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Abstract

The recently introduced Consistency models pose an efficient alternative to diffu-
sion algorithms, enabling rapid and good quality image synthesis. These methods
overcome the slowness of diffusion models by directly mapping noise to data,
while maintaining a (relatively) simpler training. Consistency models enable a
fast one- or few-step generation, but they typically fall somewhat short in sample
quality when compared to their diffusion origins. In this work we propose a novel
and highly effective technique for post-processing Consistency-based generated
images, enhancing their perceptual quality. Our approach utilizes a joint classifier-
discriminator model, in which both portions are trained adversarially. While the
classifier aims to grade an image based on its assignment to a designated class,
the discriminator portion of the very same network leverages the softmax values
to assess the proximity of the input image to the targeted data manifold, thereby
serving as an Energy-based Model. By employing example-specific projected
gradient iterations under the guidance of this joint machine, we refine synthesized
images and achieve an improved FID scores on the ImageNet 64x64 dataset for
both Consistency-Training and Consistency-Distillation techniques.

1 Introduction

Diffusion models, also known as score-based generative models, [13], [24], [27], [28], [29] have
set new benchmarks in multiple fields, the prime of which is image generation [4], [22]. A central
aspect of these models is the iterative sampling process that gradually eliminates noise from an
initial random vector, this way carving fair samples from a prior distribution. By controlling the
depth of such processes, these methods offer a flexible balance between computational effort and
sample quality. However, compared to single-step generative models like GANs [9], the iterative
generation procedure of diffusion models typically requires 10–2000 times more compute for sample
generation [29], [28], [13], causing slow inference and limited real-time applications. Addressing
this shortcoming, Consistency models [26] have been developed to expedite the sampling process,
offering a faster alternative with one or two-step data generation. Unfortunately, their reliance on an
intricate distillation process tends to limit the ultimate quality of the generated images.

Recent work that aims to remedy this performance gap integrates Consistency Models [26] with
Generative Adversarial Networks, so as to tackle common GAN issues like mode collapse and
unstable training process, thereby enhancing the diversity and stability of generated images [20].
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Adversarial Consistency Training (ACT) [17] further refines this approach by incorporating a
discriminator within the Consistency training framework, improving the generative model’s quality
by fine-tuning the image generation process for more realistic outputs. These methods offer new ways
to overcome limitations in image fidelity, but require long and computationally expensive training.

In this work we propose a novel and highly effective technique for post-processing Consistency-based
generated images, enhancing their perceptual quality. Our approach is based on a joint classifier-
discriminator neural network, in which both functionalities are trained adversarially.

The adversarial approach is critical in our training process, as we will further explain in section 3. We
rely on past research that has shown that deep neural networks can be easily deceived by adversarial
attacks [10], [18], [30]. Therefore, numerous strategies have been developed to make these networks
more robust, with adversarial training becoming one of the most favored approaches [21], [10].
During the analysis of such classifiers, a notable phenomenon was discovered: perceptually aligned
gradients [31], [5]. This trait implies that adjustments to an image, guided by the robust classifier,
result in changes that are visually consistent with the intended classification.

Our method utilizes the above phenomenon and iteratively modifies the images created by
Consistency-models using a joint robust classifier-discriminator. While the classifier aims to maxi-
mize the conditional probability of a target class, the discriminator portion of the very same network
uses the softmax values to maximize the energy difference between synthesized and observed data,
functioning as an Energy-based Model [19].

In order to refine synthesized images, we employ example-specific projected gradient iterations under
the guidance of this joint machine. The process is controlled by an image-dependent early-stopping
mechanism, that allows us to selectively refine images that diverge from the observed data distribution,
ensuring that those already close to it remain unaffected. To summarize, our contributions are as
follows:

1. We show significant quantitative and qualitative improvements in the perceptual quality of
synthesized images for both Consistency-Training and Consistency-distillation, with an FID
boost of 27.48% and 20.96%, respectively.

2. We demonstrate a remarkable capability of adversarial robust classifiers: Serving as a joint
classifier-discriminator informed of both synthesized and observed data distributions. This
fusion leads to enhanced effectiveness of projected-gradient steps, leading to an additional
improvement of 11.2% in FID results, over a classifier boosting alone [6].

3. While this work focuses on boosting Consistency based image generation, the proposed
approach is general and applicable to any other generative model. While this is beyond the
scope of the current work, we do present supporting preliminary such results.

2 Background

2.1 Diffusion Models and Consistency

Diffusion models [29], [14] generate data (e.g., images) by starting from a plain random vector and
manipulating it progressively by sequential denoising steps and noise perturbations. More specifically,
let p0(x) denote the Probability Density Function (PDF) of true images. Diffusion models introduce
a forward path, in which p0(x) is gradually diffused over the time interval 0 ≤ t ≤ T to a canonical
Gaussian, pT (x) = N (0, I). This is formulated via a Stochastic Differential Equation (SDE) that
describes a continuous noise-mixing process,

dxt = µ(xt, t)dt+ σ(t)dwt. (1)

Here T > 0 is a fixed constant, µ(·, ·) and σ(·) are the drift and diffusion coefficients respectively,
and {wt}t∈[0,T ] denotes the standard Brownian motion. We denote the distribution of xt as pt(x),
where pt(x) is a σ(t)-blurred version of p0(x) due to the additive noise in xt.

Diffusion models are all about designing the reverse process from t = T to t = 0, in which noise
is filtered gradually to produce high quality images that serve as fair samples from p0(x). While
the original diffusion techniques [13] offer an SDE-based reverse path, the more recent and more
effective alternatives (e.g. DDIM [25]) remove the intermediate stochasticity and offer an ODE-based
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reverse process of the form

dxt =

[
µ(xt, t)dt−

1

2
σ(t)2∇xt

logpt(xt)

]
dt. (2)

Notice the appearance of the Score-Function ∇xt logpt(xt) in this flow, which is approximated by an
image denoiser.

In practice, Diffusion Models are an Euler-Maruyama discretization [16] of the above equation,
resulting with a chain of iterations that starts with a random canonical Gaussian noise xT , and
gradually moves xt towards x0 by steps of denoising that follow the above equation. The resulting
x0 can be considered as a fair sample from p0(x), assuming that the denoiser is well-trained.

Consistency models [26] are heavily inspired by the theory described above, aiming to preserve the
end-to-end behavior that takes us from xT to x0, but while expediting the process to a single (or a few)
step. Given a solution trajectory {xt}t∈[0,T ] of the above reverse equation, the Consistency function
is the trained network f : (xt, t)→ x0. This function should have the property of self-consistency:
For two temporal points t, s ∈ [0, T ] and their corresponding stages in the same trajectory, xt and xs,
the outputs should be the same f(xt, t) = f(xs, s) = x0, thus explaining the name “Consistency”.
Such models can be trained in two main ways [26]. The first method (CD) involves distilling
knowledge from a pre-trained diffusion model, allowing it to learn the distribution directly from the
more computationally intensive yet well-performing diffusion process. The second method (CT)
trains the function f(·, ·) directly via a tailored loss, without the need for a pre-existing diffusion
model.

2.2 Boosting Synthesis via Robust Classifier (BIGROC)

Consider a goal of refining generated images, so as to improve their perceptual quality. BIGROC [6]
offers such a post-processing mechanism, by leveraging a robust classifier.

Let fθ : Rd → RC be a classifier that maps images in Rd to scores for C classes, also known as
logits, and denote it’s cth output by f c

θ (x). These logits aim to have a probabilistic interpretation,
being related to the estimated posterior probability pθ(c|x). Starting with an arbitrary image x and
taking gradient steps∇xf

c
θ (x) in order to maximize f c

θ (x), one would expect this process to produce
an altered image that better resembles the targeted class c. However, when using a plain classifier,
even if it is very well performing, its gradients behave as a perceptually meaningless noise that is
unrelated to the image content. This implies that, while the resulting image would tend to be classified
to c, its visual appearance would be hardly changed from the original image x. This phenomenon is
well-known, giving rise to the wide topic of adversarial attacks on neural networks [21], [9].

Past research has shown that, as opposed to the above, robust classifiers produce Perceptually Aligned
Gradients (PAG) [31, 15, 1, 8, 7]. These gradients are a trait of adversarially trained models, their
content being consistent with the human visual perception [31], [5]. This implies that when used
within the gradient steps mentioned above that aim to pull x towards class c, robust models are
expected to yield meaningful features aligned with the target class, thus modifying x in a perceptually
convincing way.

Harnessing the above knowledge, the BIGROC algorithm [6] proposes an iterative process for
boosting the perceptual quality of synthesized images, assuming that they are classifiable via fθ(x).
This is obtained by modifying any generated image x so as to maximize the posterior probability of
a given target class ĉ, i.e, pθ(ĉ|x), where pθ is modeled by an adversarially trained classifier and ĉ
stands for the estimated class the image belongs to. The outcome of this process is a modified version
of x that is more aligned with the class ĉ from a human point of view, thus having a better perceptual
quality.

While there are various techniques for generating adversarial examples, the one used in BIGROC
is Targeted Projected Gradient Descent [21] – a deterministic iterative process that operates as
described in Algorithm 1, Πε in this algorithm stands for the projection operator that ensures that the
resulting image is ε-close to the starting image, and ℓ is the loss function (e.g., cross-entropy) that
defines how the distance between the classifier output and the target label is computed. For simplicity,
we can omit the loss and use the gradient of the softmax output of the classifier directly,

δt+1 = Πε(δt −∇δf
ĉ
θ (x+ δt)). (3)
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We would like to draw the readers attention to the fact that BIGROC [6] is totally unaware of
the generated images’ distribution, which it aims to improve. This brings us naturally towards the
proposed strategy in this paper.

Algorithm 1 Targeted Projected Gradient Descent (PGD)

Input:
• Robust Classifier fθ(x),
• Input image x, and
• Algorithm’s parameters: radius ε, step-size α, no. of iterations T , and loss function ℓ.

Set δ0 ← 0.
Set ĉ = fθ(x) or get an external assignment for the class.
for t from 0 to T do

δt+1 = Πε(δt − α∇δℓ(fθ(x+ δt), ĉ)).
end for
Output: xadv ← x+ δT

2.3 Energy-Based Models

The core idea behind Energy-Based Models (EBM) [19] is turning an arbitrary function into a
probability distribution. Consider a learned energy function Eθ(x) : Rd → R, where x ∈ Rd is an
input image, and it’s output is a scalar value in the range (−∞,+∞). This neural network induces a
PDF pϕ(x) that has a Gibbs form:

pθ(x) =
exp(−Eθ(x))

Zθ
. (4)

Clearly, this function assigns a probability greater than zero to any input. Zθ is known as the Partition
Function – a normalization factor that ensures that the density integrates to 1. The negative sign in the
exponent implies that low energy values are assigned to highly probable images, while high energy
refers to poor looking images.

EBMs are a family of algorithms that aim to learn Eθ(x) such that the resulting pθ(x) aligns with the
probability density function of the given training set. Given a learned EBM, image synthesis can be
obtained by iteratively climbing the function pθ(x) using Stochastic Gradient Langevin Dynamics
(SGLD) [32]. PGD, as described above, offers an appealing deterministic alternative to SGLD, by
leveraging a loss-function and an additional ε-ball constraint in it’s computation.

Energy-based models and image classifiers can be shown to have common grounds [11], as detailed
in Appendix A. Assuming we have a classifier fθ(x) : Rd → RC that maps images to scores for C
classes, the probability of the cth label is represented using the Softmax function,

pθ(c|x) =
exp(f c

θ (x))∑C
c̃=1 exp(f

c̃
θ (x))

, (5)

The normalizing denominator in the above equation can be turned into a candidate energy function
for an EBM,

Eθ(x) = −log

[
C∑

c=1

exp(f c
θ (x))

]
. (6)

In words, the exponent of this energy is the sum of the logits’ exponentials. And so, while the
classifier’s assignment decision, pθ(c|x), is independent of the induced energy, Eθ(x), this value can
be interpreted as the entity that defines the PDF pθ(x) that aims to match a given image distribution.
In this work we leverage this possibility, and modify it, as discussed hereafter.

3 Proposed Approach

In this work we propose a method to enhance the perceptual quality of images generated by
Consistency-based techniques [26]. Our approach utilizes a robust joint classifier-discriminator to
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guide synthesized images to better resemble real images. In section 3.1, we explore this method’s
training objectives and technical details. The post-processing procedure, described in section 3.2,
uses the guidance of the joint model in an iterative algorithm to refine the realism and visual appeal
of synthesized images. In this process, the synthesized images, originating from the generated
distribution pθ, are modified to align with the real images distribution pdata.

3.1 Training a Joint Classifier-Discriminator

Our method aims to leverage the Perceptually Aligned Gradients (PAG) property [31], and further
extend and improve refinement capabilities of models that possess this trait by introducing the
model with the distribution of both pθ and pdata. To this end, we empower the classifier model by
incorporating a robust discriminator within it, so as to improve guidance performance significantly
with this joint model. This dual-training approach allows the proposed model to better differentiate
and understand the unique features of both real and synthetic images.

3.1.1 Proposed Training objective

While Energy-Based Models (EBMs) [19] may align perfectly with our task of improving image
quality by modifying out-of-distribution samples to align with the real data manifold, several chal-
lenges impact their practical application. These include the sensitivity of EBM training to the choice
of the energy function used, leading often to training instability and poor generalization performance.
EBMs necessarily rely on computationally complex sampling techniques (e.g. MCMC), which add
to their overall complexity and instability. More on these matters is brought in Appendix B.

In this work we propose a joint classifier-discriminator model that overcomes many of the EBM
problems mentioned above. Our model aims to guide generated samples to be more realistic and
emphasize visual features aligned with the target class. To do so, we propose a revised interpretation
of the adversarial training objective and a modified view of the energy that serves the EBM part
of our model. More specifically, the loss function proposed contains adversarial variants of both
Cross-Entropy and Binary-Cross-Entropy components, each targeting specific aspects of the training
as explained further below.

Discrimination loss: The Binary-Cross-Entropy (BCE) loss we suggest is formulated as follows:

LBCE(θ) = Ex∼pdata
[ℓBCE(x̂, c)] + Ex∼pθ

[ℓBCE(x̂, c)], (7)

where we define ℓBCE(x, c) for an image x from class c via

ℓBCE(x, c) =

{
−log(σ(f c

θ (x))) x ∼ pdata
−log(1− σ(f c

θ (x))) x ∼ pθ.
(8)

This loss admits values in the range [0,∞). For real images, the value f c
θ (x) should tend to be high,

while for generated ones it should strive to low values. As such, this ingredient behaves as an energy
function that serves our discriminator.

In these equations, x̂ represents the adversarially perturbed version of x, σ is the sigmoid function,
fθ is a classifier and c is the class to which the sample x belongs. In this setting, x̂ derived from
x ∼ pdata serves as an adversarial example designed to deceive the model by pushing it to be “less
real”. Conversely, x̂ derived from x ∼ pθ represents a synthetic image that has been created by the
Consistency model, and was adjusted to appear more realistic. As we show in our ablation study,
these adversarial examples are essential to the training process.

Note that in both attacks, the energy function of the classifier, as given in Equation 6, is not the
one used for the PGD computation. Rather, we use only the c logit magnitude as an energy proxy.
Similarly to EBMs, we suggest assigning high probability values to real images and low probability
values to fake ones. Further discussion about the relation between the suggested adversarial training
and EBMs can be found in Appendix C.

Classification loss: The commonly used Cross-Entropy loss is formulated as follows:

LCE(θ) = Ex∼pdata
[ℓCE(x̂, c)] + Ex∼pθ

[ℓCE(x̂, c)] , (9)

where ℓCE(x, c) for an image x from class c is defined by a soft-max operation,

ℓCE(x, c) = −log
exp(f c

θ (x))∑C
c′=1 exp(f

c′
θ (x))

, (10)
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which leads to values in the range [0,∞), 0 for high classification probability and large values for
indecisive classification. Here, x̂ are the adversarially perturbed samples as described in the paragraph
above, in the context of the BCE loss.1 This loss ensures that the classifier can accurately classify real
images to their correct classes, despite any potential adversarial modifications, thereby reinforcing
the model’s resilience to adversarial attacks and maintaining high classification accuracy on real data.
Similarly to the BCE loss, this term calculates the CE loss for both the true and the generated images,
maintaining the model’s ability to classify generated images correctly.

The overall loss is simply an addition of the above two expressions, L(θ) = LCE(θ) + LBCE(θ).
This formulation ensures that the model learns to distinguish effectively between real and generated
images, as well as classifying them correctly, enhancing its ability to deal with adversarially altered
images and to generalize well across different types of image manipulations. More importantly, due
to the adversarial training, the learned model has meaningful gradients (i.e., PAG [31], [5]), which
are about to play a vital role in our inference process of pushing Consistency generated images to
their improved versions. As our training strategy considers both classification and discrimination
losses, these gradients carry both improvements geared by class adjustments and a migration from pθ
to pdata.

In our training process, as described above, we initialize the joint model with a robust RN50 network
[21], while replacing its fully connected head with a randomly initialized one. As a consequence,
we expect this network to inherit it’s original classification robustness, which proves to be valuable
for the overall image improvement obtained hereafter. Our training stands on the shoulders of this
classifier, as we update the model parameters with the loss described above using only attacked (real
and synthesized) images.

3.1.2 Gradual Adversarial Training

When computing the adversarial attacks for the above losses, we operate differently on real and
synthesized images. A real image x is modified by the PGD algorithm by maximizing the ℓBCE(x, c)
loss, aiming to push it away from pdata. This is achieved by ascent directions that require a negative
value of α in Algorithm 1. In contrast, attacks on the synthesized images aim to minimize ℓBCE(x, c)
with a positive α in the PGD algorithm.

Referring to the later attacks on the synthesized images, x ∼ pθ,PGD applies T steps of gradient
descent that explore a local area with a small ε around the starting point of each input sample. We
suggest to modify the activation of the PGD attack to a gradual form, using a large value of ε, as
explained below. In forming the attacks mentioned above, our method aims to traverse the entire
spectrum between fake and real samples, systematically eliminating any miss-classifications of fake
images as reals ones by the model.

We propose a strategy of gradually increasing the number of attack steps T throughout the training
process. By extending the number of steps and initializing ε to be relatively large, the PGD attack
can move further from the initial starting points, eliminating closer misleading examples first, and
then proceeding to more challenging adversarial examples. Moreover, as the model becomes more
adept at countering simpler attacks, incrementally increasing the complexity of the attacks ensure
that the training continues to challenge the model effectively.

To further improve our training process and ensure the model does not mistakenly classify high-
quality but still fake samples as genuine ones, we implement an early stopping mechanism based on
the model’s probability outputs. This mechanism halts the PGD process when the model assigns a
higher probability to a perturbed fake image being real than it does to a perturbed real image in the
same batch. This mechanism prevents the model from believing that fake images are more "real"
than the real ones, preserving its’ reliability and discriminative power.

3.2 Sampling

As we move to inference, we aim to harness the PAG obtained by the adversarial training of the joint
model, in order to boost the perceptual quality of Consistency generated images. We propose an

1One might claim that a different attack should be practiced here, so as to accommodate the classification
task. Our experiments show that, while this option can be practiced, it is expected to mildly improve the results,
while consuming substantial computational efforts.
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iterative algorithm designed to adjust images x ∼ pθ, by maximizing the probability that x belongs to
class c and simultaneously minimizing the gap between pθ and pdata. The choice of the loss function,
ℓ, is critical in this part, as will be shown in the ablation study. To utilize the gradients of the joint
model we start by proposing the following expression that we minimize via the PGD:

ℓ(x, c) = ℓCE(x, c)− ℓBCE(x, c). (11)
Notice the marked difference between the above and the loss used for the training. This function
operates only on incoming synthesized images x and while knowing their designated class c. The
rational in this expression has two pieces: A desire to minimize ℓCE(x, c) so as to align the image
with its target class, just as practiced by BIGROC. In addition, ℓBCE(x, c) should strive for a high
value, so as to make the image as realistic as possible, moving x closer to pdata. We remind the
reader that ℓBCE(x, c) here refers to synthesized images (see Equation 7), and thus a high value
corresponds to high perceptual quality.

In practice, our tests indicate that the above loss tends to stray unstably, as ℓBCE(x, c) admits too
high values, diverting from good quality outcomes. A remedy to this effect is the following alternative
loss:

ℓ(x, c) = ℓCE(x, c)−
1

2
(ℓBCE(x, c)− ℓ0)

2
. (12)

Here we aim to push ℓBCE(x, c) towards a reference value ℓ0, set in the training process to be
ℓ0 = Ex∼pdata

[ℓBCE(x, c)]. (13)
In words, ℓ0 is the mean value of the BCE loss for real images. Minimizing the distance between
ℓBCE(x, c) and ℓ0 pushes the modified image to be more “real”, while also making sure that it does
not admit a value above ℓ0, which represents an exaggerated quality.

The overall algorithm for boosting images x ∼ pθ is described in Algorithm 2.

Algorithm 2 Boosting Images via PGD Guided by a Joint Classifier-Discriminator

Input:
• Robust Joint Classifier-Discriminator fθ(x),
• Input image x of a target class c, and
• Algorithm’s parameters: Radius ε, Step-size α, No. of iterations T , and loss function ℓ.

Output: xboosted ← TargetedPGD(fθ, ℓ, x, c, ε, α, T ).

An alternative approach is to sample using Stochastic Gradient Langevin Dynamics, similarly to [11],
as described in Algorithm 3. To further investigate the properties of SGLD, we explored replacing
PGD with SGLD during both inference and training. During training, we found that optimizing with
SGLD lacks the robustness achieved with PGD and suffers from convergence difficulties. However,
during inference, SGLD surpasses PGD, as shown in Table 3. The benefit of using SGLD during
inference can be attributed to its ability to better explore multiple modes compared to methods like
PGD due to it’s stochastic nature.

Algorithm 3 Boosting Images via SGLD Guided by a Joint Classifier-Discriminator

Input:
• Robust Joint Classifier-Discriminator fθ(x),
• Input image x of a target class c, and
• Algorithm’s parameters: Step-size α, No. of iterations T , noise level σ.

for t from 1 to T do
xt = xt−1 − α · ∇xt−1

fθ(xt−1) [c] + σ · N (0, I).
end for
Output: xT .

4 Experiments
In this section, we present an evaluation of the proposed boosting method. We begin by discussing
the results obtained by our method compared to BIGROC [6]. Subsequently, we conduct an ablation
study to further analyze various components of the model, as described in Section 3.
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4.1 Experimental Settings

During training, we use the pre-trained robust ResNet-50 (RN50) model [21] as a backbone, with
a randomly initialized classification head. We configure the parameters of the Projected Gradient
Descent (PGD) attack for fake images with an ε of 10.0 and a step size of 0.1, increasing the number
of PGD steps every 1,000 training iterations to enhance adversarial robustness over time. For real
images, the PGD attack is set with an ε of 1.0, a step size of 0.25 and 4 steps. The model is trained
on four NVIDIA GeForce RTX 3090 GPUs. The same configuration applies to the training of the
Wide-ResNet-50-2 (Wide-RN) model. In the sampling process, we apply the loss function outlined
in Equation 12 and the step size is set as 0.1. The amount of steps is adjusted according to the
generative model we enhance; further technical details can be found in Appendix D.

4.2 Experimental Results

We analyze the perceptual-quality boosting performance using Fréchet Inception Distance [12],
Inception Score [23], Precision and Recall. Table 1 summarizes our results on the ImageNet 64×64
dataset [3]. Initially, we present the original FID and IS results as reported in the Consistency
Models paper [26]. We then apply our boosting algorithm using both a robust classifier and our
joint model. The results demonstrate that our proposed approach offers greater benefits compared to
refining with a robust classifier alone (i.e., BIGROC [6]). Notably, the proposed training of our joint
model leads to significantly improved results. This boost in image quality is observed across both
Consistency Training (CT) and Consistency Distillation (CD) methods, and when using either one
or two generative steps. In terms of efficiency, one PGD step requires only 0.02 seconds, while a
single Consistency (CT or CD) inference step takes 0.55 seconds, making 25 PGD steps comparable
in cost to a Consistency inference. This suggests that our approach could be interpreted as providing
a continuum trade-off between complexity and perceptual quality. For comparison, [17] used a
GAN-based approach to improve CT synthesis with adversarial training, achieving an FID of 10.6,
which slightly outperforms BIGROC but falls short of our joint model’s performance boost. Note
that their training is much more extensive than ours, and much heavier in computational complexity,
due to the size of the CT network and the adversarial loss being used.

Table 1: Quantitative comparison of image generation performance on ImageNet 64×64 using
Consistency Models and our proposed boosting methods with robust classifiers and joint models.

Boosting Method Inference Steps FID (↓) IS (↑) Precision (↑) Recall (↑)
Consistency Training 1 13.00 28.83 0.71 0.41
RN50 Robust Classifier 10.71 36.38 0.70 0.47
Wide-RN Non-Robust Joint 12.30 35.62 0.64 0.46
RN50 Robust Joint 9.60 50.80 0.76 0.39
Wide-RN Robust Joint 8.83 55.67 0.73 0.45
Consistency Training 2 11.12 27.28 0.68 0.54
RN50 Robust Classifier 9.65 33.55 0.68 0.54
Wide-RN Non-Robust Joint 11.28 33.16 0.63 0.54
RN50 Robust Joint 8.51 39.40 0.74 0.49
Wide-RN Robust Joint 7.98 46.33 0.71 0.52
Consistency Distillation 1 6.20 39.87 0.67 0.63
RN50 Robust Classifier 5.55 44.65 0.68 0.61
Wide-RN Non-Robust Joint 6.33 45.55 0.64 0.60
RN50 Robust Joint 4.95 51.98 0.72 0.58
Wide-RN Robust Joint 4.84 58.73 0.70 0.60
Consistency Distillation 2 4.69 42.28 0.68 0.63
RN50 Robust Classifier 4.20 46.78 0.69 0.63
Wide-RN Non-Robust Joint 4.66 46.37 0.68 0.63
RN50 Robust Joint 3.84 51.12 0.72 0.60
Wide-RN Robust Joint 3.78 55.13 0.71 0.61
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4.3 Ablation Study

As explained in Section 3.2, the choice of the loss function in Algorithm 2 is crucial. The results in
Table 2 illustrate that utilizing only Cross-Entropy loss produces results that are similar to those
achieved using BIGROC [6], as expected. The joint model demonstrates substantial discriminative
power, which further enhances FID scores when Binary Cross-Entropy loss is applied. In exploring
the integration of these two components, we experimented with the loss function proposed in equation
11. Our findings indicate that this approach improves upon Cross-Entropy loss, though it does not
consistently surpass Binary Cross-Entropy loss. Consequently, we recommend adopting the loss
outlined in Equation 12, which shows an additional improvement in FID by approximately 0.1.

Table 2: FID and IS results with varying loss functions as described in section 3.2.

Method Inference Steps Loss Function FID (↓) IS (↑)
Consistency Training 1 13.00 28.83

ℓCE 10.78 38.97
ℓBCE 9.75 44.19
ℓCE − ℓBCE 9.71 43.38
Our loss 9.60 50.80

Consistency Training 2 11.10 27.28
ℓCE 10.26 35.89
ℓBCE 8.59 39.38
ℓCE − ℓBCE 8.62 39.02
Our loss 8.51 39.40

Consistency Distillation 1 6.20 39.87
ℓCE 5.51 47.54
ℓBCE 5.00 48.97
ℓCE − ℓBCE 5.10 48.63
Our loss 4.95 51.98

Consistency Distillation 2 4.69 42.28
ℓCE 4.17 47.81
ℓBCE 3.89 48.72
ℓCE − ℓBCE 4.97 48.35
Our loss 3.84 51.12

We also compare sampling methods — Projected Gradient Descent (PGD) and Stochastic Gradient
Langevin Dynamics (SGLD) — as discussed in Section 3.2 and presented in Table 3. Our experiments
reveal that SGLD offers advantages over PGD in certain contexts, particularly in terms of sampling
diversity and fidelity.

Table 3: Quantitative comparison of our proposed boosting methods using Wide-ResNet with PGD
and SGLD sampling techniques applied to Consistency Models.

Boosting Method Inference Steps FID (↓) IS(↑) Precision (↑) Recall (↑)
Consistency Training 1 13.00 28.83 0.71 0.41
Wide-RN+PGD 8.83 55.67 0.73 0.45
Wide-RN+SGLD 8.71 59.76 0.73 0.46
Consistency Training 2 11.12 27.28 0.68 0.54
Wide-RN+PGD 7.98 46.33 0.71 0.52
Wide-RN+SGLD 7.64 46.83 0.71 0.53
Consistency Distillation 1 6.20 39.87 0.67 0.63
Wide-RN+PGD 4.84 58.73 0.70 0.60
Wide-RN+SGLD 4.65 59.00 0.71 0.60
Consistency Distillation 2 4.69 42.28 0.68 0.63
Wide-RN+PGD 3.78 55.13 0.71 0.61
Wide-RN+SGLD 3.58 56.46 0.72 0.61
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To assess the generalization capability of our joint model, we evaluated it on images generated
by BigGAN and ADM-G at resolutions of 128×128 and 256×256 pixels (see Table 4). Despite
being trained exclusively on images from Consistency Models, our joint model demonstrates strong
generalization across different generative models and resolutions. This suggests that our model can
enhance images from a variety of generative sources without requiring retraining or fine-tuning for
each specific case.

Table 4: Quantitative comparison for various generative models at different resolutions (64×64,
128×128, and 256×256), before and after applying our proposed boosting method using Wide-ResNet
with SGLD.

Boosting Method FID (↓) IS (↑) Precision (↑) Recall (↑)
Adm 64x64 2.61 46.78 0.73 0.63
Wide-RN+SGLD 2.08 58.41 0.75 0.60
BigGAN 64x64 4.06 44.94 0.79 0.48
Wide-RN+SGLD 3.67 62.79 0.81 0.45
Iddpm 64x64 2.92 45.62 0.73 0.62
Wide-RN+SGLD 2.25 62.26 0.76 0.59
Adm-G 128x128 2.97 141.47 0.78 0.59
Wide-RN+SGLD 2.34 271.95 0.80 0.58
BigGAN 128x128 6.02 145.83 0.86 0.34
Wide-RN+SGLD 5.68 236.88 0.86 0.34
Adm-G 256x256 4.58 186.83 0.81 0.52
Wide-RN+SGLD 3.17 301.06 0.83 0.53
BigGAN 256x256 7.03 202.64 0.87 0.27
Wide-RN+SGLD 6.16 275.25 0.88 0.28

5 Conclusion

This work presents a novel technique for leveraging the perceptually aligned gradients phenomenon
for refining synthesized images. Our approach enhances the perceptual quality of images generated
by Consistency-based techniques using a robust joint classifier-discriminator model. The dual
functionality of our model, which serves as both classification and energy-based discrimination, leads
to significant improvements in image fidelity.

Limitations: In this work we have used the RN50 and Wide-RN 50-2 architectures for the joint
model, as commonly employed in robust classification tasks. We note that this architectures are
relatively simple and small, compared to the more complex ones proposed in recent years. As a
consequence, our study is unavoidably constrained by the capabilities of the chosen models. Another
limitation in our work is the reliance of our training on Consistency generated images only. Expanding
the training-set to include images from additional generative models could further improve the overall
boosting effect that we document in this paper.
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A EBM via Classification

A classifier fθ : Rd → RC is a function that maps data points into logit vectors that can parameterize
a posterior distribution of the form

pθ(c|x) =
exp(f c

θ (x))∑C
c′=1 exp(f

c′
θ (x))

=
exp(f c

θ (x))

Nθ(x)
, (14)

where we have defined the normalizing factor by Nθ(x) =
∑C

c′=1 exp(f
c′

θ (x)). Axiomatically, let
us use the logits of the classifier, as is, in order to define a joint probability pθ(x, c):

pθ(x, c) =
exp(f c

θ (x))

Nθ
, (15)

where Nθ is yet another normalizing factor. Note that while the above two equations share the same
nominator, their denominators are markedly different, as Nθ normalizes over all c and x, and thus
Nθ =

∫
x
Nθ(x)p(x)dx.

By marginalizing the joint probability pθ(x, c) over c, and assuming a uniform probability for the
classes, p(c) = 1/C for all c = [1, 2, . . . , C], one can obtain the expression for pθ(x):

pθ(x) =

∑C
c=1 exp(f

c
θ (x))

C ·Nθ
. (16)

However, an EBM probability is defined generally by

pθ(x) =
exp(−Eθ(x))

Zθ
, (17)

and therefore, by matching terms in the above two equations we get

Eθ(x) = −log

[
C∑

c=1

exp(f c
θ (x))

]
, (18)

as suggested in Section 2.3. Note that these derivations enable us to construct pθ(c|x) = pθ(x,c)
pθ(x)

.
When doing so, the normalizing factor cancels out, and we obtain the regular softmax.

B Challenges of EBMs

EBMs often require careful tuning of their learning parameters, as the energy landscape they model
can be complex and difficult to navigate. This complexity can lead to issues with training stability,
where the model may fail to converge or converge to undesirable local minima, resulting in poor
generalization of new data. Additionally, EBMs are sensitive to the choice of the energy function.
An inadequately defined energy function can lead to a model that either assigns high probability to
non-data-like samples or fails to capture the diversity of the dataset, thereby affecting the quality of
the generated images. The training objective usually used in EBMs aims to adjust pθ(x) given in
equation (4) such that the model’s energy surface aligns with the data distribution, the loss function
often employed is based on minimizing the difference between the energy of the real data and the
expected energy of the model distribution. The objective is typically formulated as:

L(θ) = Ex∼pdata
[Eθ(x)]− Ex∼pθ

[Eθ(x)] (19)

Where Eθ is the energy function and θ is the model parameters. This expression is often approximated
using sampling techniques like Markov Chain Monte Carlo (MCMC) because directly computing
expectations under pθ is computationally infeasible due to the unknown partition function Z(θ).

EBMs require extensive computational resources, particularly due to the need for sampling during
training. Sampling methods such as Markov Chain Monte Carlo (MCMC) are computationally
expensive and slow, especially when dealing with high-dimensional data like images and the ImageNet
dataset in particular. The complexity and variety within ImageNet demand a model that can capture a
vast range of features and variations, pushing the limits of an EBM’s capacity to model such diverse
data effectively.
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C EBMs and Adversarial Training

The proposed loss in equation (7) is closely related to GAN’s training objective, but can also be
leveraged for an energy-based training. Both the EBM loss function (19) and the proposed training
objective aim to minimize the energy (or increase the likelihood) of observed data points and maximize
the energy (or decrease the likelihood) of generated data. In EBMs, this is done by reducing the
energy of real data samples and increasing it for generated samples.

In the logistic regression-based approach that we take in this work, the log-likelihood of the real data
under the model (represented by pθ(xreal|c) = −log (σ(f c

θ (xreal))) is minimized, while the log-
likelihood of the generated data (represented by pθ(xgen|c) = −log(1− σ(f c

θ (xgen))) is maximized.
In other words, the energy we use for real/fake is the magnitude of the c logit itself, while its
normalized value (after soft-max) is the classification probability.

D Supplementary Results

In the following figures we present qualitative results demonstrating that the “boosted” results indeed
look better perceptually. The enhancement is visible on the edges and textures and leads to sharper and
more high-contrast images, creating a more perceptually pleasing outcome. Note that we recommend
zooming in the images to see the changes clearly.

For reproducibility, we elaborate on the amount of steps and the step size used for boosting each
generative model in Table 5.

Figure 1: Top: Images generated by Consistency Models trained on ImageNet 64x64. Bottom:
Refined images by applying our algorithm.

Figure 2: Top: Images generated by Guided Diffusion trained on ImageNet 256x256. Bottom:
Refined images by applying our algorithm.
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Figure 3: Top: Images generated by Guided Diffusion trained on ImageNet 256x256. Bottom:
Refined images by applying our algorithm.

Figure 4: Top: Images generated by Guided Diffusion trained on ImageNet 128x128. Bottom:
Refined images by applying our algorithm.

Table 5: Hyper-parameters used in algorithm 2.

Generative Method Inference Steps PGD Steps Step Size

Consistency Training 1 35 0.1
Consistency Training 2 25 0.1
Consistency Distillation 1 15 0.15
Consistency Distillation 2 7 0.14
Admnet [4] 250 7 0.14
BigGAN [2] 1 15 0.1
Iddpm [22] 1000 7 0.14

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state our novelty and findings and support these by appropriate
experiments.

Guidelines:
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We address the limitations of this work in section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss the experimental settings in section 4.2, elaborating on both training
and sampling hyper-parameters. We also add details in the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:

Guidelines: We intend to share all our code through GitHub after the review process.

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details can be found in section 4.2 and in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The method presented is deterministic (PGD steps over chosen images and
while leveraging a deterministic loss function as a guidance), and therefore we do not include
error bars in our experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Sections 4.1 and 4.2 describe these details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work operates on Consistency generated images that follow the ImageNet
distribution.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Our work refines a set of images generated by Consistency models, enhancing
colors and textures. It does not alter the visual information in its entirety and thus does no
harm.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not see a possibility of misuse of our findings.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use public domain data and cite it’s origins in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: No new assests are introduced in our work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not use crowdsourcing in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No humans were involved in our experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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