/ TIMER-INSTRUCT Tuning 64.52±6.05 43.55±6.05 84.09±0.56 24.16±1.27
*Models with context length ≤ 8K; most recent records truncated to fit.
†MedLM: medical fine-tuned version of Google PaLM (Med-PaLM 2).
‡Instruct-tuned using Llama3.1-8B-Instruct as base model.

O CASE STUDIES

As shown in Table 12 and Table 13, Qualitative analysis of model outputs reveals key differences in
temporal reasoning capabilities between the baseline model and TIMER-Instruct model. The base-
line model exhibits several characteristic failure modes: (1) recall interference, where it retrieves
temporally irrelevant information from the context, e.g., listing unrelated historical visits in Case
1, (2) temporal ordering errors, where it misattributes dates and event sequences, e.g., incorrect x-
ray dates in Case 3, and (3) repetitive generation patterns when handling long temporal sequences,
e.g., redundant phrases about medication weaning in Case 2. In contrast, TIMER-Instruct demon-
strates improved temporal processing capabilities: it successfully filters relevant temporal infor-
mation from the context window, maintains chronological consistency across multiple time points,
and generates non-repetitive responses that accurately capture temporal relationships. When pre-
sented with complex queries requiring multi-step temporal reasoning. e.g., treatment progression in
Case 4, TIMER-Instruct shows robust performance in establishing causal relationships and main-
taining contextual relevance throughout the generated response. These improvements suggest that
our temporal-aware instruction tuning effectively enhances the model’s ability to process and reason
about time-dependent information in long-context scenarios.
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Table 12: Case studies (Part 1): Qualitative comparison of model responses between base Llama-
3.1-8B-Instruct and TIMER-Instruct-tuned model on TIMER-Bench. Key differences in response
are highlighted in purple, with analytical insights in pink.

Clinical Query Llama-3.1-8B-Instruct w/ TIMER-Instruct

Case 1: Timeline
Analysis
Query: The pa-
tient was seen on
01/16/2013 for hip
and shoulder pain.
Provide a timeline of
the events leading to
this visit, including
relevant symptoms
and their duration.

Response: ”The patient was seen on
01/16/2013 for hip and shoulder pain.
The timeline of events leading to this
visit is as follows:- The patient was seen
on 12/31/2011 for an ear lesion, which
was described as a bump in the ear that
was bleeding 2 days ago and had some
crust over it.- The patient was seen on
06/26/2012 for a follow-up visit, where
she presented with bumps spreading on
her face, which were later diagnosed
as molluscum contagiosum infection.-
The patient was seen on 11/20/2012 for
a hospital visit, but the note does not
mention any symptoms related to hip or
shoulder pain.- The patient was seen on
11/27/2012 for a hospital visit, but the
note does not mention any symptoms
related to hip or shoulder pain.- The
patient was seen on 01/09/2013 for a
telephone encounter note, where her
mother reported that the patient was
experiencing asthma symptoms ...”

Analysis: The model response in-
accurately represents the timeline of
events. It fails to mention the spe-
cific injury to the hip during PE that
occurred a month prior to the visit
on 01/16/2013. Additionally, it does
not accurately capture the duration
and worsening of the shoulder pain
and chest pain symptoms, which were
reported as occurring over a couple
of months leading up to the visit. The
response gets distracted by visits in the
patient record that do not correspond
with the given instruction.

Response: ”The patient presented to
the clinic on 01/16/2013 with com-
plaints of hip pain and pinching pain
in her left shoulder with running. The
hip pain had started a month prior to
the visit, after she injured her hip in PE
doing an obstacle course. The pain ini-
tially ignored, but worsened over time.
The shoulder pain had been bothering
her for about 2 months, specifically
when she ran. She also experienced
chest pain during exercise, which was
alleviated with the use of albuterol.
Additionally, she reported shortness
of breath. The patient had previously
experienced asthma symptoms, for
which she had used inhalers in the past.
She had also been prescribed Singular
as a child. The patient was advised
to rest for 2 weeks, use ibuprofen as
needed, and ...”

Analysis: The model accurately
captures the core facts regarding the
patient’s hip and shoulder pain, in-
cluding the timeline of events leading
to the visit on 01/16/2013. It correctly
identifies the injury during PE, the
worsening of hip pain, and the shoulder
pain experienced during running. The
mention of asthma symptoms and the
alleviation of chest pain with albuterol
is also correctly noted.

Case 2: Medication
Review
Query: The patient is
concerned about his
current narcotic use.
What is his current
regimen, and has he
expressed concerns
about this previously?

Response: ”The patient is currently
taking methadone 60 mg per day, and
narco 2 to 3 mg q.h.s. He has expressed
a concern about his narcotic use, stating
that he has a fear of being on narcotics
for the rest of his life and would like to
be weaned off of his methadone. He has
previously tried to take his medication
differently ...”

Analysis: The model incorrectly
states the patient’s current narcotic
regimen as Methadone 60 mg per day
and Narco 2-3 mg q.h.s. However,
the reference answer specifies that the
patient takes Methadone 60 mg daily,
Narco 2-3 mg at bedtime, and Motrin
800 mg as needed. Additionally, the
model response contains repetitive
phrases about the patient’s attempts to
wean off Methadone.

Response: ”The patient is currently
taking methadone 60 mg per day, narco
2 to 3 mg q.h.s., and Motrin 800 mg.
He has been on a narcotic for some
time. In the past, he had tried fentanyl
patches, Vicodin, and morphine. He
has expressed a concern about being
on narcotics for the rest of his life,
and would like to be weaned off of his
methadone. He has also stated that ...”

Analysis:The model accurately states
the patient’s current medication regi-
men, including Methadone 60 mg daily,
Narco 2-3 mg at bedtime, and Motrin
800 mg. It correctly notes the patient’s
concerns about long-term narcotic
use and his desire to be weaned off
Methadone, aligning with the reference
answer.
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Table 13: Case studies (Part 2): Qualitative comparison of model responses between base Llama-
3.1-8B-Instruct and TIMER-Instruct-tuned model on TIMER-Bench. Key differences in response
are highlighted in purple, with analytical insights in pink.

Clinical Query Llama-3.1-8B-Instruct w/ TIMER-Instruct

Case 3: X-ray
Findings Over
Time
Query: The patient
had a left knee
injury in July 2022.
Summarize the
findings from his
x-rays over time.

Response: ”The patient had a left knee
injury in July 2022. Over time, the
x-rays showed the following findings: 1.
Initially, there was a subtle irregularity
along the proximal tibial metaphysis on
lateral view X-ray on July 6, 2022, which
raised concern for an occult proximal
tibia fracture. 2. Repeat x-rays on July
25, 2022, did not show any obvious bony
abnormality, but there was soft tissue
swelling in the area of tenderness. 3. ...
This confirmed the initial suspicion of
a nondisplaced fracture of the proximal
tibia. Answered correctly Answered
correctly Answered correctly Answered
correctly Answered correctly”

Analysis: The model response con-
tains factual inaccuracies regarding the
timeline of x-ray findings. It incorrectly
states that the initial x-ray was on July 6,
2022, while the correct date is July 18,
2022. Additionally, it misrepresents the
findings on July 25, 2022, as showing
soft tissue swelling, which was not
mentioned in the reference answer.

Response: ”1. Initial x-rays on
07/18/2022 showed a subtle irregularity
along the proximal tibial metaphysis on
lateral view, raising concern for an occult
proximal tibia fracture. 2. Repeat x-rays
on 07/25/2022 showed no obvious bony
abnormality, but there was soft tissue
swelling in the area of tenderness. 3...
4. No further x-rays were mentioned in
the provided EHR for the left knee after
08/22/2022. 5. The patient was advised
to limit his weightbearing activity based
on his symptoms, and follow-up was
recommended in 2 weeks if he was not
comfortably walking without a limp.
6. The patient was also advised to
avoid high-risk activities such as going
to the playground, bouncy houses, or
trampolines. 7. Follow-up x-rays were
recommended in 3 weeks if the patient
had not returned to full running”

Analysis: The model accurately de-
scribes the findings from the x-rays over
time, including the initial irregularity,
the repeat x-ray findings, and the final
assessment of the healing nondisplaced
fracture. The temporal relationships
are correctly represented, and the dates
mentioned align with the EHR data.

Case 4: Injury
Follow-up
Query: The pa-
tient was seen
on 02/13/2017
for a left ankle
sprain. Summa-
rize the treatment
plan and outcome
at his follow-up
appointments.

Response: ”At the follow-up visit on
01/23/2017, the patient was placed in a
lace-up ankle brace for the next week.
After a week of full-time wear, the brace
was to be taken off only to shower and
sleep. The patient was to wean out
of the brace at home and discontinue
it if he remained pain-free. He was
advised to avoid physical education for
the next week and was told that if the
limp persisted or he continued to favor
the ankle after 3 weeks, he should return
to the clinic. At the follow-up visit
on 02/13/2017, the patient’s limp had
improved, and he had full ankle range of
motion without pain. He was no longer
tender over the ATFL, CFL, or deltoid
ligament. The plan was to refer him
for physical therapy if the pain or limp
persisted. The patient was advised to
continue using the ankle brace as needed
...”

Analysis: The model response is or-
dered in such a way that it states that
the patient was seen on 01/23/2017
for follow-up after it discusses the
appointment on 02/13/2017, creating an
incorrect temporal flow of events.

Response: ”At the follow-up visit on
01/23/2017, the patient was placed in a
lace-up ankle brace for the next week.
After a week of full-time wear, the brace
was to be taken off only to shower and
sleep. The patient was to wean out
of the brace at home and discontinue
it if he remained pain-free. He was
advised to avoid physical education for
the next week and was told that if the
limp persisted or he continued to favor
the ankle after 3 weeks, he should return
to the clinic. At the follow-up visit
on 02/13/2017, the patient’s limp had
improved, and he had full ankle range of
motion without pain. He was no longer
tender over the ATFL, CFL, or deltoid
ligament. The plan was to refer him
for physical therapy if the pain or limp
persisted ...”

Analysis: The model accurately de-
scribes the treatment plan and outcomes
for the patient’s follow-up appointments,
including the transition from a short
leg walking cast to a lace-up ankle
brace and the patient’s improvement
in symptoms. Its ordering of events is
temporally grounded and clear, aligning
with user preference.
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