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Abstract

We demonstrate that geometrically distinctive keys during LLM inference tend
to have high attention scores. Based on the phenomenon we propose KEYDIFF,
a training-free KV cache eviction method based solely on key similarity. Unlike
other KV cache eviction methods, KEYDIFF can process arbitrarily long prompts
within strict resource constraints and efficiently generate responses. We provide
a theoretical basis for KEYDIFF by relating key diversity with attention scores.
These results imply KEYDIFF can efficiently identify the most important tokens
to retain. Notably KEYDIFF does not rely on attention scores, allowing the use
of optimized attention mechanisms like FlashAttention. Under a strict memory
allowance, we demonstrate the effectiveness of KEYDIFF for the Llama and Qwen
model families by observing a performance gap of less than 0.04% with 8K cache
budget (~ 23% KV cache reduction) from the non-evicting baseline on LongBench
for Llama 3.1-8B and Llama 3.2-3B. We also observe near baseline performance for
Deepseek-R1-Distill-Llama-8B on the Math500 reasoning benchmark and decrease
end-to-end inference latency by up to 30% compared to the other token-eviction
methods.

1 Introduction

Key-Value (KV) caching is a standard technique to accelerate large language model (LLM) inference
that reuses key and value states (KVs) from previously processed tokens, enabling efficient autoregres-
sive generation. This is crucial for long-context applications such as document summarization, code
generation, question answering [7, 25, 31, 10], retrieval augmented generation [19] and reasoning
[34, 17, 41]. However, the memory footprint of the stored KV cache grows linearly with input length,
which becomes a bottleneck in memory-constrained environments.

This challenge is particularly acute for LLM inference on edge device, where compute, memory, and
power resources are limited [3, 22, 32, 36]. While KV cache eviction policies have been proposed
to bound memory overhead by removing unimportant KVs (often measured by attention scores)
[35, 24, 43], they typically process the entire prompt at once and violate memory constraints during
intermediate computation.

To enforce strict memory bounds throughout the prompt prefill and token generation inference phases,
we adopt a block-wise inference strategy: the input prompt is divided into smaller blocks which are
processed sequentially by the model, similar to [18, 1, 37]. After processing each block, we evict
some of the cached KVs by according to an eviction policy that scores each KV, as illustrated in
Figure 1. Unlike previous approaches that apply eviction after processing the entire prompt, this
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Figure 1: An example of block prompt processing with KV cache eviction. The input prompt
having length of 7 is segmented by three blocks, and a transformer layer in LLM processes each block
by (1) computing key-value states from inputs, (2) computing attention, (3) computing the eviction
score, and (4) performing eviction based on the eviction score to satisfy the memory constraints (e.g.,
at most 4 tokens can reside in the cache). After each block processing, the KV cache is updated and
passed to the next round of block processing, satisfying imposed memory constraints on the KV
cache.

strategy satisfies memory constraints throughout the full inference process. However, we observe a
degradation in accuracy when applying existing eviction methods in this setting (Table 1).

We hypothesize that the performance drop stems from a mismatch in design: existing eviction
methods assume access to full-prompt attention, where key importance is computed over the entire
input. During block prompt processing, however, attention is computed using only the current block’s
tokens without access to future blocks. As a result, attention scores based on a limited context often
fail to reflect a token’s true importance across the full prompt.

To this end, we observe that keys with lower average pairwise cosine similarity tend to receive higher
attention scores across a variety of inputs. This suggests that key diversity serves as a strong proxy for
global token importance, even without access to future tokens. This insight enables an attention-free
approach to cache eviction that is based on the geometry of the cached keys.

Motivated by these observations, we propose KEYDIFF, an attention-free cache eviction method
that removes redundancy among cached keys, operates effectively during block-wise inference, and
avoids excessive memory overhead. Our contributions are summarized as follows:

» Insight. We observe that lower pairwise cosine similarity among keys correlates with higher
attention scores, suggesting its utility as a proxy for token importance. (Section 3.1)

* Method. We introduce KEYDIFF, an eviction strategy that selects keys based on their similarity to
other cached entries without relying on attention scores or future tokens. (Section 3.2)

* Theory. Through our analysis of key and query geometry we provide a theoretical understanding
how/why KEYDIFF works. We also show that KEYDIFF solves an optimal subset selection problem
that maximizes key diversity. (Section 3.3)

* Performance. KEYDIFF achieves < 1.5% and < 0.04% accuracy drop on LongBench with 6K
and 8K cache budgets, respectively, outperforming state-of-the-art eviction methods across Llama
and Qwen models (Section 4.2), and near non-evicting baseline performance for Deepseek-R1-
Distill-Llama-8B on the Math-500 reasoning benchmark. (Section 4.3)

« Efficiency. We observe up to 30% end-to-end inference latency reduction using KEYDIFF compared
to existing KV cache eviction methods. (Section 4.5)

2 Background

2.1 Transformers

The Transformer architecture [33] processes input data using a sequence of transformer blocks. A
transformer block f takes a sequence X = (21, ¥, ..., z7) € RT*? as input and applies the causal
self-attention operator Attention followed by a feed-forward network FF with optional gating [28]
to produce the output X' = (2, 25, ..., %) € RT*4:

X' = f(X) = FF(Attention(X)), )



The causal Attention operator projects each input token x; with matrices W, Wy, W,, € R4*? into
key, query, and value matrices (K = XW}, Q = XWq, V = XWy,, respectively) then applies the
following relation to produce the attention output *:

0™t = Softmax (QK " /Vd+ M)V = AV @)

where O™t ¢ RT*9_ and the causal attention mask M is an upper triangular matrix with nonzero
values of —oo.

2.2 KV Caching

When the Attention operator processes a new token x4 1, it must also recompute the prior KV
states for tokens xg, . . ., zr. This can be avoided by storing previously computed KVs in a KV cache
C = (K, V) for later reuse and append the new KV corresponding z71 to the cache. We can apply
Equation (2) to an existing KV cache C as follows:

o3ith = Softmax (ar-+1[Kllkria]” /Vd+ M) [Vorsa], 3

where k7.1, gr41, vr41 are the key, query, and value states of 71, and [ X ||z741] represents the
concatenation of 7, ; to an existing tensor X along the time dimension, M is the causal attention
mask accounting for both the KV cache and z7 1.

KV caching dramatically reduces the latency of Attention by only computing k741, gr+1, v741 for
each token x7 1 and reusing the KVs in C. However, the size of the KV cache increases linearly with
the number of processed tokens and dominates the memory footprint in long-context applications
[39].

2.3 KYV Cache Eviction Methods

To limit the memory footprint of the KV cache, we fix a cache budget N, which is the maximum
number of tokens to be stored in the cache. If a new KV is added to the cache and the updated cache
size is greater than N, we must evict KVs from the cache until the cache budget is met. The eviction
policy mn(C) evicts a subset of KVs from C and returns a new cache C’ containing at most N KVs:

C « ([K[[kt1], [V [lve41]) @)
C' N (C )
Attention-Based Eviction Policies Attention-based eviction policies 73" use aggregated attention
values to rank each KVs’ relative importance and keep the /N highest scoring KVs. For a given
attention weight aggregation function ¢, the eviction policy 73" performs the following steps:

S = topk(¢(A), N)

5
K' = gather(K,S), V' =gather(V,S) ©)

where topk(z, N) returns the indices of N-largest values of - and gather (X, S) gathers columns
indexed by S.

Attention-based eviction methods prioritize KV pairs with higher attention scores to past tokens.
This is problematic when applying block prompt processing: all input tokens are not simultaneously
accessible within Attention, only those in the current block and cache. This can result in an incorrect
eviction decision. Additionally, attention-based eviction often requires explicitly materializing A,
which can be resource intensive. We discuss the attention-based eviction policies further in Section 5.

2.4 KV Caching in Resource-Constrained Environments

Existing eviction policies like Zhang et al. [43], Oren et al. [24] focus on processing the entire input
prompt at once: KVs are computed for each token in the prompt and stored in a cache C, then the
eviction policy 7y is applied to reduce the number of tokens in C’ to N, before token generation.

The multi-head extension and output projections are omitted for brevity.
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Figure 2: Cosine similarity of the keys and attention weights. Measured from Llama 3.2-3B-
Instruct and the first sample from the NarrativeQA dataset in LongBench. Truncated to the first 64
tokens for visualization.

However, the intermediate cache C before eviction will grow to the size of the input prompt. This can
often exceed model’s allocated memory limit when deploying long context applications in resource
constrained environments.

As demonstrated in efficient LLM inference frameworks [1, 14, 18, 36], one solution is to apply mn
more frequently by segmenting X into non-overlapping blocks X = [X, X1,..., X,—1], where
Xi = [®Bi, ..., TB(i+1)—1), B is the block size, and m = [T'/ B, and iteratively updating the cache
by exploiting causality, applying Equation (4) in a block-wise fashion:

Ci + ([Ki—1llkBi:Bi+1)—1], Vic1llvBi:B(i41)-1])
Cinn(Ci), Ci<+Ci, Co=0,
where kp;.p(i+1)—1 and vp;. p(i+1)—1 are the keys and values selected from X; respectively, and

C; = (K,;,V;) is the KV cache after processing the first ¢ prompt blocks. As in Equation (4), we
concatenate the B new KVs to the current cache, apply 7 and update the cache in Equation (6).

6)

We refer to this as block prompt processing. Its main advantage is the ability to control of the compute
and memory overhead of KV cache management by adjusting the block size B and cache budget
N. Note that, in a decoder-based architecture, applying block prompt processing to X with B =T
yields the same result as processing all of X at once and choosing B = 1 corresponds to the token
generation phase of LLM evaluation.

Attention-Based Token Eviction Challenges Despite its advantages, block prompt processing
introduces a challenge for KV cache eviction: eviction decisions in block X; impact the cache used by
X1, causing eviction errors to compound over time. When the model processes X, attention-based
eviction methods retain KVs with high attention weights derived from X, ..., X; rather than all of
X, which may prematurely evict KVs with high weights in upcoming blocks.

3 Method

We demonstrate a negative correlation between attention scores and the cosine similarity among keys
(Section 3.1) and leverage this observation to develop KEYDIFF (Section 3.2), followed by a theoreti-
cal justification of KEYDIFF (Section 3.3) and preliminary evidence of its efficacy (Appendix C.2).

3.1 Correlation of Attention Scores and Key Dissimilarity

To address the shortcomings of attention-based KV cache eviction in Section 2.4, we develop
an alternative attention-free scoring metric that retains significant KVs across blocks while being
resource efficient. We recall the “attention sink" phenomenon: LLMs often assign high attention
weight to the first few tokens, regardless of the input [35, 29]; these highly weighted tokens are
called sink tokens. However, the index of the sink tokens can vary across heads and layers and reside
deeper in the sequence than the first few tokens. This observation motivates the following hypothesis:
high attention scores can be determined by the intrinsic properties of the keys rather than by any
particular combination of keys and queries.

Correlation of Key Similarity and Attention Scores We evaluate our hypothesis by inspecting
the cosine similarities between keys computed inside an attention block. We visualize the pairwise



cosine similarities between keys along with the attention weights in two particular heads and layers
in Figure 2. We observe that keys with lower cosine similarity with other keys exhibit higher relative
attention scores regardless of the choice of query, such as the 4th and 15th keys in Figure 2a, or the
Ist key in Figure 2b. Pairwise cosine similarity of keys is solely a function of the keys in the cache,
which are independent of input queries; the surprising aspect of Figure 2 is the negative correlation
with attention weights. These distinctive keys essentially recover the attention sink phenomenon [35].

3.2 KEYDIFF

Based on the observation in Section 3.1, we propose KEYDIFF, which evicts tokens from the KV
cache based on key similarity. If the cache C has intermediate size n and budget N where n > N,
TREYDIFF ig defined as:

S = topk(— CosSim(K)1, N),

7
K’ = gather(K,S), V' = gather(V,S) 0

where K € R"*4 and V' € R"*? are the cached keys and values, CosSim(K) € R™*" is the
pairwise cosine similarity matrix of keys in K with CosSim(K);; = 0 kﬁ\‘ll\clif\l’ and1 € R"isa

vector of ones.

Efficient Variant of KEYDIFF Unlike attention-
based eviction policies, KEYDIFF does not require
access to the attention weights A, facilitating opti- @
mized attention kernels that do not materialize A S
such as FlashAttention [8]. However, computing the ([ resstvecosnesmiarty  Je—(Canchor )

pairwise cosine similarities runs in O(n?) time. For-
tunately, we can compute the score of each token in @ . () Key-vatue

Equation (7) in O(n) as follows: [ ] () Anchor
Top-K
5 = topk(~ CosSim(u(K). k). N)  (®) S

T n

- . Figure 3: An overview of KEYDIFF. (1)
to u(K) as the anchor vector. We show this formu- 205 ee @ computes the anchor vector

lation retains the same KVs of Equation (7) under by taking the average of the keys in the KV
a mild condition. (see Appendix C.2). Our CXPCr™  cache, (2) computes the cosine similarity be-
imentation has shown that the anchor vector 1(K)  tween the keys and the anchor resulting in
can be replaced with u(K) without losing accuracy eviction scores whose color intensities indi-
(see Table 15). We evaluate the efficient KEYDIFF  cate the score values, and (3) retains the KV
described in Figure 3 using unnormalized keys & in  pairs with the lowest similarities.

all subsequent sections. Figures 5 and 8 to 10 visu-

alize the keys retained and evicted by sink attention

[35], TOVA [24] and KEYDIFF via PCA. KEYDIFF retains more varied keys. A full complexity and
FLOP analysis can be found in Appendices B and B.1

where u(K) = L 52" k;jand k; = ﬁ We refer

KEYDIFF with Sliding Window In tasks such as reasoning and coding, where the most recent
tokens are often important, we can augment KEYDIFF and its efficient variant to use a percentage
of the cache budget for a sliding window [6], which we call KEYDIFF with sliding window. This
extension introduces no complexity or memory overhead and we observe better results on certain
tasks than vanilla KEYDIFF (Table 14 and Appendix E).

3.3 Why KEYDIFF Works: A Theoretical Perspective

To solidify the theoretical foundation of KEYDIFF and show that KEYDIFF ultimately selects keys
most aligned with queries, we prove the following two results. We first validate the relationship
between cosine similarity and attention scores observed in Figure 2 by bounding the attention score
of a new incoming key £* in terms cosine similarity with a fixed query g:

Lemma 3.1. Suppose that for a fixed query token q, there is a set of key tokens {k;}_, such that
||ki||3 < M, ¥ i. Without loss of generality suppose ||q|| = 1 and assume k* is a key not in {k; }*_,
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Figure 5: (a, b, and ¢) PCA Visualizations in two dimensions of a key cache managed with Sink,
TOVA, and KEYDIFF. Retained tokens are blue, while evicted tokens are . Keys are taken
from layer 5 and head 3 of Llama3.2-3B-Instruct, and generated using the NarrativeQA dataset. (d)
PCA visualization of the retained keys for each KV cache eviction method.

with ||k*||3 < M that has attention weight w > 0. Then, for n — oo,
—log(1l — w)

_1< i *
Wi 1 < CosSim(k™, q)

We then establish a relationship between the cosine similarities of £*, ¢, and the mean of prior keys k:

Theorem 3.2. Consider tokens k*, q as above, and the average of the keys tokens k. Suppose
CosSim(k*,q) = By > 0 and CosSim(k,q) = og < 0. Then

CosSim(k,k*) <1+ ay8, — 0.5 — 0.55;. )

By combining Lemma 3.1 and Theorem 3.2,

we establish a relationship between the attention

weight w and the KEYDIFF score CosSim(k, k*). 754 -
As CosSim(k, q) decreases and CosSim(k*,q) in- 5ol L pot
creases (along with the attention weight w), then 25 m@%

CosSim(k, k*) tends to —1: this means KEYDIFF se- ool ol 6 00
lects distinct keys most aligned with g. We visualize kR 2
this in Figure 4 with a PCA embedding of keys and = GRB Dt key
queries from a single head of Llama 3.2 3B, high- 2 ] 5 Average key
lighting the relationship between top scoring keys TISNe o K ,
via KEYDIFF, the anchor vector and queries. Simi- —20 ;St‘;rinciple gomponentm
lar trends are found from the other layers and heads

as shown in Figure | 1 The pro.ofs of Lemma 3.1 Figure 4: PCA embedding of keys and queries
and Theorem 3.2 are in Appendix C.3, along with  ¢.000 1 1ama 3.2 3B

empirical motivation for the chosen assumptions.
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4 Experiments

In this section, we empirically demonstrate the effectiveness of KEYDIFF. We begin with a description
of competing, state-of-the-art eviction methods, followed by a detailed description of the evaluation
setup, then present our experimental results. Our findings can be summarized as follows:

* Needle-In-a-Haystack. KEYDIFF outperforms competing eviction policies on the Needle-In-A-
Haystack benchmark (Section 4.1).

* LongBench. KEYDIFF outperforms competing eviction policies with block size B = 128 on
LongBench, achieving an 1.5% accuracy drop with a 6K cache budget (~33% compression rate)
and < .04% with a 8k cache budget (~23% compression rate) with Llama-3.1-8B-Instruct and
Llama-3.2-3B-Instruct (Section 4.2).

* Reasoning. KEYDIFF performs competitively on the Math-500 reasoning benchmark with other
eviction methods using the DeepSeek-R1-Distill-Qwen-7B and Llama-8B, and shows near eviction-
free baseline performance when augmented with a sliding window (Section 4.3) for DeepSeek-R1-
Distill-Llama-8B.

* Ablation Study. We perform an ablation study on the main parameters of KEYDIFF and show
that utilizing negative cosine similarity as the eviction criteria and the mean of cached keys as the
anchor vector performs best. (Section 4.4).
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Figure 6: Accuracy across document length and needle depth for needle in a haystack test. Cache
size is 6K with B = 128.

* Efficiency. We compare the end-to-end inference latency of KEYDIFF, [20] and [24] and observe a
30% latency improvement with KEYDIFF (Section 4.5).

Experimental Setup We apply several cache eviction methods to several decoder-only transformer-
based language models, including Llama 3.1-8B-Instruct [10], Llama 3.2-3B-Instruct [10], and Qwen
2.5-3B/7B-Instruct [38]. We evaluate these models using H20 [43], TOVA [24], SnapKV [20], and
Streamingl.LM [35], (or “sink attention") cache eviction policies, along with the eviction-free model
as a baseline. We simulate a resource constrained environment by processing prompts and generating
responses using Equation (6), with a block size of B = 128 for prompt processing and B = 1 for
token generation using greedy decoding for all experiments. We denote the cache budgets of 2048,
4096, 6144 and 8192 as 2K, 4K, 6K and 8K, respectively.

4.1 Needle In a Haystack

To compare the impact of various cache eviction policies on fact retrieval, we conduct the “Needle In
a Haystack" test [21, 16]. This test embeds specific information (“needle") at different points within
a body of unrelated text (“haystack"); finding and retaining the needle is challenging for eviction
policies, which can’t know what information must be retained during block prompt processing. The
results are shown in Figure 6 and Figure 19, where we show the recall accuracy of Llama3.2-3B-
Instruct across different document lengths (x-axis) and needle depths (y-axis) with a cache size of
6K. KEYDIFF performs similarly to TOVA, SnapKV and sink attention for shorter documents and
outperforms all three methods as the document length increases.

4.2 LongBench

LongBench [4] is a bilingual, multi-task benchmark suite for LLMs, providing a comprehensive
stress test for long prompt inputs. LongBench is useful for evaluating cache eviction methods in a
resource constrained environments with a fixed memory budget: 51% of prompts are longer than
the largest KV cache size of 8K. For cache budgets of 6k and 8k tokens, prompts in LongBench are
compressed by 33% and 23% respectively on average, (see Appendix F.3 for more detail.)

Table 1 summarizes the evaluation results of Llama 3.1-8B-Instruct and Llama 3.2-3B-Instruct on the
English subset of LongBench with 2K, 4K, 6K, and 8K cache budgets using various eviction policies
with block prompt processing enabled with B = 128. As shown in Table 1, KEYDIFF outperforms
other eviction strategies across most tasks, even demonstrating better performance with smaller cache
budgets. KEYDIFF shows significant a improvement on the PassageRetrieval-en (PR-en) dataset,
which tests whether long-term dependencies within a long prompt can be correctly recognized [4],
while achieving near full-context model performance even with the smallest budget. Adding a sliding
window to KEYDIFF improves coding task performance (Table 14). We observed similar trends in
the full LongBench task suite as shown in Table 11 and in the additional results in Appendix F.

KEYDIFF exhibits similar or better performance compared to competing methods. Notably, the
attention-based methods (e.g., H20, TOVA, and SnapKV) show significant performance improve-
ments over the B = 128 case. This result supports our hypothesis: an eviction scheme robust to
changes in the scope of comparison among tokens is essential in memory constrained environments
where token-wise attention weight can’t be fully materialized.

Additional Results We present the full evaluation results in Table 11 and more complete compar-
isons on LongBench in Appendix F, such as: standard prompt processing with a single large block



Table 1: Llama-3.1-8B/3.2-3B-Instruct LongBench results with B = 128 (Higher is better). We
highlight the best and second best methods within a given budget with bold and underline. We omit
Chinese dataset results and other model results due to space limit. The full evaluation results are in
Table 11. §: A subset of samples (183/200) were evaluated due to OOM errors.

Single Doc. QA Multi Doc. QA Summarization Fewshot Learning Synthetic Code
Narrative QA Qasper MF-en  HotpotQA  2WikiMQA  Musique GovReport QMSum  MultiNews TREC TriviaQA SAMSum PCount PR-en Lcc RB-P  Avg

Llama3.1-8B 30.05° 47.00  56.12 57.33 47.81 3225 34.86 2532 27.02 73.00 91.61 4337 833 99.50  61.66 51.94 49.20
2K 1.74 21.15 25.33 26.11 24.15 8.78 2.17 2.70 16.78 44.00 29.36 7.62 2.25 588  40.15 12.14 16.89

H20 4K 4.07 36.16 36.00 33.52 32.87 17.78 6.66 595 24.09 55.00 47.65 17.41 4.00 2450 5485 2143 2637
6K 8.52 43.31 44.80 40.03 42.46 21.68 11.85 8.78 26.03 62.00 56.39 25.72 575 4550 58.62 29.53 33.19

8K 13.85 4494 4781 43.64 44.90 23.65 18.78 11.35 26.49 69.50 69.05 33.41 5.25 6250 59.74 3626 3820

2K 22.57 37.26 39.43 45.74 34.48 14.77 28.87 21.17 26.95 62.50 90.73 42.74 0.00 18.00 62.68 5248 37.52

TOVA 4K 22.68 4455  47.87 46.76 44.54 20.56 30.95 22.13 26.96 61.50 90.56 4327 3.00 4350  61.62 5340 4149
6K 24.59 4593 53.92 55.09 47.43 25.07 32.33 24.10 27.00 68.50 90.81 43.89 4.25 67.00 61.50 52.39 4524

8K 24.86 4678 54.83 54.52 49.00 26.40 33.44 24.76 27.00 71.00 9111 43.29 6.25 87.00 6149 5179 47.09

2K 21.83 3427 29.24 38.64 29.50 12.59 28.51 20.21 26.62 65.00 89.46 4220 2.00 2550 6495 59.54 36.88

Sink 4K 2294 43.01 39.08 44.04 41.39 19.09 31.08 21.57 26.78 70.00 91.53 4229 3.00 38.50 62.12 5884 40.95

N 6K 2541 4740 4413 47.39 45.73 21.90 32.53 22.19 26.87 72.00 91.25 4341 3.08 5250 6222 56.24 43.39
8K 23.53 46.63  48.68 49.61 47.16 21.14 33.10 23.20 26.92 72.00 91.29 43.79 3.25 66.00 62.18 5643 44.68

2K 21.81 37.22 37.19 46.10 3542 16.53 29.83 21.05 26.77 61.00 88.84 42.56 4.03 51.50 6237 5145 39.60

SnapKV 4K 24.79 4422 47.30 48.49 46.73 20.55 32.19 22.68 26.95 67.50 90.98 43.14 517 89.50 61.44 5120 45.18
P 6K 24.10 45.57 50.44 53.12 48.41 24.27 3343 23.53 27.03 71.50 92.28 43.58 525 98.00 61.32 52.16 47.12
8K 25.15 46.55  53.39 56.00 4875 27.82 33.67 24.85 27.01 72.50 91.78 43.54 5.08 100.00 61.48 51.41 48.06

2K 26.64 4173 50.99 51.59 46.47 22.84 29.02 23.86 26.76 66.50 85.92 39.26 3.17 96.00 59.17 39.42 4433

KEYDIFF 4K 28.70 4562 56.06 54.58 49.31 28.25 3230 25.03 27.07 70.00 90.85 42.84 4.21 99.00  60.80 48.00 47.66
6K 29.90 4633 5511 56.80 49.50 31.52 33.44 24.58 26.98 72.00 90.99 43.10 527 99.50 61.40 49.70 48.51

8K 33.57 46.77 55.48 56.87 49.37 30.88 34.17 25.12 27.01 72.50 92.28 42.81 5.83 99.50 61.48 50.90 49.03
Llama3.2-3B 23.76 4023 50.09 50.69 4229 26.84 33.09 24.30 2521 72.50 90.11 42.58 3.00 96.50 56.22 56.52 45.87
2K 1.63 19.96  20.20 18.02 19.56 2.88 0.78 1.55 15.97 41.00 21.97 9.83 0.50 0.50 3971 1391 14.25

H20 4K 292 3194 3323 24.49 28.08 7.55 544 6.30 2277 53.00 38.85 20.33 1.50 7.50 5123 2294 2238
6K 4.62 38.81 39.06 34.66 3552 15.21 10.51 10.01 2425 61.50 53.23 27.37 0.50 13.00 5455 3229 2844

8K 9.65 39.66  43.20 38.09 4041 21.46 17.80 13.28 24.67 70.00 64.30 32.19 2.00 2450 55.00 39.09 33.46

2K 17.14 30.14 3244 35.96 30.05 13.08 26.15 19.70 25.04 56.50 87.81 4048 2.50 1150 5551 5236 33.52

TOVA 4K 20.52 39.53 4247 44.12 38.42 18.22 29.36 21.36 24.96 63.50 88.98 41.50 3.00 23.50 5572 56.66 38.24
6K 2022 39.78  45.86 49.08 41.54 20.43 30.50 22.17 25.11 66.50 89.00 42.50 4.00 46.50  55.57 57.53 41.02

8K 21.08 40.67  49.07 48.69 41.93 23.05 31.64 22.85 25.21 69.00 89.25 42.19 2.50 71.00 5577 5747 4321

2K 16.85 30.69  26.58 33.26 2527 13.82 26.74 19.15 25.15 65.00 86.17 40.79 1.50 19.50  56.65 5273 33.74

Sink 4K 19.46 38.61 36.22 41.97 35.84 13.37 29.34 20.19 25.06 71.00 88.06 41.31 2.50 3550 56.48 5243 37.96
N 6K 19.33 40.29 37.95 46.48 40.29 15.31 30.43 21.35 25.14 71.50 88.93 42.04 3.50 47.00 56,55 54.11 40.01
8K 20.15 40.02  41.94 48.15 4224 16.01 31.64 22.10 25.20 73.00 89.26 4237 3.50 6250  56.86 56.63 41.97

2K 17.38 31.37 31.48 37.77 30.05 11.54 27.03 19.93 2497 59.00 88.13 40.48 3.50 3250 5632 5591 35.46

SnapKV 41 19.85 39.22 39.86 46.70 37.98 16.64 29.79 21.21 25.01 65.50 89.35 40.95 2.50 62,50 5574 56.88 40.60
P 6K 20.83 39.65  44.48 49.30 40.18 20.28 31.27 2273 25.09 69.00 89.95 41.47 4.00 85.00 55.69 57.82 43.55
8K 20.49 40.80  48.16 4878 41.65 24.79 31.81 23.46 25.17 70.00 90.17 41.99 5.00 94.00 5577 5729 44.96

2K 18.29 36.65  45.44 46.09 35.41 13.79 28.16 21.45 25.01 60.00 85.24 37.00 1.00 60.50 5413 4201 38.14

KEYDIFF 4K 22.34 40.60  49.15 50.14 40.30 21.65 31.38 23.44 25.06 66.50 87.92 41.41 2.50 88.50 5555 5224 43.67
6K 2229 40.68  50.14 51.74 42.19 24.83 32.39 23.53 25.19 71.00 90.02 42.00 3.00 95.00 55.86 5439 4527

8K 2241 40.77 50.10 49.83 43.58 28.09 32.78 23.60 25.17 72.00 90.17 4246 3.50 96.50 55.85 55.65 4578

(i.e. B = o0) in Table 10; eviction method performance with Qwen 2.5-3B/7B-Instruct in Table 12;
performance behavior with block sizes B = [64, 256] in Table 13; and performance on KEYDIFF
combined with a sliding window as described in Section 3.2. We also compare against the Lo-norm
minimizing eviction method of [9] in Table 11.

4.3 Math-500 Reasoning Benchmark

Reasoning is an important long-context task for LLMs. Unlike other long-context use cases, reasoning
typically involves a relatively short prompt followed by a long generation, which presents unique
challenges for token eviction methods. To evaluate the effectiveness of token eviction methods, we
apply KEYDIFF and SnapKYV to the DeepSeek-R1-Distill-Qwen-7B and Llama-8B distilled models
[12], and assess their performance on the Math-500 reasoning benchmark [13]. Surprisingly, we
found that Llama equipped with KEYDIFF and a moderate KV cache budget performs comparably to,
or slightly better than, the eviction-free baseline, while also outperforming SnapKV. We kindly refer
the reader to Appendix E for additional details on the reasoning task evaluation.

4.4 Ablation Study

We evaluate the design choices of KEYDIFF, including the similarity metrics and the choice of the
anchor vector, and validate the efficacy of KEYDIFF. We provide a full description of the test setup
in Appendix G and summarize the findings here:

» KEYDIFF anchor choice does not greatly impact benchmark accuracies (See Table 15).

* KEYDIFF using cosine similarity as the distance metric outperforms other metrics (See Table 16)

4.5 Latency and Complexity

Additionally, in order to demonstrate that KEYDIFF decreases end-to-end inference latency, we
measured time to first token for the Llama 3.2 3B instruct model using different block prompt
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Figure 7: Time-to-first-token (TTFT) for Llama 3.2-3B using Flash Attention with different eviction
strategies with block prompt processing sizes 64, 128, and 256.

processing sizes and cache strategies. These results are visualized in Figures 7 and 17. Since
KEYDIFF does not require attention weight materialization, FlashAttention [8] can be used, resulting
in up to 30% lower latency than TOVA and SnapKV. We compare the complexity of KEYDIFF with
competitors in Appendix B and perform a complete FLOP count in Appendix B.1.

5 Related Work

Sparse Attention LLMs often exhibit high attention sparsity, where a small subset of keys receives a
significant proportion of attention scores. This characteristic allows sparse approximation techniques
to reduce the computational cost of attention. Similar to PagedAttention [18], Tang et al. [30]
estimates the importance of a page (a contiguous set of keys) to a given query, whereas Rehg [26]
further refined the budgets in a per-head manner. On the contrary, sample-based methods [44, 27]
attempt to approximate token importance by inspecting the attention scores from the last few queries
or certain query channel dimensions. Despite their effectiveness in reducing computational costs,
these methods do not address the memory overhead of the KV cache, which typically retains all KVs.

KV Cache Compression Different approaches to compress the KV cache include architecture
modification such as GQA [2], which shares a KV cache across a small number of heads. Other
techniques to compress the KV cache include quantization such as in [15, 23, 42] in which the authors
use various techniques to take advantage of existing patterns to efficiently quantize and compress the
KV cache. More related to our work [40] uses a scoring mechanism to determine the precision of the
quantization for different tokens.

Token Eviction Methods Unlike the sparse attention and KV cache compression methods, eviction
methods evict KVs from the cache to reduce the size of the KV cache. As discussed in Section 2.3,
the majority of the token eviction methods employ their own rules to decide the importance of the
tokens by manipulating the attention score A. For example, by appropriately choosing the aggregation
functions ¢(A) of Equation (4), we can obtain existing attention-based eviction methods as discussed
in Appendix A.l. Attention-based eviction may be a better choice when the entire prompt is being
processed at once, as the eviction can be done by assessing the importance of all tokens simultaneously.
However, computing the full attention score of long prompts could be prohibitively expensive in
resource-constrained environments.

6 Conclusion

Inspired by our observation that distinctive keys tend to have high attention scores, we propose
KEYDIFF, a training-free KV cache eviction method based on key similarity that enables large
language models to operate in memory and compute constrained environments. We justify KEYDIFF
by showing that it minimizes the pairwise cosine similarity among keys in the KV cache, maximizing
the aforementioned diversity. KEYDIFF significantly outperforms state-of-the-art KV cache eviction
methods under similar memory constraints, with only a 1.5% and 0.04% accuracy drop from the
non-evicting baseline while achieving 33% and 23% KV cache memory reduction on LongBench.
Similar to other token eviction methods, KEYDIFF is primarily designed and evaluated for the GQA
attention mechanism used in models such as Llama and Qwen. In future work, we plan to extend
KEYDIFF for seamless integration with other attention variants, such as Multi-Head Latent Attention
[12].
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KEYDIFF ,
Supplementary Material

A Extended Related Work

A.1 Attention-based eviction methods

In this section, we provide a unified framework to understand prominent attention-based eviction
methods. As mentioned in Equation (5), we can specify attention-based eviction methods under the
unified framework with proper selection of the aggregation function ¢(A) as follows:

» TOVA [24]: ¢TOVA(A) = A_, ,
» H20 [43]: ¢M20(A) = Aprey + AT,

* SnapKV [35]: ¢"*PEV(A) = (AT1) « K, where K is a vector of ¢ and k is the kernel size of
average smoothing.

B Runtime and Memory Complexity

We analyze the runtime and memory complexity for the prominent KV cache eviction algorithms
in Table 2. For a given block size B and cache budget N, KEYDIFF requires O(N + B) runtime
and memory. The same holds true for TOVA, since it only requires computing the bottom row of
A. Sink attention retains the & first tokens in the input sequence, followed by a sliding window of
size L, resulting in O(k + L) = O(N) memory and runtime, since k + L equals the chosen cache
budget. SnapKV computes attention over a sliding window of size L against N 4 B keys from the
incoming block and the key cache, so the memory and runtime complexity is O((N + B)L). H20
accumulates attention weights over all tokens, and computes the attention over the current block, so it
will require O(N B + B?) memory overhead and runtime. We summarize these details in Table 2

Table 2: Runtime and memory complexity of token eviction methods.

Runtime Complexity Memory Complexity

KEYDIFF  O(N + B) O(N + B)
TOVA O(N + B) O(N + B)
H20 O(NB + B?) O(NB + B2)
SnapKV ~ O((N + B)L) O((N + B)L)
Sink O(N) o)

B.1 FLOP count of KeyDiff

The bulk of the computation in KeyDiff (neglecting the ‘topk‘ operator) is the following two expres-
sions:

.« w(K) = w it T

o o. — : 2 N — p(K) ki s
si = CosSim(u(K), k) = o B mar P~ b

n

We will count the total number of additions, multiplications, square roots and divisions required by
KeyDiff separately, since division and square root implementation are hardware-dependent, then
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assign weights to each operation at the end for a final count. Norms are assumed to be 2-norms. We
count the FLOPs required for each operation as follows:

o ||ki|| = Vi - k;: since k; € R%: d multiplications, d — 1 additions, one square root. Repeating for
each 1, this contributes nd multiplications, n(d — 1) additions, and n square roots.

. % naively, d divisions, but can be rewritten as one division and d multiplications. Repeating for

each ¢, this contributes nd multiplications and n divisions.

o L3 1 ¢, for c € R%: one division, (n — 1)d additions.

Combining the above, we can compute the anchor vector using 2nd multiplications, 2nd — n — d
additions, n square roots and n + 1 divisions.

To compute the cosine similarity score, we have from above that 1(K) - k; requires nd multiplications

and n(d — 1) additions. Also from above, we have that computing ||2(K)|| requires d multiplications,
d — 1 additions and one square root. We reuse the computation of ||k;|| from the previous step

and compute ||k;||[|(K)| in n multiplications and max(||%; ||||2(K)|, €) with more n additions
(assuming boolean comparison equals addition in cost). We can then divide through to compute

W(K) ki
max([|k: || |4 (K|l €) o . L
and each key requires nd + d 4+ n multiplications, nd 4+ d — 1 additions, n + 1 divisions and one
square root.

with n divisions. Therefore, computing the cosine similarity between the anchor

Adding everything up, KeyDiff requires:

3nd + d + n multiplications,
3nd —n — 1 additions,

2n + 2 divisions,

> L=

n + 1 square roots,

If, based on x86 instruction tables, we declare additions and square roots cost one FLOP (i.e. can be
computed in one cycle), multiplications cost three FLOPs, division is roughly 47 FLOPs, we arrive at
a final FLOP count of:

3(3nd+d—+n)+ Bnd—n—1)+47% (2n+2) + (n+1) = (12d + 97)n + 3d + 94. (A.1)

This is linear in the number of keys n with a small constant, relative to the quadratic complexity of
the attention operator.

C KEYDIFF: A Theoretical Perspective

C.1 Additional PCA Visualizations

In order to demonstrate the phenomena in Figure 11 persists across all heads and layers, we have
included several more visualizations as seen in Figure 8, Figure 9, and Figure 10.

(a) Sink Attention (b) TOVA (c) KEYDIFF (d) Retained keys only

Figure 8: (a, b, and ¢) PCA Visualizations in two dimensions of a key cache managed with Sink,
TOVA, and KEYDIFF. Retained tokens are blue, while evicted tokens are . Keys are taken
from layer 27 and head 4 of Llama3.2-3B-Instruct, and generated using the NarrativeQA dataset. (d)
PCA visualization of the retained keys for each KV cache eviction method
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(a) Sink Attention (b) TOVA (c) KEYDIFF (d) Retained keys only
Figure 9: Keys taken from layer 20 and head 0 of Llama3.2-3B-Instruct

® Retained © Retained ® Retained o KeyDilt
® Evicted ® Evicted o TovA

Wit i
(a) Sink Attention (b) TOVA (c) KEYDIFF (d) Retained keys only

Figure 10: Keys taken from layer 8 and head 1 of Llama3.2-3B-Instruct
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Figure 11: PCA plots of Query and Keys from Llama-3.2-3B-Instruct

C.2 Derivation of KEYDIFF from an Optimization Perspective

To leverage the observation in Section 3.1, we minimize the sum of pairwise cosine similarities of
each key retained in the cache. This can be formulated as a constrained optimization problem with
the keys K € R™*? whose element is k;, and budget N smaller than n:

minimize Z Z —“]:ZH(ZH
S ies jes I (A2)
subjectto S C{1,...,n},

S| =N

This is a combinatorial optimization problem, which is difficult to solve efficiently, particularly during
inference. However, we can relax Equation (A.2) to produce a more tractable approximation to

the original problem. First, we rewrite Equation (A.2) by normalizing keys k; such that I%l =
resulting in:

A

ZZIA@I@ :Zi%' Zifj :ZGA@'Z’,N,“(KS»

i€S jes i€s jes i€s
where ,u(R' 5) = % > lch is the empirical mean of normalized keys in S. This objective requires
JES
recomputing y(f( ) for each candidate subset S. The sub-sampled mean tends to converge to the
mean over the entire set, the problem can be further relaxed by replacing u(Kg) with pu(K) =
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> k. Dropping N from the objective (since it doesn’t affect the solution) yields:
minimize I%l (K
i ; 1(K)
subjectto S C{l,...,n},
S| =N

S|

(A3)

The optimal solution of Equation (A.3) can be found by sorting tokens using their cosine similarity

with pu(K) and selecting the smallest IV, leading to the algorithm described in Equation (8).

Key Cache Diversity and KEYDIFF To empirically verify KEYDIFF’s ability to retain diverse
keys, we apply PCA to the keys computed in an attention block of Llama 3.2-3B-Instruct after
evaluating a long context prompt. We visualize the distribution of retained and evicted keys by
applying sink attention [35], TOVA [24], and KEYDIFF as eviction policies in Figure 11. Visual
observation reveals the tokens retained by sink attention and TOVA tend to tightly cluster together
while KEYDIFF’s retained tokens are more evenly distributed. This observation generalizes across
heads and layers, as shown in Appendix C.1I.

We also visualize the log determinant of the Gram matrix of the key cache log(det(K K 7)) generated
using different eviction policies in Figure 12. This quantity corresponds to the volume of space
spanned by the keys in C. The distribution of volumes for KEYDIFF attains higher values, indicating
that the retained keys are more distinctive than TOVA and sink, corroborating the results of Figure 11.
Details of how these plots were generated are discussed in Appendix F.1.

025 =1 KeyDiff
TOVA
3 Sink

940 950 960 970 980 990 1000 1010
log Volume

Figure 12: Distribution of log (det (K K T)) from the Qasper dataset in LongBench. Larger values
mean more of the key space is spanned by the key cache. KEYDIFF retains keys that span a greater
volume of the ambient space than TOVA or sink attention.

C.3 Attention Sinks and Approximate Collinearity

Key Cosine Similarity with Mean Query Cosine Similarity with Mean
0 [ 0
0.75
2 2 0.75
4 4
6 030 6 0.50
8 8
1 0.25 10 0.25
512 512
714 000 514 0.00
8 5
16 0.25 16
18 ' 18 -025
20 0.50 20 0.50
22 22
24 —0.75 24 -0.75
26 26
1 2 3 4 5 6 7 8 1 3 5 7 9 11 13 15 17 19 21 23
Head Head
(a) Keys (b) Queries

Figure 13: Cosine similarity between keys and their mean (left) and queries and their mean (right)
across heads and layers

To better understand why there exists a negative correlation between cosine similarity between keys
and attention scores, we look to recent research that seeks to the importance of attention sinks in
decoder-based LLMs. The authors in [5] show that attention sinks emerge from training decoder-
based LLMs since they can denoise the model and prevent rank collapse by limiting over mixing
in attention heads. Moreover, attention patterns in decoder based models demonstrate that most
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Figure 14: Cosine similarity of mean key and mean query for each head and layer.

attention logits are quite small (and almost always negative) for most keys and queries. This allows
the attention sink to have high attention activation, preventing over mixing in addition to allowing the
heads to specialize and selectively identify important tokens.

At the same time, the results in [11] suggest that hidden states, keys and queries are all approximately
collinear in the sense that CosSim(z;, z;) > 0. In geometric terms, this means that most key tokens
and query tokens lie in the same direction in Euclidean space. Our own results, seen in Figure 13
demonstrate that this is the case for both keys and queries. Our experiments show that most keys
and queries lie within a small angular distance from the mean key and query. More than this, we
see that across all heads, the mean key and mean query have negative cosine similarity Figure 14.
Moreover, as seen in Figure 15, we find that the norms of keys and queries are tightly clustered
around a relatively fixed value. This means that variations in the norm of key and query tokens
have less impact on the magnitude of attention scores than their direction. These three observations
indicate that most keys and queries combine to create uniformly small attention logits, and that larger
attention weights are constructed by projecting keys closer to the direction of the mean query. This
appears to be the fundamental mechanism through which over mixing is prevented: if most attention
activations are very small, each head can increase the activations of a small number of keys across
most queries selectively projecting them to be more aligned with the distribution of queries. This
hypothesis is further supported by the fact that sink tokens themselves often have small norm, which
results in an approximate no-op in the attention head as in [5], however in this case, the only way for
a key corresponding to a sink token to have high attention scores is if it is as parallel as possible to
the set of query tokens.

Key Norms Query Norms

0 0

s 35 5 35

4 4

6 30 6 30

8 8

10 » 10 25
512 512
514 0 514 20
8 8

16 16 s

15

18 18

20 10 20 10

22 22

24 s 24 5

26 26

1 2 3 4 5 6 7 8 1 3 5 7 9 11 13 15 17 19 21 23
Head Head

Figure 15: Distribution of L? norms for keys and queries across heads and layers.
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Cosine Similarity between Top Scoring Key and Query Mean

1 3 5 7 9 11 13 15 17 19 21 23
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Figure 16: Cosine similarity between highest KEYDIFF scoring key token with mean query.

To verify the above hypothesis, we show Figure 16 that keys which have maximum angular difference
from the mean key are aligned with the mean query, resulting in very large attention weights. This
demonstrates how LLMs exploit the geometry of the hidden states and projections to limit over
mixing, and selectively identify important tokens.

To summarize, we have for all attention heads in decoder based transformer models:

* The majority of keys and queries are approximately collinear with their mean.
* Mean keys and mean queries have negative cosine similarity across all heads.
* Most keys and queries have a similar L2 norm.

* Decoder based attention heads can selectively increase attention weights for a fixed key by aligning
it with the mean query.

* Key token importance can hence be measured by the angular distance between a key and the mean
key.

We can show mathematically with some reasonable assumptions based on the above observations
that key tokens with persistently high attention scores must be geometrically aligned with queries.

Theorem C.1. Suppose that for a fixed query token q, there is a set of key tokens {k;}"_, such that
||ki||3 < M, ¥ i. Without loss of generality suppose ||q|| = 1, the scaling parameter is 1 and assume
k* is a key not in {k;}7_, with ||k*||3 < M that has attention weight w > 0:

exp(k* " q)

— )
exp(k*Tq) + Zl exp(k;'—q)
=

w =

Then

_n_

log(n_H) —log(1l — w)
2M

— 1< CosSim(k™, q)
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Proof. To show this we have that

exp(k* " q)

w =

exp(k* T q) + iexp(kiq)
(exp )+ ZGXP ]@ q ) = exp(k” Q)
wzexw g) = (1—w)exp(k* ' q)

Note that —M < kZT q < M and hence

i=1
wnexp(—M) < (1 —w)exp(k* ¢q)
M) < p(Tg)

log(wn) — M — log(1 — w) < MCosSim(k™, q)
log(wn) — M — log(1 — w)

M
oDy g1 - )
exp(k*Tq)Jr_Z exp(k; q)
= — < CosSim(k*, q)
* T
log(wn) — M —log(1 —w)
(n+1) exp(M) 7 < CosSim(k*, q)
—MCosSim(k*, q) + log(;f7) — 2M — log(1 — w
(k*,q) g(n+1) 8( ) < CosSim(k*, q)
M
log(—2-) —2M — log(1 — w
g(747) o 8( ) < 2CosSim(k*, q)
log( il) —log(1 — w)
n _1< i *
57 < CosSim(k*, q)

Taking the limit as n — oo produces Lemma 3.1

The above proof demonstrates that as long as the norms of the keys are bounded, in order for an
attention head to be able to freely allocate w attention weight to a given key k*, the cosine similarity

between £* and ¢ must be high, therefore £* and ¢ must be approximately collinear.

Using this result, we can also show that as long as the cosine similarity between £* and g is high,
while the cosine similarity between k and ¢ is low, CosSim(k*, k) is small. Note that, since empirical
results demonstrate that most keys have high cosine similarity with their mean k, a key with high
importance, approximately collinear to ¢, will also have low cosine similarity to k. Generally, this

also suggests that key tokens with low cosine similarity to k have greater importance.

In order to show this, we need the following auxiliary result.

Lemma C.2. Suppose {x1,...,x,} is an orthonormal basis of R™ and y € R™. Define a; =

CosSim(x;,y). Then > a? = 1.
i=1
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T T

Proof. Note that o;; = II;IIH\?'II = yl\yTIi' If we expand IIyTH in the basis {z1, ..., z, } we see that
n
y ( y T )
= x|z
[yl| ; lyll =)™

n
= E Q; T
i=1

2 n n
But then, we know that since ‘ ‘ ﬁ ‘ ‘ =1, then < Q;T;, aixi> = 1. But we have
2 i=1 i=1
n n n n
E ;15 E ;4 = E E <Oti$i, Oéj.]?]‘>
i=1 i=1 i=1 j=1

n
= Z<O‘imia oG ;)

%

Il
-

|
S

S
Il
-

proving the result. O

Theorem C.3. Consider tokens k*, q, l%_ as above where k is the average of the keys tokens. Suppose
CosSim(k*,q) = B, > 0 and CosSim(k, q) = ay < 0. Then CosSim(k,k*) < 1+ a8, — 2a?

L 2%q
5@1'
Proof. Consider the cosine similarity of & and k*:

) _—— k*Ti{
COSSlm(k,k ) = W

expand k in an orthonormal basis which contains ¢, {q,71, ..., 7n—1} such that

n—1
k= [[kl| (aqq + Z%‘H)

where a; = CosSim(k, ;). Additionally, define 3; = CosSim(k*, r;) and note that by the definition
of an orthonormal basis and the cosine similarity operation, using the result from Lemma C.2 we

n—1 n—1
have that o2 + Y~ a7 = 1 and that 52 + > 37 = 1. Now we have that
i=1 i=1

n—1
*T 1- 1- . .
i ET (1Floga+ S o,
TR TR

1 n—1
— T
faqﬂquW;Oélk T
n—1

= aqﬂq + Z a;if;

i=1

n—1
< gy + Y lailBi]

=1
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Table 3: Spearman correlation (p) between negative key cosine similarity and attention scores for
each transformer layer of Llama-3.2-3B-Instruct.

Layer 1 2 3 4 5 6 7
P 0.8997 09561 09332 09496 09517 09484  0.9587
Layer 8 9 10 11 12 13 14

P 09578 09534 09570 09628  0.9554  0.9658  0.9578

Layer 15 16 17 18 19 20 21
p 0.9477 09538  0.9280 09373  0.9328  0.9340  0.9311
Layer 22 23 24 Mean =+ Std
p 0.9140  0.9060  0.8950 0.94 £0.02

Applying Young’s inequality we obtain
1 n—1
<agfy+5 )05+
i=1

= agfiy + (1 - ad) + 5(1- 52)

1 1

O

Note that on the domain oy € [—1,0), 3, € (0, 1] the function 1 + oy 3, — & (21 — %53 is bounded
1
q

above by 1 and decreasing to —5 as a — —1. Hence, the smaller CosSim(k, q) = « is, the smaller
CosSim(k, k*) must be.

C.4 Correlation Analysis

We report the Spearman rank correlation between key cosine similarity and attention scores for
each layer of the Llama-3.2-3B-Instruct model. Correlations are averaged over randomly sampled
LongBench-Musique prompts. From Table 3, we observe a consistently high correlation (p ~ 0.94 on
average) across all layers, indicating that geometrically distinctive keys (i.e., those with low pairwise
cosine similarity) are strongly aligned with tokens receiving higher attention scores. This empirical
evidence supports our theoretical claim in Section 3.3 that key diversity serves as a reliable proxy for
token importance.

D TTFT Analysis

We have measured end-to-end inference latency (measured as time to first token (TTFT)) for Llama
3.2-3B via the standard Huggingface API when the model is using eager attention and FlashAttention
as in Figure 17 and Figure 7. Tests are performed on NVIDIA A100 80GB GPUs. We test various
block sizes and KV cache budgets. KeyDiff outperforms TOVA and SnapKV with FlashAttention as
well as with eager attention for large cache budgets. We can see inference latency with KeyDiff is
independent of block size when using FlashAttention because of KeyDiff’s linear complexity and its
lack of required materialized attention weights.

E Math-500 reasoning benchmark

In order to measure the effectiveness of different caching methods on reasoning tasks, we tested
several different model using various caching algorithms on the Math 500 reasoning benchmark.
Specifically, we test KEYDIFF with a sliding window whose window size is 20% of the KV cache
budget, and SnapKV on the DeepSeek-R1-Distill-Llama-8B and DeepSeek-R1-Distill-Qwen-7B
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TTFT of Llama 3.2-3B-Instruct
(Transformers v4.49, NVIDIA A100, Eager, BFloatl16, 11K Prompt length, Block Prompt Processing)
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Figure 17: TTFT for eager attention with different cache eviction strategies using block size 64, 128,
256 for block prompt processing.

models. We randomly sample 5 responses with TopP = 0.95, Temperature = 0.95 with the 4096,
6144, and 32,786 max generation lengths. The reported scores are the average of accuracies over the
random samples.

Table 4 summarizes the Math-500 evaluation results for Llama-8B. As shown in the table, token
eviction methods generally perform well even with KV cache budgets that are strictly smaller than
the maximum generation length. Surprisingly, we found that KEYDIFF slightly outperforms baseline
methods in certain configurations (e.g., KEYDIFF with a 2K budget for 4K generation length, and
KEYDIFF with a 4K budget for 8K generation length).

To further analyze the effectiveness of token eviction, we measure accuracy in cases where the context
length of the baseline method (i.e., prompt length + generation length) exceeds the available KV
cache budget. As shown in Table 5, for samples where eviction is actively triggered, KEYDIFF
continues to outperform the token eviction baseline (SnapKV), and often achieves accuracy close to
or slightly better than the non-evicting baseline.

We also conducted a similar evaluation on DeepSeek-R1-Distill-Qwen-7B and observed a slight
performance degradation for token eviction methods compared to full KV cache baselines (See
Tables 6 and 7.) However, KEYDIFF still demonstrates comparable performance to SnapKV overall.
This discrepancy may stem from architectural differences that Llama uses a lower GQA [2] ratio than
Qwen, which results in more information compression in the KV cache. We hypothesize that models
with more compression like Qwen are more sensitive to eviction since each evicted token contains
more information in Qwen than Llama by design.

F Additional discussion for LongBench

F.1 Empirical Motivation for KEYDIFF Setup

To generate Figure 11, we used the first sample from the test split of the narrativeqa task in LongBench
to prefill the KV cache of Llama3.2-3B-Instruct with a block size of B = 128. The KV cache had a
maximum size of 4096 while the sample was much longer, requiring KV eviction. We applied PCA
to the key cache and repeated the process for sink attention, TOVA and KEYDIFF.

To construct Figure 12, we sample 100 prompts from the Qasper dataset in LongBench [4], compute
the log determinant of K K7 of the keys in the KV caches of each head and layer of Llama 3.2-3B-
Instruct using a cache budget of N = 2048 and a block size of B = 128, and plot the distribution in
Figure 12. We show this key distribution for sink attention, TOVA and KEYDIFF.

F.2 Experiment Setup

In this subsection, we provide the experimental setup for KEYDIFF and the baselines for the Long-
Bench experiments. The LongBench evaluation is conducted using the default parameters of the
LongBench evaluator with predefined prompt templates. Tests are performed on NVIDIA A100
80GB GPUs.
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Table 4: Math 500 results on DeepSeek-R1-Llama-8B distilled model (Higher is better). We
highlight the methods showing the best performance within a given budget with boldface.

Method Max Gen. Length Budget Flex Match Exact Match ~ Avg. Gen. Length

Full 4K N/A 0711 0.537 2769

. 1024 0.695 0.531 2753
KeyDiff 4K 2048 0.720 0.546 2740
1024 0.689 0.529 2759

SnapKV 4K 2048 0.714 0.544 2757
Full 8K N/A 0.840 0.628 3812

. 2048 0.819 0.617 3888
KeyDiff 8K 4096 0.844 0.634 3805
2048 0805 0.610 3808

SnapKV 8K 4096 0828 0.627 3808
Full 3K N/A 0.898 0.668 6369
2048 0.883 0.662 7678

KeyDiff 32K 409  0.894 0.668 7312
8192 0.894 0.667 7096

2048 0849 0.641 7509

SnapKV 32K 4096 0884 0.661 7218
8192 0893 0.665 7005

For TOVA, H20, and SnapKYV, the set of attention weights computed from a single key cache
due to grouped query attention [2] is aggregated by taking the average over the attention weights.
Additionally, only for SnapKV, we apply average smoothing to the attention score with a kernel size
of 7 and keep the most recent 32 tokens in the cache, following the suggestion of the original paper.
For Sink, we used the first four tokens as the attention sink, following the suggestion of the original

paper.
F.3 Longbench dataset statistics

In this section, we provide the length statistics of the Longbench Benchmark and in-depth analysis of
compression ratios for the given KV cache budgets, such as 2K, 4K, 6K, and 8K.

Prompt lengths We measure the number of tokens in the samples using LLama tokenizer [31]. As
shown in Figure 18, LongBench exhibits variability in sample length from the datasets.
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Figure 18: Histograms of sample lengths measured by number of tokens

Compression ratio The majority of other KV cache eviction studies assume an unconstrained
memory footprint. Before they compress the cache by applying an eviction policy, they first set the
target compression ratio and evict the appropriate number of KV pairs to satisfy the compression ratio
[43, 24, 20]. On the other hand, we fix the KV cache size and ensure the number of cached tokens is
less than or equal to the predefined cache size. Due to these differences, it is less straightforward to
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Table 5: Math 500 results on DeepSeek-R1-Llama-8B distilled model (Higher is better). We

highlight the methods showing the best performance within a given budget with boldface.

Max Gen. Length = 4K

Max Gen. Length = 8K

Num Tokens > 1K (497/500 samples)

Num Tokens > 2K (353/500 samples)

Budget  Flex Exact Budget  Flex Exact
Full N/A 0.709  0.534 Full N/A 0.783  0.584
KeyDiff 1024  0.693  0.528 KeyDiff 2048  0.756  0.570
SnapKV 1024  0.687 0.526 SnapKV 2048  0.736  0.560
Num Tokens > 2K (240/500 samples) = Num Tokens > 4K (195/500 samples)
Full N/A 0.604  0.449 Full N/A 0.650  0.455
KeyDiff 2048  0.618 0.463 KeyDiff 4096  0.662  0.470
SnapKV 2048 0.610 0.458 SnapKV 4096  0.637 0453

Max Gen. Length = 32K

Num Tokens > 2K (353/500 samples)

Budget  Flex Exact
Full N/A 0.783  0.584
KeyDiff 2048  0.756  0.570
SnapKV 2048  0.736  0.560
Num Tokens > 4K (195/500 samples)
Full N/A 0.650 0.455
KeyDiff 4096  0.662  0.470
SnapKV 4096  0.637  0.453
Num Tokens > 8K (162/500 samples)
Full N/A 0.793  0.550
KeyDiff 8192  0.786  0.545
SnapKV 8192  0.782  0.541

set appropriate KV cache budgets to satisfy the target compression ratios. Instead, we provide the
average compression ratio, which is defined as:

Average Compression Ratio =

I
N

where N is the KV cache budget, and L; is the length of the ¢-th prompt (sample). We replace the
summand with 1 whenever N > L;, as compression doesn’t occur in that setting.

~| =

As summarized in Table 9, 2K cache budgets have a 0.31 average compression ratio, which indicates
69% of input prompts are compressed. Our largest cache budget, 8K, exhibits a 0.77 average
compression ratio.

F.4 Additional Results
G Ablation study

Selecting the Anchor Vector We have mainly evaluated KEYDIFF using the method described in
Equation (7). Scores to determine eviction are measured via cosine similarity with an anchor vector
which can be computed in several ways. We run LongBench on Llama3.2-3B-Instruct with eviction

24



Table 6: Math 500 results on DeepSeek-R1-Qwen-7B distilled model (Higher is better). We
highlight the methods showing the best performance within a given budget with boldface.

Method Max Gen. Length Budget Flex Match Exact Match  Avg. Gen. Length

Full 4K N/A 0.764 0.579 2630
. 1024 0.666 0.512 2692
KeyDiff K 2048 0.749 0.570 2629
1024 0.692 0.533 2655

SnapKV aK 2048 0.749 0.566 2637
Full N/A 0.877 0.658 3287

. 2048 0811 0.613 3348
KeyDiff 8K 4096 0867 0.647 3208
2048 0812 0.612 3328

SnapKV 8K 4096 0.868 0.647 314
Full 30K N/A 0.923 0.682 4051
2048 0811 0,613 5322

KeyDiff 32K 409  0.897 0.647 3800
8192 0.891 0.663 3741

2048 0812 0.612 4279

SnapKV 30K 4096 0868 0.647 3808
8192 0.891 0.662 3808
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Figure 19: Needle in a Haystack results for Sink Attention [35]

policies using the following anchor choices: pairwise cosine similarity from Equation (7), denoted
Pairwise; KEYDIFF, using the mean of all normalized keys as an anchor, and using the median of
keys as an anchor, denoted Median. Table 15 summarizes the average LongBench accuracy for the
different methods to Llama 3.2-3B-Instruct. KEYDIFF shows similar average scores to Pairwise.
Additionally, KEYDIFF and Median show similar scores, demonstrating that KEYDIFF is robust to
the selection of the anchor design.

Selecting the Similarity Metric We use cosine similarity as the scoring metric for eviction in
KEYDIFF based on our discussion in Section 2.2. This could be replaced with other metrics like the
dot product or Euclidean distance. We evaluate KEYDIFF variants using dot product and Euclidean
distance as the similarity metric, denoted DotProd and Euclidean respectively, and report the results
in Table 16. KEYDIFF and DotProd show similar performance for 6K and 8K budgets. However,
KEYDIFF outperforms DotProd for smaller cache sizes. This implies that considering both the
direction and the magnitude of the keys to compute similarity are important for identifying the tokens
to evict. On the other hand, Euclidean shows a significant performance drop relative to KEYDIFF.

G.1 Needle in a Haystack results for Sink attention
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Table 7: Math 500 results on DeepSeek-R1-Qwen-7B distilled model (Higher is better). We
highlight the methods showing the best performance within a given budget with boldface.

Max Gen. Length = 4K Max Gen. Length = 8K
Num Tokens > 1K (497/500 samples) = Num Tokens > 2K (317/500 samples)
Budget  Flex Exact Budget  Flex Exact
Full N/A  0.762  0.578 Full N/A 0816 0.603

KeyDiff 1024 0.664 0.511 KeyDiff 2048 0.713  0.533
SnapKV 1024  0.690  0.532 SnapKV 2048  0.718 0.533

Num Tokens > 2K (328/500 samples) = Num Tokens > 4K (179/500 samples)

Full N/A  0.650 0478 Full N/A  0.626 0.441

KeyDiff 2048  0.628  0.464 KeyDiff 4096 0.611  0.419
SnapKV 2048  0.629  0.459 SnapKV 4096  0.615  0.422

Max Gen. Length = 32K

Num Tokens > 2K (360/500 samples)
Budget  Flex Exact
Full N/A 0.889  0.642

KeyDiff 2048 0.713  0.533
SnapKV 2048 0.718 0.533

Num Tokens > 4K (141/500 samples)
Full N/A 0.787  0.524

KeyDiff 4096 0.611 0.419
SnapKV 4096  0.615  0.422

Num Tokens > 8K (53/500 samples)
Full N/A 0.550 0.275

KeyDiff 8192 0392 0.222
SnapKV 8192  0.381 0.215

<2K 2K<L<4K 4K<L<6K 6K<L<8K >8K | Total

NarrativeQA 0 0 0 8 192 200
Qasper 1 77 83 25 14 200
MultifidelityQA-En 9 31 21 32 57 150
MultifidelityQA-Zh 14 69 47 33 37 200
HotPotQA 1 4 12 12 171 200
2wikimqa 8 17 68 54 53 200

musique 0 0 0 3 197 200

dureader 0 0 0 16 184 200

gov report 0 20 29 45 106 200

gmsum 0 1 17 15 167 200

multi news 99 71 19 6 5 200

vesum 4 20 18 32 126 200

trec 4 43 41 39 73 200

triviaga 4 21 15 21 139 200

samsum 6 29 34 17 114 200

Isht 0 0 3 8 189 200

passage count 0 0 3 13 184 200
passage-retrieval-En 0 0 0 0 200 200
passage-retrieval-Zh 0 0 160 10 0 170
Icc 80 86 21 4 9 200

repobench-p 0 25 37 25 113 200

Table 8: Distribution of sample length measured by Llama2 tokenizer
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2K 4K 6K 8K
NarrativeQA | 0.10 0.20 0.30 0.40
Qasper | 047 0.82 096 0.98
MultifidelityQA-En | 0.40 0.66 0.82 0.93
MultifidelityQA-Zh | 049 0.78 091 0.98
HotPotQA | 0.19 0.37 0.52 0.66
2wikimga | 0.36 0.65 0.85 0.92

musique | 0.13 027 040 0.53

dureader | 0.17 034 0.52 0.68

govreport | 0.28 052 0.70 0.81

gmsum | 0.18 0.36 0.52 0.66

multinews | 0.81 096 0.98 0.53

vesum | 0.27 049 0.65 0.68

trec | 0.38 0.66 0.84 0.94

triviaqa | 0.26 046 0.60 0.72

samsum | 0.32 0.55 0.71 0.82

Isht | 0.13 0.27 0.39 0.52

passage count | 0.15 0.31 046 0.60
passage-retrieval-En | 0.16 0.33 049 0.66
passage-retrieval-Zh | 0.37 0.74 0.99 1.00
lcc | 0.78 095 098 0.99

repobench-p | 0.27 0.52 0.67 0.78
average | 0.31 0.53 0.67 0.77

Table 9: Compression ratio of prompts w.r.t. various KV cache budgets

H Additional Experiments and Analyses

To further substantiate the empirical findings presented in Sections 3 and 4, we provide an extended
set of experiments and complementary analyses. These additional studies examine the correlation
between key geometry and attention, evaluate retrieval-critical and reasoning scenarios, and measure
the efficiency of KEYDIFF under constrained hardware settings. Together, they offer a broader view
of the method’s robustness, efficiency, and general applicability across diverse inference conditions.

H.1 Retrieval-Critical Evaluation: Phonebook Lookup

We evaluate KEYDIFF on a retrieval-critical setting using the Phonebook Lookup task, where the
model retrieves a phone number corresponding to a queried name from a long list of entries. Accuracy
is averaged across five random phonebooks of varying lengths. As shown in Table 17, KEYDIFF
maintains high retrieval accuracy for shorter contexts and degrades more gracefully than attention-
based baselines as context length increases.

H.2 RULER Benchmark Validation

To assess the generalizability of KEYDIFF across diverse architectures, we reference the results
reported by the community-maintained KVPress RULER benchmark. KEYDIFF consistently achieves
competitive or superior leaderboard scores compared to methods such as TOVA, SnapKV, QFilter,
and Knorm on both Llama-3.2-3B and Qwen-3-8B backbones, demonstrating its robustness and
transferability.

H.3 Needle-in-a-Haystack Recall Saturation

We further analyze the recall behavior of KEYDIFF under varying context lengths in the Needle-in-a-
Haystack benchmark. Table 18 reports the recall difference between KEYDIFF and the full-cache
baseline as a function of depth and context length. As shown in Table 18, KEYDIFF achieves near-
parity recall with the full-cache baseline up to 30k tokens, confirming its stability under long-context
compression.
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H.4 On-Device Latency Evaluation

We further evaluate the runtime characteristics of KEYDIFF on a mobile-class device by measuring the
latency required to compute key-eviction scores on an Android platform. All methods are tested on a
recent Samsung smartphone under identical FP16 inference precision, and the results are normalized
by the latency of KEYDIFF with a cache budget of 512 KVs.

As shown in Table 19, KEYDIFF performs on par with competing methods for small cache sizes
and achieves substantially lower scoring latency as the cache size increases, demonstrating both
scalability and minimal overhead on edge hardware. Minor runtime fluctuations can be attributed to
kernel-level optimizations and proprietary hardware characteristics.
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Full Qwen-2.5-7B/3B-Instruct LongBench Results with B = 128 (Higher is better)
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B € [64,256]
budget with bold

1Z¢

Llama-3.2-3B-Instruct LongBench Results with prompt block si

Table 13

1mn a given

(Higher is better). We highlight the best and second best methods with

and underline.
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KEYDIFF + Recent tokens Llama-3.1-8B/3.2-3B-Instruct LongBench Results with

Table 14

B

in a given

her is better). We highlight the methods showing the best performance with

budget with boldface. X% indicates X% of KV cache budget is reserved to keep the recent tokens,

ig

128 (H

A subset of samples were

thm.

i

d by KEYDIFF algor

is manage
evaluated due to OOM errors (183/200 samples are evaluated).

he budget

ining cac
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Table 15: Anchor vector ablation study. Average of Full Longbench results for Llama 3.2-3B-

Instruct. KEYDIFF results match Table 11.

(Higher is better)

2K 4K 6K 8K

KEYDIFF

35.09 4028 41.88 4240

Pairwise
Median

3524 40.61 41.87 4245
3543  40.67 41.89 4226

Table 16: Distance metric ablation study. Average of Full Longbench results of Llama 3.2-3B-

Instruct. KEYDIFF results match Table 11.

(Higher is better)

2K 4K 6K 8K

KEYDIFF

35.09 40.28 41.88 4240

DotProd
Euclidean

30.14 38.01 41.09 42.23
13.68 21.06 2591 29.53

Table 17: Accuracy (%) on the Phonebook Lookup task using Llama-3.2-3B-Instruct with a 6k cache

budget.

Method 100 478 856 1233 1611 1989 2367 2744 3122 3500

Dense 10 10 10 08 10 08 06 06 08 0.6

KeyDiff 1.0 1.0 1.0 06 04 02 00 00 02 02

TOVA 10 10 10 04 02 00 00 00 00 00

Table 18: Recall difference (KEYDIFF-Full) on NIAH benchmark for Llama-3.2-3B.

Depth 1000 4222 7444 10667 13889 17111 20333 23556 26778 30000
0.0 002 —006 —0.06 020 016 —0.16  0.18 0.20 0.06 0.04
11.0 010 —004 —0.04 030 028 —018 026 0.28 0.10  —0.08
22.0 004 —0.12 000 032 030 —0.18 0.6 0.28 0.14 —0.04
33.0 0.02 006 —020 034 008 —016 026 0.26 020 —0.16
44.0 —006 —008 —0.16 030 026 —0.12 024 022  —0.10 0.04
56.0 —0.06 000 —024 026 026 —020 0.8 0.14 004  —0.02
67.0 0.02 002 —0.14 036 028 —026 024 0.16 004  —0.08
78.0 —0.10 008 —026 026 030 —026 020 0.30 002 —0.04
89.0 0.02 008 —006 030 026 —032 030 0.22 006 —0.12
100.0 000 —006 —026 000 —006 —002 000 —0.04 0.14  —0.04

Table 19: Relative latency of key scoring on an Android device (normalized by KEYDIFF at 512 KVs).

Lower is better.

Method 512 1024 2048 4096 8192
SnapKV 1.92 2.46 4.50 8.94 11.42
TOVA 1.02 0.94 1.25 1.95 3.06
KeyDiff 1.00 1.03 1.01 1.07 1.37
H20 1.10 0.99 1.52 232 4.23
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