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Abstract

Agriculture is the backbone of Africa’s economy, with over 60% of the labor force
of over 1.2 billion people largely depending on it for their livelihoods. However,
the gap between agriculture and technology in Africa continues to widen, creating
a need for innovative solutions to improve productivity and access to high-quality
agricultural products. One such problem is manually assessing the quality of
agricultural products, which is especially time-consuming and tedious when done
on a large scale. To address this challenge, we developed an artificial intelligence
solution using YOLOv5 and YOLOv8 algorithms to assess the quality of African
pears. We collected, from three regions in Cameroon, a dataset of 2892 damaged
and good African pear surfaces. Our YOLOv5 and YOLOv8 models achieved
mean average precision scores of 88.2% and 89.9% respectively. The proposed
YOLOv8 solution has been deployed and runs on a web application. To the best
of our knowledge, this is the first intelligent system for inspecting African plum
quality.

1 Introduction

The African plum, known as Dacryodes edulis (1), is a widely cultivated fruit tree in tropical Africa,
cherished for its nutritious and edible fruit (2). Despite its importance as a source of income and
nutrition for rural communities, post-harvest losses are significant due to inadequate handling and
marketing. While recent research has focused on exploring its properties and assessing quality non-
destructively (3), there is limited work on automating fruit quality assessment. This study presents
an intelligent fruit inspection system for African plums, utilizing a dataset of over 2892 manually
collected and annotated images from Cameroon. Computer vision (4; 5) and object detection (6; 7)
have gained significant research interest for agricultural product quality assessment and defect
detection. Convolutional neural networks (CNNs) have shown promise for detecting defects and
grading the quality of fruits, vegetables, and grains (8; 9; 10). However, most previous research has
focused on major crops in America, Europe, and Asia. There is limited investigation of real-world
challenges like shape, size, color, and imaging variations when applying these models in African
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settings. To address this gap, we trained and evaluated YOLOv5 and YOLOv8, state-of-the-art object
detection models to detect surface defects. The YOLOv8 version was deployed in a web application.
Our key contributions include: • Collection and annotation of a novel dataset of African pear images
• Investigation of two state-of-the-art object detection models - YOLOv5 and YOLOv8 • Training
customized models from scratch and optimizing hyperparameters • Conducting comprehensive
experiments to evaluate model accuracy • Deploying the best performing model in a web application
for real-time defect detection A running instance is available at https://shorturl.at/hmrzF. The paper
is organized as follows: Section 2 discusses related work on fruit defect detection. Section 3 presents
the data collection. Section 4 describes YOLOv5 and YOLOv8 architectures. Section 5 presents
experimental results and finally, Section 6 concludes and outlines future work.

2 Related Works

Computer vision (4) and object detection (6) have gained significant research interest for agricultural
product quality assessment and defect detection in recent years. Convolutional neural networks
(CNNs) have been widely adopted for these tasks due to their ability to learn discriminative visual
features directly from images. Numerous studies have applied CNNs to detect defects and grade
the quality of popular fruits such as apples (11; 8), strawberries (13; 14), mangoes (12; 9) and
citrus fruits (10). For example, Bargoti and Underwood (8) trained a deep CNN on over 5000 apple
images and achieved 94% accuracy in identifying four common defects. Li et al. (9) systematically
compared popular CNN architectures like ResNet (15) and DenseNet (16) for three mango defects,
finding ResNet-50 performed best with over 90% accuracy. While most prior work focused on major
agricultural products from America, Europe and Asia, a few studies have explored African crops. For
example, Lauguico et al. (17) detected grape diseases using Transfer Learning and CNNs, reporting
up to 96% accuracy.. However, plums have received little attention despite their economic importance
in many African countries. Additionally, few studies have developed full end-to-end vision systems
with deployment capabilities. Overall, deep CNNs and advanced object detection models show
promise for automating agricultural product quality inspection. Nevertheless, further research is still
needed to address diverse tropical crops through effective computer vision solutions applicable across
different geographical contexts and production chains in Africa. This study aims to fill these gaps by
developing an intelligent vision system for plums, an important African fruit.

3 Data Collection

In this study, a dataset of African pear images was gathered from various regions in Cameroon. This
dataset includes 2892 images of both good and defective African pears, captured using an Android
phone. The images were collected from three distinct agro-ecological regions, each with its climate:
Littoral (coastal tropical), North West (highland tropical), and North (Sudano-Sahelian). This diverse
dataset captures variations in pear characteristics, including size, shape, color, and defects. Images
were taken at two distinct orchards within each of the mentioned regions, spanning a three-month
period during the peak harvesting season. To enhance the model’s resilience, photos were captured
against diverse backgrounds, including soil, white paper boards, and shed walls. Furthermore, the
pears were photographed from various angles, adding depth and variety to the dataset. To address
fluctuations in lighting conditions, images were taken at different times of the day, covering early
morning, noon, afternoon, and dusk. This encompassed both shaded and direct sunlight scenarios.
Additionally, the dataset intentionally included a variety of defective pears, such as bruised, cracked,
rotten, spotted, and undamaged good pears. To ensure high-quality and high-resolution images, each
pear was photographed multiple times, contributing to the overall dataset. The annotation process
involved manual labeling of all images using the LabelImg tool within Roboflow. Two distinct
classes were established: "good pears" and "bad pears" (representing defective pears). In order to
enhance annotation consistency, a single individual was responsible for labeling the entire dataset.
Subsequently, a rigorous data cleaning procedure was executed, culminating in a final curated dataset
comprising 2892 images.
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4 Model Selection

We chose to employ YOLO (You Only Look Once) as our one-stage object detection model, con-
sidering two YOLO variants (19; 20): YOLOv5 and YOLOv8. Our aim was to evaluate their
performance within our specific context. Both YOLOv5 and YOLOv8 share a common architecture,
comprising a backbone feature extractor network, a neck, and a prediction head. The backbone
is responsible for extracting spatial feature maps from the input image, while the neck enhances
these features. The prediction head is responsible for estimating bounding box coordinates and
class probabilities for each grid cell in the feature maps. The primary distinction between YOLOv5
and YOLOv8 lies in their backbones. YOLOv5 utilizes CSPDarknet (21) as its backbone, whereas
YOLOv8 employs CSPResNet (22). In addition, YOLOv8’s prediction head incorporates SAM (Spa-
tial Attention Module) (23) with PAN (Path Aggregation Network) (24). Furthermore, YOLOv8’s
neck introduces a new FSA (Feature Selective Aggregation) module and employs relative encod-
ing for bounding boxes. Both YOLOv5 and YOLOv8 models were optimized using the mean
squared error (MSE) loss function during training. YOLOv5 is Lv5 = Lcoord + Lobj + Lcls where
Lcoord = λcoord

∑
[(x−x′)2+(y−y′)2] is the localization loss, Lobj =

∑
[(C−Pobj)

2] the object-
ness Loss, Lcls = λcls

∑
[(one−hot(y)− Pclass)

2] the classification loss and Lbox = Lobj + Lcls

the weighted binary cross-entropy loss. YOLOv8 is Lv8 = Lcoord + Lobj + Lcls + Lcenter where
Lcenter = λcenter

∑
[(x − x′)2 + (y − y′)2] is the center loss and Lbox = Lobj + Lcls + Lcenter

the weighted binary cross-entropy loss

Where λcoord, λcls, and λcenter are coefficients to balance the losses; C is the objectness score; Pobj

is the predicted objectness score; one-hot(y) is the ground truth class vector; Pclass is the predicted
class probabilities; (x, y) are predicted box center coordinates; (x′, y′) are ground truth box center
coordinates.

5 Experimental Results

5.1 Data Preprocessing

The 2892 images were manually annotated using the Roboflow platform to identify good and defective
regions on each pear 1. Online data augmentation was applied during training to increase diversity,
including rotations, flips, zooms, and hue/saturation shifts. The data was split into 70% training, 20%
validation, and 10% test sets in a stratified manner. Additionally, all images were resized to 640 x
640 pixels for uniformity.

(a) Bad fruit labeling (b) Good fruit labeling

Figure 1: Image labeling.

5.2 Model Training

The Google Colab framework was utilized to train the YOLOv5 and YOLOv8 models from scratch
using the African pear dataset. The essential training hyper-parameters are outlined in Table 1. Both
models were configured with the Adam optimizer and a batch size of 16. We adhered to original input
resolutions i.e 416x416 and 640x640 for YOLOv5 for YOLOv8 respectively. We set the learning rate
at 0.001, which ensured stable training without issues like divergence. The learning rate was adjusted
schedule to decay every 30 epochs. Training was performed and no pre-trained weights were used.
The models were trained end-to-end to optimize the mAP loss, as shown in Figure 2.
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Model Input Resolution Batch Size Optimizer Training Epochs
YOLOv5 416 x 416 16 Adam 150
YOLOv8 640 x 640 16 Adam 80

Table 1: Training details for the YOLOv5 and YOLOv8 models on the African pear dataset.

(a) YOLOv5 training (b) YOLOv8 training

Figure 2: Comparison of YOLOv5 and YOLOv8 training.

5.3 Results and discussion

The trained models were evaluated on the unseen test set of 293 images. The models demonstrate

Model Precision (%) Recall (%) F1 score(%) mAP (%)
YOLOv5 81.6 86.1 88.8 88.2
YOLOv8 86.0 84.3 85.1 89.8

Table 2: Performance metrics for the YOLOv5 and YOLOv8 models.

exceptional precision and recall values, affirming their capability to accurately detect the majority of
defects on the plum surface while minimizing false detections. Notably, both models achieved a mean
average precision exceeding 88%. This mAP metric evaluates accuracy across all classes, confirming
their competence in distinguishing between defective and normal plum regions. YOLOv8, with a
slightly higher mAP of 89.8%, suggests its improved architecture facilitates more robust feature
extraction across the image. The strong mAP demonstrates high accuracy for both defective and good
classes. Some classifications on the test set images are illustrated in Figure 3. YOLOv8 was deployed
in a web application available at https://shorturl.at/cuQV9.

(a) v5 detection (b) v8 detection (c) v5 detection (d) v8 detection

Figure 3: YOLOv5 and YOLOv8: Bad and good plum detection on the test set images.

6 Conclusion

This work showcased the potential of machine learning for automating African plum quality inspec-
tion, using YOLOv5 and YOLOv8 models with high accuracy in detecting surface defects. YOLOv8
demonstrated 87% precision and 90% recall, indicating promise for efficient plum sorting and grading
in domestic and export markets. Future work includes enhancing the models’ optimization, speed,
and user interfaces for seamless deployment in African farms and markets. Field tests and farmer
evaluations will be conducted to validate the models’ real-world performance and usability.
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