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Abstract

In the field of quantum information, classical optimizers play an important role.1

From experimentalists optimizing their physical devices to theorists exploring2

variational quantum algorithms, many aspects of quantum information require the3

use of a classical optimizer. For this reason, there are many papers that benchmark4

the effectiveness of different optimizers for specific quantum learning tasks and5

choices of parameterized algorithms. However, for researchers exploring new6

algorithms or physical devices, the insights from these studies don’t necessarily7

translate. To address this concern, we compare the performance of classical8

optimizers across a series of partially-randomized tasks to more broadly sample the9

space of quantum learning problems. We focus on local zeroth-order optimizers10

due to their generally favorable performance and query-efficiency on quantum11

systems. We discuss insights from these experiments that can help motivate future12

works to improve these optimizers for use on quantum systems.13

1 Introduction14

Quantum computing has over time gathered more and more attention from researchers for the15

promise of significant computational speedups relative to classical computers. This has spurred many16

developments across all fronts in the field, from algorithms to building real quantum computers.17

However, many of these works still rely on the use of classical optimizers. For instance, variational18

quantum algorithms are a class of algorithms that have parameters that are then optimized by a19

classical optimizer [Cerezo et al., 2021]. These algorithms exist both as a way to do machine learning20

in a quantum system and to realize practically useful algorithms in noisy near-term devices. And21

beyond the scope of algorithm design, classical optimizers also play a part in assisting experimentalists22

working in quantum information. Beyond simply being used in practice to realize theorized algorithms23

on real devices [Ebadi et al., 2022], optimizers can tune the control of physical actions (such as laser24

pulses, injections of electrical current, etc.) that all need to be controlled precisely to produce desired25

quantum operation [Coopmans et al., 2021, Leng et al., 2023].26

For these reasons, understanding how classical optimizers interact with quantum objects is both27

difficult and highly important for designing the best quantum devices / algorithms. As a result, there28

are many studies on exactly that. Some of these studies are general benchmarks that compare a wide29

variety of optimizers [Pellow-Jarman et al., 2021, Anand et al., 2021, Singh et al., 2023]; others are30

works that propose new optimizers for quantum circuits and show experimental evidence for the31

advantages of their optimizer [Sung et al., 2020, Gacon et al., 2021, Leng et al., 2023]. However,32
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most of these works benchmark for a fixed set of problems using a specific form of parameterized33

quantum ansatzes / models intended for each problem.34

While these works are important for understanding specific use cases, it’s not necessarily clear35

how much the insight from these works translates to new scenarios. And in the case of physics36

experimentalists, similar concerns arise when there may be noise or aspects of their system that shift37

over time [Proctor et al., 2020, Blume-Kohout et al., 2020]. So unless they constantly re-evaluate38

many optimizers on their own, what sort of confidence can they have in their choice of optimizer39

being wise?40

These are the questions we take a shot at addressing in this work. We do this by benchmarking on41

tasks that are randomized. So in addition to the random parameter initialization common in other42

benchmarks, we also randomize the parameterized circuit / ansatz that is used, and in some cases43

randomize parts of the objective we are trying to minimize. While this is certainly not the most44

perfect way to answer the questions we posed before, we hope that by adding more variety via45

randomness in our benchmark we can begin to identify features of optimization algorithms that work46

more generically on many types of variational quantum learning problems.47

However, when doing a study like this, you run into the risk of benchmarking something so generic48

that it’s difficult to get any concrete insights from results. For this reason, we narrow our focus onto49

understanding how to improve a specific class of optimizers. First, we only consider zeroth-order50

methods. As mentioned previously, this is because methods that only sample and don’t require51

gradients currently tend to be more easily realizable on quantum systems. Second, we use only52

local optimizers. This means that our optimizers sample the objective centered around a specific53

"canidate" point. Last, we only consider sample-efficient methods. This means that our optimizers54

make optimization decisions based on sampling as few points as possible per step. These choices55

mostly centered around us deciding to focus on studying the SPSA algorithm [Spall, 1998] and56

optimizers like it, because its generally favorable performance and runtime efficiency on quantum57

systems.58

In this study, we benchmark randomized experiments for a variety of Hamiltonain minimzation59

and generative modeling tasks. We side-by-side compare the performance of 7 optimizers: SPSA,60

AdamSPSA, 2-SPSA, QNSPSA, GES, xNES, and sNES. We produce plots illustrating both the61

average rate of convergence and statistics on the end-result performance of each optimizer, and62

discuss our thoughts on insights to be gained from these results. But in short, we believe there are two63

main take-aways. First, more sophisticated optimizers are not generally better. In our benchmarks64

SPSA tends to perform best overall, followed by the other simpler heuristic methods like AdamSPSA65

and GES. There is more nuance to this statement and it certainly isn’t true in all circumstances, but66

under our randomized tasks methods simpler methods tended to be more reliably effective. Second,67

there is a need for more robust or adaptive optimization heuristics. While there are heurstics that68

can assist these optimizers in optimizing quickly in certain parts of the optimization process, at other69

points these heuristics can begin to hurt the optimizer’s performance. As such, we argue that it would70

be beneficial to make these heuristics more robust to distribution shifts. But more broadly, we hope71

that this work helps stimulate thought into how to more generally compare and study optimizers of72

quantum systems.73

2 Prior Work74

There are a number of works that explicitly benchmark a variety of optimizers. Pellow-Jarman et al.75

[2021] compares a variety of both gradient and gradient-free optimizers on variational quantum linear76

solver problems, both in the presence and absense of noise. They show that while there’s no clear77

best otpimizer, SPSA tends to perform favorably in realistic noise scenarios. Anand et al. [2021]78

benchmarks natural evolutionary strategies (NES) on variational quantum eigensolver (VQE) and79

state preparation problems. They also empirically investigate and provide some justification for80

how NES could be used in a hybrid algorithm to assist gradient-based optimizers in barren plateau81

2



regimes. Singh et al. [2023] benchmarks optimizers for a variety of quantum chemistry tasks. Like82

other studies, there’s no clear best algorithm, but SPSA tends to perform well in noisy conditions.83

Additionally, while not explicitly a benchmark, a number of works compare optimizers against84

a variety of tasks. [Sung et al., 2020] introduces methods that use quadratic fitting of sampled85

points to evaluate the gradient and perform gradient descent and policy gradient descent. They86

additionally benchmark these methods against a variety of optimizers for three unique Hamiltonian-87

minimization problems with specific ansatzes. They also include some more practical considerations,88

such as the cost of evaluating different Hamiltonian measurments, the possibility of parallelizing89

multiple quantum circuit evaluations, and doing more robust hyperparameter tuning. In their results90

their method performs best, but SPSA can come close and often out-performs other methods in91

success rates. [Gacon et al., 2021], which proposes the QNSPSA algorithm we use in this study,92

also compares its performance to original SPSA on a variety of tasks and compares robustness to93

parameter initialization. [Leng et al., 2023] does the same for their proposed AdamSPSA to SPSA94

and similar finite-difference methods, but they instead compare on the task of tuning the performance95

of a qubit operation on quantum computer.96

3 Benchmarks97

In this section we outline each of the benchmarks we perform in this paper, motivate the reasoning98

behind each experiment choice, and provide the finer details of each. While we overall strive to99

include some aspect of randomness / broadness, we make a few distinct choice of fixing specific100

elements between different benchmarks. Some of these choices are just so we can help distinguish101

any differences between types of learning problems, and others are so we try to understand differences102

between different levels of difficulty within a type of learning problem.103

To ensure fairness, for all experimental runs, all randomness (initialization parameters + random104

circuits / Hamiltonians / distributions) are controlled by the random key. So although each run is105

randomly sampled, because we use the same random keys across all optimizers, they all run the same106

variations of each problem. The statistics of each run only vary as a result of the differences between107

each optimizer.108

We also want to ensure that our results aren’t biased by a poor choice of hyperparameters. However,109

especially because we are doing highly randomized tasks, it’s difficult to identify what’s a "good"110

choice of hyperparameter means. And even if they could be identified, it’s not always reasonable111

to assume the user of said optimizer would be able to properly find them. Our compromise is to112

do hyperparameter tuning only on a small subset of the possible problem space. We select the113

hyperparameters according to a random search run on 3 random keys. This means that as we try114

random hyperparmeter combinations, they will be tried on 3 different random configurations of the115

learning problem. So while this is not as exhaustive as the 100 we test on, the tuning isn’t heavily116

biased to a single random problem sample. When there is a range of hyperparameters that all perform117

optimally, we bias our choice towards the default values typically used by the algorithm’s authors or118

commonly selected in the literature. Once we have the tuned hyperparmeters, we benchmark each119

optimizer on each problem using 100 runs. All models in all experiments have their parameters120

initialized from a normal distribution of mean 0 and standard deviation π.121

3.1 Hamiltonian Minimization Experiments122

First we run experiments on Hamiltonain minimization problems. This means that we choose a123

Hamiltonian as an observable, and the expected value of measuring this Hamiltonian becomes124

the "loss" with which we are aiming to produce a quantum state that minimizes this loss. These125

benchmarks are meant to encapsulate use-cases such as variational quantum eigensolvers and quantum126

optimization problems that map some problem to a specific Hamiltonian. We produce our candidate127

states by parameterizing a quantum circuit and optimizing it to map a simple state (usually |0⟩) to the128

state we measure with the Hamiltonian observable.129
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It is also important to note that we are simulating the noise-free version of this problem, as we assume130

we have access to the exact expected value of the Hamiltonian to minimize. While this is certainly131

not a realistic assumption, we wanted to first focus on how the aspects of each optimizer affect132

performance on quantum systems first before considering varying levels of noise as a factor.133

All of the experiments we run here use random circuits as their quantum circuit / ansatz. Specifically134

we use the RandomLayers circuit by Pennylane [Bergholm et al., 2022], which are layers of randomly135

placed parameterized single qubit X, Y, or Z rotation gates mixed with randomly placed CNOT gates.136

1D Ising Model: The first set of experiments we run use the 1D Ising model as our Hamiltonian137

observable. Specifically, we use138

H = −
N∑
i=1

Zi ⊗ Zi+1 −
1

2

N∑
i=1

Xi.

As the 1D ising model is known to be an easily solvable problem, the intention of these experiments is139

to provide a simple baseline to understand how our optimizers perform on easier quantum optimization140

problems. These experiments are run on systems of 3 qubits, with circuits of 30 parameterized single141

qubit gates and 10 2-qubit gates. This is relatively simpler and over-parameterized compared to the142

other experiments in this section. Each run is executed for 500 update steps of the optimizer.143

2D Heisenburg Model: Next we benchmark our optimizers on the 2D Heisenburg model. This144

serves as our harder problem, as not only do we include additional interaction terms w.r.t. the 1D145

Ising model, but now we also increase the dimensionality of the connectivity of our observable to a146

2D lattice. We specifically use147

H = −1

2

N∑
i=1

N∑
j=1

∑
M∈{X,Y,Z}

Mi,j ⊗Mi+1,j +Mi,j ⊗Mi,j+1 −
1

4

N∑
i=1

N∑
j=1

Zi,j .

In contrast to our 1D Ising experiments, these experiments are intended to gain insight into how our148

optimizers perform on a much more difficult problem. We use 9 qubit systems in these experiments,149

with quantum circuits containing 162 parameterized single qubit gates and 49 2-qubit gates. Each150

run is executed for 2000 update steps of the optimizer. One other import distinction is that these151

runs were hyper-parameter tuned for 1000 update steps, but we increased the experiments to 2000152

steps because a few runs seemed to not be fully converging. We believe this lead to some interesting153

side-effects which we discuss in section 5.1.154

Randomized Hamiltonians: Lastly, we run experiments on randomized Hamiltonians. Specifically,155

we generate each Hamiltonian by combining single qubit measurment terms (randomly sampled Pauli156

X, Y, or Z gates on random qubits) with 2-qubit measurment terms (tensor products of randomly157

sampled Pauli X, Y, or Z gates on random qubits). We define the Hamiltonian as158

H =

Nd∑
i=1

ci(Ai ⊗Bi) +

Ns∑
i=1

siSi

ci, si ∼ N (0, π) Ai, Bi, Si ∼ U(
⋃

i∈[N ]

{Xi, Yi, Zi}).

This benchmark exists for two purposes. First, it is intended to be a problem that is of "medium159

hardness" that is in-between the 1D Ising and the 2D Heisenburg experiments. Second, by adding160

randomness not only to the quantum circuit but also the objective, we hope to gain some additional161

coverage of many possible hamiltonian minimization problems than we did through the prior experi-162

ments to see if the insights from them have some evidence of generalization. These experiments are163

run on systems of 10 qubits. For each run we randmomly sample 10 single qubit terms and 20 2-qubit164

terms to construct every Hamiltonian. Note that this means, unlike the prior two set of experiments,165

the energy objective for each optimization procedure differs between run to run. For the random166

circuit ansatz, we use 30 parameterized single qubit gates and 10 2-qubit gates. Each run is performed167

for 500 update steps.168
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3.2 Quantum Generative Modelling Experiments169

To study a larger variety of quantum learning problems, we also investigate quantum generative170

modeling. In this setting, instead of trying to produce a state that minimizes and observable, we171

desire to produce a state that when measured in the full computational basis, matches a provided172

target distribution. Like with Hamiltonian minimization, we produce our candidate states by using173

a parameterized circuit. For the same reasons mentioned in section 3.1, we focus on the noise-less174

setting where we assume we have direct access to the true loss function. In this case we use the175

negative log-likelihood (NLL) loss.176

Cardinality Constrained Distribution + QCBM: Our first generative experiment is using the177

Quantum circuit Born machine [Benedetti et al., 2019] to learn a cardinality-constrained distribution.178

(So the only randomness in this benchmark is initalization parameters.) The purpose of this experiment179

is to serve as our baseline for quantum generative results. Because there aren’t many optimizer180

benchmarks for quantum generative modelling, these results on a more standard test model and181

problem can help us interpret future more heavily randomized results. Specifically we run on a 10182

qubit system, with 10 layers of 1 and 2 qubit gates of the QCBM ansatz (illustrated as L = 20 in183

figure 1 of Gili et al. [2023].) The cardinality we constrain to for our distribution is 5, meaning that184

our target distribution is the uniform distribution over any measurment of all 10 qubits that has 5 1’s185

in the measurment result. Each run is executed for 5000 optimizer steps.186

Randomized Distribution + Random Circuits: Our next generative experiment is a fully random-187

ized problem. We use the same random layers ansatz used in section 3.1, and our target distribution188

is fully random. Specifically we use the absolute value of a normal distribution with mean 0 and189

standard deviation π, and then divide by the sum to normalize it to a valid probability distribution. In190

contrast to the other generative modelling experiment, this experiment exists to try to broadly sample191

many possible generative models and target distributions. For these experiments we run on 5 qubit192

systems, with 100 parameterized single qubit gates and 30 2-qubit gates in the random layers ansatz.193

Each run is executed for 5000 optimizer steps.194

4 Optimizers195

In this section we briefly outline all of the optimizers we benchmarked. While this is certainly not196

a fully exhaustive comparison of all local zeroth-order optimizers, we chose this selection because197

they cover most methods and heuristics used in SPSA-like methods. Additionally, most of these198

optimizers have a history of being used for parameterized quantum circuit tasks. Table 1 in the199

appendix shows the detailed update rules of these optimizers.200

Simultaneous Pertubation Stochastic Approximation (SPSA) [Spall, 1992] is a commonly used201

method, both inside and outside the context of optimizing quantum circuits. In a nutshell, SPSA is202

approximated gradient descent where we randomly sample directions in parameter space. Per step it203

samples a small random vector from a Rademacher distribution in parameter space, estimates the204

gradient along that vector with finite difference approximation, and then takes a step along said vector205

according to the sampled gradient to minimize loss. SPSA is also often used with learning rate and206

finite difference step size decay, which we also use here.207

AdamSPSA [Leng et al., 2023] is the application of the Adam optimizer heuristic [Kingma and Ba,208

2017] on the SPSA algorithm. Specifically, it estimates via a running sum and updates according to209

momentum and variance normalization terms.210

2-SPSA [Spall, 1997] is essentially an approximation of Newton’s method, which is gradient descent211

where the gradient is multiplied by the inverse of the Hessian. To approximate the Hessian, it samples212

two random vectors (with a Rademacher distribution like in regular SPSA) and evaluates the 2nd213

order derivative along those two vectors. It then uses a weighted averaging of these samples to214

provide the Hessian used during optimization. Additionally, because the Hessian estimate can lead215

to more unstable updates, 2-SPSA also often blocks updates which increase the loss over a certain216

threshold from the prior value per step.217
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Quantum Natural SPSA (QNSPSA) [Gacon et al., 2021] is a variation of SPSA that utilizes the218

quantum natural gradient. Similar to classical natural information, using this metric can has a few219

theoretical advantages to help accelerate and stabilize learning. In practice, this method functions220

near-identically to 2-SPSA, except that when they sample the metric matrix, they compute the Hessian221

of the Fubini-Study metric instead of the Hessian of the loss function.222

Guided evolutionary strategies (GES) [Maheswaranathan et al., 2019] is an evolutionary method223

with heuristic guiding. However, despite the different name, it is fundamentally very similar to224

SPSA with only two major differences. First, GES instead samples its random parameter-space225

vectors with a Gaussian instead of a Rademacher distribution. Second, GES biases the covariance of226

the sampling Gaussian along the subspace of the recent prior gradients. The intuition behind this227

choice is that, similar to momentum, that future gradients are more likely that not to be biased in the228

direction of the most recent prior gradients. However, instead of just increasing the update size in229

these directions, GES biases the sampling in this direction to increase information gain in this biased230

direction-of-travel.231

Exponential Natural Evolutionary Strategies (xNES) [Wierstra et al., 2011] is an extension of232

evolutionary strategies to improve trainability. In this algorithm, it is assumed we have a multi-233

variate Gaussian in our space of model parameters, and our goal is to optimize this Gaussian to, in234

expectation, sample parameters that produce the lowest loss on the underlying problem. This is done235

by performing stochastic gradient descent on the parameters of the multi-variate Gaussian. xNES236

then augments this by instead using natural gradient descent to improve convergence guarantees, and237

utilizes an exponential matrix mapping to make the algorithm more computationally efficient.238

Seperable Natural Evolutionary Strategies (sNES) [Wierstra et al., 2011] is simply xNES that239

assumes independence between parameters in order to be even more computationally efficient. It240

is functionally equivalent to xNES except where the covariance matrix only allows terms along the241

diagonal.242

5 Results243

Figure 1: Hamiltonian minimization experiment convergence plots w.r.t. number of optimizer steps.
Plots mean value of all runs with the 95% confidence interval. Experiment details can be found in
section 3.

We produce two types of plots for all experiments in section 3: convergence plots and box plots. The244

convergence plots show the average loss of the optimization during each stage of the process, where245

the colored error area is the 95% confidence interval of the mean.246

The box plots illustrate the statistics of the end-result of each optimization run. In these plots, the247

center line of the colored region is the median loss value. The box region is the interquartile range248

(the range centered around the median that contains 50% of the samples). The plot whiskers contain249
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Figure 2: Hamiltonian minimization experiment box plots. Plots the statistics of the final loss value
from each run. Experiment details can be found in section 3.

Figure 3: Generative modelling experiments convergence plots w.r.t. number of optimizer steps. Plots
mean value of all runs with the 95% confidence interval. Experiment details can be found in section
3.

all points that are within 1.5 times the size of the interquartile range from the median. All other points250

are considered outliers and are plotted individually.251

The convergence plots are figures 1 and 3 for the Hamiltonian minimization and the generative252

modelling experiments respectively. The box plots are figures 2 and 4, likewise for the hamiltonian253

minimization and the generative modelling experiments respectively.254

5.1 Insights255

There are a few main take-aways from these results that we believe these results illustrate. While we256

don’t claim these results are concrete truths, we believe each of them warrant further study.257

1) Hyperparameter tuning for optimizer generalization is extremely important. Generally this is258

illustrated by our results showing that most optimizer variants don’t show clear benefits compared to259

their original versions when some hyperparameter tuning is done, which often contrasts the results260

shown in the original papers. However, this is more specifically illustrated in the convergence plot261

results of the 2D Heisenburg model shown in figure 1. For this experiment, we hyperparameter262

tuned to optimizers taking 1000 steps but ran our experimental results out to 2000 steps. If you cut263
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Figure 4: Generative modelling experiments box plots. Plots the statistics of the final loss value from
each run. Experiment details can be found in section 3.

this plot off at 1000 steps, it would look very close to the random Hamiltonian experiments where264

SPSA, GES, and AdamSPSA perform similarly aside from the latter two converging more quickly.265

However, by choosing to optimize for longer SPSA is suddenly able to do significantly better than all266

optimizers. While this does raise the question of what a truly realistic hyperparameter tuning scenario267

is in quantum systems, we think it’s likely more fruitful to sidestep this concern altogether and work268

to design optimizers that are adaptive or more robust to hyperparameter choice.269

2) More elaborate optimization strategies aren’t generally better. In all of these benchmarks, no270

optimizer clearly out-performs SPSA at the end of the optimization procedure. And the ones that do271

are often ones like AdamSPSA and GES that rely on relatively simple and cheap heuristics. So while272

there is certainly something to be said about the theoretical benefits of using a method like QNSPSA,273

these results indicate that it may be possible to practically achieve better performance for cheaper by274

using simpler methods like step size decay and guiding heuristics.275

3) When it comes to the convergence speed in the initial phase, you may benefit from acceleration276

strategies. It varies depending on the benchmark you look at, but often a few methods are able to277

converge to lower loss early on in the optimization procedure before being met or overtaken by SPSA.278

So while it may not be clearly better to use one of these methods as-is, these results indicate it might279

be possible to develop new adaptive methods to improve the convergence speed of methods like280

SPSA while not sacrificing overall performance.281

6 Conclusion282

In this work, we benchmark SPSA-like optimizers on a variety of parameterized quantum learning283

tasks with randomized quantum circuits and randomized objectives. These results provide evidence284

to suggest that certain heuristics can help accelerate optimization, they often do not perform better285

than the simpler methods in general. However, we believe that in a broader sense this study helps286

illustrate the need not only for methods that are adaptive / more robust to hyperparameter choice,287

but also for broader thought on how we can effectively compare optimizers in quantum systems that288

aligns with the realistic scenarios they will be used in. While the take-aways from this work are289

intuitions and ultimately only serve to inform directions of future study, our hope is that this work290

will inspire more thought into how to best categorize and compare optimizers in quantum learning291

problems as a whole. (We also include some suggested areas of future studies in section A of the292

appendix.)293
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A Future Works397

Beyond the straightforward expansions on this work (larger studies, more optimizers, more relevant398

randomization, etc.) and works related to the insights in section 5.1, we feel the following would be399

particularly fruitful follow up studies:400

1) Noise - This benchmark only compared the noiseless setting, but in practice noise is almost always401

involved with a quantum computer. Although there are papers that look at shot noise and how to402

select the right amount of circuit evaluations to still optimize efficiently [Gu et al., 2021], we would403

like to see a study similar to the one we’ve done here that adds noise as an additional dimension to404

study where the transitions of an optimizer performing well v.s. poorly occurs.405

2) Sampling Amount - For this study, we restricted ourselves to considering only sampling from406

a minimal number of parameter-difference vectors to get the information needed to take an update407

step. However, it’s possible we could do better by relaxing this constraint. (It’s especially surprising408

methods like GES worked as well as they did in this study, as they were intended to be used with409

multiple samples per step.) And on the other side of this, can we re-design some aspects of methods410

that typically benefit from additional samples per step to instead work well in a small-sample setting411

by aggregating information between steps? Both considerations would be critical for understanding412

the truly best strategies in this class of optimizer.413

3) Sampling Distribution - The optimizers we study here use either a Gaussian or a Rademacher414

distribution to sample parameter vectors. While they both seem to be able to produce effective opti-415

mizers, studying in a more principled way the effects of different choices of probability distributions416

would be interesting. This could especially become more relevant if we look at optimizing parameters417

that add discrete constraints, as would be the case in some experimental setups, error-corrected418

quantum computation, coordinate descent parameter-shift rule based optimizers [Schuld et al., 2019],419

or other more exotic forms of parameterization.420

4) Adaptive Methods - Along the lines of what was mentioned in section 5.1, studying methods that421

adaptively change during the optimization process could be fruitful for a number of reasons. First, it422

could help combine the benefits of multiple strategies. Beyond the optimizers we covered here, there423

are works that find other ways to accelerate learning. (For instance, Luo et al. [2022] use machine424

learning to predict optimization trajectories, and Fontana et al. [2023] classically models the loss425

landscape of certain parameterized circuits.) When it’s possible to combine the information from426

quantum computer queries into multiple methods, having a strategy that can learn to rely either more427

or less on a specific strategy during parts of the optimization process could allow us to have desirable428

properties of multiple methods (speed of convergence, ability to optimize well in difficult landscapes,429

flexibility of a method to work without prior assumptions, robustness to distribution shift, etc.) with430

a minimal cost-regret overhead. Second, such a method could provide insights into the limits of431

each of the above methods. By studying in which parts of an optimization process one method432

begins to be unable to optimize as well as another, it could provide insight to researchers looking to433

mathematically understand and characterize optimizers and loss landscapes. Lastly, such methods434

would make future benchmarking studies much simpler. Instead of having to be concerned about435

what reasonable hyperparameter tuning is and expending the resources to perform it, benchmarks436

could just compare adaptive versions of the methods in question. (And if said method has a regret437

bound, they can have precise confidence in the robustness of their results.)438
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AdamSPSA

∆i ∼ U({−1, 1}d)
ϵi = ϵ0/i

γ , ηi = η0/(c+ i)α, βi = β0/i
λ

∇estf(θi) =
f(θi + ϵi∆i)− f(θi − ϵi∆i)

2ϵi(
m1 = ∇estf(θ1), v1 = (∇estf(θ1))

2
)

mi = βimi−1 + (1− βi)∇estf(θi)

vi = γvi−1 + (1− γ)(∇estf(θi))
2

θi+1 = θi −
ηi√
vi + δ

mi

2-SPSA

∆i,∆
′
i ∼ U({−1, 1}d)

∇estf(θi) =
f(θi + ϵi∆i)− f(θi − ϵi∆i)

2ϵi
δf = f(θi + ϵ∆i + ϵ∆′

i)− f(θi + ϵ∆i)

− f(θi − ϵ∆i + ϵ∆′
i) + f(θi − ϵ∆i)

Ĥi =
δf

2ϵ2
∆i(∆

′
i)

T +∆′
i(∆i)

T

2

Hi =
i

i+ 1
Hi−1 +

1

i+ 1
Ĥi

θi+1 = θi − ηH−1
i ∇estf(θi)

QNSPSA

∆i,∆
′
i ∼ U({−1, 1}d)

F (θ, θ′) = | ⟨ψ(θ)|ψ(θ′)⟩ |2

∇estf(θi) =
f(θi + ϵi∆i)− f(θi − ϵi∆i)

2ϵi
δF = F (θi, θi + ϵ∆i + ϵ∆′

i)

− F (θi, θi + ϵ∆i)

− F (θi, θi − ϵ∆i + ϵ∆′
i)

+ F (θi, θi − ϵ∆i)

Ĥi =
−δF
4ϵ2

∆i(∆
′
i)

T +∆′
i(∆i)

T

2

Hi =
i

i+ 1
Hi−1 +

1

i+ 1
Ĥi

θi+1 = θi − ηH−1
i ∇estf(θi)

SPSA

∆i ∼ U({−1, 1}d)
ϵi = ϵ0/i

γ , ηi = η0/(c+ i)α

∇estf(θi) =
f(θi + ϵi∆i)− f(θi − ϵi∆i)

2ϵi
θi+1 = θi − ηi∇estf(θi)

GES

Ui = orthonormal basis of span of
{∇estf(θi−k), . . . ,∇estf(θi)}

Σi =
α

n
I +

1− α

k
UUT ,Σ0,...,k =

1

n
I

∆i ∼ N (0, σ2Σi)

∇estf(θi) = β
f(θi +∆i)− f(θi −∆i)

2σ2

θi+1 = θi − η∇estf(θi)

xNES

∆i,∆
′
i ∼ N (0, I), B1 = I

z = θi + σiB
T
i ∆i, z

′ = θi + σiB
T
i ∆

′
i

u = 0.5 if f(z) < f(z′) else − 0.5

u′ = 0.5 if f(z′) < f(z) else − 0.5

∇µJ = us+ u′s′

∇MJ = u(ssT − I) + u′(s′s′T − I)

∇σJ = tr(∇MJ)/d

∇BJ = ∇MJ −∇σJ · I
σi+1 = σi exp(ησ/2 · ∇σJ)

Bi+1 = Bi exp(ηB/2 · ∇BJ)

θi+1 = θi + ηµσiBi∇µJ

sNES

∆i,∆
′
i ∼ N (0, I)

z = θi + σi∆i, z
′ = θi + σi∆

′
i

u = 0.5 if f(z) < f(z′) else − 0.5

u′ = 0.5 if f(z′) < f(z) else − 0.5

∇µJ = us+ u′s′

∇σJ = u(s2 − 1) + u′(s′2 − 1)

σi+1 = σi exp(ησ/2 · ∇σJ)

θi+1 = θi + ηµσiBi∇µJ

Table 1: Optimizer algorithms. Illustrates a step of each optimizer in equation form. Note that these
algorithms may slightly differ from the original works due to simplifying choices / constraints we
made in this study. f is the loss function and θ are the parameters per step. ψ is the parameterized
quantum circuit model used by f . U is the uniform distribution and N is the Gaussian distribution.
(·)2,

√
(·) are element-wise on vectors. All other un-defined variables are hyperparameters.
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