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Abstract

The rapid development of large language mod-
els (LLMs) has created an urgent need for iden-
tifying machine-generated texts, and text wa-
termarking technology has proven to be an ef-
fective solution. However, current watermark-
ing methods, while demonstrating strong de-
tectability, significantly degrade text quality
due to the introduction of unnatural tokens. The
main reason lies in the fact that these methods
ignore the importance of semantic information
in the watermarking process. To address this
issue, we note that the logit vector produced
by LLMs encodes both semantic understand-
ing of input texts and prediction confidence
across different tokens. Therefore, we propose
a novel Semantic Self-Guided Watermarking
(SSGW) framework that leverages the LLM
itself to generate a guidance logic vector that
assists in watermarking while producing the
original one concurrently. Subsequently, we de-
sign a transform module to analyze these two
vectors comprehensively and then transform
them into adaptive watermark logits for differ-
ent candidate tokens, thereby reducing the pos-
sibility of selecting inappropriate tokens. Ex-
perimental results confirm the effectiveness of
our method in achieving superior performance
in both watermark detectability and text quality
preservation. The source code will be made
publicly available upon acceptance.

1 Introduction

In recent years, the rapid advancement of large lan-
guage models (LLMs) has ushered in a new era of
natural language processing (Ouyang et al., 2022;
Touvron et al., 2023b; OpenAl, 2023a). They can
generate coherent and contextually relevant texts
that often rival human-written content in terms of
quality and fluency. However, this technological
leap forward has also caused a multitude of ethical
and moral concerns in various domains. Specif-
ically, the misuse of LLM-generated essays can
lead to academic dishonesty (Stokel-Walker, 2022),
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Figure 1: Current watermarking methods (represented
by KGW (Kirchenbauer et al., 2023)) often degrade
text quality by introducing unnatural tokens. In this
case, it is obvious that “cars”, “storm”, or even “&&”
are not suitable for contextual semantics. However,
KGW assigns these tokens the same watermark logit
as appropriate ones. In contrast, our SSGW method
(right) designs a semantic self-guided watermarking
framework to adaptively assign reasonable watermark
logits to different candidate tokens, effectively reducing
the possibility of inappropriate token replacement.

and the fabrication of fake news can even provoke
social panic (Augenstein et al., 2024). Therefore,
distinguishing text generated by LLMs from that
written by humans has become an essential task.
As a solution, the text watermarking technique
effectively alleviates these issues by embedding
hidden patterns into LLM-generated texts. These
patterns are invisible to humans but can be detected
by the corresponding algorithm. Kirchenbauer et al.



(2023) design a watermarking algorithm (KGW)
based on logits modification. This method parti-
tions the vocabulary into a red list and a green list
using a hash function depending on the preceding
token at each generation step. Then, a positive
constant (termed the watermark logit) is added to
the logit value of green list tokens, increasing their
probability of being sampled. As a result, a text
will be considered watermarked by the detector if
it contains more than a certain number of green list
tokens. The design of KGW can easily improve
the detectability of watermarks by increasing the
constant value. However, this approach often sig-
nificantly degrades the quality of the generated text
due to the introduction of a large number of unnatu-
ral tokens. As shown in Figure 1, the uniform logits
modification strategy treats all tokens assigned to
the green list as the same, while most of them are
actually inappropriate.

To mitigate this issue, some works attempt to op-
timize the logits modification strategy instead of a
positive constant used in KGW. Liu and Bu (2024)
proposes an adaptive text watermarking method
(ATW), which proportionally scales up the orig-
inal logits instead of uniformly increasing. Wu
et al. (2024) introduces a theoretically unbiased
watermarking method (DIP) that discards tokens
with probabilities below « and doubles those above
1 — a. However, these mathematical adjustments
cannot guarantee a stable improvement in text qual-
ity. In addition, Lee et al. (2023) proposes a se-
lective watermarking strategy (SWEET) that only
applies watermarks to tokens with entropy higher
than a certain threshold. Although SWEET is effec-
tive for low-entropy tasks such as code generation,
this simple threshold-based strategy has little im-
provement in most scenarios.

Different from the aforementioned methods, our
work emphasizes the importance of semantic infor-
mation in the process of logits modification at each
generation step. When modifying the logit value
of a single green list token, both its semantic infor-
mation and the semantics of its preceding text need
to be taken into account. Therefore, we introduce
a Semantic Self-Guided Watermarking (SSGW)
method (Figure 1, right). Specifically, we set a dy-
namically adjusted guidance window during text
generation, and then the LLM itself is applied to
the corresponding text. The obtained output, which
we call the guidance logit vector, encodes both
semantic understanding of the guidance window

Properties \ SWEET ATW DIP SSGW
watermark detectability v v X v
text coherence and fluency X v X v
semantic preservation v X v v

Table 1: Experimental results in Section 5 show that
existing watermarking techniques do not adhere to all
three key properties.

input and prediction confidence across different
candidate tokens. Furthermore, in order to embed
the semantic guidance message as a watermark, we
design an algorithm that transforms the guidance
logit vector into a watermark logit list, which has
the same length as the vocabulary.

During the evaluation phase, we systematically
break down text quality into two key aspects: the
semantic preservation ability and the fluency and
coherence of the generated text. Correspondingly,
we measure the former by calculating the semantic
similarity between the watermarked text and the un-
watermarked one, and the latter using the perplexity
metric. Furthermore, if detectability is added, these
three key properties will form a three-dimensional
trade-off relationship.

To the best of our knowledge, there is no wa-
termarking technique that adheres to all three key
properties simultaneously, and the experimental re-
sults in Section 5 confirm this point as presented in
Table 1. In summary, the contributions of our work
are summarized as follows:

* We propose an innovative method called
SSGW, which can make full use of semantic
information in the preceding text to assist in
watermarking through a self-guided approach.

* We are the first to find and verify a three-
dimensional trade-off relationship in the eval-
uation system for enhancing watermarked text
quality through extensive experiments.

* Experimental results show that SSGW effec-
tively outperforms existing methods, achiev-
ing a simultaneous improvement of watermark
detectability and text quality, especially in text
coherence and fluency.

2 Related Work

The rapid advancement of LLMs has significantly
narrowed the distinction between human-written
and LLM-generated text, raising critical concerns



about content authenticity and attribution (Rad-
ford et al., 2019; Brown et al., 2020). This blur-
ring boundary has created an urgent need for reli-
able text authentication mechanisms, as traditional
classification-based detection methods (Mitchell
et al., 2023; OpenAl, 2023b) struggle to identify
synthetic content accurately (Sadasivan et al., 2023;
Chakraborty et al., 2023). In response, researchers
have renewed interest in watermarking techniques
adapted for modern Al systems.

Text watermarking, the practice of embedding
imperceptible identifiers in textual content, has his-
torically served as a cornerstone of copyright pro-
tection (Atallah et al., 2001). Conventional ap-
proaches typically relied on lexical substitution
or syntactic pattern manipulation (Topkara et al.,
2005; Meral et al., 2009), which have evolved sig-
nificantly in the era of LLMs.

Recent breakthroughs have integrated water-
marking directly into LLM generation processes,
fully leveraging the advanced understanding of lan-
guage semantics and contextual awareness inherent
in LLMs. The most representative is the LLM
watermarking technology based on logits modifi-
cation proposed by Kirchenbauer et al. (2023). As
a pioneer, although this method has demonstrated
excellent watermark detectability, it still needs fur-
ther optimization to be applied in the real world,
especially in two key aspects: improving robust-
ness against attacks and mitigating impact on text
quality (Liu et al., 2024b).

A number of works have been proposed to en-
hance the robustness of watermarks. Based on
KGW, Zhao et al. (2023) proves that a fixed parti-
tion of red and green lists contributes to stronger
robustness against various attacks. Moreover, some
studies attempt to integrate semantic information
into their watermarking algorithm (Ren et al., 2023;
Liu et al., 2024a; He et al., 2024; Liu and Bu, 2024),
considering that most watermark removal attacks
tend to preserve the semantics of the original text.

In addition, some works focus on improving the
quality of watermarked texts. Hu et al. (2024)
proposes a theoretically unbiased method using
inverse sampling and reweighting technology to
preserve the original text distribution. Similarly,
Wu et al. (2024) extends this idea and proposes
the a-reweight method with more general parame-
ter settings. However, unbiased distribution does
not imply lossless text quality, and these meth-
ods have shown poor detection performance. Lee

et al. (2023) employs a more practical strategy that
selectively applies watermarks to tokens with en-
tropy higher than the threshold since lower entropy
means less suitable tokens. However, this strategy
is almost no different from KGW in most scenarios.
Liu and Bu (2024) designs an adaptive watermark
temperature scaling module, allocating higher wa-
termark logits to tokens with higher probability.
The disadvantage of this multiplicative method lies
in that some tokens will be assigned excessively
high watermark logits compared to those unmod-
ified tokens. To address these shortcomings, our
work designs a framework that constructs auxiliary
guidance logit vectors to assist in adding water-
marks, emphasizing the importance of utilizing
semantic information.

3 Preliminaries

The watermark algorithm consists of a watermark
generator G and a watermark detector D. At each
generation step t, the watermark generator can in-
troduce subtle modifications to the logit vector {(*)
obtained by the given LLM M over the vocabulary
V based on the prompt z_,,.0 and the preceding
generated text x1.;—1. Then, the LLM will sample
the next token based on the modified logit vector
after performing softmax. This procedure is pre-
sented in Eq. 1.

€Ty ~ SOftma/fU(g(l(t)))

As introduced in Kirchenbauer et al. (2023), we
employ a similar red-green list strategy in this pa-
per. Given the logit vector {(), a predetermined
constant y is used to partition the vocabulary into a
green list G of size |V| and a red list R; of size
(1 —)|V|, where | V] is the size of the vocabulary.
Then, we adjust the original logit vector with a wa-
termark logit list 6|(‘t/)|, using Eq.2. Specially, 5|(‘t/)|
is a constant list in KGW.

(1
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The method of calculating the red-green list
in the detection process is the same as during
the generation. Given a token sequence s =
{s1, 82, ...,s7}, let |s|g denote the number of
green list tokens in s. Our detection is carried
out through the one-sided z-test, specifically by cal-
culating the z-score using Eq.3. If the z-score is



higher than a given threshold, s will be considered
watermarked.
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4 Method

In this section, we will introduce our Semantic Self-
Guided Watermarking (SSGW) method that simul-
taneously improves both watermark detectability
and text quality. This method operates through
three key modules: (1) Guidance Logit Vector Gen-
eration, (2) Adaptive Watermark Logits Transfor-
mation, and (3) Dynamic Guidance Window Ad-
justment.

4.1 Guidance Logit Vector Generation

The design of our Semantic Self-Guided Water-
marking (SSGW) method is driven by two funda-
mental observations. First, an effective watermark
generator should analyze the semantic information
of the preceding text to evaluate token substitutabil-
ity at each generation step. This requirement stems
from the fact that arbitrary token replacements dis-
rupt the semantic coherence of the generated text.
Second, the logit vector produced by LLMs inher-
ently reflects both semantic understanding of the
given input and relative preference scores for dif-
ferent tokens in the vocabulary.

Consequently, it is natural to take into account
the scheme of constructing an auxiliary guidance
logit vector {*) different from the original I(*) dur-
ing text generation and embedding this logit vector
as a watermark. Specifically, if these two logit
vectors have different prediction results, we pre-
fer to use the result of [(*) as the next token by
modifying /), achieving the effect of reducing
semantic disturbance while altering the original
selection of the LLM.

Therefore, our SSGW method employs a strat-
egy of setting a guidance window and then applying
the LLM to the corresponding text. In this way, the
obtained guidance logit vector can not only assist
in selecting tokens that are suitable for contextual
semantics but also have a stable difference in pre-
diction results to enhance the watermark detectabil-
ity. Specifically, the following computations will
be performed at each generation step ¢:

1) — M2 0, T1:4-1)

. “4)
(D = M(z4-r4-1)

where 1Y) incorporates the complete historical
context from prompt x_,,.o to previously gener-
ated tokens x1.;—1, while [® is obtained from the
guidance window text x;_r..—1 of length L. This
architecture ensures that [(*) preserves semantic co-
herence while introducing controlled divergence.

4.2 Adaptive Watermark Logits
Transformation

After obtaining the guidance logit vector, our logits
modification strategy diverges from that of KGW.
Our approach adaptively biases different candidate
tokens in the vocabulary with varying watermark
logits based on their semantics. Algorithm 1 de-
scribes the procedure of Adaptive Watermark Log-
its Transformation (AWLT).

Algorithm 1 Adaptive Watermark Logits Transfor-
mation (AWLT)

Input: Original logit vector I(!), guidance logit
vector (), initial suppression coefficient \g,
guidance watermark strength dyy;, low entropy
threshold 6

1: Convert the input logit vectors into probability
distributions: p(Y) = softmax (l(t)), plt) =
softmax (ﬂ”)

2: Obtain the entropy and maximum index of
the original probability distribution: Hgq =
H(p"), I = argmax (p\")

3: Obtain the entropy and maximum index of
the guidance probability distribution: Hyy; =
H(ﬁ(t)), Iy = argmax (ﬁ(t))
if Igui = I,; then

A < Ag - Sigmod (Hori + ngi)

1] = 2L

if continuous Hi + Hyyi < 0 then
update \g <= X\o + 1

end if

10: e?()l if "
s .. _D
11: 5|V| = (5gu1 ﬁ(t)[lgui]

)
Output: 5|V|

D R A A

The AWLT procedure begins by converting both
logit vectors into probability distributions p® and
p®) through softmax normalization. We then an-
alyze their prediction behaviors through two key
metrics:

* Prediction consensus: The argmax function
is applied to both probability distributions to



obtain their maximum probability indices o
and Jgy;. The comparison result between them
shows whether both distributions agree on the
most probable token.

* Prediction uncertainty: Shannon Entropy
(Shannon, 1948), which is defined as H =
— Y p log pg., measures the uncertainty of a
discrete probability distribution. We denote

Hy as the entropy of p(t) and Hygy; as that of
5(t)
Y.

There are two possible outcomes for the compar-
ison of prediction consensus, and we will handle
them separately.

Case 1: Divergent predictions (I, # Ion).
When the guidance distribution suggests a differ-
ent optimal token, we consider this a natural wa-
termarking opportunity. The watermark logit list

0
O]

distribution p(*), scaled by the watermark strength
parameter Jgy;.

Case 2: Consensus predictions ([gyi = o).
To improve the watermark detectability, we imple-
ment an entropy-adaptive Maximum Probability
Suppression (MPS) mechanism using the follow-
ing equation.

is calculated proportionally to the guidance

A= AO : Slngd (Hori + ngi) %)

where )¢ is the predefined initial suppression co-
efficient. We use the sum of both entropy Hyym =
Hoyri + Hgyi as a basis for the coefficient adjustment.
A very low Hgynm indicates that both p(*) and p(®)
are concentrated on specific tokens. In this case,
the watermark strength should be relatively weak,
corresponding to our algorithm’s use of a smaller
suppression coefficient. Conversely, when Hg, is
higher, it suggests that the distributions perceive
multiple reasonable choices, allowing for a stronger
watermark.

It is worth mentioning that if both p(*) and p(*)
have extremely low entropy under a predefined en-
tropy threshold 6 at the same time and Igy; = o,
it indicates a failure of watermark injection at this
time step. If this extreme situation continuously
occurs during the watermarking process, we will
employ the Dynamic Suppression Coefficient Up-
date (DSCU) mechanism to increase \g.

We note that both Lee et al. (2023) and Liu and
Bu (2024) discuss the use of entropy for water-
marking in the text generation process. However,

their strategy is limited to setting a threshold, treat-
ing all tokens with entropy higher than the prede-
fined threshold as the same. Their experimental
results have proved the effectiveness of using en-
tropy for watermarking. However, a more in-depth
and reasonable approach should be adjusting the
watermark strength adaptively according to differ-
ent entropy scenarios, rather than a simple binary
classification.

4.3 Dynamic Guidance Window Adjustment

To further improve the generated text quality, we
design a dynamic guidance window adjustment
framework, as detailed in Algorithm 2.

Algorithm 2 Dynamic Guidance Window Adjust-
ment (DGWA)

Input: prompt z_,,, initial window length
Lg, similarity threshold ¢, initial watermark
strength ;i

1: Initialize Start = False, L = Ly

2: fort=1,2,...do

3: Apply LLM to the full input x_,,.+—1 to
get a logit vector I(*),

4: Apply LLM to the window input x¢_1,.+—1
to get an guidance logit vector [®.

5: Utilize [ and [() to obtain their cosine
similarity C's = c0Sgim (l(t), [®

6: if Start # True then
7: if C; > o then
8 5‘(‘?‘ = [5ini] xV
9: else
10 ) = AWLT (10,1)
11: update L < L+ 1
12: update Start < True
13: end if
14: else
Is: 50} = AWLT (z@), Z<t>)
16: update L <= L + 1
17: end if
18: if continuous Cs > « then
19: update L <= Ly
20: end if
21: end for

At the beginning of text generation, we use a
fixed window length L = L to determine the start-
ing point. At this stage, the guidance window text
Z¢—r1t—1 accounts for a high proportion of the full
input x_,,4+—1, which can easily lead to a high
similarity between {(!) and ). To ensure enough



difference between these two logit vectors, we cal-
culate their cosine similarity Cs using the following
equation.

10 . )

[®

Cs = CcOS¢im (l(t),i(t)> = W
X

(6)

Cosine similarity is a measure of the cosine of
the angle between two non-zero vectors in multi-
dimensional space. It assesses the degree of simi-
larity between these vectors independently of their
magnitude. In our method, only when Cj is less
than the predefined threshold o will we begin to
carry out continuous guidance. Otherwise, we will
use the uniform logits modification strategy as in
KGW temporarily.

It is worth mentioning that the guidance logit
vector will gradually move closer to the original
one with the dynamic increase of L. Therefore, we
design a Window Length Reset (WLR) mechanism
to address scenarios where the cosine similarity
between /() and [ continuously exceeds the sim-
ilarity threshold.

5 Experiments

5.1 Experiment Settings

Baselines and Models. Our method is compared
with four methods, including KGW (Kirchenbauer
et al., 2023), SWEET (Lee et al., 2023), ATW (Liu
and Bu, 2024) and DIP (Wu et al., 2024). All ex-
periments are conducted on four different models:
OPT-6.7B (Zhang et al., 2022), GPT-J-6B (Wang
and Komatsuzaki, 2021), LLAMAZ2-7B (Touvron
et al., 2023a), and Qwen2.5-14B (Bai et al., 2023)
(in Appendix A).

Evaluation Metrics. Excellent watermark de-
tectability requires algorithms to correctly identify
watermarked text while not mistakenly recogniz-
ing human text as watermarked text. We report
the true positive rate (TPR) at a fixed 0% FPR
for each method. In terms of generated text qual-
ity, we use perplexity (PPL) as the main metric,
which is calculated using LLAMA2-13B (Touvron
et al., 2023a). For further analysis, we compute
the semantic similarity (SS) between the water-
marked text and the un-watermarked one using a
pre-trained sentence transformer (all-MiniLM-L12-
v2) (Reimers and Gurevych, 2019). In Appendix B,
we also use two more powerful embedding models,
bge-large-en-v1.5 (Xiao et al., 2023) and m3e-large

(Wang Yuxin, 2023), to calculate the semantic sim-
ilarity.

Dataset and Prompt. We select two different
datasets, C4 (Raffel et al., 2020) and Essays (Schuh-
mann, 2023), to validate the effectiveness of our
method. For the C4 dataset, we use the first three
sentences of each text as a prompt to continue the
news report generation. For the Essays dataset,
we employ the instructions to guide LLMs in es-
say composition. For each dataset, we generate
500 samples of 200 tokens using the LLMs and
the corresponding prompts. We use the first 200
tokens that follow the prompt in the C4 dataset
and the reference answers from the Essays dataset
as human-generated texts. In Appendix C, further
experiments are conducted on longer outputs.

Hardware. All experiments are conducted using
an 80GB A800 GPU. More details of the hyperpa-
rameter settings can be found in Appendix E.

5.2 Main Results

Table 2 presents the performance of various meth-
ods on the specified model and dataset, with the
top-performing results for each metric bolded. Our
proposed SSGW method significantly improves the
detectability of watermarks and the quality of the
generated text compared to the baselines across
nearly all models and datasets. To further assess
the influence of different watermarking techniques
on the text quality, Figure 2 and Figure 3 illustrate
the distribution of perplexity and semantic similar-
ity compared to un-watermarked text, respectively.
Based on the experimental results, the following
will delve into a comparative analysis between our
method and various baselines.

Comparison with KGW and SWEET: Both
KGW and SWEET employ a fixed predefined o
as the watermark strength. Although SWEET im-
proves upon KGW through entropy-based token
filtering, the experimental results indicate little im-
provement. In contrast, our method leverages se-
mantic information to adjust the watermark log-
its for different tokens dynamically. This adap-
tive mechanism not only enhances watermark de-
tectability but also achieves 30% lower perplexity
than KGW. In terms of semantic similarity, our
method matches the performance of KGW on the
C4 dataset and demonstrates superior results on the
Essays dataset.

Comparison with ATW: ATW employs temper-
ature scaling to amplify the original logits propor-



Model Dataset TPR@0% Perplexity
KGW SWEET ATW DIP Ours KGW SWEET ATW DIP  Ours
OPT-6.7B C4 0988 0998 0.998 0.988 0.998 9.045 8.774 7499  7.866 6.774
’ Essays 0994 0996 1.000 0978 1.000 10.277 9.933 7.673 10351 6.822
GPT-J-6B C4 0998 0996 1.000 0.992 1.000 11336 10906 8343 9313 7.404
Essays 0996 0988 1.000 0.992 1.000 10915 10.599 8.026 9.581 6.364
LLama2-7B C4 0.994 1.000  1.000 0.980 0.996 8.270 7.901 10.513  7.329 5.798
Essays 0988  0.992 1.000 0.964 1.000 9.014 8.559 8776 7459 5.434

Table 2: Main results of comparing different watermarking strategies across various datasets and models.
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Figure 2: Comparison of text perplexity among human-
written text, un-watermarked text, and texts using var-
ious watermarking methods conducted on different
LLMs for C4 dataset.

tionally. Although this multiplicative approach con-
tributes to filtering out inappropriate tokens, it also
amplifies the impact of watermarked tokens, caus-
ing significant interference to the original sampling
process. Experimental results reveal that although
ATW achieves detection performance comparable
to that of our method, it causes catastrophic seman-
tic distortion, as shown in Figure 3. In contrast, our
solution addresses this imbalance through semantic
guidance that simultaneously improves watermark
detectability and text quality.

Comparison with DIP: DIP proposed the a-
reweight method, which is theoretically unbiased.
However, this unbiased watermarking method re-
quires sacrificing detectability, with DIP consis-
tently exhibiting the lowest true positive rates
across all model-dataset configurations. Further-
more, this mathematical property of DIP cannot
guarantee a stable improvement in text quality, par-

KGW SWEET ATW DIP Ours

Sementic Similarity
o o
o 0
3 &
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B
&

OPT-C4 OPT-Essays GPT)-C4 GPT)-Essays

Model-Datase

LLAMA-C4  LLAMA-Essays

Figure 3: Comparison of semantic similarity between
un-watermarked text and texts using various watermark-
ing methods conducted on different LLMs and datasets.

ticularly evident in its performance on OPT-6.7B
for Essays. In contrast, our method maintains excel-
lent and stable performance on both detectability
and text quality.

5.3 Three-dimensional Trade-off Relationship

In many previous studies that are committed to im-
proving text quality while maintaining detectability,
PPL and semantic similarity have been considered
as alternative indicators to measure text quality
that can be chosen one over the other. However,
experimental results in this paper show that there
is a deep three-dimensional trade-off relationship
among these three key properties. To further ex-
plore this trade-off, we perform an in-depth analy-
sis of our method on the C4 dataset.

As presented in Figure 4, an increase in dg,; im-
proves the performance of perplexity, resulting in
a corresponding decrease in semantic similarity.
This phenomenon arises because higher guidance
watermark strength tends to bias the LLM towards
selecting tokens consistent with the guidance win-
dow text, thereby ignoring important information
earlier. Consequently, watermarked texts gener-
ated with stronger guidance exhibit lower semantic



C4 Dataset

TPR@0%
=3 <) o I~
© © © =3
P s ~ S

o
©
©

0.84

0.81

—e— TPR@0%

PPL

—a S5

1

2 3

4 5

6

7 8

0.60

Guidance Watermark Strength 64

Figure 4: Performance trade-offs of OPT-6.7B on C4
dataset at different guidance watermark strengths (6g.)
with 6;y; fixed at 2.0.

Removed Mechanisms

Dataset Metric SSGW
WLR DSCU MPS
TPR@0% 0.998 0.998 0.996 0.962
C4 PPL 6.774 6.759 7.224 7.750
SS 0.563 0.560 0.545 0.544
TPR@0% 1.000 0994 0990 0.966
Essays PPL 6.822 6.703 7.260 8.329
SS 0.529 0.524 0.504 0.506

Table 3: Main results of the individual impact of differ-
ent mechanisms, conducted on OPT-6.7B.

similarity to their un-watermarked counterparts.

5.4 Ablation Study

In our approach, we implement three key mecha-
nisms to maintain a stable difference between [(*)
and [® during text generation: Window Length
Reset (WLR), Dynamic Suppression Coefficient
Update (DSCU), and Maximum Probability Sup-
pression (MPS). To validate their effectiveness, we
conduct a comprehensive ablation study by system-
atically removing each of them. The experimental
results, presented in Table 3, clearly demonstrate
that removing either the DSCU (which controls
suppression strength) or MPS (which removes sup-
pression entirely) causes severe detection failure.
The removal of these two mechanisms will directly
result in the invalidation of the watermark injection
when the guidance vector and the original one have
a consensus prediction.

Moreover, the WLR mechanism also proves es-
sential since we observe a decline in performance
in terms of detectability and semantic similarity
when we discard it. This is primarily because, as
the guiding length continues to update, the guid-

TPR@0% TPR@1% TPR@5%
KGW Ours KGW Ours KGW Ours

CP  0.934 0.914 0.980 0.972 0.994 0.994
Dipper 0.274 0.348 0.504 0.572 0.730 0.760

CP  0.970 0.930 0.988 0.990 0.996 0.998
Dipper 0.434 0.470 0.674 0.704 0.844 0.884

Dataset Attack

C4

Essays

Table 4: Robustness performance against Copy-Paste
and Dipper paraphrase attacks.

ing logit vector will gradually move closer to the
original one, thereby losing its guiding significance.
Regarding the little improvement in perplexity, we
believe the main reason is that our WLR mecha-
nism employs a simple reset approach, which may
introduce incoherence at the reset points.

5.5 Robustness Against Attacks

Considering that the watermarked text is often
edited before detection, we evaluate the robust-
ness of our method against two prevalent attack
types: Copy-Paste Attack (Kirchenbauer et al.,
2023) and Dipper Attack (Krishna et al., 2023).
For the Copy-Paste attack, we randomly embed
three watermarked text fragments with a length of
20% inside a surrounding un-watermarked text. For
the Dipper attack, we use the DIPPER paraphrase
model to rewrite the text with the lex diversity set
to 60. As shown in Table 4, we report TPR at vary-
ing FPR levels, specifically at 0%, 1%, and 5%.
Our method performs similarly to KGW under the
Copy-Paste attack and demonstrates superior detec-
tion accuracy under the Dipper attack, which can
be attributed to the fact that paraphrasing tends to
preserve semantic information.

6 Conclusion

In this work, we present a novel watermarking
method for LLMs called SSGW, which achieves
a simultaneous improvement of watermark de-
tectability and text quality through a semantic self-
guided approach. Experimental results demonstrate
that our method outperforms existing baselines
across various models and datasets, especially on
text coherence and fluency. Furthermore, a thor-
ough analysis reveals that there is a deep three-
dimensional trade-off relationship among different
key properties, which provides a new direction for
future research.



Limitations

Our method mainly includes two limitations. First,
the calculation to obtain a guidance logit vector
at each time step during text generation signifi-
cantly increases computational overhead, resulting
in nearly double the generation time (see Appendix
D). This makes our method less suitable for real-
time applications where efficiency is critical. Sec-
ond, the experimental results in this paper show
that there is a three-dimensional trade-off relation-
ship among different key properties for evaluation,
highlighting the need for future investigations. De-
spite these limitations, we believe that our work
contributes positively to the development of high-
quality watermarking technology since merely im-
proving watermark detectability is insufficient to
address the multifaceted demands of practical ap-
plications.

Ethics Statement

Watermarking methods are designed to mitigate the
abuse of large language models. However, if the
specific watermarking mechanism is leaked, mali-
cious users may use it to escape detection. There-
fore, we recommend that all users avoid disclosing
specific details to others when using the watermark-
ing method, such as the hash key used in many
methods.
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Dataset

Method

C4 Essays
TPR@0 SS PPL TPR@O SS PPL
KGW 0996 0.581 12.14 0.996 0.741 7.572
SWEET 0.988 0.582 11.39 0.992 0.746 7.027
ATW  1.000 0.554 10.71 1.000 0.699 10.180
DIP 0.992 0.570 10.07 0.980 0.741 5.631
OURS 1.000 0.581 7.41 0996 0.737 5.242

Table 5: Additional experimental results of comparing
different watermarking strategies on Qwen2.5-14b, with
ppl calculated by qwen2.5-32b.

Embedding Model Method
KGW SWEET ATW DIP OURS
all-MiniLM-L12-v2 0.581 0.582 0.554 0.570 0.581
bge-large-en-v1.5 0.759 0.760 0.746 0.751 0.756
m3e-large 0.686 0.687 0.667 0.681 0.687

Table 6: Further analysis of the semantic similarity eval-
uation results using different embedding models. The
underlined results represent the worst performance mea-
sured by each model.

A Experiments on Qwen2.5-14b

To further showcase the performance of our water-
marking algorithm, we conduct experiments on a
more powerful LLM, Qwen2.5-14b. Correspond-
ingly, we use Qwen2.5-32b (Bai et al., 2023) for
the evaluation of perplexity. As shown in Table 5,
our watermarking method significantly improves
the perplexity of the generated text while ensuring
detectability and semantic similarity compared to
other methods.

B Impact of Different Embedding Models

In order to eliminate the influence of different em-
bedding models on the evaluation results of seman-
tic similarity, we selected two additional prominent
models, bge-large-en-v1.5 (Xiao et al., 2023) and
m3e-large (Wang Yuxin, 2023), for experimenta-
tion. The experimental results presented in Table
6 indicate that despite the varying absolute values
of semantic similarity measured by different em-
bedding models, the comparisons among various
methods exhibit significant consistency in ranking.

C Experiments of Longer Outputs

In the previous experiments, we uniformly set the
generation length to 200 tokens, which is consistent
with the settings of prior works. Considering that
longer generations may occur in real-world appli-
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Method TPR@0 PPL  SS
KGW 0.992 8305 0.710
SWEET 1.000 8.106 0.712
ATW 1.000 6.716 0.686
DIP 0982 7.937 0.679
OURS 1.000  6.440 0.707

Table 7: Performance of generating long outputs of 500
tokens conducted on OPT-6.7B and C4 dataset.

Method Generation Time Detection Time

KGW 3.773s 0.054s
SWEET 3.801s 0.073s
ATW 8.608s 4.012s
DIP 3.420s 0.070s
Ours 7.892s 0.050s

Table 8: This table shows the average time taken to
generate 200 tokens as well as the average time taken
for detection using different methods on OPT-6.7b, mea-
sured in seconds.

cations, we conduct an additional experiment with
a fixed generation length of 500 tokens. Note that
since the length of 500 exceeds the maximum input
length of all-MiniLM-L12-v2, we use m3e-large
for SS calculation here. The results presented in Ta-
ble 7 show that SSGW maintains consistent excel-
lent performance in generating long outputs, which
can be attributed to the DGWA mechanism. This
adaptive approach ensures that our method remains
responsive to the evolving context and maintains
its effectiveness.

D Efficiency

In this section, we evaluate the efficiency perfor-
mance of different watermarking methods. Specifi-
cally, for each method, we generate and detect 500
samples of watermarked text, with each sample
comprising 200 tokens, and then calculate the aver-
age time consumption. Table 8 indicates that our
method requires additional time consumption dur-
ing generation due to the use of the self-guided ap-
proach. During the detection process, our method
is consistent with KGW and does not require load-
ing additional models like ATW.

E Implement Details

In this section, we will provide the hyperparameters
used in the experiments. For KGW and SWEET,
we set 7 = 0.25 and § = 2.0, respectively. The en-
tropy threshold in SWEET is set to 0.9. For ATW,
¢ is set to 1.5. For DIP, we set o« = 0.45. The



above parameters are derived from the officially
recommended default settings. It is worth mention-
ing that for a fair comparison, we set the prompt
to be invisible in SWEET during detection. In ad-
dition, we use multinomial sampling with a Top-k
of 50 and a Top-p of 1.0. For our method, the de-
fault hyperparameters are set as follows: Ly = 50,
a = 0.95, v = 0.25. Before the starting point is
identified, we set d;,; the same as used in KGW. In
the process of AWLT, we set dgy; = 3.0.
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