
Progressive Tempering Sampler with Diffusion

Severi Rissanen * 1 RuiKang OuYang * 2 Jiajun He 2 Wenlin Chen 2 3 Markus Heinonen 1 Arno Solin 1

José Miguel Hernández-Lobato 2

Abstract
Recent research has focused on designing neu-
ral samplers that amortize the process of sam-
pling from unnormalized densities. However, de-
spite significant advancements, they still fall short
of the state-of-the-art MCMC approach, Parallel
Tempering (PT), when it comes to the efficiency
of target evaluations. On the other hand, unlike a
well-trained neural sampler, PT yields only depen-
dent samples and needs to be rerun—at consider-
able computational cost—whenever new samples
are required. To address these weaknesses, we
propose the Progressive Tempering Sampler with
Diffusion (PTSD), which trains diffusion models
sequentially across temperatures, leveraging the
advantages of PT to improve the training of neu-
ral samplers. We also introduce a novel method
to combine high-temperature diffusion models to
generate approximate lower-temperature samples,
which are minimally refined using MCMC and
used to train the next diffusion model. PTSD en-
ables efficient reuse of sample information across
temperature levels while generating well-mixed,
uncorrelated samples. Our method significantly
improves target evaluation efficiency, outperform-
ing diffusion-based neural samplers.

1. Introduction
Sampling from probability distributions is a fundamental
problem in many fields of science, including Bayesian infer-
ence (Gelman et al., 2013; Welling & Teh, 2011), statistical
physics (Von Toussaint, 2011) and molecular simulations

*Equal contribution 1Department of Computer Science,
Aalto University, Finland 2Department of Engineering, Univer-
sity of Cambridge, United Kingdom 3Department of Empir-
ical Inference, Max Planck Institute for Intelligent Systems,
Tübingen, Germany. Correspondence to: Severi Rissanen <sev-
eri.rissanen@aalto.fi>, RuiKang OuYang <ro352@cam.ac.uk>,
Jiajun He <jh2383@cam.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

106 107 108 109 1010 1011
4

5

6

7

8

9

iDEM

BNEM

DDS

CMCD

PT+DM
(baseline)

PTSD
(ours)

Im
proved

err
or and

eval.
count

← Target evaluation count

←
Sa

m
pl

e
er

ro
r(
W

2
)

Figure 1. Sample error (W2 distance) and target evaluation times
for several diffusion (and control)-based neural samplers on Many-
Well-32 target, including DDS, iDEM, BNEM, and CMCD, with
our proposed approach. We include the results obtained by first
running PT and fit a diffusion model post hoc for comparison.

(Noé et al., 2019). We aim to draw independent samples
from a probability distribution with a density:

p(x) =
p̃(x)

Z
s.t. Z =

∫
p̃(x) dx, (1)

where we only assume access to the unnormalized density
function p̃(x) without any ground-truth observations.

The classical way to sample from the target density p is
Markov chain Monte Carlo (MCMC), where we design a
Markov chain whose invariant density is p, with the state-
of-the-art method being Parallel Tempering (PT, Swend-
sen & Wang, 1986; Geyer, 1991; Hukushima & Nemoto,
1996), also known as replica exchange. The key to PT’s
success lies in running parallel MCMC chains at K tem-
peratures T1, . . . , TK , each corresponding to a tempering
version pTk

∝ p1/TK of the original target. The chains at
higher temperatures are easier to traverse across the entire
support, and samples in those chains are swapped, facili-
tating better mixing in low temperatures (Woodard et al.,
2009). We also note that other choices of path exist, for
example, geometric interpolant path pk ∝ pβkp1−βk

0 with a
tractable reference p0 and βk ranging from 0 to 1, or other

1

Progressive Tempering Sampler with Diffusion

more flexible designs (Syed et al., 2021; Surjanovic et al.,
2022). In this paper, we follow the convention in most
practical applications to use the annealing path.

However, despite significant advancements in PT, obtaining
a new, independent sample requires an independent sam-
ple from the highest temperature to be propagated to the
lowest temperature (Surjanovic et al., 2024). Consequently,
whenever new samples are needed, we need to run PT until
uncorrelated samples have been obtained at the highest tem-
perature and transferred to the target, which might require
considerable cost. Therefore, a growing trend in research
has focused on learned neural samplers, which aim to amor-
tize the sampling process and generate uncorrelated samples
directly. Early approaches involved fitting normalizing flows
to data generated by MCMC (Noé et al., 2019), while more
recent efforts typically focus on training generative models
directly using only the target unnormalized density. Of par-
ticular recent interest are diffusion-based neural samplers,
driven by the remarkable success of diffusion models (Ho
et al., 2020; Song et al., 2021) in generation tasks. How-
ever, a key factor behind the success of diffusion models in
these fields lies in their simple and stable denoising score
matching (DSM) objective (Vincent, 2011), which relies
on access to ground truth data from the target distribution.
As a result, while diffusion models demonstrate impressive
performance in generation tasks, translating this success
to the problem of learning neural samplers directly from
unnormalized densities remains challenging.

To illustrate this challenge, in Fig. 1, we compare several
recent diffusion and control-based neural samplers, includ-
ing DDS (Vargas et al., 2023), iDEM (Akhound-Sadegh
et al., 2024), BNEM (OuYang et al., 2024), and CMCD
(Vargas et al., 2024), on the Many-Well-32 target (Midg-
ley et al., 2023), alongside the results by running PT and
fitting a diffusion model post hoc to PT-generated data.
Sadly, while showing promising sample qualities, these ap-
proaches present significantly lower efficiency compared to
directly fitting the diffusion to PT results. This inefficiency
arises either from running importance sampling (IS) or an-
nealed importance sampling (AIS) to estimate the objectives
(Akhound-Sadegh et al., 2024; OuYang et al., 2024), or from
the extensive number of target evaluations in simulating the
trajectory (Vargas et al., 2023; 2024) due to the prevalent
Langevin preconditioning in the network parameterization
(He et al., 2025).

Does this imply that using PT followed by fitting a diffusion
model is the ultimate solution for neural samplers? We posit
that this is not the case. In fact, the methods shown in Fig. 1
represent two ends of the methodological spectrum. On one
end, approaches such as DDS, iDEM, BNEM, CMCD, aim
to train neural samplers without utilizing any data, while
on the other, methods depend exclusively on data generated

through PT and defer model fitting to the final stage.

Therefore, a natural question is to integrate PT and neural
samplers—positioned in the middle of the methodological
spectrum—leveraging the strengths of both to build more
efficient sampling approaches. In this paper, we formalize
one attempt towards this direction. Concretely, we propose
Progressive Tempering Sampler with Diffusion (PTSD)1.
Our contributions are as follows:

1. We introduce a novel guidance mechanism that enables
diffusion models, trained on higher-temperature data,
to generate samples that approximate those from a
lower-temperature distribution.

2. Using this guidance term, we propose Progressive Tem-
pering Sampler with Diffusion (PTSD). It fits diffusion
models sequentially on higher temperatures and gener-
ates samples for lower temperatures using our proposed
guidance, allowing the information at higher tempera-
tures to transfer to lower ones efficiently.

3. We evaluate PTSD on a variety of targets, demonstrat-
ing its effectiveness. Our approach achieves orders-of-
magnitude improvement in target density evaluation
efficiency compared to other diffusion-based neural
samplers, demonstrating a great potential in integrating
standard sampling algorithms and neural samplers.

2. Background
Markov chain Monte Carlo and Parallel Tempering
Markov Chain Monte Carlo (MCMC) is a family of al-
gorithms designed to sample from an unnormalized density
function by constructing a Markov chain whose station-
ary distribution matches the target. Representative MCMC
methods include Gibbs Sampling (Geman & Geman, 1984),
the Metropolis-Hastings (MH) algorithm (Metropolis et al.,
1953; Hastings, 1970), the Metropolis-Adjusted Langevin
Algorithm (MALA, Grenander & Miller, 1994), and Hamil-
tonian Monte Carlo (HMC, Duane et al., 1987).

However, for multi-modal distributions, MCMC can easily
get stuck in a single mode, failing to explore the entire sup-
port effectively in practice (Neal, 1993). Parallel Tempering
(PT, Swendsen & Wang, 1986; Geyer, 1991; Hukushima
& Nemoto, 1996) addresses this issue by introducing a se-
quence of temperatures, TK > TK−1 > · · · > T1, where
T1 corresponds to the original target distribution. PT runs
multiple Markov chains in parallel, each sampling from
a tempered version of the target distribution, defined as
pTk
∝ p1/Tk , as illustrated in Fig. 2. MCMC at high temper-

atures can traverse between modes more efficiently, while

1The code for the paper will be available at
https://github.com/cambridge-mlg/Progressive-Tempering-
Sampler-with-Diffusion.

2

Progressive Tempering Sampler with Diffusion

Figure 2. Illustration of parallel tempering with three temperatures.

MCMC at lower temperatures explores local modes and
provides unbiased samples from the target distribution. In-
formation between different temperatures is shared by swap-
ping samples. Specifically, for samples xi and xj at adjacent
temperatures Ti and Tj , PT swaps them with probability

p = min

(
1,
p̃(xj)

1/Ti p̃(xi)
1/Tj

p̃(xi)1/Ti p̃(xj)1/Tj

)
. (2)

Diffusion models DMs (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021) define a forward process cor-
rupting the original data distribution with a Gaussian noise,
which corresponds to a diffusion SDE. We can generate
samples by denoising progressively, corresponding to the
time-reversal of the forward SDE.

Assume a target density p0(x0). We define a noising pro-
cess2

dxt =
√
2σ̇(t)σ(t) dwt, x0 ∼ p0 (3)

where wt is a Wiener process. Its time reversal is given by

dxt=−2σ̇(t)σ(t)∇xt log pt(xt) dt+
√
2σ̇(t)σ(t) dw̄t, (4)

where xtmax ∼ ptmax and∇xt
log pt(xt) is the score function

at diffusion time t, and w̄t is a reverse time Wiener process.
The pt(xt) is the target density convolved with a Gaussian
kernel pt(xt) =

∫
N (xt |x0, σ(t)2I) p0(x0) dx0.

For a sufficiently large σ(tmax), ptmax is well approximated
by a Gaussian N (xt | 0, σ(tmax)

2I) and hence is tractable.
During training, we approximate the score ∇xt log pt(xt)
with a time-dependent neural network by denoising score

2For simplicity, we only discuss the variance-exploding process
introduced by Song et al. (2021); Karras et al. (2022) in this paper.
However, we note that our proposed approach is also compatible
with the variance-preserving process.

matching (Vincent, 2011). During sampling, we start with
samples from N (xtmax | 0, σ(tmax)

2I) and follow Eq. (4).

Additionally, the score function is related to the denoising
mean through Tweedie’s formula (Efron, 2011; Roberts &
Tweedie, 1996):

∇xt
log pt(xt) = (E[x0 |xt]− xt)/σ(t)2. (5)

Therefore, for numerical stability, rather than directly ap-
proximating the score function with a neural network, a
common choice is to regress the denoising mean using a
denoiser network Dθ(xt, t), as done by Karras et al. (2022).

PF-ODE and Hutchinson’s trace estimator Besides the
reverse SDE defined in Eq. (4), diffusion models (DMs) can
also generate samples by the probabilistic flow (PF) ODE:

dxt = −σ̇(t)σ(t)∇xt
log pt(xt) dt, xtmax ∼ ptmax . (6)

This formulation not only provides an alternative method
for sample generation but also offers a principled approach
to estimating the log density of the generated samples. Con-
cretely, by employing the instantaneous change-of-variables
formula (Chen et al., 2018), we obtain

d log pt(xt)

dt
= −σ̇(t)σ(t) tr(∇2

xt
log pt(xt)) (7)

and the Jacobian can be approximated by Hutchinson’s trace
estimator (Hutchinson, 1989; Grathwohl et al., 2018)

tr(∇2
xt

log pt(xt)) = Eϵ[ϵ
⊤∇2

xt
log pt(xt)ϵ], (8)

where ϵ follows a Rademacher distribution (Hutchinson,
1989). We can approximate the expectation using Monte
Carlo integration, with vector-Jacobian products (VJP) en-
abling efficient computation.

3. Methods
In this section, we describe our approach, Progressive Tem-
pering Sampler with Diffusion (PTSD). Unlike other meth-
ods shown in Fig. 1, it integrates Parallel Tempering (PT)
and neural samplers to achieve more efficient utilization of
target energy evaluations.

In spite of the advances by PT, it can only generate inde-
pendent samples when (1) uncorrected samples are drawn
at the highest temperature, and (2) the uncorrected samples
are propagated to the lowest temperature. Therefore, the
efficiency of PT will highly rely on the quality of local ex-
ploration and the swapping. On the other hand, although
the MCMC chain can mix faster at higher temperatures, ob-
taining an uncorrected sample still requires a considerable
number of steps. Also, while the (unnormalized) densi-
ties at different temperatures differ only in their exponents

3

Progressive Tempering Sampler with Diffusion

𝜽

sample train

MCMC

𝜽𝐾−1𝜽𝐾

MCMC

PT

init

MCMC

𝜽𝑘−1𝜽𝑘 𝜽𝑘−2

MCMC

guide

Stage 1: initialize buffer
 and model at highest

two temperatures

Stage 𝐾 − 𝑘 + 1: sample with
guidance and train model

 at temperature 𝑇𝑘−2

𝑇𝐾 𝑇𝐾−1 𝑇𝑘 𝑇𝑘−1 𝑇𝑘−2

DSM DSM DSM DSM

PT

Temperature decreasing…

init

MCMC

𝜽2𝜽3 𝜽1

MCMC

guide

Final Stage: sample with
guidance and train model

 at temperature 𝑇1

𝑇𝑘 𝑇𝑘−1 𝑇𝑘−2

DSM DSM

PT

Figure 3. The training process of PTSD. We unroll the training
process into a sequence of target temperatures. We first initialize
buffers and models at the highest two temperatures and generate
samples from lower temperatures sequentially using the tempera-
ture guidance to extrapolate to lower temperatures.

and hence share a global similarity, the swapping is only
performed by “copying and pasting” the sample between
temperatures, failing to leverage such prior knowledge.

Therefore, a natural question is: can we find an algorithm
to produce uncorrelated samples for higher temperatures,
and more efficiently propagate the samples for higher tem-
peratures to lower ones?

We answer this question affirmatively with a learned neural
sampler. A well-trained neural sampler at one tempera-
ture can produce independent samples at a cheaper cost.
Moreover, the neural sampler can be viewed as a “func-
tional representation” of the target density, and sharing the
weights of the neural sampler across temperatures offers
a more efficient mechanism for transferring information
compared to traditional sample swapping.

With these motivations, we now turn to the details of our
approach. We begin by introducing temperature guidance in
Sec. 3.1, which is a more efficient way to share information
between temperatures by enabling the neural sampler trained
at higher temperatures to generate approximate samples for
a lower temperature. Then, we integrate this guidance term
into the full pipeline of PTSD in Sec. 3.2.

3.1. Temperature guidance

To avoid overloading notation, we use uppercase T to de-
note temperatures while reserving lowercase t for diffusion
time steps. Given the target unnormalized density p̃, the un-
normalized density function at temperature T is defined by
p̃1/T . For simplicity, we will use p0(x0, T) to represent the
target distribution at temperature T , i.e. p0(x0, T) ∝ p̃1/T ,
and pt(xt, T) =

∫
N (xt |x0, σ(t)2I) p0(x0, T) dx0.

Assume we have a trained diffusion model that approximates

the score function ∇xt
log pt(xt, T) for t ∈ [0, tmax] and

T ∈ [T1, T2]. Now, we want to generate samples at a lower
temperature, T0 < T1, which requires knowing the score
function ∇xt

log pt(xt, T0). At t = 0, this is simple be-
cause, by definition, the scores at different temperatures are
related by∇x0

log p0(x0, T0)·T0 = ∇x0
log p0(x0, T1)·T1.

However, for t > 0, this relationship no longer holds in gen-
eral due to the complex nature of Gaussian convolution.

Instead, we apply Taylor expansion on score around T1:

∇xt
log pt(xt, T) ≈ ∇xt

log pt(xt, T1)

+ (T − T1)
∂

∂T
∇xt

log pt(xt, T)
∣∣∣
T=T1

. (9)

If the trained model is conditioned on a continuum of tem-
peratures T , we could calculate the partial derivative by au-
tomatic differentiation. However, this requires training the
temperature-conditioned diffusion model on a sufficiently
diverse set of temperatures to ensure a robust estimation of
the partial derivative.

Fortunately, we can approximate the derivative with finite
differences:

∂

∂T
∇xt log pt(xt, T)

∣∣∣
T=T1

≈ ∇xt
log pt(xt, T2)−∇xt

log pt(xt, T1)

T2 − T1
. (10)

Plugging Eq. (10) into Eq. (9), we have

∇xt log pt(xt, T) ≈
T2 − T
T2 − T1

∇xt
log pt(xt, T1)

− T1 − T
T2 − T1

∇xt
log pt(xt, T2) (11)

= (1 + w)∇xt
log pt(xt, T1)− w∇xt

log pt(xt, T2),

where w = (T1−T)/(T2−T1). We highlight the similarity
between Eq. (11) and the guidance in diffusion models
(Ho & Salimans, 2021; Karras et al., 2024), offering an
intuitive perspective on this estimator: contrasting a “better”,
lower-temperature model by guiding the model at current
temperature T1 with its “worse”, higher-temperature version.
For this reason, we term Eq. (11) as temperature guidance.

One concern on this guidance is that when diffusion
time t = 0, the known relation ∇x0

log p0(x0, T) · T =
∇x0 log p0(x0, T1) · T1 = ∇x0 log p0(x0, T2) · T2 does not
hold, indicating this approximate guidance is inaccurate
when t→ 0. Fortunately, in diffusion models, the accuracy
of the score at small time steps typically has a minimal
impact on the quality of the generation.

Finally, similar to standard guidance methods, we note that
temperature guidance is independent of the specific parame-
terization of diffusion models. In our experiments, instead
of estimating the score function, we follow Karras et al.
(2022) to learn the denoising mean using a denoiser.

4

Progressive Tempering Sampler with Diffusion

3.2. Progressive Tempering Sampler with Diffusion

We now explore the use of temperature guidance to con-
struct a pipeline that integrates neural samplers with parallel
tempering (PT). Analogous to PT, we define a decreasing
sequence of temperatures [TK , TK−1, · · · , T1], where T1
corresponds to the temperature of our target distribution.

With the proposed temperature guidance formulation, we
structure our algorithm as follows:

1. Run PT at the highest two temperatures: To ini-
tialize, we run MCMC (specifically, PT with two tem-
peratures) at the two highest temperatures, TK and
TK−1, and collect samples into buffers BK and BK−1.
The Markov chain at these high temperatures is gener-
ally easier to explore the support and less likely to get
trapped in a local mode (Earl & Deem, 2005).

2. Fit initial diffusion model: After obtaining sufficient
samples at the two highest temperatures, we fit two
diffusion models θK and θK−1to each temperature3.

3. Draw lower-temperature samples by temperature
guidance: We then draw samples at TK−2 using the
temperature guidance method proposed in Sec. 3.1 and
store these samples in the buffer BK−2.

4. Fine-tune diffusion model for lower temperature:
We initialize θK−2 ← θK−1, and fine-tune θK−1 and
θK−2 using samples in buffer BK−1 and BK−2.

We repeat steps 3 and 4 until we obtain diffusion models θ1.

3.3. Improving Techniques for Training PTSD

While the temperature guidance provides an efficient way to
guide higher temperature models to sample from lower tem-
perature distributions, we should note that it only generates
approximate samples. This approximation error accumu-
lates when running PTSD with multiple temperature levels,
ultimately leading to highly biased samples and models.
Luckily, we have access to the marginal (unnormalized)
density of each temperature at intermediate steps. This en-
ables us to incorporate importance resampling or MCMC
steps to refine the quality of the buffer. We now introduce
two techniques in detail.

Truncated importance resampling We consider apply-
ing importance resampling to intermediate steps at tempera-
ture Tk. Specifically, we replace the score function in Eq. (6)
with the temperature guidance in Eq. (11) and generate sam-
ples by following the PF ODE. This allows us to obtain
samples x1, . . . , xB along with their corresponding densi-
ties q(x1), . . . , q(xB) (in log space). We then compute the

3From now on, we denote θk as the parameter of the diffusion
model trained at temperature Tk.

Algorithm 1 Training for PTSD

Input: Target density p̃, Temperatures {Tk}Kk=1, Empty
Buffers B = {Bk}Kk=1, Initial parallel tempering (PT)
stepsL, Refinement PT steps l, Truncate quantile τ , Train-
ing iterations M , Buffer size B.

Output: Model θ1.
Initialize at two highest temperatures:
Initialize buffers BK−1, BK with L steps PT;
Train models θK−1, θK for M iterations;
Progressively decrease the temperature:
for k from K to 3 do

Sample with temperature-guidance:
Draw B samples {xn}Bn=1 for Tk−2 by PF ODE with
temperature-guidance, using models θk−1, θk;
Calculate Truncated IS Weights:
Calculate the IS weights {wn}Bn=1 by Eq. (12);
wmax ← τ-quantile

(
{wn}Bn=1

)
;

For n = 1, · · · , B, set wn ← min(wn, wmax);
Renormalize {wn}Bn=1;
Importance Resample:
for i from 1 to B do
n← Category({wn}Bn=1);
Append xn to Bk−2;

end for
Local PT Refinement:
Refine samples by l-step PT in Bk−2 and Bk−1;
Fine-tune models:
Initialize θk−2 ← θk−1;
Train θk−2 on Bk−2 for M iterations;
Train θk−1 on Bk−1 for M iterations;

end for

self-normalized importance weights as

wn =
p̃(xn)

1/Tk/q(xn)∑B
n′=1 p̃(xn′)1/Tk/q(xn′)

. (12)

Finally, we resample B instances from these B samples
with replacement, where the selection probabilities are pro-
portional to wn.

This method is generally guaranteed to be unbiased as
B → ∞ and is commonly adopted in Sequential Monte
Carlo (SMC, Liu & Chen, 1998). When applying the
method with diffusion model proposals, we must be careful,
however: the discretization of the PF ODE and the approxi-
mation error in Hutchinson’s trace estimator (Hutchinson,
1989; Grathwohl et al., 2018) introduce unwanted variance
in the normalized importance weights. To prevent the sam-
pling process from becoming unstable, we employ truncated
importance sampling (Ionides, 2008), where the unnormal-
ized importance weights are clipped to a maximum value to

5

Progressive Tempering Sampler with Diffusion

reduce variance. In practice, we set the truncation threshold
at a predefined quantile of the importance weights.

Local parallel tempering refinement While the trun-
cated IS significantly improves sample quality, biases re-
main due to the approximation error in Hutchinson’s trace
estimator, the self-normalized importance weights, and the
truncation of weights. To address these biases, in addition to
IS resampling, we refine the samples by performing several
MCMC steps after collecting a buffer. Similar strategies
were employed by Sendera et al. (2024); Chen et al. (2024a),
where a few steps of MCMC were applied to improve sam-
ple quality in buffers.

Additionally, to improve mixing, rather than running
MCMC within a single temperature, we can apply PT be-
tween pairs of adjacent temperatures. Specifically, assume
a buffer size of B, after collecting buffer Bk−2 at temper-
ature Tk−2, we randomly pair samples in Bk−2 and Bk−1

to form B pairs. Then, we run B PT processes in parallel,
each initialized with a pair of samples containing two chains
at temperatures Tk−2 and Tk−1, improving sample qual-
ity in both buffers. This approach integrates well with our
framework, as we will use both Bk−2 and Bk−1 to further
fine-tune the diffusion models θk−2 and θk−1, by which we
extrapolate further to Tk−3.

Optionally, we can optimize energy evaluation usage by
only running the PT chains from a subset of IS samples.
The results from the PT chains are then added to the original
IS results instead of entirely replacing them. Effectively we
augment the IS results with the MCMC samples, which can
be enough to get around the issue that IS by itself may result
in a low effective sample size.

We illustrate the training pipeline in Fig. 3, and detail the
pseudo-code in Alg. 1. After training, we sample using the
model at the lowest temperature θ1 by either the reverse-
SDE in Eq. (4) or the PF ODE in Eq. (4).

4. Connection with Related Works
Training neural samplers for unnormalized density
There are many approaches aiming to learn a network to
sample from the target density without getting access to
data. Flow Annealed Importance Sampling Bootstrap (FAB,
Midgley et al., 2023) trains a normalizing flow using the
α-2 divergence, estimated by Annealed Importance Sam-
pling (Neal, 2001), and incorporates a replay buffer (Mnih
et al., 2015; Schaul et al., 2016) to reduce computational
cost and mitigate forgetting. Recently, due to the success of
diffusion models, studies have focused on SDE and control-
based neural samplers, such as Path Integral Sampler (PIS,
Zhang & Chen, 2022), Denoising Diffusion Samplers (DDS,
Vargas et al., 2023), and Controlled Monte Carlo Diffusion
(CMCD, Vargas et al., 2024), which match the path mea-

sure between the sampling process and a target process.
On the other hand, Iterated Denoising Energy Matching
(iDEM, Akhound-Sadegh et al., 2024) estimates the score
function directly using the target score identity (De Bor-
toli et al., 2024) combined with self-normalized importance
sampling. Bootstrapped Noised Energy Matching (BNEM,
OuYang et al., 2024) generalizes this estimator to energy-
parameterized diffusion models, while Diffusive KL (DiKL,
He et al., 2024) integrates this estimator with variational
score distillation techniques (Poole et al., 2023; Luo et al.,
2024) to train a one-step generator as the neural sampler.

𝜽

sample train

MCMC

𝜽𝐾−1𝜽𝐾

MCMC

PT

MCMC

𝜽𝑘−1𝜽𝑘 𝜽𝑘−2

MCMC

init

guide

Stage 1: initialize buffer
 and model at highest

two temperatures

Stage 𝐾 − 𝑘 + 1: sample with
guidance and train model

 at temperature 𝑇𝑘−2

𝑇𝐾 𝑇𝐾−1 𝑇𝑘 𝑇𝑘−1 𝑇𝑘−2

MCMC

𝜽2𝜽3

MCMC

Final Stage: sample with
 guidance at target

 temperature 𝑇1

𝑇3 𝑇2 𝑇1

DSM DSM DSM DSM

PT PT

guide

Figure 4. “Self-bootstrapping”
training of neural samplers.

A key property of neu-
ral samplers is self-
bootstrapping behavior,
as illustrated in Fig. 4.
At each training step,
the sampler generates
samples from itself. Some
approaches, such as FAB,
iDEM, and BNEM, collect
these samples in a buffer.
We then use these samples
to compute the loss and
improve the neural sampler.
As the sampler improves, it generates samples that are
closer to the target distribution. In turn, these higher-quality
samples can provide a stronger training signal, further
enhancing the neural sampler in a self-reinforcing cycle.

However, this self-bootstrapping behavior can also intro-
duce inefficiencies. The improvement occurs only through
the training objective. If the current samples fail to provide
a strong enough signal for the objective to refine the neu-
ral sampler, the sampler will repeatedly generate similar
samples, leading to wasted computation.

In contrast, our approach can be seen as bootstrapping
across temperatures. We first train models at higher tem-
peratures, where sampling is easier. Then, we use the high-
temperature model to generate samples at lower temper-
atures and leverage these samples to fine-tune the model
toward lower temperatures. Additionally, we incorporate
importance sampling and PT to refine buffers at each in-
termediate step. As a result, improvement occurs not only
through the training objective but also through the proposed
temperature guidance and refinement strategies.

Integrating MCMC algorithms with neural samplers
Recent line of research has explored integrating MCMC
algorithms to improve the performance of neural samplers.
They either introduce Sequential Monte Carlo (SMC) to
correct bias (Arbel et al., 2021; Albergo & Vanden-Eijnden,
2024; Phillips et al., 2024; Chen et al., 2024a) or employ
MCMC to improve the buffer quality (Sendera et al., 2024).
However, while these works primarily focus on ensuring

6

Progressive Tempering Sampler with Diffusion

asymptotic correctness or improving the sample quality of
neural samplers, they still incur a substantial overhead in
evaluating the target energy compared to vanilla PT. In a
concurrent work, Zhang et al. (2025) proposed generalized
parallel tempering, employing a neural network to transport
samples between adjacent temperatures and thus boost the
swap rate of vanilla PT. In contrast, our work takes a dual
perspective: rather than embedding neural samplers into PT
to improve PT, we incorporate PT’s temperature-exchange
mechanism into neural samplers to enhance both sampling
efficiency and sample quality of the neural sampler.

Guidance and inference-time control in diffusion models
Many tools exist for modifying and aggregating pretrained
diffusion models at inference time. For instance, it is possi-
ble to combine multiple diffusion models to get their inter-
section (Liu et al., 2022; Du et al., 2023) and add additional
constraints and controls to the final distribution (e.g., for
inverse problem solving) (Chung et al., 2023; Song et al.,
2023; Rissanen et al., 2024). Of particular interest to us are
so-called classifier-free guidance (Ho & Salimans, 2021)
and its recent development (Karras et al., 2024), where two
diffusion model denoisers, one closely fit to the data, and
one less closely fit, are contrasted to form diffusion models
with even better fits, and hence, better sample quality:

Dguided,w(xt) = (1 + w)Dθ1(xt)− wDθ2(xt), (13)

Dθ1 andDθ2 represent the well-fitted and poorly-fitted mod-
els respectively (Karras et al., 2024). Guidance strength
w > 1 improves sample quality. When applied to condi-
tional and unconditional models as the ’better’ and ’worse’
models, the method is called classifier-free guidance (Ho
& Salimans, 2021), which has been crucial to the success
of text-to-image diffusion models (Saharia et al., 2022;
Ramesh et al., 2022; Rombach et al., 2022). This ap-
proach closely parallels our temperature guidance method
in Eq. (11) and Eq. (13).

5. Experiments and Results
In this section, we evaluate our proposed approach and
compare with other baselines. In Sec. 5.1, we first test
our temperature guidance method on the Lennard-Jones
potential with 55 particles (LJ-55), as introduced in (Köhler
et al., 2020; Klein et al., 2024). As we will show, this
guidance enables effective extrapolation.

In Sec. 5.2, we compare PTSD on two distinct multi-modal
distributions, Mixture of 40 Gaussians (MoG-40) and Many-
Well-32 (MW-32), with other neural samplers, including
FAB (Midgley et al., 2023), iDEM (Akhound-Sadegh et al.,
2024), BNEM (OuYang et al., 2024), DiKL (He et al., 2024),
DDS (Vargas et al., 2023), and CMCD (Vargas et al., 2024).
We also evaluate the performance of a diffusion model
trained directly on PT-generated data (PT+DM).

Figure 5. First two panels: Marginal density of the interatomic dis-
tance on buffers at two temperatures, along with the marginal den-
sity of a diffusion model fit to the buffer. Right: The temperature-
guided extrapolation based on the higher-temperature models. AD:
auto-diff extrapolation; ME: model extrapolation; RS: score rescal-
ing heuristic; GT: ground truth; PTSD: our temperature guidance.

5.1. Extrapolation with Temperature guidance

To showcase the capability of proposed guidance, we con-
duct experiment on the LJ-55 potential, where we train DMs
at temperature 2.0 and 1.5 and aim to extrapolate to a target
temperature 1.0. Fig. 5 visualizes the histograms of inter-
atomic distance of samples generated by the trained models
at high temperatures, as well as the one of extrapolated
samples at the target temperature.

The extrapolation is closer to the target temperature than
either model at temperature 2.0 or 1.5, showing a large
overlap with the ground truth. We also compare our ex-
ploration approach with several other strategies. (1) model
extrapolation (ME): as we train a single model on both
temperatures 2.0 and 1.5, and by conditioning on the tem-
perature label, we can directly input temperature 1.0 and
rely on the generalisation in deep neural networks, an ap-
proach that was demonstrated useful for interpolation in
Moqvist et al. (2025). (2) auto-diff extrapolation (AD):
we directly use Equation (9) instead of finite difference
approximation for the time-derivative; (3) score rescaling
heuristic (RS): we simply anneal the score with the tem-
perature∇xt

log pt(xt, 1.0) ≈ 1.5 · ∇xt
log pt(xt, 1.5), an

approach considered by Skreta et al. (2025). Our proposed
temperature guidance provides a better extrapolation than
the other choices. Even though the extrapolation is not per-
fect, it serves as an initialization for the local PT refinement,
as proposed in Sec. 3.3.

5.2. Comparison with Baselines

We now measure the sample quality of PTSD and compare
it with other baselines. We report Wasserstein-2 (W2) dis-
tance, Total Variation distance (TVD), and Maximum Mean
Discrepancy (MMD). For all tasks, TVD and MMD are mea-
sured over the energy histograms of samples, whileW2 is
measured in the samples. The calculationW2 in LJ-55 task
takes the SE(3)-equivariance into account as (OuYang et al.,

7

Progressive Tempering Sampler with Diffusion

Table 1. Comparing PTSD with other neural sampler baselines. We measure (best, second best) the TVD and MMD between Energy
histograms, andW2 distance between data samples. We note that as the energy histograms project the entire data space into one dimension,
it can be sensitive to outliers but insensitive to mode coverage. ‘-’ indicates that the method diverges or is significantly worse than others.

GMM (d = 2) MW32 (d = 32) LJ55 (d = 165)
TVD ↓ MMD ↓ W2 ↓ TVD ↓ MMD ↓ W2 ↓ TVD ↓ MMD ↓ W2 ↓

FAB 0.23±0.01 0.30±0.02 2.50±0.19 0.32±0.01 0.16±0.02 5.70±0.01 - - -
CMCD 0.14±0.01 0.08±0.01 3.36±0.22 0.69±0.01 0.62±0.01 7.44±0.03 - - -
DDS 0.22±0.01 0.10±0.03 4.52±0.30 0.77±0.00 0.70±0.02 7.60±0.02 - - -
iDEM 0.09±0.01 0.01±0.01 3.26±0.42 0.87±0.01 0.87±0.01 8.30±0.02 - 0.49±0.01 1.95±0.00

BNEM 0.12±0.00 0.07±0.00 2.16±0.16 0.31±0.01 0.05±0.01 8.41±0.09 0.18±0.01 0.01±0.00 1.76±0.00

DiKL 0.10±0.01 0.03±0.01 3.23±0.24 0.34±0.00 0.16±0.02 6.59±0.03 - - -
PT+DM 0.13±0.05 0.06±0.06 3.01±0.66 0.13±0.03 0.03±0.02 5.04±0.02 0.64±0.02 0.22±0.01 1.82±0.00

PTSD 0.08±0.02 0.02±0.01 1.93±0.41 0.14±0.05 0.04±0.03 4.99±0.07 0.79±0.01 0.19±0.00 1.81±0.00

Table 2. Number of target density calls for different approaches to
achieve the performance reported in Table 1.
Algorithm GMM (d = 2) MW32 (d = 32) LJ55 (d = 165)

FAB 6.6× 106 7.2× 109 –
CMCD 4.4× 109 1.6× 109 –
DDS 2.6× 109 1.1× 109 –
iDEM 5.0× 1010 1.8× 1010 1.3× 1010

BNEM 7.5× 109 1.8× 1010 6.4× 109

DiKL 1.2× 1010 8.0× 109 –
PT+DM 1.2× 106 8.0× 106 1.65× 105

PTSD (ours) 1.0× 106 5.3× 106 1.5× 105

(a) MoG-40 (b) MW-32

Figure 6. Comparing PTSD with the results obtained by fitting a
diffusion model post hoc to PT-generated data. For MoG-40, we
compare two different settings, using 4 or 10 temperature levels.

2024). For LJ-55, we optimize the energy evaluation usage
by running PT from a subset of IS samples, as explained
in Sec. 3. We note that the energy histogram is sensitive to
outliers while generally being robust to mode collapse. In
He et al. (2024, Fig. 5), the authors showed that the energy
histogram can closely approximate the ground truth, even
when significant mode collapse occurs. On the other hand,
W2 distance may provide a more comprehensive assessment
of sample quality. We also report the computational cost (in
terms of target evaluations) in Table 2.

On both MoG-40 and MW-32, our approach achieves
state-of-the-art sample quality and demonstrates orders-
of-magnitude improvement in efficiency over other neural
samplers. Our algorithm falls slightly behind on BNEM on
sample quality. However, it requires a significantly smaller

number of energy evaluations. In fact, LJ-55 is a relatively
simple task for MCMC: a standard MALA requires only
4000 steps to mix. The challenge of LJ-55 for neural sam-
plers arises because the target contains inhibitory regions
and has large gradients, leading to instabilities. BNEM
addresses this by first smoothing the target density and ex-
plicitly regressing the target energy. On the other hand, our
approach relies only on samples, making it stable and effi-
cient but less sensitive to inhibitory regions. This explains
why we fall slightly behind.

Additionally, to provide a more detailed comparison with
PT+DM, we plot the sample quality of PT+DM using sam-
ples obtained by PT with different numbers of target evalua-
tions in Fig. 6. As we can see, on these targets, PTSD out-
performs PT+DM using the same setting. This gain might
come from the fact that PTSD can provide uncorrelated
samples for high temperatures easily after being trained on
these temperatures, and the temperature guidance serves as
an approximate yet more informative “swap” mechanism.

5.3. Ablation Study

We conduct ablation studies to verify the effectiveness of
temperature guidance and the improvement techniques pro-
posed in Sec. 3.3 in Table 4 on MW-32. As we can see, both
the guidance and the truncated IS enhance the performance
of our algorithm. Additionally, we note that even without
IS, PTSD remains competitive among all neural samplers
in Table 1. This further demonstrates the effectiveness of
temperature guidance on its own.

5.4. Scaling PTSD on Alanine Dipeptide

We also apply the method to the alanine dipeptide molecule
in Cartesian coordinates. To maximise the benefits of PTSD,
we run local PT refinement only for a subset of IS outputs,
as detailed in Sec. 3.3. We evaluate both PTSD and PTDM
with approximately the same amount of energy function
evaluations (2.6× 107), and show the resulting Ramachan-
dran plots in Fig. 7. This example demonstrates the poten-

8

Progressive Tempering Sampler with Diffusion

Table 3. Mean log-likelihood of real data under our PTDM and
PTSD models for the alanine dipeptide molecule, and the KL
divergence between the ground-truth Ramachandran histogram
and the model-generated one from 106 samples.

PTSD PT+DM

Ep[log pθ(x)] 213.32 ± 0.06 212.38± 0.05
KLD 6.9e-2 3.2e-02

Figure 7. Ramachandran plots of ground truth, PT+DM, and PTSD.
PT+DM and PTSD were trained with 2.6e7 energy evaluations.

tial scalability and efficiency of PTSD in realistic sampling
problems. We also evaluate the log-likelihood of ground-
truth data under our PTDM and PTSD models, and the KL
divergence between the ground-truth Ramachandran his-
togram and the model-generated one in Table 3. We show
the projection of Ramachandran plots along two axes (ϕ
and ψ) in App. D.4. As we can see, while PT+DM appears
slightly better performance on generate the large metastable
sates, resulting to be more plausible than PTSD along the ϕ
axis, PTSD achieves better log-likelihood than PT+DM and
also captures the small metastable state more effectively,
as shown in Fig. 7. This showcases the great potential of
PTSD when applied to more complex systems.

6. Conclusions and Limitations
In this paper, we proposed a heuristic temperature guidance
that allows us to generate samples at lower temperatures
with pretrained diffusion models at two higher temperatures.
Based on this, we formulated the Progressive Tempering
Sampler with Diffusion (PTSD). PTSD achieved competi-
tive sample quality, demonstrated orders-of-magnitude im-
provement in efficiency over other neural samplers, and
showed promising direction in combining parallel temper-
ing to enhance neural samplers.

While training without data is appealing, this pursuit may be
inefficient with current approaches. Instead, designing meth-
ods that effectively integrate neural samplers with available
data could offer greater practical benefits. While our work
may not represent the optimal solution for this direction,
it opens a promising avenue for future works, potentially
advancing the practicality of neural samplers.

However, several key limitations still remain:

Table 4. Ablations on the temperature guidance in Sec. 3.1 and the
truncated IS in Sec. 3.3. We do not provide ablation on the local
PT refinement as running MCMC is clearly helpful.

TVD ↓ W2 ↓
PTSD w/o temp-guide 0.34 24.59
PTSD w/o IS 0.23 5.84
PTSD 0.14 4.99

1. Network training cost: while our approach improves
efficiency in terms of target evaluations, it remains
slower than parallel tempering in terms of wall-clock
time in our experiments. This is because we need
to fine-tune the diffusion model for each temperature
level. For more complex target distributions, we expect
that training the diffusion model will be more compu-
tationally efficient than directly evaluating the target
density and its gradient. Therefore, an important direc-
tion for future work is extending our pipeline to more
difficult target distributions.

2. Non-parallelizable execution: our approach relies
on decreasing the temperature progressively, which
is different from PT, where different chains can be
distributed on multiple devices and run in parallel.

3. Sensitivity to temperature schedule and network
learning quality: our approach’s performance can
become fragile when temperature levels differ signifi-
cantly or when the target distribution is too complex for
the network to learn accurately. In contrast, vanilla PT
is more robust to a suboptimal temperature schedule
and also offers additional flexibility in path selection.
The sensitivity also appears in hyperparameters: the
network choice, learning rate, and the truncation thresh-
old for truncated IS can also impact the final sample.

Another line of future work is to test the amortizability of our
proposed approach. In a recent study, Havens et al. (2025)
introduced a conformer-generation dataset comprising many
targets with similar properties. Using PT to obtain samples
for each target separately and then fitting a diffusion model
would be expensive. In contrast, PTSD framework may
have the potential to substantially reduce this cost.

Specifically, we could first collect data for each target at the
two highest temperatures and fit a diffusion model condi-
tioned on the target label. When performing temperature
guidance, we could randomly sample targets to build a buffer
with mixed targets. This buffer could be used (with its asso-
ciated target labels) to train the conditional diffusion model
at lower temperatures. Thus, PTSD only requires running
separate MCMC during initialization, and it can share infor-
mation across targets as temperature decreases, resulting in
a potential efficiency gain.

9

Progressive Tempering Sampler with Diffusion

Acknowledgments
We acknowledge Saifuddin Syed for discussions on par-
allel tempering, and Yuanqi Du, Mingtian Zhang, Louis
Grenioux, Laurence Midgley and Javier Antorán for dis-
cussions on neural samplers. JH acknowledges support
from the University of Cambridge Harding Distinguished
Postgraduate Scholars Programme. JMHL and RKOY ac-
knowledge the support of a Turing AI Fellowship under
grant EP/V023756/1. SR, MH, and AS acknowledge fund-
ing from the Research Council of Finland (grants 339730,
362408, 334600). This project acknowledges the resources
provided by the Cambridge Service for Data-Driven Discov-
ery (CSD3) operated by the University of Cambridge Re-
search Computing Service (www.csd3.cam.ac.uk), provided
by Dell EMC and Intel using Tier-2 funding from the En-
gineering and Physical Sciences Research Council (capital
grant EP/T022159/1), and DiRAC funding from the Science
and Technology Facilities Council (www.dirac.ac.uk). We
acknowledge CSC – IT Center for Science, Finland, for
awarding this project access to the LUMI supercomputer,
owned by the EuroHPC Joint Undertaking, hosted by CSC
(Finland) and the LUMI consortium through CSC. We ac-
knowledge the computational resources provided by the
Aalto Science-IT project.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Akhound-Sadegh, T., Rector-Brooks, J., Bose, J., Mittal,

S., Lemos, P., Liu, C.-H., Sendera, M., Ravanbakhsh, S.,
Gidel, G., Bengio, Y., et al. Iterated denoising energy
matching for sampling from boltzmann densities. In
Proceedings of the Forty-first International Conference
on Machine Learning (ICML), 2024.

Albergo, M. S. and Vanden-Eijnden, E. Nets: A
non-equilibrium transport sampler. arXiv preprint
arXiv:2410.02711, 2024.

Arbel, M., Matthews, A., and Doucet, A. Annealed flow
transport monte carlo. In International Conference on
Machine Learning, pp. 318–330. PMLR, 2021.

Blessing, D., Jia, X., Esslinger, J., Vargas, F., and Neu-
mann, G. Beyond ELBOs: A large-scale evaluation of
variational methods for sampling. In Proceedings of the
Forty-first International Conference on Machine Learning
(ICML), 2024.

Chen, J., Richter, L., Berner, J., Blessing, D., Neumann,
G., and Anandkumar, A. Sequential controlled Langevin
diffusions. arXiv preprint arXiv:2412.07081, 2024a.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 31. Curran Associates, Inc., 2018.

Chen, W., Zhang, M., Paige, B., Hernández-Lobato, J. M.,
and Barber, D. Diffusive Gibbs sampling. In Proceedings
of the International Conference on Machine Learning
(ICML), pp. 7731–7747. PMLR, 2024b.

Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and
Ye, J. C. Diffusion posterior sampling for general noisy
inverse problems. In The Eleventh International Confer-
ence on Learning Representations (ICLR), 2023.

De Bortoli, V., Hutchinson, M., Wirnsberger, P., and
Doucet, A. Target score matching. arXiv preprint
arXiv:2402.08667, 2024.

Du, Y., Durkan, C., Strudel, R., Tenenbaum, J. B., Diele-
man, S., Fergus, R., Sohl-Dickstein, J., Doucet, A., and
Grathwohl, W. S. Reduce, reuse, recycle: Composi-
tional generation with energy-based diffusion models and
mcmc. In Proceedings of the International Conference
on Machine Learning (ICML), pp. 8489–8510. PMLR,
2023.

Duane, S., Kennedy, A., Pendleton, B. J., and Roweth, D.
Hybrid Monte Carlo. Physics Letters B, 195(2):216–222,
1987.

Earl, D. J. and Deem, M. W. Parallel tempering: Theory,
applications, and new perspectives. Physical Chemistry
Chemical Physics, 7(23):3910–3916, 2005.

Efron, B. Tweedie’s formula and selection bias. Journal
of the American Statistical Association, 106(496):1602–
1614, 2011.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Bois-
bunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras,
K., Fournier, N., Gautheron, L., Gayraud, N. T., Janati,
H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz,
A., Seguy, V., Sutherland, D. J., Tavenard, R., Tong, A.,
and Vayer, T. Pot: Python optimal transport. Journal of
Machine Learning Research, 22(78):1–8, 2021.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B.,
Vehtari, A., and Rubin, D. B. Bayesian Data Analysis.
CRC Press, 2013.

Geman, S. and Geman, D. Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-6(6):721–741, 1984.

10

www.csd3.cam.ac.uk
www.dirac.ac.uk

Progressive Tempering Sampler with Diffusion

Geyer, C. J. Markov chain Monte Carlo maximum likeli-
hood. In Computing Science and Statistics: Proceedings
of the 23rd Symposium on the Interface, 1991.

Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I.,
and Duvenaud, D. FFJORD: Free-form continuous dy-
namics for scalable reversible generative models. In Inter-
national Conference on Learning Representations (ICLR),
2018.

Grenander, U. and Miller, M. I. Representations of knowl-
edge in complex systems. Journal of the Royal Statistical
Society: Series B (Methodological), 56:549–581, 1994.

Hastings, W. K. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, 57(1):
97–109, 1970.

Havens, A., Miller, B. K., Yan, B., Domingo-Enrich, C.,
Sriram, A., Wood, B., Levine, D., Hu, B., Amos, B.,
Karrer, B., et al. Adjoint sampling: Highly scalable
diffusion samplers via adjoint matching. arXiv preprint
arXiv:2504.11713, 2025.

He, J., Chen, W., Zhang, M., Barber, D., and Hernández-
Lobato, J. M. Training neural samplers with reverse dif-
fusive KL divergence. arXiv preprint arXiv:2410.12456,
2024.

He, J., Du, Y., Vargas, F., Zhang, D., Padhy, S., OuYang,
R., Gomes, C., and Hernández-Lobato, J. M. No trick,
no treat: Pursuits and challenges towards simulation-
free training of neural samplers. arXiv preprint
arXiv:2502.06685, 2025.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
In NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications, 2021.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 33, pp. 6840–6851.
Curran Associates, Inc., 2020.

Hukushima, K. and Nemoto, K. Exchange Monte Carlo
method and application to spin glass simulations. Journal
of the Physical Society of Japan, 65(6):1604–1608, 1996.

Hutchinson, M. F. A stochastic estimator of the trace of the
influence matrix for Laplacian smoothing splines. Com-
munications in Statistics-Simulation and Computation,
18(3):1059–1076, 1989.

Ionides, E. L. Truncated importance sampling. Journal of
Computational and Graphical Statistics, 17(2):295–311,
2008.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
In Advances in Neural Information Processing Systems
35 (NeurIPS), pp. 26565–26577. Curran Associates, Inc.,
2022.

Karras, T., Aittala, M., Kynkäänniemi, T., Lehtinen, J., Aila,
T., and Laine, S. Guiding a diffusion model with a bad
version of itself. In Advances in Neural Information
Processing Systems (NeurIPS). Curran Associates, Inc.,
2024.

Klein, L., Krämer, A., and Noé, F. Equivariant flow match-
ing. In Advances in Neural Information Processing
Systems (NeurIPS), volume 36. Curran Associates, Inc.,
2024.

Köhler, J., Klein, L., and Noé, F. Equivariant flows: exact
likelihood generative learning for symmetric densities. In
Proceedings of the International Conference on Machine
Learning (ICML), pp. 5361–5370. PMLR, 2020.

Liu, J. S. and Chen, R. Sequential Monte Carlo methods
for dynamic systems. Journal of the American Statistical
Association, 93(443):1032–1044, 1998.

Liu, N., Li, S., Du, Y., Torralba, A., and Tenenbaum, J. B.
Compositional visual generation with composable dif-
fusion models. In European Conference on Computer
Vision, pp. 423–439. Springer, 2022.

Luo, W., Hu, T., Zhang, S., Sun, J., Li, Z., and Zhang,
Z. Diff-instruct: A universal approach for transfer-
ring knowledge from pre-trained diffusion models. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 36. Curran Associates, Inc., 2024.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., and Teller, E. Equation of state calculations
by fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092, 06 1953.

Midgley, L. I., Stimper, V., Simm, G. N., Schölkopf, B.,
and Hernández-Lobato, J. M. Flow annealed importance
sampling bootstrap. In The Eleventh International Con-
ference on Learning Representations (ICLR), 2023.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Moore, J. H., Cole, D. J., and Csanyi, G. Computing hydra-
tion free energies of small molecules with first principles
accuracy. arXiv preprint arxiv:2405.18171, 2024.

11

Progressive Tempering Sampler with Diffusion

Moqvist, S., Chen, W., Schreiner, M., Nüske, F., and Olsson,
S. Thermodynamic interpolation: A generative approach
to molecular thermodynamics and kinetics. Journal of
Chemical Theory and Computation, 2025.

Neal, R. M. Probabilistic inference using Markov chain
Monte Carlo methods. Technical report, Department of
Computer Science, University of Toronto, 1993.

Neal, R. M. Annealed importance sampling. Statistics and
Computing, 11:125–139, 2001.

Noé, F., Olsson, S., Köhler, J., and Wu, H. Boltzmann
generators: Sampling equilibrium states of many-body
systems with deep learning. Science, 365(6457), 2019.

OuYang, R., Qiang, B., and Hernández-Lobato, J. M. Bnem:
A boltzmann sampler based on bootstrapped noised en-
ergy matching. arXiv preprint arXiv:2409.09787, 2024.

Phillips, A., Dau, H.-D., Hutchinson, M. J., De Bortoli,
V., Deligiannidis, G., and Doucet, A. Particle denois-
ing diffusion sampler. In Proceedings of the 41st Inter-
national Conference on Machine Learning, pp. 40688–
40724, 2024.

Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. Dream-
fusion: Text-to-3d using 2d diffusion. In The Eleventh
International Conference on Learning Representations
(ICLR), 2023.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Rissanen, S., Heinonen, M., and Solin, A. Free hunch: De-
noiser covariance estimation for diffusion models without
extra costs. arXiv preprint arXiv:2410.11149, 2024.

Roberts, G. O. and Tweedie, R. L. Exponential convergence
of langevin distributions and their discrete approxima-
tions. Bernoulli, pp. 341–363, 1996.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with la-
tent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10684–10695, 2022.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J.,
Denton, E. L., Ghasemipour, K., Gontijo Lopes, R.,
Karagol Ayan, B., Salimans, T., et al. Photorealistic
text-to-image diffusion models with deep language under-
standing. In Advances in Neural Information Processing
Systems (NeurIPS), volume 35, pp. 36479–36494. Curran
Associates, Inc., 2022.

Satorras, V. G., Hoogeboom, E., and Welling, M. E(n)
equivariant graph neural networks. arXiv preprint
arxiv:2102.09844, 2021.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. arXiv preprint arxiv:1511.05952,
2016.

Sendera, M., Kim, M., Mittal, S., Lemos, P., Scimeca, L.,
Rector-Brooks, J., Adam, A., Bengio, Y., and Malkin,
N. Improved off-policy training of diffusion samplers.
In Advances in Neural Information Processing Systems
(NeurIPS). Curran Associates, Inc., 2024.

Skreta, M., Akhound-Sadegh, T., Ohanesian, V., Bondesan,
R., Aspuru-Guzik, A., Doucet, A., Brekelmans, R., Tong,
A., and Neklyudov, K. Feynman-Kac correctors in diffu-
sion: Annealing, guidance, and product of experts. arXiv
preprint arXiv:2503.02819, 2025.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequilib-
rium thermodynamics. arXiv preprint arxiv:1503.03585,
2015.

Song, J., Vahdat, A., Mardani, M., and Kautz, J.
Pseudoinverse-guided diffusion models for inverse prob-
lems. In International Conference on Learning Represen-
tations (ICLR), 2023.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
Conference on Learning Representations (ICLR), 2021.

Surjanovic, N., Syed, S., Bouchard-Côté, A., and Camp-
bell, T. Parallel tempering with a variational reference.
Advances in Neural Information Processing Systems, 35:
565–577, 2022.

Surjanovic, N., Syed, S., Bouchard-Côté, A., and Campbell,
T. Uniform ergodicity of parallel tempering with effi-
cient local exploration. arXiv preprint arXiv:2405.11384,
2024.

Swendsen, R. H. and Wang, J.-S. Replica Monte Carlo
simulation of spin-glasses. Physical Review Letters, 57
(21):2607, 1986.

Syed, S., Romaniello, V., Campbell, T., and Bouchard-Côté,
A. Parallel tempering on optimized paths. In Inter-
national Conference on Machine Learning, pp. 10033–
10042. PMLR, 2021.

Vargas, F., Grathwohl, W., and Doucet, A. Denoising diffu-
sion samplers. arXiv preprint arXiv:2302.13834, 2023.

12

Progressive Tempering Sampler with Diffusion

Vargas, F., Padhy, S., Blessing, D., and Nüsken, N. Trans-
port meets variational inference: Controlled Monte Carlo
diffusions. In The Twelfth International Conference on
Learning Representations (ICLR), 2024.

Vincent, P. A connection between score matching and de-
noising autoencoders. Neural Computation, 23(7):1661–
1674, 2011.

Von Toussaint, U. Bayesian inference in physics. Reviews
of Modern Physics, 83(3):943–999, 2011.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient Langevin dynamics. In Proceedings of the 28th
International Conference on Machine Learning (ICML),
pp. 681–688, 2011.

Woodard, D. B., Schmidler, S. C., and Huber, M. Conditions
for rapid mixing of parallel and simulated tempering on
multimodal distributions. 2009.

Wu, H., Köhler, J., and Noe, F. Stochastic normalizing
flows. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pp. 5933–5944. Curran
Associates, Inc., 2020.

Zhang, L., Potaptchik, P., Doucet, A., Dau, H.-D., and
Syed, S. Generalised parallel tempering: Flexible
replica exchange via flows and diffusions. arXiv preprint
arXiv:2502.10328, 2025.

Zhang, Q. and Chen, Y. Path integral sampler: A stochastic
control approach for sampling. In International Confer-
ence on Learning Representations (ICLR), 2022.

13

Progressive Tempering Sampler with Diffusion

Appendices

A. Target Distributions
Mixture of 40 Gaussians (MoG-40) is a mixture of Gaussians with 40 components in 2-dimensional space, proposed by
Midgley et al. (2023). Each component of the MoG-40 has a mean within [−40, 40]× [−40, 40] and an diagonal covariance
of softplus(1).

Many-Well-32 (MW-32) is a multi-modal distribution in 32-dimensional space with 232 modes, proposed by Midgley
et al. (2023). It is constructed by concatenating 16 independent samples from the Double-Well distribution (DW-2, Noé
et al., 2019; Wu et al., 2020) in 2-dimensional space. While sampling 16 samples independently from DW-2 and stacking
them to construct a MW-32 sample is easy, directly drawing samples from the MW-32 distribution is challenging as a
consequence of its multi-modal nature.

Lennard-Jones-n (LJ-n) describes a n-particle system, where the energy between two particles is described by the
Lennard-Jones potential and the system energy is given by the sum of pairwise 2-particle energy, i.e.

V (r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
and U(X) =

∑
i∈[n]

∑
i>i

V (rij), (14)

where X = (x1, ..., xn), rij is the distance between xi and xj , and ϵ and σ are physical constants. While LJ-n can be
challenging in terms of numerical stability since the energy of system can be problematically large when particles are
too close to each others, it remains a relatively simple target for MCMC with proper initialization or numerically stable
implementation. Therefore, we only employ LJ-55 for showcasing the capability of our proposed extrapolation. To ensure
numerical stability, we employ cubic spline interpolation introduced by Moore et al. (2024) to smooth the extreme energy
values when two particles are close to each other. In our main experiment, we consider LJ-55. While for the ablation study,
we conduct experiments on both LJ-13 and LJ-55.

Alanine Dipeptide (ALDP) is a 22-particle system formed by two Alanine amino acids. We consider an implicit solvent
with a temperature of 300K, which is used by Midgley et al. (2023). We use the implementation in Midgley et al. (2023) to
calculate the energy. In contrast to FAB, which generates samples in the internal coordinate system, we consider generating
samples in the Cartesian coordinate system.

B. Evaluation Metrics
Wasserstein-2 distance (W2) measures the difference between two probability distributions in an optimal transport
framework. Given empirical samples µ from the sampler and ground truth samples ν, theW2 distance is defined as:

W2(µ, ν) =

(
inf

γ∈Π(µ,ν)
Eγ

[
d2(X,Y)

])1/2

, (15)

where Π is the transport plan with marginals distributions µ and ν respectively, and d is a distance measure. To calculate the
W2 in practice, we use the Hungarian algorithm implemented in the Python optimal transport package (POT, Flamary et al.,
2021), where we employ the Euclidean distance as our distance measure. We measure theW2 over samples for all tasks.
For LJ-55, we calculate theW2 by taking SE(3), i.e. rotation and translation equivariance, into account. In particular, we
calculate the distance between two set of samples by dKabsch(X,Y) = minR,t∈SE(3) ∥X − (Y R⊤ + t)∥2, where Kabsch
algorithm is applied to find the optimal rotation and translation.

Total Variation distance (TVD) measures the dissimilarity between two probability distributions, which quantifies the
absolute differences between two densities over the entire sample space. Given two distribution P and Q defined on a space
Ω, with density functions p and q, TVD is defined as

TVD(P,Q) =
1

2

∫
Ω

|p(x)− q(x)| dx. (16)

We measure the TVD over energy histograms of samples for all tasks.

14

Progressive Tempering Sampler with Diffusion

Maximum Mean Discrepancy (MMD) measures the difference between two distributions using functions in a Reproduc-
ing Kernel Hilbert Space (RKHS). Given two distributions P and Q, the MMD is defined as

MMD(P,Q) =

(
sup

f∈H,∥f∥H≤1

EP [f(X)]− EQ[f(Y)]

)1/2

, (17)

where f is a function in the RKHS associated with a kernel k(x, y) and ∥ · ∥H a norm defined in this RKHS. The MMD can
be computed by using the kernel trick as follows.

MMD(P,Q) = (EX,X′∼P [k(X,X
′)] + EY,Y ′∼Q[k(Y, Y

′)]− 2EX∼P,Y∼Q[k(X,Y)])
1/2

. (18)

We measure the MMD over energy histograms of samples for all tasks.

The error intervals in Table 1 for the GMM and MW32 tasks for our method and PTDM were obtained by running the
method with multiple seeds, and estimating the standard deviation. Any runs where the metrics calculation resulted in
undefined values due to generated outliers in MW32 were discarded. For GMM and MW32 with the baselines and LJ55 in
general, we estimated the error by sampling multiple times from a trained model. The error intervals for the log-likelihood
evaluations were obtained by estimating the standard deviation of log pθ(x) evaluations and calculating the standard error
by dividing by the square root of the amount of samples taken.

C. Experimental Settings
C.1. Diffusion Models for PTSD and PT+DM

Network Architecture. For non-particle system, i.e. GMM-40 and MW-32, we employ a 5-layer MLP. For particle
systems, i.e. LJ-55 and ALDP, we employ the EGNN implemented by Satorras et al. (2021) with 3 layers.

Parameterization. We parameterize the DMs as a denoiser network to approximate the denoising mean following Karras
et al. (2022), where the σdata is approximated by the standard deviation of the data used for training, i.e. the buffer in PTSD
and the drawn samples from PT in PT+DM.

Noise Schedule. Our noise schedule follows Karras et al. (2022), with the maximum time tmax = 40.

Sampling Process. We employ the Euler solver for sampling, where we discretize the time following Karras et al. (2022).

Parallel Tempering. Our implementation of parallel tempering is based on the codebase of DiGS (Chen et al., 2024b).

Energy evaluation optimization. On both LJ55 and ALDP, we use the method of running PT at the temperature
extrapolation steps only from a subset of IS filtered samples, and concatenate the PT samples to the original IS samples. On
the GMM and MW32 tasks, we instead run a chain from each diffusion model generated (and resampled) sample, and take
only the final output of the chain.

Temperature levels. For all experiments, we use a range of geometrically spaced temperatures from a maximum
temperature to the desired minimum temperature.

C.2. Hyperparameters

PTSD. Hyperparameter settings for PTSD on each task is illustrated in 5. The key hyperparameters are the temperature
range, number of temperatures, buffer size (amount of samples to train the diffusion models on), the number of initial PT
steps at the highest two temperatures, the number of steps in PT while following the extrapolation steps, and the number of
PT chains to use at the extrapolation step. For MW32, we did not perform the importance resampling at the last extrapolation
step.

PT+DM. Hyperparameter settings for running PT on different targets are illustrated in Table 6. The batch size for DM
training is the same as PTSD, and we train the DM until converged.

15

Progressive Tempering Sampler with Diffusion

Table 5. Hyperparameter settings for PTSD on different targets.

Hyperparameters↓ Target→ MoG-40 MW-32 LJ-55 LJ-55 (illustrative)

Temperature range [1, 100] [1, 10] [1, 3] [1, 2]
Number of temperatures 10 10 3 3
Temperature schedule geom geom geom linear
Buffer Size 10000 12000 20000 20000
Batch size 1000 1000 1000 1000
Number of initial PT chains 100 20 1 1
Number of initial PT steps 1000 20000 40000 40000
PT swap interval 5 5 5 5
Burn-in at the initial PT 100 10000 5000 5000
Interval for subsampling the initial PT chain 9 10 1 1
Number of generated samples at extrapolation 10000 12000 20000 20000
Number of PT chains at extrapolation 10000 12000 10 10
Number of PT steps after extrapolation 5 25 2500 2500
Number of training iterations 10000 10000 120000 120000
Importance resampling at last step Yes No Yes Yes

Table 6. Hyperparameter settings for PT on different targets.

hyperparams↓ target→ MoG-40 MW-32 LJ-55 LJ-55 (illustrative)

Temperature range [1, 200] [1, 10] [1, 3] [1, 2]
Num. of temperatures 4 10 3 3
Temperature schedule geom geom geom linear

FAB. For both MoG-40 and WM-32, we run FAB following exactly the setting by Midgley et al. (2023), with the
code at https://github.com/lollcat/fab-torch/. As they use buffer which can influence the target density
evaluation time, we directly count the time when running the code.

DDS. We evaluate DDS using the implementation by Blessing et al. (2024) with KL divergence following Vargas et al.
(2023). For MoG-40, we train DDS for 10000 iterations with a batch size of 2000, using Euler-Maruyama discretization
with 128 steps. Note that DDS’s network takes a score term as the input, and hence, the total number of target evaluations
is 10000 × 2000 × 128. For WM-32, we apply early stopping at 3200 iterations, and hence, the total number of target
evaluations is 3200× 2000× 128.

CMCD. We evaluate CMCD using the implementation by Blessing et al. (2024) with KL divergence following Vargas et al.
(2024). For MoG-40, we train CMCD with a batch size of 2000, using Euler-Maruyama discretization with 128 steps. It
takes 17002 iterations to achieve a good performance, and hence the total number of target evaluations is 17002×2000×128.
For WM-32, we train CMCD with a batch size of 2000, using Euler-Maruyama discretization with 256 steps. We found
training for more steps may lead to mode collapsing, and hence we early stop at 3200 iterations. The total number of target
evaluations is 3200× 2000× 256.

iDEM. We evaluate iDEM using the implementation by Akhound-Sadegh et al. (2024). For all tasks, we use Eyler-
Maruyama discretization with 1000 steps and 100 inner-loops. For MoG-40, we train iDEM for 1000 outer-loops to ensure
convergence, with a batch size of 1000. The marginal scores are estimated by 500 MC samples, which is clipped to a
maximum norm of 70. The total number of target evaluations is 1000× 100× 1000× 5000. For MW-32, we train iDEM
for 180 outer-loops, increase the number of MC samples to 1000, clip the score to a maximum norm of 1000, and keep the
other hyperparameter the same. The total number of target evaluations is 180× 100× 1000× 1000. For LJ-55, we further
clip the score to a maximum norm of 20, decrease the batch size to 128, and train iDEM for 1000 outer-loops. The total
number of target evaluations is 1000× 100× 128× 1000.

16

https://github.com/lollcat/fab-torch/

Progressive Tempering Sampler with Diffusion

BNEM. We evaluate BNEM using the implementation by OuYang et al. (2024). For all tasks, we use Eyler-Maruyama
discretization with 1000 steps and 100 inner-loops, we also clip the score to a maximum norm of 1000 during sampling.
For MoG-40, we train BNEM for 150 outer-loops to ensure convergence, with a batch size of 1000. The noised energies
are estimated by 500 MC samples. The total number of target evaluations is 150 × 100 × 1000 × 5000. For MW-32,
we train BNEM with 180 outer-loops and change the number of MC samples to 1000, resulting in the total number of
target evaluations to be 180 × 100 × 1000 × 1000. For LJ-55, we use the almost the same hyperparameters as MW-32,
except for decreasing the batch size to 128. We train BNEM for 500 outer-loops. The total number of target evaluations is
500× 100× 128× 1000.

DiKL. We evaluate DiKL with the implementation by He et al. (2024). For Mog-40, we train for 75000 iterations using a
batch size of 1024, and we take 15 AIS steps with 10 samples, with an extra MALA of 5 steps. Therefore, the total number
of target evaluations is 75000× 1025× (15× 10 + 5). Similarly, for MW-32, we train it for 50000 iterations, leading to a
total number of target evaluation of 50000× 1025× (15× 10 + 5).

C.3. Training DM for ALDP in Cartesian Space

ALDP are chiral molecules, which exist in two indistinguishable forms (L-form and D-form) that are mirror images of each
other. While in nature, the ALDPs are found in L-form only, therefore we are interested in generating L-form samples.
However, the EGNN implemented by Satorras et al. (2021) cannot distinguish these two forms, we reflect the D-form
samples generated by PT+DM to make them into L-form. For PTSD, since the difference in forms doesn’t influence model
training, we leave the D-form samples in all buffers while reflecting them at the last stage only for evaluation.

D. Supplementary Experiments and Results
D.1. Ablation Study for Extrapolation

In this section, we ablate different methods for extrapolating from higher-temperature DMs to lower-temperature one. In
particular, we train two DMs on two temperatures T2 < T3, then extrapolate to a lower temperature T1 < T2. We consider
the following ways:

1. NN Generalization: train a temperature-conditioned DM Dθ(xt, t, T) on T2 and T3, then directly generalize to T1 by
sampling from Dθ(xt, t, T1).

2. Auto-diff TE: train the same temperature-conditioned DM, but extrapolate it through the first-order Taylor expansion by
auto-differentiation, i.e. Eq. (9).

3. Finite-difference TE: train two distinct standard DMs, then extrapolate by Eq. (11).

We conduct experiments on GMM-40, DW-4 4, LJ-13, and LJ-55 benchmarks. For all experiments, we choose T1 = 0.1,
T2 = 1, and T3 = 1.3, where T2 = 1 is the same as the target distributions introduced in App. A. We use the same
architecture introduced in App. C.1, and the training of each model is long enough to ensure convergence. The ground truth
of each benchmark at T1 = 0.1 is obtained by running MCMC on top of the T2 = 1 samples for a long enough time to
ensure mixing.

Fig. 8 showcases the advantage of Finite-difference TE, where the extrapolated samples can be much closer to the ground-
truth ones, compared to the other methods.

D.2. Measuring Performance through Observables

Samples from the equilibrium (i.e. target) distribution are used for estimating the observables in many physical problems,
which are mathematically the expectation of an observable function over the target distribution, i.e. ⟨O⟩X := Ep(x)[O(x)].
To measure the quality of generated samples by different models, we design a toy observable function, which is a quadratic

4DW-4 is a 4-particle system in 2-dimensional space introduced by Köhler et al. (2020). To clarify, we follow the notation used in
(Köhler et al., 2020; Akhound-Sadegh et al., 2024) where the number 4 indicates the number of particles. While the number 2 in DW-2
indicates the potential is in a 2-dimensional space.

17

Progressive Tempering Sampler with Diffusion

(a) NN Generalization (b) Auto-diff TE (c) Finite-difference TE (d) Ground Truth

Figure 8. Different ways for extrapolation to temperature 0.1. In (d), oranges are Finite-Difference TE; blues are ground-truth, which
can also be obtained by running 2 steps, 10 steps, 200 steps, and 200 steps of Langevin MCMC on top of Finite-Difference TE samples,
respectively.

18

Progressive Tempering Sampler with Diffusion

Table 7. Comparing PTSD with other neural sampler baselines. We measure a toy observable O(X) = Ep(x)[λx
Tx]. We report

the Mean Absolute Error (MAE) corresponding to the ground truth observable, which is estimated by 10000 samples from the target
distribution. For each model, we use 10000 samples for estimating O(X). ‘-’ indicates that the method diverges or is significantly worse
than others.

GMM (d = 2) MW32 (d = 32) LJ55 (d = 165)

FAB 1.91±0.98 4.09±0.14 -
CMCD 7.03±0.83 3.76±0.12 -
DDS 6.85±1.36 9.89±0.13 -
iDEM 6.5±0.75 9.28±0.06 28.72±0.02

BNEM 7.42±0.63 11.09±0.18 9.48±0.01

DiKL 7.59±0.76 3.24±0.17 -
PT+DM 12.09±0.81 4.31±0.10 0.34±0.03

PTSD (ours) 1.35±0.69 1.49±0.16 1.86±0.04

106 107 108 109 1010

Target Density Evaluations

0.0

0.1

0.2

0.3

GMM (d=2)

107 108 109 1010

Target Density Evaluations
300

250

200

150

100

50
MW32 (d=32)

106 108 1010

Target Density Evaluations

250

200

150

100

LJ55 (d=165)

108 109 1010

Target Density Evaluations

65.50

65.25

65.00

64.75

64.50

64.25

LJ55 with 1000 Langevin
steps (d=165)

Pareto Frontier
FAB
CMCD
DDS
iDEM
BNEM
DiKL
PT+DM
PTSD (ours)

Figure 9. Log-likelihood Ep(x)[log qmodel(x)] and energy evaluations for all the models. To ensure consistency, the log-likelihood is
calculated by fitting a diffusion model to samples generated from a given model.

function O(x) = (x− a)TC(x− a). To make the observable function be SE(3)-invariant for LJ system, we remove the
mean of samples and ensure rotation-invariant for O(x), i.e. O(Rx) = O(x), by taking a = 0 and C = I .

Table 7 reports the MAE of the observable estimated by 10000 samples from different models, where the ground truth is
obtained by Monte Carlo estimation through 10000 samples from the target distribution.

D.3. Measuring Performance through Log-Likelihood

Negative Log-Likelihood (NLL) is a statistical metric that measures the distance between the target distribution p and the
probabilistic model pθ, which is computed as follows

NLL(pθ; p) = −Ep log pθ(x). (19)

Notice that computing NLL requires access to model density, which is intractable in both our method and most of baselines.
Only FAB implemented with a Normalizing Flow has tractable model density. To remedy this, we train an additional
diffusion model to 10000 samples from each model and evaluate the log model density of a generated sample x0 through
the probability-flow ODE (PF-ODE) as follows

log pθ(x0) = log p1(x1) +

∫ 1

0

∇ · f̃(xt, t)dt, with xt = x1 −
∫ t

1

f̃(xu, u)du. (20)

Note that, while the above model density is exact and guaranteed by the instantaneous-change-of-variable, bias can be
introduced in two ways: (1) the discretization; and (2) the variance of the estimation for the divergence term∇ · f̃ using
Hutchinson’s estimator.

The results are shown in Fig. 9. PTSD is consistently in the Pareto Frontier with respect to energy function evaluations and
log-likelihood on all of the data sets.

19

Progressive Tempering Sampler with Diffusion

D.4. Alanine Dipeptide Experiment Setup and Results

We used 5 temperature geometrically spaced temperature levels for both the PTDM and PTSD models, spaced geometrically
from 300K to 1500K. We initialised sampling by running a single PT chain on the top two temperatures for 1× 107 steps
(total 2 × 107 energy evaluations), and obtained a buffer of 200000 samples by subsampling. We trained the model for
100000 epochs on those 200000 samples with a learning rate of 2× 10−3. At each step, we then generate 100000 samples
on the next level and do IS resampling with the truncation quantile set to 0.8. We pick a random subset of 1000 samples,
and run PT for 1000 chains for each, and pick every 10th sample from these chains, resulting in 100000 new samples
that we mix with the original IS resampled results. This requires 2× 1000× 1000 = 2× 106 energy evaluations at each
extrapolation step. We have 3 such steps, and the IS requires 100000× 3 = 3× 105 energy evaluations, resulting in a total
of 2× 107+2× 106× 3+3× 105 = 2.63× 107 energy evaluations. We optimised the learning rate and truncation quantile
hyperparameters to get to our final results. We chose the number 1000 for the amount of PT chains at each extrapolation
such that we get a small enough energy evaluation budget, and early experiments showing that this was enough not to
destabilize the training process.

For PTDM, we ran parallel tempering for 5.2e6 steps on the same 5 temperature levels, resulting in 5.2×106×5 = 2.6×107

energy evaluations. We trained the model for twice as long as we use to train each individual diffusion model in our PTSD
implementation with a learning rate of 4× 10−3. We optimized over the learning rate to get to the final results. The setup
of the 5 temperature levels was chosen after noticing in initial experiments that it works well for parallel tempering in
particular, and we did not tune it for PTSD.

Fig. 10 shows the marginals of Fig. 7. Although PTDM does have less bias in the high-probability regions, the relatively
short running time for PT has left it unable to effectively model the small mode on the right side of the ϕ plot. Table 3 shows
the log-likelihoods as estimated with the probability flow ODE. We also evaluated the effective samples sizes (ESS), but
the values for both diffusion models were very low (less than 1%) and showed high variance. We hypothesize that this is
due to noise in the probability flow ODE causing some outliers with unusually low log-likelihood values, which causes
these samples to dominate the importance weight distribution. In the experiments, we use truncated importance sampling
to counter this. Fig. 11 shows the energy histogram of samples generated by the model, compared to the ground-truth
distribution. The energies are in general higher for PTSD, indicating that the distribution is more spread out than the
ground-truh distribution.

The reason we run MCMC from a subset of samples is that running it from all of the samples entangles the amount of
samples we use for importance sampling with the amount of energy evaluations needed for MCMC. IS and MCMC have
complimentary effects in the model: The benefit of importance sampling is that it is highly energy function evaluation
efficient, using only one energy function per generated sample. The natural tradeoff is that it requires more compute for
diffusion sampling and log-likelihood estimation. On the other hand, a benefit of MCMC sampling is that it can be used to
increase the diversity of the IS outputs and obtain better coverage of the distribution for training the next diffusion model.
Another advantage is that using correlated samples from the MCMC chains is also energy evaluation efficient. Accordingly,
we noticed in our experiments that running a relatively small amount of longer MCMC chains from a large amount of IS
generated samples results in a set of samples that has good distribution coverage while keeping the energy evaluation count
low.

D.5. Additional Visualizations for Generated Samples

Plots Fig. 12 and Fig. 13 visualise the GMM and MW32 samples from the different baseline models.

D.6. Results on LJ55 with additional Langevin dynamics

The original evaluation scheme for the LJ55 task in (Akhound-Sadegh et al., 2024) involved running additional steps of
Langevin dynamics on top of the pure neural sampler outputs. In our main table, we chose to follow (OuYang et al., 2024)
and show the results for the pure neural sampler outputs, to more directly compare the performance of the base generative
models. Here we provide results for the MCMC refined evaluation scheme, where we ran 1000 Langevin dynamics steps for
each model generated sample. The sample evaluation results are shown in Table 8. The overall pattern is similar to the one
in Table 1, where BNEM is the best, followed by PTDM, PTSD and iDEM. Fig. 9 shows the log-likelihood results with
respect to energy function evaluations, placing PTSD and PTDM at the Pareto frontier.

20

Progressive Tempering Sampler with Diffusion

- - /2 0 /2
0.0

0.2

0.4

0.6

0.8

1.0
M

ar
gi

na
l d

en
sit

y

- - /2 0 /2

Ground Truth
PT+DM
PTSD

Figure 10. Marginal distributions of the ϕ and ψ angles in the alanine dipeptide molecule. While PTDM captures the lower part of the ϕ
values more accurately, the small mode on the right side of the ϕ plot is better represented by PTSD.

50 0 50 100
Energy / kBT

0.00

0.02

0.04

0.06

De
ns

ity

Ground truth
PTSD

Figure 11. The energy histogram of samples generated by our model on the alanine dipeptide molecule, vs. the energy histogram of
ground-truth samples. The PTSD samples tend have slightly higher energies, indicating that the distribution is slightly more spread out
than the ground-truth distribution.

21

Progressive Tempering Sampler with Diffusion

Figure 12. Visualising the samples generated by PTSD and other baselines on MoG-40.

Table 8. LJ55 results for neural sampler methods using the evaluation scheme where we run additional MCMC steps on top of the
generated samples. We measure (best, second best) the TVD and MMD between Energy histograms, andW2 distance between data
samples.

LJ55 (d = 165)
TVD ↓ MMD ↓ W2 ↓

iDEM 0.42±0.006 0.10±0.001 1.83±0.001

BNEM 0.09±0.004 0.00±0.000 1.81±0.000

PT+DM 0.15±0.004 0.01±0.001 1.82±0.001

PTSD 0.29±0.001 0.05±0.001 1.86±0.001

22

Progressive Tempering Sampler with Diffusion

Figure 13. Visualising 2-dimensional slices of samples generated by PTSD and other baselines on MW-32.

23

