
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A BIRD’S EYE VIEW ON INFORMED CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neurosymbolic AI is a growing field of research aiming to combine neural net-
work learning capabilities with the reasoning abilities of symbolic systems. In
this paper, we tackle informed classification tasks, i.e., multi-label classification
tasks informed by prior knowledge that specifies which combinations of labels
are semantically valid. Several neurosymbolic formalisms and techniques have
been introduced in the literature, each relying on a particular language to rep-
resent prior knowledge. We take a bird’s eye view on informed classification
and introduce a unified formalism that encapsulates all knowledge representation
languages. Then, we build upon this formalism to identify several concepts in
probabilistic reasoning that are at the core of many techniques across represen-
tation languages. We also define a new technique called semantic conditioning
at inference, which only constrains the system during inference while leaving the
training unaffected, an interesting property in the era of off-the-shelves and foun-
dation models. We discuss its theoritical and practical advantages over two other
probabilistic neurosymbolic techniques: semantic conditioning and semantic reg-
ularization. We then evaluate experimentally and compare the benefits of all three
techniques on several large-scale datasets. Our results show that, despite only
working at inference, our technique can efficiently leverage prior knowledge to
build more accurate neural-based systems.

1 INTRODUCTION

Neurosymbolic AI is a growing field of research aiming to combine neural network learning capa-
bilities with the reasoning abilities of symbolic systems. This hybridization can take many shapes
depending on how the neural and symbolic components interact (Kautz, 2022; Wang et al., 2023).
An important sub-field of neurosymbolic AI is Informed Machine Learning (von Rueden et al.,
2023), which studies how to leverage prior knowledge to improve neural-based systems. There
again, proposed techniques in the literature can be of very different nature depending on the type of
task (e.g. regression, classification, detection, generation, etc.), the formalism used to represent the
prior knowledge (e.g. mathematical equations, knowledge graphs, logical theories, etc.), the stage
at which knowledge is embedded (e.g. data processing, neural architecture design, learning proce-
dure, inference procedure, etc.) and benefits expected from the hybridization (e.g. explainability,
performance, frugality, etc.).

In particular, informed classification studies multi-label classification tasks where prior knowledge
specifies which combinations of labels are semantically valid. In our work, the architecture of the
neural model (e.g. fully connected, convolutional, transformer-based, etc.) mainly depends on the
modality of the input space (e.g. images, texts, etc.). Therefore, we consider model-agnostic neu-
rosymbolic techniques that integrate prior knowledge during learning, inference or both, but leave
the design of the architecture outside the reach of the technique. To lighten our formalism, we re-
strict ourselves to the supervised setting throughout the paper, even though some of the techniques
we mention can be used in a semi-supervised setting. Several neurosymbolic formalisms and tech-
niques have been introduced in the literature, each using a particular language to represent prior
knowledge: HEX-graphs in Deng et al. (2014), propositional formulas in Xu et al. (2018), tractable
circuits in Ahmed et al. (2022a), linear programs in Niepert et al. (2021), Prolog in Manhaeve et al.
(2021), ASP in Yang et al., First Order Logic in Badreddine et al. (2022), etc. Because of this di-
versity, it is difficult to identify the shared concepts underlying most techniques introduced in the
literature. It is also challenging to establish meaningful comparisons between techniques. In this

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

paper, we take a bird’s eye view on informed classification and propose a unified formalism that
encapsulates all representation languages for propositional knowledge. We build upon this formal-
ism to study a family of neurosymbolic techniques that leverage probabilistic reasoning to integrate
prior knowledge, a trend that has gained significant traction in the recent literature (Xu et al., 2018;
Manhaeve et al., 2021; Ahmed et al., 2022a;b). We re-frame two existing neurosymbolic techniques:
one that only impacts training (semantic regularization) and one that impacts both training and in-
ference (semantic conditioning). We also define a new technique that only impacts the inference
stage: semantic conditioning at inference. This is a particularly useful property in the era of off-
the-shelves and foundation models (Bommasani et al., 2021), which are pre-trained on massive
amounts of general data to then be applied in a multitude of heterogeneous downstream tasks.

Contributions After preliminary notions (Section 2), we propose a unified formalism for super-
vised multi-label classification informed by prior knowledge (Section 3). Then, we introduce
semantic conditioning at inference (Section 4). To the best of our knowledge, we are the first to de-
fine a neurosymbolic technique based on probabilistic reasoning which only impacts inference. We
also analyze key properties and the computational complexity of neurosymbolic techniques based on
probabilistic reasoning (Section 4.2). Finally, we evaluate the three techniques on several datasets,
including large scale datasets whose sizes are rarely encountered in the neurosymbolic literature
(Section 5).

2 PRELIMINARIES

In this section, we give the preliminary definitions needed for our unified formalism. We first give
a general definition of representation languages for propositional knowledge, which we will use
throughout the paper to express prior knowledge on multi-label classification tasks. Then, we define
several probabilistic reasoning problems that will be the foundation of the neurosymbolic techniques
we will study in the paper.

2.1 KNOWLEDGE REPRESENTATION

In its more abstract form, knowledge about a world tells us in what states this world can be ob-
served. In this paper, we only consider propositional knowledge, where the states correspond to
subsets of a discrete set of variables Y and knowledge tells us what combinations of variables can
be observed in the world. The set of possible states is BY, where B :“ t0, 1u. A state y P BY can
be seen as a subset of Y as well as an application that maps each variable to B (i.e., for a variable
Yi P Y, yi “ 1 is equivalent to Yi P y). Knowledge defines a set of states that are considered valid.
An abstract representation of this knowledge is a boolean function f P BBY

, which can be viewed
either as a function that maps states in BY to boolean values or as a subset of BY. However, in order
to exploit this knowledge (e.g. reason, query, communicate, etc.), we need a concrete language to
represent it.

Definition 1 (Propositional language). A propositional language is a couple F :“ pT , sq such that
for any discrete set of variables Y:

• T pYq is the set of admissible theories on Y

• spYq determines which states on Y satisfy a theory κ:

spYq : T pYq Ñ BBY

When the set of variables is clear from context, we simply note T P T and spT q in place of T P
T pYq and spYqpT q. We say that a propositional language F2 :“ pT2, s2q is a fragment of a
propositional language F1 :“ pT1, s1q, noted F2 Ă F1, iff for any discrete set of variables Y:
T2pYq Ă T1pYq and s2pYq is the restriction of s1pYq to T2pYq. A state y P BY satisfies a theory
κ P T iff y P spYqpT q. We also say that κ accepts y. A theory κ is satisfiable if it is satisfied by a
state, i.e., if spYqpκq ‰ H. Two theories κ1 and κ2 are equivalent iff spκ1q “ spκ2q.

Definition 1 covers many knowledge representation languages found in the literature. We illustrate
below with propositional logic and detail several other propositional languages in Appendix A.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Example 1. A theory in propositional logic is called a propositional formula and is formed induc-
tively from variables and other formulas by using unary (␣, which expresses negation) or binary
(_,^, which express disjunction and conjunction respectively) connectives. We note TPLpYq the
set of formulas that can be formed in this way. The semantics of propositional logic can be in-
ductively derived from the formula following the standard semantics of negation, conjunction and
disjunction, i.e., a state y satisfies: a variable Yi P Y if yi “ 1, a formula ␣ϕ if ϕ is not satisfied
by y, a formula ϕ_ψ if y satisfies ϕ or ψ and a formula ϕ^ψ if y satisfies ϕ and ψ. For instance,
κ “ Y1 ^ Y2 is satisfied by y iff y1 “ y2 “ 1. We refer to Russell & Norvig (2021) for more details
on propositional logic.

2.2 PROBABILISTIC REASONING

One challenge of neurosymbolic AI is to bridge the gap between the discrete nature of logic and
the continuous nature of neural networks. Probabilistic reasoning can provide the interface between
these two realms by allowing us to reason about uncertain facts.

A probability distribution on a set of boolean variables Y is an application P : BY ÞÑ R` that
maps each state y to a probability Ppyq, such that

ř

yPBY Ppyq “ 1. To define internal operations
between distributions, like multiplication, we extend this definition to un-normalized distributions
E : BY ÞÑ R`. The null distribution is the application that maps all states to 0. The partition
function Z : E ÞÑ

ř

yPBY Epyq maps each distribution to its sum, and we note E :“ E
ZpEq

the
normalized distribution (when E is non-null). The mode of a distribution E is its most probable
state, ie argmax

yPBY

Epyq.

A standard distribution is the exponential probability distribution, which is parameterized by a
vector of logits a P Rk, one for each variable in Y, and corresponds to the joint distribution of
independent Bernoulli variables Bppiq1ďiďk with pi “ spaiq. The independent multi-label classi-
fication system (see Example 2) is build by following the probabilistic interpretation based on this
distribution.
Definition 2. Given a vector a P Rk, the exponential distribution is:

Ep¨|aq : y ÞÑ
ź

1ďiďk

eai.yi (1)

We will note Pp¨|aq “ Ep¨|aq the corresponding normalized probability distribution.

Typically, when belief about random variables is expressed through a probability distribution and
new information is collected in the form of evidence (i.e., a partial assignment of the variables), we
are interested in two things: computing the probability of such evidence and updating our beliefs
using Bayes’ rules by conditioning the distribution on the evidence. Probabilistic reasoning allows
us to perform the same operations with logical knowledge in place of evidence. Let’s assume a prob-
ability distribution P on variables Y :“ tYju1ďjďk and a satisfiable theory κ from a propositional
language F :“ pT , sq. Notice that the boolean function spκq is an un-normalized distribution on Y.
Definition 3. The probability of κ under P is:

Ppκq :“ ZpP ¨ spκqq “
ÿ

yPBY

Ppyq ¨ spκqpyq (2)

The distribution P conditioned on κ, noted Pp¨|κq, is:

Pp¨|κq :“ P ¨ spκq (3)

Since Pp¨|aq is strictly positive (for all a), if κ is satisfiable then its probability under Pp¨|aq is also
strictly positive. We note:

Ppκ|aq :“ ZpPp¨|aq ¨ spκqq Pp¨|a, κq :“ Pp¨|aq ¨ spκq
Ppκ|aq

Computing Ppκ|aq is a counting problem called Probabilistic Query Estimation (PQE). Comput-
ing the mode of Pp¨|a, κq is an optimization problem called Most Probable Explanation (MPE).
Solving these probabilistic reasoning problems is at the core of many neurosymbolic techniques, as
shown in Section 4.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 INFORMED SUPERVISED CLASSIFICATION

In this section, we introduce a formalism for informed supervised classification. We first detail our
computational framework for neural multi-label classification systems, which will serve as our basis
for neurosymbolic techniques, then we define what we call informed classification tasks.

3.1 NEURAL MULTI-LABEL CLASSIFICATION

In supervised machine learning, the objective is to learn a relationship between an input domain X
and an output domain Y from a labeled dataset D :“ pxi,yiq1ďiďd P pX ˆ Yqd.

Deep learning systems usually adopts a functional framework to tackle supervised learning tasks. A
functional relation f : X ÞÑ Y is assumed and a neural network (i.e., a parametric and differentiable
computational graph) M is designed to model this relation based on assumed properties of f . To
learn the parameters of the neural network a differentiable cost function L measuring the distance
between predictions and labels is chosen, backpropagation computes the gradient of the loss with
respect to each parameter and gradient descent is used to minimize the empirical error. Inference is
done by processing the inputs through the neural network.

However, when the output domain Y is (at least partly) discrete, a differentiable distance cannot be
defined directly on Y and such a framework cannot be applied strictly. This is especially relevant
for classification tasks. Classification tasks are usually categorical: the output domain consists of
a finite set of variables. In multi-label classification tasks however, elements in the output domain
Y are subsets of a finite set of classes Y. Usually called labelsets, we call them states (see Section
2.1) and note Y “ BY. Interestingly, categorical classification can be seen as a specific instance of
multi-label classification informed with prior knowledge (see Example 4).

Hence, we adopt a slightly modified framework, called pseudo-functional, where a third module I
(besides M and L), called the inference module, has to be defined to bridge the gap between the
continuous nature of the neural network (needed for gradient descent) and the discrete nature of the
output space. This third module, although essential, is not often explicitly described. An illustration
can be found on Figure 1.

Definition 4. A neural classification system for multi-label classification is the given of :

• a parametric differentiable (i.e., neural) module M, called the model, which takes as
inputs x P Rd, parameters θ P Θ and outputs Mpx, θq :“ Mθpxq :“ a P Rk, called
pre-activation scores or logits.

• a non-parametric differentiable module L, called the loss module, which takes a P Rk

and y P t0, 1uk as inputs and outputs a scalar.

• a non-parametric module I, called the inference module, which takes a P Rk as input and
outputs a prediction ŷ P t0, 1uk.

Remark 1. For lighter notations, we note a P Rk as a simpler notation for a P RY assuming
Y :“ tYju1ďjďk.

A common approach to design a neural classification system is to build upon a natural probabilis-
tic interpretation. Logits produced by the neural network are seen as parameters of a conditional
probability distribution of the output given the input Pp¨|Mθpxqq, the loss module computes the
cross-entropy of that distribution with a ground truth label, and the inference module computes the
most probable output given the learned distribution.

When no prior knowledge is available about the set of classes (uninformed case), a standard hypoth-
esis is to assume independent output variables. We illustrate below how this translates in a specific
neural classification system.

Example 2. For independent multi-label classification, we apply a sigmoid layer on logits to turn
them into probability scores. The loss is the binary cross-entropy (BCE) between probability scores
and labels, and a variable is predicted to be true if its probability is above 0.5 (or equivalently its

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

logit is above 0). This results in the following modules:

Limcpa,yq :“ BCEpspaq,yq

“ ´
ÿ

j

yj . logpspajqq ` p1´ yjq. logp1´ spajqq (4)

Iimcpaq :“ 1ra ě 0s (5)

where spaiq “
eai

1`eai
is the sigmoid function and 1rzs :“

"

1 if z true
0 otherwise the indicator function.

3.2 TASK

A task of supervised multi-label classification is informed when it comes attached with prior knowl-
edge, expressed as a theory κ in a propositional language F :“ pT , sq, specifying which states in
the output space are semantically valid.

A supervised dataset D :“ pxi,yiq1ďiďd P pX ˆ Yqd is consistent with prior knowledge κ if all
labels satisfy κ (i.e., @1 ď i ď n,yi |ù κ). In this paper we will work under the hypothesis that
both training and test datasets are consistent. However, some techniques allow for a relaxation of
this assumption, enabling the use of inconsistent datasets.

4 TECHNIQUES

When prior knowledge is available about a classification task, it seems only natural to improve
our neural classification system by integrating this knowledge into its design. We give below two
examples of informed classification tasks and how the loss and inference modules can be adapted to
embed prior knowledge.
Example 3. Categorical classification arises when one and only one output variable is true for a
given input sample (e.g. mapping an image to a single digit in J0, 9K for MNIST). These constraints
can easily be enforced by the following propositional formula:

κdk
:“

ˆ

ł

1ďjďk

Yj

˙

^

ˆ

ľ

1ďjălďk

p␣Yj _␣Ylq

˙

(6)

where the first part ensures that at least one variable is true and the second part prevents two
variables to be true simultaneously. For categorical classification, the sigmoid layer is replaced by
a softmax layer and the variable with the maximum score is predicted, which leads to the following
modules:

Ldk
pa,yq :“ CEpspaq,yq “ ´ logpxσpaq,dkpjqyq (7)

Idk
paq :“ dkpargmaxpaqq (8)

where CE is the cross-entropy, σpaq “ p eaj
ř

l e
al
q1ďjďk and dk gives the one-hot encoding (starting

at 1) of j P J1, kK, e.g. d4p2q “ p0, 1, 0, 0).
Example 4. Hierarchical classification on a set of variables tYju1ďjďk is usually formulated with
a directed acyclic graph G “ pY,Ehq where the nodes are the variables and the edges Eh express
subsumption between those variables (e.g. a dog is an animal). This formalism can even be enriched
with exclusion edges H “ pY,Eh, Eeq (e.g. an input cannot be both a dog and a cat), like in HEX-
graphs (Deng et al., 2014). There again, the translation to propositional logic is straightforward:

κH :“

ˆ

ľ

pi,jqPEh

Yi _␣Yj

˙

^

ˆ

ľ

pi,jqPEe

p␣Yi _␣Yjq

˙

(9)

where the first part ensures that a son node cannot be true if its father node is not and the second
part prevents two mutually exclusive nodes to be true simultaneously. Many techniques have been
proposed to integrate hierarchical knowledge in a neural classification system. For instance, (Muller
& Smith, 2020) introduces a hierarchical loss to penalize more errors on higher classes of the
hierarchy, (Giunchiglia & Lukasiewicz, 2020) refines the logits based on the hierarchy while (Deng
et al., 2014) replaces the exponential distribution by a Conditional Random Field that integrates the
hierarchical knowledge.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Beyond categorical and hierarchical classification, propositional knowledge can be used to define
very diverse output spaces: e.g. Sudoku solutions (Augustine et al., 2022), simple paths in a graph
(Xu et al., 2018; Ahmed et al., 2022a), preference rankings (Xu et al., 2018), matchings in a graph
(Pogančić et al., 2019; Ahmed et al., 2022b), etc.

Therefore, the purpose of a neurosymbolic technique is to automatically derive appropriate loss
and inference modules from prior knowledge, generalizing the work made on categorical and
hierarchical cases to arbitrary structures. We formalize this process with the definition below
and illustrate it on Figure 1.
Definition 5 (Neurosymbolic technique). A neurosymbolic technique for a propositional language
F :“ pT , sq is T :“ pL, Iq such that for any finite set of variables Y and theory κ P T pYq:

LpY, κq :“ L : Rk ˆ Y ÞÑ R`

IpY, κq :“ I : Rk ÞÑ Y

Remark 2. A neurosymbolic technique in general is not an algorithm, but only a mathematical
construct. Therefore, it gives no insight a priori into how the modules should be implemented.

Figure 1: Illustration of a neurosymbolic technique T :“ pL, Iq: it takes prior knowledge κ as input
and outputs the loss L and inference I modules of a neural classification system.

Fuzzy regularization One of the first family of neurosymbolic techniques introduced in the lit-
erature was based on fuzzy regularization (Diligenti et al., 2017; Giannini et al., 2023; Badreddine
et al., 2022): the fuzzy valuation of prior knowledge κ (expressed in propositional logic) based on
output scores Mθpxq is added to the standard negative log-likelihood of the labels to steer the model
towards valid states.

4.1 PROBABILISTIC TECHNIQUES

Besides fuzzy logics, another paradigm that gained traction in the recent years as a basis for de-
signing neurosymbolic techniques is probabilistic reasoning. We define below three neurosymbolic
techniques based on probabilistic reasoning, including our new technique called semantic condi-
tioning at inference, and relate each technique to the existing neurosymbolic literature.

Semantic regularization Similar to fuzzy regularization, semantic regularization uses the prob-
ability of the prior knowledge based on output scores Mθpxq (see Section 2.2) as a regularization
term. It was introduced for propositional knowledge as the semantic loss in (Xu et al., 2018).
Definition 6. Semantic regularization (with coefficient λ ą 0) for a propositional language F :“
pT , sq is Tλ

r :“ pLλ
r , I

λ
r q such that for any finite set of variables Y and theory κ P T pYq:

Lλ
r pY, κq : pa,yq Ñ ´ logpPpy|aqq ´ λ. logpPpκ|aqq (10)

Iλr pY, κq : aÑ argmax
yPBY

Ppy|aq (11)

Semantic conditioning Following the probabilistic interpretation mentioned in Section 3.1, a nat-
ural way to integrate prior knowledge κ into a neural classification system is to condition the dis-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

tribution Pp¨|Mpx, θqq on κ. This conditioning affects the loss and inference modules, both under-
pinned by the conditional distribution. It was first introduced in (Deng et al., 2014) for Hierarchical-
Exclusion (HEX) graphs constraints. Semantic probabilistic layers (Ahmed et al., 2022a) can be
used to implement semantic conditioning on tractable circuits. NeurASP (Yang et al.) defines se-
mantic conditioning on a predicate extension of ASP programs. An approached method for semantic
conditioning on linear programs is proposed in (Niepert et al., 2021).

Definition 7. Semantic conditioning for a propositional language F :“ pT , sq is Tsc :“ pLsc, Iscq
such that for any finite set of variables Y and theory κ P T pYq:

LscpY, κq : pa,yq Ñ ´ logpPpy|a, κqq (12)
IscpY, κq : aÑ argmax

yPBY

Ppy|a, κq (13)

Semantic conditioning at inference Finally, we introduce a new neurosymbolic technique, called
semantic conditioning at inference, which is derived from semantic conditioning but only applies
conditioning in the inference module (i.e., infers the most probable state that satisfies prior knowl-
edge) while retaining the standard negative log-likelihood loss.

Definition 8. Semantic conditioning at inference for a propositional language F :“ pT , sq is
Tsci :“ pLsci, Isciq such that for any finite set of variables Y and theory κ P T pYq:

LscipY, κq : pa,yq Ñ ´ logpPpy|aqq (14)
IscipY, κq “ IscpY, κq (15)

4.2 PROPERTIES

As shown above, Definition 5 encapsulates very diverse neurosymbolic techniques. However, be-
yond this unified view, we can analyze specific properties of neurosymbolic techniques that are
critical to their deployment. Formal definitions and proofs can be found in Appendix B.

Syntactic invariance A neurosymbolic technique is invariant to syntax when equivalent formu-
las produce identical loss and inference modules when fed to L and I. Interestingly, since LpY, κq
and IpY, κq essentially depend on the boolean function represented by κ and not on the syntax κ, it
allows to generalize the technique defined for a particular propositional language to other languages.
Because probabilistic reasoning essentially depends on the boolean function represented by the the-
ory κ and not its syntax, techniques that rely on probabilistic reasoning (e.g. see Definitions 6, 7 and
8) are naturally invariant to syntax. The case of semantic conditioning, which was introduced several
times in the neurosymbolic literature using various knowledge representation languages, illustrates
the importance of this property and the utility of this unified view of informed classification. On the
contrary, because fuzzy regularization is based on the syntax of propositional formulas, it cannot be
easily generalized to other representation languages. Besides, this sensitivity to syntax implies that
two equivalent propositional formulas (i.e., representing the same prior knowledge) may produce
different regularization terms, which could lead to performance disparities that are challenging to
elucidate to end users. Finally, even when the mathematical definition of a technique can be easily
generalized, this does not mean that its implementation and computational complexity is equivalent
regardless of the propositional language.

Consistency A neurosymbolic technique is consistent (defined in (Ahmed et al., 2022a)) when
the inference module can only produce outputs that satisfy the prior knowledge. By definition,
techniques that only impact the loss module (e.g. techniques based on regularization terms) cannot
verify this property, whereas the inference module of semantic conditioning guarantees consistency.

Besides retaining syntactic invariance and consistency from semantic conditioning, semantic condi-
tioning at inference has other useful properties that make it a suitable choice compared to semantic
conditioning and regularization. First, we show in Section 4.3 that it is more tractable computa-
tionally. Second, integrating prior knowledge only at inference time offers more flexibility than
integration during training. For instance, it can be used if prior knowledge is unavailable at training
time (for instance Giunchiglia et al. (2023) provides prior knowledge to an existing task of object
detection) or susceptible to evolve. This is a particularly useful property in the era of off-the-shelves

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

and foundation models (Bommasani et al., 2021), which are pre-trained on massive amounts of gen-
eral data to then be applied in a multitude of heterogeneous downstream tasks, since task specific
prior knowledge can not be integrated during most of the training process.

4.3 A LOOK ON COMPLEXITY

As mentioned in Section 2.2, all three neurosymbolic techniques defined in Section 4 internally rely
on solving MPE and PQE problems. Unfortunately, MPE and PQE are NP-hard and #P-hard respec-
tively for most propositional languages commonly used to represent knowledge (e.g. propositional
logic, boolean circuits, linear programs, ASP, etc.). This implies that scaling probabilistic neu-
rosymbolic techniques to large classification tasks (i.e., tasks with a large number of variables) on
arbitrary prior knowledge requires an exponential amount of computing resources (unless P “ NP)
and is therefore not realistic. Hence, it is critical for any technique to identify (as much as possible)
its domain of tractability, which is rarely done in the neurosymbolic literature.

Hopefully, there are fragments of propositional languages for which MPE and PQE are tractable.
Boolean circuits in Decomposable Negational Normal Form (DNNF) can solve MPE problems in
linear time (in the size of the circuit) and deterministic-DNNF (dDNNF) can additionally solve PQE
problems in linear time. An approach that has become predominant in the literature is knowledge
compilation (Darwiche & Marquis), which consists in translating a theory from an initial proposi-
tional language (e.g. CNF) into a target propositional language that can solve reasoning problems
efficiently (i.e., in a time polynomial in the size of the compiled formula).

Finally, counting problems are known to be much harder in general than optimization problems
(Toda, 1991). For instance, MPE can be solved in polynomial time for formulas representing match-
ing constraints (by reduction to finding a maximum weight-sum matching (Edmonds)), while PQE
is still #P-hard (Amarilli & Monet). As semantic conditioning at inference only relies on solv-
ing MPE for its inference module, compared to semantic conditioning and semantic regularization
which both rely on solving PQE to compute their loss module, this implies that semantic condition-
ing at inference remains tractable for a larger class of tasks than semantic conditioning and semantic
regularization.

5 EXPERIMENTS ON LARGE SCALE DATA

In this section, we evaluate empirically the impact of neurosymbolic techniques on four informed
classification tasks: a categorical task, two hierarchical tasks and a simple path prediction task.

5.1 A NEW MULTI-SCALE EVALUATION

Most papers in the field evaluate the benefits of their neurosymbolic technique on a single neural
network architecture. Although informative, such a methodology paints a very limited picture of the
benefits of the technique and leaves many questions unanswered. In particular, it does not allow to
estimate how these benefits evolve when resources given to the system (e.g. network scale, dataset
size, training time, etc.) increase.

To overcome those limitations, we selected for each task a single architectural design that can be
scaled to various sizes (e.g. DenseNets (Huang et al., 2017)) and compared the performance of the
three neurosymbolic techniques against an uninformed baseline (independent multi-label classifica-
tion) across network scales. We report the exact accuracy (Ahmed et al., 2022a) (called coherent
accuracy in Deng et al. (2014)), i.e., the share of instances which are well classified on all labels,
as our evaluation metric. More details on the methodology and the experimental setup (number of
epochs, hyperparameters, etc.) are given in Appendix C.

5.2 DATASETS

We evaluate the three techniques on four different tasks: a categorical task based on MNIST dataset
(LeCun et al., 1998), two hierarchical tasks based on Cifar-100 (Krizhevsky, 2009) and ImageNet
(Russakovsky et al., 2015) datasets and an acyclic simple path prediction task based on Warcraft
Shortest Path (WSP) dataset (Pogančić et al., 2019). For WSP tasks featured in the neurosymbolic

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

literature (Yang et al.; Niepert et al., 2021; Ahmed et al., 2022a), MPE and PQE are intractable and
cannot be scaled to large grids. We modify the WSP dataset to make the graph acyclic, and develop
an algorithm to compile acyclic simple path constraints into Ordered Binary Decision Diagrams (a
fragment of dDNNF). Therefore, for each type of tasks tackled in our experiments, prior knowl-
edge can be compiled into a polysize dDNNF, allowing to solve MPE and PQE tractably and scale
properly with larger of set of variables. See Appendix C.1 for more details.

Figure 2: From left to right: each graph plots the exact accuracy on MNIST, Cifar, Imagenet and
Warcraft Shortest Path, for all four techniques, against the size of the network. Errorbars represent
the standard variation after aggregation on several seeds.

5.3 RESULTS AND ANALYSIS

The results of our experiments are displayed on Figure 2, a graphical representation has been chosen
over a tabular one to highlight how accuracy curves evolve as the network scales.

Observation 1. Semantic conditioning and semantic conditioning at inference outperform se-
mantic regularization and independent multi-label classification across tasks and model scales.

Observation 2. Except for the larger networks on Warcraft Shortest Path, semantic regularization
brings little benefits in terms of accuracy compared to independent multi-label classification.

Observation 3. On MNIST, Cifar and ImageNet, semantic conditioning at inference retains most
of the performance gains (about 75%) of semantic conditioning, despite only integrating knowl-
edge during inference. It even outperforms semantic conditioning on Warcraft Shortest Path.

We expected semantic conditioning to outperform semantic conditioning at inference, since prior
knowledge is integrated in the loss module as well as in the inference module, but experiments on
Warcraft Shortest Path shows a different picture.

Observation 4. Accuracy gains of semantic conditioning at inference tend to decrease and con-
verge towards a significantly positive value as the accuracy of the neural network increases.

Besides, on MNIST, Cifar and ImageNet, marginal accuracy gains with respect to the network scale
are decreasing. In other terms, reaching a 1% accuracy improvement by scaling the network requires
much more additional parameters larger networks than for smaller networks. Accuracy gains ob-
tained from the integration of prior knowledge work in a similar fashion: they decrease with the size
of the network and converge towards a significantly positive value, meaning that these techniques
can improve performances on networks of all sizes. On Warcraft Shortest Path, as the accuracy
slightly decreases with network scale, the accuracy gains of semantic conditioning increase with
network scale.

The difference of behavior between MNIST, Cifar and ImageNet vs. Warcraft Shortest Path could
be due to many factors: the nature of the prior knowledge (categorical and hierarchical vs. simple
path), the nature the images (real life images vs. synthetic images), etc. More experiences with
diverse informed classification tasks are needed to elucidate this point.

Anyhow, our experiments strongly suggests that, in the supervised setting, the most critical module
for knowledge integration is the inference module.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 RELATED WORK

In this paper, we restricted our formalism to supervised classification tasks informed with propo-
sitional prior knowledge. However, many techniques in the literature work with prior knowledge
expressed in a higher order language or solve classification tasks where full supervision is lacking.

Predicate languages Propositional languages use propositional variables to represent atomic
facts, which constitute the smallest unit of discourse to represent the world. Predicate languages
decompose atomic facts into a more fine grained representation, then leverage this compositional
representation through quantification to provide a more expressive language. Predicate languages
are often used in the neurosymbolic literature (e.g. First Order Logic in (Badreddine et al., 2022),
Prolog in (Manhaeve et al., 2021), ASP in (Yang et al.)) to represent compositional knowledge about
the input space or impose a structural bias on the neural architecture. However, probabilistic neu-
rosymbolic techniques systematically rely on grounding to perform probabilistic reasoning, which
limits the impact of predicate languages on the computational side.

Supervision settings In real world applications, labeling large amounts of data is difficult, expen-
sive and slow, especially for multi-label classification tasks featuring many classes (Deng et al.).
Therefore, much work has been done to formalize and exploit cheaper supervision settings where
input samples are not fully labeled. In the semi-supervised setting (Seeger, 2000; Grandvalet &
Bengio, 2004), only a fraction of input samples are fully labeled while the rest is unlabeled. Closely
related is the partial-labels setting (Durand et al.), where only a subset of the classes are labeled
for each input sample. Partial labels can typically be found when prior knowledge represents a
functional dependency between a set of latent variables and a set of observed variables, like in the
MNIST-Add task (Manhaeve et al., 2021; Badreddine et al., 2022; Maene & De Raedt; van Krieken
et al.), which aim is to learn a latent representation of hand-written digits from observing only their
sum. Some neurosymbolic techniques have been specifically designed for these supervision settings
(Xu et al., 2018; Ahmed et al., 2022b).

7 CONCLUSION

In this paper, we introduce a formalism for supervised classification informed by prior knowl-
edge, define a new neurosymbolic technique called semantic conditioning at inference which in-
tegrates this prior knowledge during inference. To the best of our knowledge, this is the first neu-
rosymbolic technique based on probabilistic reasoning which only impacts inference. We evaluate
our technique alongside two existing probabilistic techniques on several large datasets and across
neural network scales. We show experimentally that semantic conditioning at inference can im-
prove the performances of a neural classification system on large datasets and on networks of
all sizes. Besides, we demonstrate that semantic conditioning at inference preserves key proper-
ties (i.e., syntactic invariance and consistency) and remains competitive with semantic conditioning
while only working at inference, making it more flexible and tractable.

Future directions for our work may include, amongst others, reproducing our experiments on more
datasets, investigating the semi-supervised and partial-labels settings. Finally, we assume through-
out the paper that the knowledge is known a priori, which is often not the case in practice. Discov-
ering the structure of the task at hand and training the model simultaneously is an important field of
research.

REFERENCES

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy den Broeck, and Antonio Vergari. Semantic
Probabilistic Layers for Neuro-Symbolic Learning. In Advances in Neural Information Process-
ing Systems, volume 35, pp. 29944–29959. Curran Associates, Inc., 2022a.

Kareem Ahmed, Eric Wang, Kai-Wei Chang, and Guy Van den Broeck. Neuro-symbolic entropy
regularization. In James Cussens and Kun Zhang (eds.), Proceedings of the Thirty-Eighth Con-
ference on Uncertainty in Artificial Intelligence, volume 180 of Proceedings of Machine Learn-
ing Research, pp. 43–53. PMLR, 01–05 Aug 2022b. URL https://proceedings.mlr.
press/v180/ahmed22a.html.

10

https://proceedings.mlr.press/v180/ahmed22a.html
https://proceedings.mlr.press/v180/ahmed22a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Antoine Amarilli and Mikaël Monet. Weighted counting of matchings in unbounded-treewidth graph
families. URL http://arxiv.org/abs/2205.00851.

Antoine Amarilli, Marcelo Arenas, YooJung Choi, Mikaël Monet, Guy Van den Broeck, and Benjie
Wang. A circus of circuits: Connections between decision diagrams, circuits, and automata. arXiv
preprint arXiv:2404.09674, apr 2024.

Eriq Augustine, Connor Pryor, Charles Dickens, Jay Pujara, William Yang Wang, and Lise Getoor.
Visual sudoku puzzle classification: A suite of collective neuro-symbolic tasks. In International
Workshop on Neural-Symbolic Learning and Reasoning, 2022.

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic Tensor Net-
works. Artificial Intelligence, 303:103649, 2022. ISSN 0004-3702. doi: https://doi.org/10.1016/
j.artint.2021.103649. URL https://www.sciencedirect.com/science/article/
pii/S0004370221002009.

Richard Bellman. On a routing problem. 16(1):87–90. ISSN 0033-569X. URL https://www.
jstor.org/stable/43634538. Publisher: Brown University.

Rishi Bommasani et al. On the opportunities and risks of foundation models. ArXiv, 2021. URL
https://crfm.stanford.edu/assets/report.pdf.

Leo Breiman. Random forests. 45(1):5–32. ISSN 1573-0565. doi: 10.1023/A:1010933404324.
URL https://doi.org/10.1023/A:1010933404324.

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cam-
bridge University Press, Cambridge, 2009. ISBN 978-0-521-88438-9. doi:
10.1017/CBO9780511811357. URL https://www.cambridge.org/
core/books/modeling-and-reasoning-with-bayesian-networks/
8A3769B81540EA93B525C4C2700C9DE6.

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. 17(1):229–264. ISSN 1076-
9757.

Jia Deng, Olga Russakovsky, Jonathan Krause, Michael S. Bernstein, Alex Berg, and Li Fei-Fei.
Scalable multi-label annotation. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’14, pp. 3099–3102. Association for Computing Machinery. ISBN
978-1-4503-2473-1. doi: 10.1145/2556288.2557011. URL https://doi.org/10.1145/
2556288.2557011.

Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin Murphy, Samy Bengio, Yuan Li, Hartmut
Neven, and Hartwig Adam. Large-Scale Object Classification Using Label Relation Graphs. In
Computer Vision – ECCV 2014, pp. 48–64. Springer International Publishing, 2014. ISBN 978-
3-319-10590-1.

Michelangelo Diligenti, Marco Gori, and Claudio Saccà. Semantic-based regularization for learning
and inference. Artificial Intelligence, 244:143–165, 3 2017. ISSN 00043702. doi: 10.1016/j.artint.
2015.08.011.

Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning a deep ConvNet for multi-label clas-
sification with partial labels. URL http://arxiv.org/abs/1902.09720.

Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. 69B(1):undefined–
undefined. ISSN 0022-4340. doi: 10.6028/jres.069b.013. URL https://www.mendeley.
com/catalogue/c0ac3d8d-0ca2-3d92-bd7e-d2570454b3e5/. Number: 1 and 2.

Wolfgang Faber. An Introduction to Answer Set Programming and Some of Its Extensions, pp. 149–
185. Springer International Publishing, Cham, 2020. ISBN 978-3-030-60067-9. doi: 10.1007/
978-3-030-60067-9 6. URL https://doi.org/10.1007/978-3-030-60067-9_6.

Yoav Freund and Robert E. Schapire. A desicion-theoretic generalization of on-line learning and
an application to boosting. In Paul Vitányi (ed.), Computational Learning Theory, pp. 23–37.
Springer. ISBN 978-3-540-49195-8. doi: 10.1007/3-540-59119-2 166.

11

http://arxiv.org/abs/2205.00851
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.jstor.org/stable/43634538
https://www.jstor.org/stable/43634538
https://crfm.stanford.edu/assets/report.pdf
https://doi.org/10.1023/A:1010933404324
https://www.cambridge.org/core/books/modeling-and-reasoning-with-bayesian-networks/8A3769B81540EA93B525C4C2700C9DE6
https://www.cambridge.org/core/books/modeling-and-reasoning-with-bayesian-networks/8A3769B81540EA93B525C4C2700C9DE6
https://www.cambridge.org/core/books/modeling-and-reasoning-with-bayesian-networks/8A3769B81540EA93B525C4C2700C9DE6
https://doi.org/10.1145/2556288.2557011
https://doi.org/10.1145/2556288.2557011
http://arxiv.org/abs/1902.09720
https://www.mendeley.com/catalogue/c0ac3d8d-0ca2-3d92-bd7e-d2570454b3e5/
https://www.mendeley.com/catalogue/c0ac3d8d-0ca2-3d92-bd7e-d2570454b3e5/
https://doi.org/10.1007/978-3-030-60067-9_6

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Francesco Giannini, Michelangelo Diligenti, Marco Maggini, Marco Gori, and Giuseppe Marra.
T-norms driven loss functions for machine learning. Applied Intelligence, 53(15):18775–18789,
February 2023. ISSN 0924-669X. doi: 10.1007/s10489-022-04383-6. URL https://doi.
org/10.1007/s10489-022-04383-6.

Eleonora Giunchiglia and Thomas Lukasiewicz. Coherent hierarchical multi-label classification net-
works. In Advances in Neural Information Processing Systems, volume 33, pp. 9662–9673. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/6dd4e10e3296fa63738371ec0d5df818-Abstract.html.

Eleonora Giunchiglia, Mihaela Cătălina Stoian, Salman Khan, Fabio Cuzzolin, and Thomas
Lukasiewicz. ROAD-R: the autonomous driving dataset with logical requirements. Ma-
chine Learning, 112(9):3261–3291, September 2023. ISSN 1573-0565. doi: 10.1007/
s10994-023-06322-z. URL https://doi.org/10.1007/s10994-023-06322-z.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In
Proceedings of the 17th International Conference on Neural Information Processing Systems,
NIPS’04, pp. 529–536, Cambridge, MA, USA, December 2004. MIT Press.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman (eds.),
Proceedings of the 7th Python in Science Conference, pp. 11 – 15, Pasadena, CA USA, 2008.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely Con-
nected Convolutional Networks. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2261–2269, Honolulu, HI, July 2017. IEEE. ISBN 978-1-5386-0457-
1. doi: 10.1109/CVPR.2017.243. URL https://ieeexplore.ieee.org/document/
8099726/.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Advances in Neural Information Processing Systems, volume 29. Curran As-
sociates, Inc. URL https://papers.nips.cc/paper_files/paper/2016/hash/
d8330f857a17c53d217014ee776bfd50-Abstract.html.

Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller, James W.
Thatcher, and Jean D. Bohlinger (eds.), Complexity of Computer Computations: Proceedings
of a symposium on the Complexity of Computer Computations, held March 20–22, 1972, at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored by the
Office of Naval Research, Mathematics Program, IBM World Trade Corporation, and the IBM
Research Mathematical Sciences Department, The IBM Research Symposia Series, pp. 85–103.
Springer US. ISBN 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2 9. URL https:
//doi.org/10.1007/978-1-4684-2001-2_9.

Henry A. Kautz. The third ai summer: Aaai robert s. engelmore memorial lecture. AI Mag., 43:
93–104, 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

Martin Krzywinski and Naomi Altman. Classification and regression trees. 14(8):757–758. ISSN
1548-7105. doi: 10.1038/nmeth.4370. URL https://www.nature.com/articles/
nmeth.4370. Publisher: Nature Publishing Group.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86:2278–2323, 1998. ISSN 00189219. doi:
10.1109/5.726791.

Jaron Maene and Luc De Raedt. Soft-unification in deep probabilistic logic. 36.
URL https://papers.nips.cc/paper_files/paper/2023/hash/
bf215fa7fe70a38c5e967e59c44a99d0-Abstract-Conference.html.

Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Neural probabilistic logic programming in DeepProbLog. Artificial Intelligence, 298:103504,
September 2021. ISSN 0004-3702. doi: 10.1016/j.artint.2021.103504. URL https://www.
sciencedirect.com/science/article/pii/S0004370221000552.

12

https://doi.org/10.1007/s10489-022-04383-6
https://doi.org/10.1007/s10489-022-04383-6
https://proceedings.neurips.cc/paper/2020/hash/6dd4e10e3296fa63738371ec0d5df818-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dd4e10e3296fa63738371ec0d5df818-Abstract.html
https://doi.org/10.1007/s10994-023-06322-z
https://ieeexplore.ieee.org/document/8099726/
https://ieeexplore.ieee.org/document/8099726/
https://papers.nips.cc/paper_files/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://www.nature.com/articles/nmeth.4370
https://www.nature.com/articles/nmeth.4370
https://papers.nips.cc/paper_files/paper/2023/hash/bf215fa7fe70a38c5e967e59c44a99d0-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/bf215fa7fe70a38c5e967e59c44a99d0-Abstract-Conference.html
https://www.sciencedirect.com/science/article/pii/S0004370221000552
https://www.sciencedirect.com/science/article/pii/S0004370221000552

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Giuseppe Marra, Francesco Giannini, Michelangelo Diligenti, and Marco Gori. Integrating learning
and reasoning with deep logic models, 2020.

George A. Miller. Wordnet. Communications of the ACM, 38:39–41, 11 1995. ISSN 15577317.
doi: 10.1145/219717.219748. URL https://dl.acm.org/doi/10.1145/219717.
219748.

Bruce R. Muller and W. Smith. A hierarchical loss for semantic segmentation. In VISIGRAPP,
2020. URL https://api.semanticscholar.org/CorpusID:215791996.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit MLE: Backpropa-
gating through discrete exponential family distributions. In Advances in Neural In-
formation Processing Systems, volume 34, pp. 14567–14579. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
hash/7a430339c10c642c4b2251756fd1b484-Abstract.html.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differ-
entiation of Blackbox Combinatorial Solvers. September 2019. URL https://openreview.
net/forum?id=BkevoJSYPB.

J. R. Quinlan. Induction of decision trees. 1(1):81–106. ISSN 1573-0565. doi: 10.1007/
BF00116251. URL https://doi.org/10.1007/BF00116251.

Ronald L. Rivest. Learning decision lists. 2(3):229–246. ISSN 0885-6125. doi: 10.1023/A:
1022607331053. URL https://doi.org/10.1023/A:1022607331053.

Olga Russakovsky et al. Imagenet large scale visual recognition challenge. International Journal of
Computer Vision, 115:211–252, 12 2015. ISSN 15731405. doi: 10.1007/s11263-015-0816-y.

Stuart Russell and Peter Norvig. Artificial Intelligence A Modern Approach (4th Edition). Pearson
Higher Ed, 2021.

Matthias Seeger. Learning with labeled and unlabeled data. 2000.

Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing, 20
(5):865–877, 1991. ISSN 0097-5397. doi: 10.1137/0220053. URL https://epubs.siam.
org/doi/10.1137/0220053. Publisher: Society for Industrial and Applied Mathematics.

Leslie G. Valiant. The complexity of enumeration and reliability problems. 8(3):410–421. ISSN
0097-5397. doi: 10.1137/0208032. URL https://doi.org/10.1137/0208032.

Emile van Krieken, Thiviyan Thanapalasingam, Jakub Tomczak, Frank van Harmelen, and An-
nette Ten Teije. A-NeSI: A scalable approximate method for probabilistic neurosymbolic infer-
ence. 36. URL https://proceedings.neurips.cc/paper_files/paper/2023/
hash/4d9944ab3330fe6af8efb9260aa9f307-Abstract-Conference.html.

Laura von Rueden et al. Informed Machine Learning – A Taxonomy and Survey of Integrating Prior
Knowledge into Learning Systems. IEEE Transactions on Knowledge and Data Engineering, 35
(1):614–633, January 2023. ISSN 1558-2191. doi: 10.1109/TKDE.2021.3079836. Conference
Name: IEEE Transactions on Knowledge and Data Engineering.

Wenguan Wang, Yi Yang, and Fei Wu. Towards data-and knowledge-driven artificial intelligence:
A survey on neuro-symbolic computing, 2023. URL https://arxiv.org/abs/2210.
15889.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van Den Broeck. A semantic loss
function for deep learning with symbolic knowledge. In 35th International Conference on Ma-
chine Learning, ICML 2018, volume 12, pp. 8752–8760. International Machine Learning Society
(IMLS), 2018. ISBN 9781510867963.

Zhun Yang, Adam Ishay, and Joohyung Lee. NeurASP: Embracing neural networks into answer set
programming. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, pp. 1755–1762. International Joint Conferences on Artificial Intelligence Organiza-
tion. ISBN 978-0-9992411-6-5. doi: 10.24963/ijcai.2020/243.

13

https://dl.acm.org/doi/10.1145/219717.219748
https://dl.acm.org/doi/10.1145/219717.219748
https://api.semanticscholar.org/CorpusID:215791996
https://proceedings.neurips.cc/paper_files/paper/2021/hash/7a430339c10c642c4b2251756fd1b484-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/7a430339c10c642c4b2251756fd1b484-Abstract.html
https://openreview.net/forum?id=BkevoJSYPB
https://openreview.net/forum?id=BkevoJSYPB
https://doi.org/10.1007/BF00116251
https://doi.org/10.1023/A:1022607331053
https://epubs.siam.org/doi/10.1137/0220053
https://epubs.siam.org/doi/10.1137/0220053
https://doi.org/10.1137/0208032
https://proceedings.neurips.cc/paper_files/paper/2023/hash/4d9944ab3330fe6af8efb9260aa9f307-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/4d9944ab3330fe6af8efb9260aa9f307-Abstract-Conference.html
https://arxiv.org/abs/2210.15889
https://arxiv.org/abs/2210.15889

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A KNOWLEDGE REPRESENTATION

We detail in this section several other knowledge representation languages. For each language, we
first define its syntax then detail its semantics. Other representation languages of boolean func-
tions include decision lists (Rivest), decision trees (Krzywinski & Altman; Quinlan), random forests
(Breiman), boosted trees (Freund & Schapire) or binarized neural networks (Hubara et al.).

A.1 CIRCUITS

Boolean circuits (Darwiche, 2009) FC :“ pC, sCq is a representation language that has gained a
lot of traction in recent years because some of its fragments provide tractable algorithms of many
reasoning tasks.

A boolean circuit C P CpYq on variables Y is a couple C :“ pG, ςq where:

• G “ pN,W q is a directed acyclic graph
• vertices in N are called nodes and edges in W are called wires
• G has a single root r (i.e., a node without parents)
• ς : N Ñ Y Y tJ,K,␣,^,_u such that:

– ςpnq P Y Y tJ,Ku iff n is a leaf node
– ςpnq “ ␣ iff n has exactly one child
– ςpnq P t^,_u iff n has at least two children

The set of children of a node n P N is noted chpnq. The set of variables of a circuit is noted varpCq.
Given a node n P N , we note Cn the circuit obtained by keeping all nodes that are descendants of
n in G. We sometimes note varpnq for varpCnq.

Let’s assume a state y P BY and a circuit C :“ pG, ςq P CpYq of root r. To know if y satisfies the
circuit (i.e., sCpCqpyq “ 1, we evaluate the circuit bottom up, mapping each node n to 0 or 1. First,
leaf nodes n are mapped to 1 if ςpnq “ J, to 0 if ςpnq “ K and to ypςpnqq if ςpnq P Y. Then, for
any internal node n, it is valued 1 if ςpnq “ ␣ and its child is valued 1, or if ςpnq “ _ and one of its
children is valued 1 or if ςpnq “ ^ and all its children are valued 1. Otherwise it is valued 0. The
state y satisfies the circuit if the root is valued at 1.

A circuit is in Negational Normal Form (NNF) if all negation nodes have variables as children,
i.e., :

@pu, vq PW, ςpuq “ ␣ ùñ ςpvq P Y

(i.e., @pu, vq PW, ςpuq “ ␣ ùñ ςpvq P Y).

A conjunction node u (i.e., ςpuq “ ^) is decomposable if the sub-circuits rooted in each of its
children do not share variables, i.e., :

@pu, vq, pu,wq PW, varpvq Y varpwq “ H

A circuit is in Decomposable Negational Normal Form (DNNF) if it is NNF and all of its con-
junction nodes are decomposable.

A disjunction node u (i.e., ςpuq “ _) is deterministic if the sub-circuits rooted in each of its
children do not share satisfying assignments, i.e., :

@pu, vq, pu,wq PW, sCpC
vq Y sCpC

wq “ H

A circuit is in Deterministic Decomposable Negational Normal Form (dDNNF) if it is DNNF
and all of its disjunction nodes are deterministic.

Besides, any propositional formula can be translated in linear time into an equivalent boolean circuit
by reading the formula in the standard priority order. Therefore, usual fragments of propositional
logic (e.g. CNF, DNF, etc.) translate into fragments of boolean circuits.

Recently, (Amarilli et al., 2024) showed that decision diagrams (e.g. Ordered Binary Decision Dia-
grams) also correspond to fragments of boolean circuits.

A map of fragments of boolean circuits is represented on Figure 3.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 3: Fragments of boolean circuits in Darwiche (2009): an edge F2 ÝÑ F1 means that F2 is
a fragment of F1.

A.2 ANSWER SET PROGRAMMING

Answer Set Programming (ASP) (Faber, 2020) FASP :“ pTASP , sASP q is one of the simplest
examples of non-monotonic logics, which enable concise representations of complex knowledge at
the cost of monotonicity.

A theory Π P TASP pYq in ASP is composed of a set of rules and is called a program. A rule
r P RpYq is formed from the grammar:

r :““ a.|hÐ b h :““ a|K b :““ l|b, l l :““ a|not a

where ta P Y,Ð, notu are terminal symbols.

h and b are respectively called the head and the body of the rule.
Example 5. r :“ Y1 Ð Y2, not Y3 is a rule on variables Y “ tY1, Y2, Y3u.

The reduct of a program Π P TASP pYq relative to a state y P BY is the program Πy :

Πy “ tYi0 Ð Yi1 , ..., Yil .|r P Π, r : Yi0 Ð Yi1 , ..., Yil , not Yil`1
, ..., not Yim .,@j P til`1, ..., imu, yj “ 0u

To get Πy, we first eliminate all rules in Π such that y does not satisfy the negative part of the body,
then for remaining rules, we delete the negative part of the body and add them to Πy.

We say that a state y P BY fires a rule r : Yi0 Ð Yi1 , ..., Yil , not Yil`1
, ..., not Yim . iff y satisfies ϕr

(in the sense of propositional logic) where:

ϕr :“ ␣Yi1 _ ..._␣Yil _ Yil`1
_ Yim _␣Yi0

Finally, sASP follows the answer set semantics: a state y P BY in an answer set for a program Π,
noted sASP pΠqpyq “ 1, iff it is the smaller state (in terms of inclusion) to fire all rules of Πy.

A.3 LINEAR PROGRAMMING

Linear programming is traditionally associated to constrained optimization problems, but it can be
used to define a propositional language FLP :“ pTLP , sLP q naturally suited to express many real-
world problems.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A theory Π P TLP , called a linear program, is a set of formulas called linear constraints. A linear
constraint r P LCpYq is of the shape:

b1.Yi1 ` ...` bm.Yim ď c

with Yi1 , ..., Yim P Y and b1, ..., bm, c P Z.

To lighten notations, a linear constraint is sometimes noted xZ,by “ c where Z :“ pYi1 , ..., Yimq
and b :“ pb1, ..., bmq.
Remark 3. The set of coefficients Z can be extended to Q without affecting either the concision of
the language nor its expressivity. However, it cannot be extended to R because arbitrary irrational
coefficients would require an infinite length to represent.

A state y P BY satisfies a linear constraint iff b1.yi1 ` ... ` bm.yim ď c in the usual arithmetical
sense. A state y P BY satisfies a linear program Π P TLP (i.e., sLP pΠqpyq “ 1) iff it satisfies all
linear constraints in Π.

Example 6. Imagine a catalog of products P :“ tP1, ..., Pku with corresponding prices p :“
tp1, ..., pku P Nk. A basket of products corresponds to a state on P. An online website might want
to suggest a basket of additional products to go with the order of a client. However, it noticed that
large or expansive baskets are less likely to be picked. However, they would like to make sure that the
suggested basket is not too cheap. Therefore, they defined a maximum size NM as well as maximum
and minimum budgets BM and Bm for the suggested baskets. The set of baskets that match those
constraints correspond to a boolean function on P.

This boolean function can be represented by the following linear program:

xP,1y ď NM

xP,py ď BM

xP,py ě Bm

A.4 GRAPH-BASED LANGUAGES

Although they are not usually thought of as propositional languages, graphs can allow to express
knowledge about variables by relating them to elements of a graph. As opposed to most proposi-
tional languages, graph-based languages are not universal (i.e., they cannot represent any boolean
function), but specialized for a specific type of knowledge. They are often used to represent frag-
ments of universal languages in a concise and more intuitive way. Besides, unlike most propositional
languages where the semantic is strongly tied to the syntax (such that the semantics is often implic-
itly assumed from the syntax), graph-based languages share very similar syntaxes but vary greatly
in their semantics.

A language is edge-based (resp. vertice-based) when a theory maps variables in Y to edges (resp.
vertices) of a graph G “ pV,Eq: a theory is a couple T :“ pG, ςq where G “ pV,Eq is a graph and
ς : E Ñ Y (resp. ς : V Ñ Y) is bijective.

Example 7. The simple path language (resp. matching language) is an edge-based language where
a state y P BY satisfies T iff the set of selected edges forms a simple path (resp. perfect matching)
in G.

B PROPERTIES

We give formal definitions and proofs for syntactic invariance and consistency of neurosymbolic
techniques mentioned in the paper. Besides, we demonstrate several other properties of interest
of probabilistic neurosymbolic techniques. We underline the generality of semantic conditioning
by showing that traditional loss and inference modules introduced for independent, categorical and
hierarchical classification are specific cases of semantic conditioning on their respective semantics.
We demonstrate that conditioning at inference is superior to independent inference in a certain sense
that we define.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.1 SYNTACTIC INVARIANCE

Definition 9 (Syntactic invariance). A model agnostic neurosymbolic technique T :“ pL, Iq for a
propositional language F :“ pT , sq is invariant to syntax iff, for any finite set of variables Y and
theories κ1, κ2 P T pYq such that κ1 ” κ2:

LpY, κ1q “ LpY, κ2q

IpY, κ1q “ IpY, κ2q

Proposition 1. Semantic regularization, semantic conditioning and semantic conditioning at infer-
ence are all invariant to syntax.

Proof. Like mentioned in the paper, this stems directly from the fact that probabilistic reasoning
essentially depends on the semantic of the formula rather than on its syntax. By definition, for
κ1 ” κ2 we have 1κ1

“ 1κ2
. This implies that for any a P Rk we have Ppκ1|aq “ Ppκ2|aq and

argmax
yPBY

Pp¨|a, κ1q “ argmax
yPBY

Pp¨|a, κ2q, which concludes the proof for all three techniques.

B.2 CONSISTENCY

Definition 10 (Consistency). A model agnostic neurosymbolic technique T :“ pL, Iq for a propo-
sitional language F :“ pT , sq is consistent iff, for any finite set of variables Y and a satisfiable
theory κ P T pYq:

@a P Rk, IpY, κqpaq |ù κ

Proposition 2. Both semantic conditioning and semantic conditioning at inference are consistent.

Proof 2. Remind that IscpY, κqpaq “ argmax
yPBY

Ppy|a, κq.

We assumed κ to be satisfiable and we know that for all a, Pp¨|aq is strictly positive. Therefore
Pp¨|a, κq is strictly positive and we have:

y “ argmax
yPBY

Ppy|a, κq ùñ Ppy|a, κq ą 0 ùñ y |ù κ

Hence:
@a, IscpY, κqpaq |ù κ

B.3 GENERALITY OF SEMANTIC CONDITIONING

First, let us demonstrate that standard modules for independent and categorical classification are
particular cases of semantic conditioning on their respective background knowledge:
Proposition 3.

LscpY,Jqpa,yq “ Limcpa,yq IscpY,Jqpaq “ Iimcpaq

LscpY, κdk
qpa,yq “ Ldk

pa,yq IscpY, κdk
qpaq “ Idk

paq
(16)

We start by demonstrating the following lemma:
Lemma 4. Let’s assume a P Rk, then:

Ppy|aq “
ź

1ďjďk

yj .spajq ` p1´ yjq.p1´ spajqq

where spaq “ p eaj

1`eaj q1ďjďk is the sigmoid function.

Proof. To prove this, let’s prove by recurrence on k P N˚ that:

@a P Rk,ZpEp¨|aqq “
ź

1ďjďk

p1` eaj q

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

First, let’s assume k “ 1, we have:

@a P R,ZpEp¨|aqq “ Ep0|aq ` Ep1|aq “ e0 ` ea “ 1` ea

Then, let’s assume k ą 1, we have:

@a P Rk,ZpEp¨|aqq “
ÿ

yPBY

Epy|aq “
ÿ

yPBY

ź

1ďiďk

eai.yi

“
ÿ

yPBY

yk“0

ź

1ďiďk´1

eai.yi `
ÿ

yPBY

yk“1

eak .
ź

1ďiďk´1

eai.yi

“ p1` eakq.
ÿ

yPBk´1

ź

1ďiďk´1

eai.yi “ p1` eakq.ZpEp¨|azkqq

where azk “ pajq1ďjďk´1.

By application of the recurrence hypothesis:

ZpEp¨|azkqq “
ź

1ďjďk´1

p1` eaj q

Hence:
@a P Rk,ZpEp¨|aqq “

ź

1ďjďk

p1` eaj q

This gives us:

@y P BY,@a P Rk,Ppy|aq “ Epy|aq
ZpEp¨|aqq

“

ś

1ďiďk e
ai.yi

ś

1ďjďkp1` e
aj q

“
ź

1ďjďk

eai.yi

1` eaj

Notice that:
@y P B, a P R,

ea.y

1` ea
“ y.spaq ` p1´ yq.p1´ spaqq

Thus, finally:

@y P BY,@a P Rk,Ppy|aq “
ź

1ďjďk

yj .spajq ` p1´ yjq.p1´ spajqq

Proof 3.1. First, according to Lemma 4:

Ppy|aq “
ź

1ďjďk

yj .spajq ` p1´ yjq.p1´ spajqq

Besides, we know that 1J “ 1 (all states are mapped to 1), which implies that:

@y P BY,@a P Rk,Ppy|a,Jq “ Ppy|aq
This gives:

LscpY,Jqpa,yq “ ´ logpPpy|a,Jqq “ ´ logpPpy|aqq

“ ´ logp
ź

j

yj .spajq ` p1´ yjq.p1´ spajqqq

“ ´
ÿ

j

logpyj .spajq ` p1´ yjq.p1´ spajqqq

Since y is a binary vector:

LscpY,Jqpa,yq “ ´
ÿ

j

yj . logpspajqq ` p1´ yjq. logp1´ spajqq

“ Limcpa,yq

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof 3.2.

IscpY,Jqpaq “ argmax
yPBY

Ppy|a,Jq “ argmax
yPBY

Ppy|aq “ argmax
yPBY

Epy|aq

“ argmax
yPBY

ź

1ďiďk

eai.yi “ argmax
yPBY

rexpp
ÿ

1ďiďk

ai.yiqs “ argmax
yPBY

ÿ

1ďiďk

ai.yi

“ 1ra ě 0s

“ Iimcpaq

Proof 3.3. The one and only one semantic of κdk
gives us:

@y,y |ù κdk
ùñ Dj,y “ dkpjq

Hence:

Ppκdk
|aq “

ÿ

y|ùκdk

Ppy|aq “
ÿ

1ďjďk

Ppdkpjq|aq

“
1

ZpPp¨|aqq
.

ÿ

1ďjďk

Epdkpjq|aq “
1

ZpPp¨|aqq
.

ÿ

1ďjďk

eaj

This leads to:

@l,Ppdkplq|a, κdk
q “

Ppdkplq ^ κdk
|aq

Ppκdk
|aq

“
Ppdkplq|aq

Ppκdk
|aq

“
Epdkplq|aq

ZpPp¨|aqq.Ppκdk
|aq

“
eal

ř

1ďjďk e
aj
“ σpaql “ xσpaq,dkplqy

Besides, since we assume consistent labels, we know that there is l such that y “ dkplq, which
gives:

LscpY, κdk
qpa,yq “ Lκdk

pa,dkplqq “ ´ logpPpdkplq|a, κdk
qq

“ ´ logpxσpaq,dkplqyq “ ´ logpxσpaq,yyq

“ Ldk
pa,yq

Proof 3.4. We know that κdk
is satisfiable and Ppy|aq is strictly positive. So we have:

y “ argmax
yPBY

Ppy|a, κdk
q ùñ y |ù κdk

ùñ Dl,y “ dkplq

Therefore, we have:

IscpY, κdk
qpaq “ argmax

1ďjďk
Ppdkpjq|a, κdk

q “ argmax
1ďlďk

Ppdkplq|aq

“ argmax
1ďlďk

xa,dkplqy “ dkpargmax
1ďlďk

paqq

“ Idk
paq

B.4 SUPERIORITY OF CONDITIONING AT INFERENCE

Besides, when performing inference based on identical model modules and learned parameters, sci
guarantees greater or equal accuracy compared to traditional imc inference (i.e., if Iimc infers the
right labels, then IscpY, κq will also infer the right labels):

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proposition 5.
@a P Rk,y |ù κ, Iimcpaq “ y ùñ IscipY, κqpaq “ y

Proof 5. Let’s proove this by the absurd and assume that:

IscpY, κqpaq :“ ŷ ‰ y

Since both ŷ and y are consistent with κ (which we assume satisfiable), we have:

Ppŷ|a, κq
Ppy|a, κq

“
Ppŷ|aq
Ppy|aq

Because ŷ “ IscpY, κqpaq “ argmax
yPBY

Ppy|a, κq:

Ppŷ|a, κq ě Ppy|a, κq

Therefore:
Ppŷ|aq ě Ppy|aq ùñ y ‰ argmax

yPBY

Ppy|aq “ Iimcpaq

Which is in contradiction with our premise, thus we have

@a P Rk,y |ù κ, Iimcpaq “ y ùñ IscipY, κqpaq “ y

B.5 RELATION BETWEEN SEMANTIC REGULARIZATION AND CONDITIONING

Finally, it is interesting to notice that under the consistent label hypothesis:

Proposition 6.

LscpY, κqpa,yq “ ´ logpPpy|aqq ` logpPpκ|aqq “ L´1
sr pY, κqpa,yq (17)

Proof 6. Since labels are consistent, we have 1κp1κq “ 1, thus Ppy|a, κq “ Ppy|aq

Ppκ|aq
q.

Therefore:

LscpY, κqpa,yq “ ´ logpPpy|a, κqq “ ´ logp
Ppy|aq
Ppκ|aq

q

“ ´ logpPpy|aqq ` logpPpκ|aqq
“ L´1

sr pY, κqpa,yq

Thus, the loss module of semantic conditioning corresponds to that of semantic regularization with
a λ “ ´1. Although it seems counter-intuitive that two systems trying to reach the same goal end up
using ”opposite regularization terms” in their loss module, this is justified by the different inference
modules used in each system.

Hence, an implementation for Lλ
srpY, κq can be used for LscpY, κq. Besides, by training systems

with regularized loss modules with different λ and evaluating with both IscpY, κq and Iimc, we can
span the entire spectrum of techniques in imc, sr, sc and sci.

C EXPERIMENTAL DETAILS

C.1 TASKS

We give additional details on the tasks tackled in the paper.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.1.1 CATEGORICAL CLASSIFICATION

We mentioned earlier (see Section 3) how categorical classification tasks could be framed as a multi-
label classification with prior knowledge. MNIST is one of the oldest and most popular dataset
in computer vision and consists of small images of hand-written digits (e.g. or). Since its
introduction in LeCun et al. (1998), it has been used as a toy dataset in many different settings.
Likewise in neurosymbolic literature, many researchers used MNIST as a basis to build structured
dataset compositionally (e.g. the PAIRS dataset in Marra et al. (2020), the MNIST-Add dataset in
Manhaeve et al. (2021); Badreddine et al. (2022); Maene & De Raedt; van Krieken et al. or the
Sudoku dataset in Augustine et al. (2022)).

C.1.2 HIERARCHICAL CLASSIFICATION

The Cifar-100 dataset (Krizhevsky, 2009) is composed of 60,000 images classified into 20 mutually
exclusive super-classes (e.g. reptile), each divided into 5 mutually exclusive fine-grained classes
(e.g. crocodile, dinosaur, lizard, turtle, and snake). While most papers only consider the categorical
classification task arising form the 100 fine-grained classes, we keep all 120 classes to produce a
multi-label classification task where prior knowledge captures mutual exclusion and the hierarchy
between super and fine-grained classes.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015) is an
image classification challenge which has become a standard benchmark in computer vision to com-
pare performances of deep learning models. As of August 2014, ImageNet contained 14,197,122
annotated images organized into 21,841 synsets of the WordNet hierarchy (Miller, 1995), however
standard image classification tasks often use a subset of those, usually 1,000 or 100 synsets. The
WordNet hierarchy defines subsumption (or inclusion) between classes, and can be used in many
ways to create a task of binary multi-label classification with prior knowledge.

For our experiments, we sample 100 classes from 1k ImageNet and add all their parent classes.
We then prune classes that have only one parent class and one child class to avoid classes having
identical sample sets. We thus obtain a dataset of ImageNet samples labeled on a hierarchy of 271
classes. Prior knowledge for this task includes the hierarchical knowledge coming from WordNet, as
well as exclusion knowledge that we obtain by assuming two classes having no common descendants
are mutually exclusive.

C.1.3 SIMPLE PATH PREDICTION

The Warcraft shortest path task (Pogančić et al., 2019; Yang et al.; Niepert et al., 2021; Ahmed et al.,
2022a) uses randomly generated images of terrain maps from the Warcraft II tileset. Maps are build
on a 12 ˆ 12 directed grid (each vertex is connected to all its neighbors) and to each vertex of the
grid corresponds a tile of the tileset. Each tile is a RGB image that depicts a specific terrain, which
has a fixed traveling cost. For each map, the label encodes the shortest s-t path (i.e., a path from
the upper-left to the lower-right corners), where the weight of the path is the sum of the traveling
costs of all terrains (i.e., grid vertices) on the path. The terrain costs are used to produce the dataset
but are not provided during training nor inference. In the original dataset (Pogančić et al., 2019),
output variables correspond to vertices in the grid and a state satisfies the simple path constraint if
the vertices set to 1 constitute a simple s-t path.

This representation comes with several issues. First, as noted in Ahmed et al. (2022a), the set of
vertices ambiguously encode more than one path (because of cycles in the grid, there are several
possible simple paths that go through the same vertices). Besides, computing MPE and PQE for
simple path constraints on general directed graphs are respectively NP-hard (Karp) and #P-hard
(Valiant). To make this task tractable, (Ahmed et al., 2022a) transforms the output space in the
following way: edges of the grid are chosen as output variables instead of vertices and only simple
paths with a maximal length of 29 (the maximal length found in the training set) are kept. This
implies that the test set might not be consistent with the constraints since it might contain a path
longer than 29 edges. Besides, such method would not scale to larger grids.

In our experiments, we adopt a different approach. We keep the set of edges as our output vari-
ables, but we turn the grid into an acyclic graph by only connecting vertices to their right and lower
neighbors. Acyclicity is a sufficient condition to compile simple path constraints to an Ordered Bi-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

nary Decision Diagram (see code/circuits/AcyclicSimplePath.py in the supplemen-
tary material), which makes MPE and PQE tractable. This transformation allows us to scale to larger
grids without an explosion of the computational cost. We recompute the labels for the new output
space using the terrain costs.

Figure 4: Examples of Warcraft maps and their shortest paths (Ahmed et al., 2022a)

C.2 IMPLEMENTATION

We used a simple Convolutional Neural Network (CNN) (LeCun et al., 1998) design on the MNIST
dataset and the family of DenseNets (Huang et al., 2017) on all others.

In all our experiments, probabilistic reasoning computations brought no significant overhead on top
of the neural network. For categorical tasks, the number of valid states is enumerable in linear time,
hence there are no complexity issues to implement all three techniques. For hierarchical tasks, we
implemented our own version 1 of (Deng et al., 2014), which uses a custom compilation algorithm
to convert the propositional formula into a minimal junction tree and then applies a sparse message
passing procedure. For simple path prediction task, we used the compilation technique mentioned
above alongside the SPL package (Ahmed et al., 2022a) to implement semantic conditioning and
semantic regularization. For semantic conditioning at inference, we simply adapted a shortest path
solver from NetworkX (Hagberg et al., 2008) based on the Bellman-Ford algorithm (Bellman).

C.2.1 CATEGORICAL CLASSIFICATION

The architectural design for categorical classification on MNIST is a simple Convolutional Neu-
ral Network (CNN) (LeCun et al., 1998), as shown on Listing 1. We trained networks with
num layers from 1 up to 9 layers.

Listing 1: Our TinyNet architecture (PyTorch implementation)
class TinyCNNs(nn.Module):

def __init__(self, num_classes: int = 10,
num_layers: int = 1,
in_channels=1):

super().__init__()
convs = []
for i in range(num_layers):

convs.append(nn.Conv2d(2**(i//2)*in_channels,
2**((i+1)//2)*in_channels,
5,
padding=2))

convs.append(nn.ReLU())
self.convs = nn.Sequential(*convs)
self.AdaptativeScale = int(5*2**(num_layers/2))
self.pool = nn.AdaptiveAvgPool2d(5)

1Their code was not publicly available. Our code is attached in the supplementary materials and will be
made publicly available in the final version.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

self.fc = nn.Linear(25*2**(num_layers//2)*in_channels,
num_classes)

def forward(self, x):
x = self.convs(x)
x = F.relu(x)
x = self.pool(x)
x = torch.flatten(x, start_dim=1)
x = self.fc(x)
return x

Then, to complete the neural based system: we use the loss module shown on Listing 2 (with varying
λ) and inference modules shown in Listings 2 and 3 for imc and sci respectively.

Listing 2: rsc loss
scores = self.model(x)
energies = torch.gather(self.scores, 1, y.unsqueeze(dim=1))
log_z = torch.sum(torch.log(torch.exp(self.scores).add(1)),

dim=1, keepdim=True)
mc_log_z = torch.log(torch.sum(torch.exp(self.scores),

dim=1, keepdim=True))

loss = torch.mean(torch.sub(torch.add(log_z.mul(1+self.lambda),
mc_log_z.mul(-self.lambda)),

energies))

return loss

Listing 3: imc inference
scores = self.model(x)
return torch.gt(scores, 0)

Listing 4: sci inference
scores = self.model(x)
_, idx_max = torch.max(self.scores, dim=1)
return F.one_hot(idx_max, num_classes=scores.shape[1])

C.2.2 HIERARCHICAL CLASSIFICATION

The architectural design for hierarchical classification tasks Cifar and ImageNet was based on
DenseNets (Huang et al., 2017). We used the torchvision implementation with a naive scaling
strategy to create DenseNets of various size, as shown on Listing 5. We trained network with
size from 0 up to 8.

Listing 5: DenseNet scaling
from torchvision.models.densenet import _densenet

network = _densenet(growth_rate=32,
block_config=(6, 12, (size+3)*8,(size+1)*8),
num_init_features=64,
weights=None,
progress=True)

For the loss and inference modules, we followed (Deng et al., 2014) and expressed the hierarchical
and exclusion relations as a HEX-graph H , then compiles this HEX-graph into a HEX-layer that
can compute IκH

using a sparse max-product message passing algorithm with Viterbi decoding (see
fastHEXLayer.py).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

To do so, for ImageNet, we first extract hierarchical links from the wn hyp.pl file and arrange
them into a directed graph. Then, for our experiments, only 100 leaf nodes are randomly sampled
from the total 1,000 and the directed graph is trimmed of any node not connected to a sampled
leaf node. We also prune nodes that only have one parent and one child to avoid the case where
two nodes have the same set of labeled samples (which would make them indistinguishable for
the network). This directed graph is fed into a HEXGraph object, which computes the sparse
and dense version of the hierarchical and exclusion matrices, builds the corresponding junction
tree (using the JunctionTree object) and records the valid states of each clique and the sum-
product matrix of the junction tree. The results of these compilations steps can be saved and loaded:
the specific files used in this experiment are ./ImageNet/compilations/100p*. During
training, this HEXGraph is loaded from compilation files and passed on to the HEXLayer which
contains the methods to perform sci. The code to perform those compilation steps is found in
ImageNetProcessing.ipynb.

For Cifar-100, the hierarchy has only two levels (macro and fine-grained classes) and can be retrieved
directly online and fed to the HEXGraph object.

C.2.3 SIMPLE PATH PREDICTION

The architectural design for simple path prediction on the Warcraft Shortest Path dataset is also
based on DenseNets (Huang et al., 2017) as for hierarchical tasks. We trained network with size
from 0 up to 6.

We compiled the constraints to an OBDD (Darwiche, 2009) using a custom algorithm. Compi-
lation files can be found in the code under name files 12x12.sdd and 12x12.vtree in the
Code/WSP/data/12x12 folder.

Then, we used the SPL (Ahmed et al., 2022a) implementation to compute the loss module for se-
mantic conditioning (λ “ ´1) and semantic regularization (“ 0.1). For the inference module,
we decided to replace the SPL implementation by an adapted shortest path solver from NetworkX
(Hagberg et al., 2008) based on the Bellman-Ford algorithm (Bellman). We found this solution less
prone to numerical stability issues.

C.3 METRICS

There are plenty of metrics that can be used to evaluate a classification system.

Simple accuracy averages how many classes were correctly labeled on each sample, however, since
multi-label classification datasets with background knowledge are often highly unbalanced (far more
negative classes that positive ones) it is often unfit to the task. Precision, recall and f1-score metrics
can help tackle with this issue, but they lose track of the semantics of the task.

Semantic consistency counts how many outputs are consistent with the background knowledge.
Since sci is provably consistent, this metric is of little interest for us.

Metrics that are not based on the binary outputs but need to access probability scores associated with
each classe, like threshold metrics (e.g. map@50, map@75, auc) or top-k metrics, are not accessible
to our classification system as is.

Eventually, we decide to use exact accuracy, which counts how many samples are perfectly labeled:
this is the most demanding metric since a single mistake disqualifies the whole output. This metric
is also used in Ahmed et al. (2022a) and in Xu et al. (2018) (where it is called coherent accuracy).

C.4 HYPERPARAMETERS

Epochs We trained each system on the training set for up to 100 epochs: 100 for MNIST, Cifar
and Warcraft Shortest Path and only 90 for ImageNet due to computational ressources constraints.
We evaluate the perfect accuracy on the test set at each epoch.

Seeds We set seeds manually with torch.manual seed(args.seed). We used 6 seeds
(r0, 1, 2, 3, 4, 5s) for MNIST, 3 seeds (r0, 1, 2s) for Cifar and ImageNet and 2 seeds (r0, 1s) for War-
craft Shortest Path (due to compute budget limits).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Batch size We use a batch size of 8 for MNIST and Cifar, and increase to 64 for ImageNet and
Warcraft Shortest Path to speed up training.

Regularization coefficient We used λ “ 0.1 for semantic regularization (Xu et al., 2018). We did
not perform a full hyperparameter search procedure because we considered it was too costly on large
datasets like ImageNet, Cifar or Warcraft Shortest Path. We tried several values of λ on MNIST and
at the beginning of our experiments on Cifar and ImageNet with no noticeable difference.

Optimizer We use Adam with a learning rate of 10´4 for all tasks.

25

	Introduction
	Preliminaries
	Knowledge representation
	Probabilistic reasoning

	Informed supervised classification
	Neural multi-label classification
	Task

	Techniques
	Probabilistic techniques
	Properties
	A look on complexity

	Experiments on large scale data
	A new multi-scale evaluation
	Datasets
	Results and analysis

	Related work
	Conclusion
	Knowledge representation
	Circuits
	Answer Set Programming
	Linear Programming
	Graph-based languages

	Properties
	Syntactic invariance
	Consistency
	Generality of semantic conditioning
	Superiority of conditioning at inference
	Relation between semantic regularization and conditioning

	Experimental details
	Tasks
	Categorical classification
	Hierarchical classification
	Simple path prediction

	Implementation
	Categorical classification
	Hierarchical classification
	Simple path prediction

	Metrics
	Hyperparameters

