
KEYDIFF: Key Similarity-Based KV Cache Eviction
for Long-Context LLM Inference in
Resource-Constrained Environments

Junyoung Park∗ Dalton Jones Matthew J Morse
Raghavv Goel Mingu Lee Chris Lott

Qualcomm AI Research
{junpark,daltjone,mattmors,raghgoel,mingul,clott}@qti.qualcomm.com

Abstract

We demonstrate that geometrically distinctive keys during LLM inference tend
to have high attention scores. Based on the phenomenon we propose KEYDIFF,
a training-free KV cache eviction method based solely on key similarity. Unlike
other KV cache eviction methods, KEYDIFF can process arbitrarily long prompts
within strict resource constraints and efficiently generate responses. We provide
a theoretical basis for KEYDIFF by relating key diversity with attention scores.
These results imply KEYDIFF can efficiently identify the most important tokens
to retain. Notably KEYDIFF does not rely on attention scores, allowing the use
of optimized attention mechanisms like FlashAttention. Under a strict memory
allowance, we demonstrate the effectiveness of KEYDIFF for the Llama and Qwen
model families by observing a performance gap of less than 0.04% with 8K cache
budget (∼ 23% KV cache reduction) from the non-evicting baseline on LongBench
for Llama 3.1-8B and Llama 3.2-3B. We also observe near baseline performance for
Deepseek-R1-Distill-Llama-8B on the Math500 reasoning benchmark and decrease
end-to-end inference latency by up to 30% compared to the other token-eviction
methods.

1 Introduction

Key-Value (KV) caching is a standard technique to accelerate large language model (LLM) inference
that reuses key and value states (KVs) from previously processed tokens, enabling efficient autoregres-
sive generation. This is crucial for long-context applications such as document summarization, code
generation, question answering [7, 25, 31, 10], retrieval augmented generation [19] and reasoning
[34, 17, 41]. However, the memory footprint of the stored KV cache grows linearly with input length,
which becomes a bottleneck in memory-constrained environments.

This challenge is particularly acute for LLM inference on edge device, where compute, memory, and
power resources are limited [3, 22, 32, 36]. While KV cache eviction policies have been proposed
to bound memory overhead by removing unimportant KVs (often measured by attention scores)
[35, 24, 43], they typically process the entire prompt at once and violate memory constraints during
intermediate computation.

To enforce strict memory bounds throughout the prompt prefill and token generation inference phases,
we adopt a block-wise inference strategy: the input prompt is divided into smaller blocks which are
processed sequentially by the model, similar to [18, 1, 37]. After processing each block, we evict
some of the cached KVs by according to an eviction policy that scores each KV, as illustrated in
Figure 1. Unlike previous approaches that apply eviction after processing the entire prompt, this

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Embedding

Key-Value

Eviction Score

Cached KV

0

0

0

1

1

1

2

2

2

Attention

Top-K

3

3

4

4

4

5

5

0

0

0

1

1

1

2

2

2

Attention

Top-K

4

4

4

6

6

6

0

0

0

1

1

2

2

2

Attention

Top-K

0 1 2 3 4 5 6

Figure 1: An example of block prompt processing with KV cache eviction. The input prompt
having length of 7 is segmented by three blocks, and a transformer layer in LLM processes each block
by (1) computing key-value states from inputs, (2) computing attention, (3) computing the eviction
score, and (4) performing eviction based on the eviction score to satisfy the memory constraints (e.g.,
at most 4 tokens can reside in the cache). After each block processing, the KV cache is updated and
passed to the next round of block processing, satisfying imposed memory constraints on the KV
cache.

strategy satisfies memory constraints throughout the full inference process. However, we observe a
degradation in accuracy when applying existing eviction methods in this setting (Table 1).

We hypothesize that the performance drop stems from a mismatch in design: existing eviction
methods assume access to full-prompt attention, where key importance is computed over the entire
input. During block prompt processing, however, attention is computed using only the current block’s
tokens without access to future blocks. As a result, attention scores based on a limited context often
fail to reflect a token’s true importance across the full prompt.

To this end, we observe that keys with lower average pairwise cosine similarity tend to receive higher
attention scores across a variety of inputs. This suggests that key diversity serves as a strong proxy for
global token importance, even without access to future tokens. This insight enables an attention-free
approach to cache eviction that is based on the geometry of the cached keys.

Motivated by these observations, we propose KEYDIFF, an attention-free cache eviction method
that removes redundancy among cached keys, operates effectively during block-wise inference, and
avoids excessive memory overhead. Our contributions are summarized as follows:

• Insight. We observe that lower pairwise cosine similarity among keys correlates with higher
attention scores, suggesting its utility as a proxy for token importance. (Section 3.1)

• Method. We introduce KEYDIFF, an eviction strategy that selects keys based on their similarity to
other cached entries without relying on attention scores or future tokens. (Section 3.2)

• Theory. Through our analysis of key and query geometry we provide a theoretical understanding
how/why KEYDIFF works. We also show that KEYDIFF solves an optimal subset selection problem
that maximizes key diversity. (Section 3.3)

• Performance. KEYDIFF achieves ≤ 1.5% and ≤ 0.04% accuracy drop on LongBench with 6K
and 8K cache budgets, respectively, outperforming state-of-the-art eviction methods across Llama
and Qwen models (Section 4.2), and near non-evicting baseline performance for Deepseek-R1-
Distill-Llama-8B on the Math-500 reasoning benchmark. (Section 4.3)

• Efficiency. We observe up to 30% end-to-end inference latency reduction using KEYDIFF compared
to existing KV cache eviction methods. (Section 4.5)

2 Background

2.1 Transformers

The Transformer architecture [33] processes input data using a sequence of transformer blocks. A
transformer block f takes a sequence X = (x1, x2, . . . , xT) ∈ RT×d as input and applies the causal
self-attention operator Attention followed by a feed-forward network FF with optional gating [28]
to produce the output X ′ = (x′

1, x
′
2, . . . , x

′
T) ∈ RT×d:

X ′ = f(X) = FF(Attention(X)), (1)

2

The causal Attention operator projects each input token xt with matrices Wq,Wk,Wv ∈ Rd×d into
key, query, and value matrices (K = XWk, Q = XWQ, V = XWV , respectively) then applies the
following relation to produce the attention output 2:

Oattn = Softmax
(
QK⊤/

√
d+M

)
V = AV (2)

where Oattn ∈ RT×d, and the causal attention mask M is an upper triangular matrix with nonzero
values of −∞.

2.2 KV Caching

When the Attention operator processes a new token xT+1, it must also recompute the prior KV
states for tokens x0, . . . , xT . This can be avoided by storing previously computed KVs in a KV cache
C = (K,V) for later reuse and append the new KV corresponding xT+1 to the cache. We can apply
Equation (2) to an existing KV cache C as follows:

oattnT+1 = Softmax
(
qT+1[K∥kT+1]

⊤/
√
d+M

)
[V ∥vT+1], (3)

where kT+1, qT+1, vT+1 are the key, query, and value states of xT+1, and [X∥xT+1] represents the
concatenation of xT+1 to an existing tensor X along the time dimension, M is the causal attention
mask accounting for both the KV cache and xT+1.

KV caching dramatically reduces the latency of Attention by only computing kT+1, qT+1, vT+1 for
each token xT+1 and reusing the KVs in C. However, the size of the KV cache increases linearly with
the number of processed tokens and dominates the memory footprint in long-context applications
[39].

2.3 KV Cache Eviction Methods

To limit the memory footprint of the KV cache, we fix a cache budget N , which is the maximum
number of tokens to be stored in the cache. If a new KV is added to the cache and the updated cache
size is greater than N , we must evict KVs from the cache until the cache budget is met. The eviction
policy πN (C) evicts a subset of KVs from C and returns a new cache C′ containing at most N KVs:

C ← ([K∥kt+1], [V ∥vt+1])

C′ ← πN (C)
(4)

Attention-Based Eviction Policies Attention-based eviction policies πattn
N use aggregated attention

values to rank each KVs’ relative importance and keep the N highest scoring KVs. For a given
attention weight aggregation function ϕ, the eviction policy πattn

N performs the following steps:

S = topk(ϕ(A), N)

K ′ = gather(K,S), V ′ = gather(V, S)
(5)

where topk(x,N) returns the indices of N -largest values of x and gather(X,S) gathers columns
indexed by S.

Attention-based eviction methods prioritize KV pairs with higher attention scores to past tokens.
This is problematic when applying block prompt processing: all input tokens are not simultaneously
accessible within Attention, only those in the current block and cache. This can result in an incorrect
eviction decision. Additionally, attention-based eviction often requires explicitly materializing A,
which can be resource intensive. We discuss the attention-based eviction policies further in Section 5.

2.4 KV Caching in Resource-Constrained Environments

Existing eviction policies like Zhang et al. [43], Oren et al. [24] focus on processing the entire input
prompt at once: KVs are computed for each token in the prompt and stored in a cache C, then the
eviction policy πN is applied to reduce the number of tokens in C′ to N , before token generation.

2The multi-head extension and output projections are omitted for brevity.

3

0 5 10 15 20 25 30 35 40 45 50 55 60

Key index

0

5

10

15

20

25

30

35

40

45

50

55

60

Ke
y

in
de

x

Cossine Similarity (Layer 2 Head 1)

0 5 10 15 20 25 30 35 40 45 50 55 60

Key index

0

5

10

15

20

25

30

35

40

45

50

55

60

Q
ue

ry
 in

de
x

Attention Weight (Layer 2 Head 1)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Layer 2 and Head 1

0 5 10 15 20 25 30 35 40 45 50 55 60

Key index

0

5

10

15

20

25

30

35

40

45

50

55

60

Ke
y

in
de

x

Cossine Similarity (Layer 11 Head 1)

0 5 10 15 20 25 30 35 40 45 50 55 60

Key index

0

5

10

15

20

25

30

35

40

45

50

55

60

Q
ue

ry
 in

de
x

Attention Weight (Layer 11 Head 1)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Layer 11 and Head 1

Figure 2: Cosine similarity of the keys and attention weights. Measured from Llama 3.2-3B-
Instruct and the first sample from the NarrativeQA dataset in LongBench. Truncated to the first 64
tokens for visualization.

However, the intermediate cache C before eviction will grow to the size of the input prompt. This can
often exceed model’s allocated memory limit when deploying long context applications in resource
constrained environments.

As demonstrated in efficient LLM inference frameworks [1, 14, 18, 36], one solution is to apply πN

more frequently by segmenting X into non-overlapping blocks X = [X0, X1, . . . , Xm−1], where
Xi = [xBi, . . . , xB(i+1)−1], B is the block size, and m = ⌈T/B⌉, and iteratively updating the cache
by exploiting causality, applying Equation (4) in a block-wise fashion:

Ci ← ([Ki−1∥kBi:B(i+1)−1], [Vi−1∥vBi:B(i+1)−1])

C′i ← πN (Ci), Ci ← C′i, C0 = ∅,
(6)

where kBi:B(i+1)−1 and vBi:B(i+1)−1 are the keys and values selected from Xi respectively, and
Ci = (Ki, Vi) is the KV cache after processing the first i prompt blocks. As in Equation (4), we
concatenate the B new KVs to the current cache, apply πN and update the cache in Equation (6).

We refer to this as block prompt processing. Its main advantage is the ability to control of the compute
and memory overhead of KV cache management by adjusting the block size B and cache budget
N . Note that, in a decoder-based architecture, applying block prompt processing to X with B = T
yields the same result as processing all of X at once and choosing B = 1 corresponds to the token
generation phase of LLM evaluation.

Attention-Based Token Eviction Challenges Despite its advantages, block prompt processing
introduces a challenge for KV cache eviction: eviction decisions in block Xi impact the cache used by
Xi+1, causing eviction errors to compound over time. When the model processes Xi, attention-based
eviction methods retain KVs with high attention weights derived from X0, . . . , Xi rather than all of
X , which may prematurely evict KVs with high weights in upcoming blocks.

3 Method

We demonstrate a negative correlation between attention scores and the cosine similarity among keys
(Section 3.1) and leverage this observation to develop KEYDIFF (Section 3.2), followed by a theoreti-
cal justification of KEYDIFF (Section 3.3) and preliminary evidence of its efficacy (Appendix C.2).

3.1 Correlation of Attention Scores and Key Dissimilarity

To address the shortcomings of attention-based KV cache eviction in Section 2.4, we develop
an alternative attention-free scoring metric that retains significant KVs across blocks while being
resource efficient. We recall the “attention sink" phenomenon: LLMs often assign high attention
weight to the first few tokens, regardless of the input [35, 29]; these highly weighted tokens are
called sink tokens. However, the index of the sink tokens can vary across heads and layers and reside
deeper in the sequence than the first few tokens. This observation motivates the following hypothesis:
high attention scores can be determined by the intrinsic properties of the keys rather than by any
particular combination of keys and queries.

Correlation of Key Similarity and Attention Scores We evaluate our hypothesis by inspecting
the cosine similarities between keys computed inside an attention block. We visualize the pairwise

4

cosine similarities between keys along with the attention weights in two particular heads and layers
in Figure 2. We observe that keys with lower cosine similarity with other keys exhibit higher relative
attention scores regardless of the choice of query, such as the 4th and 15th keys in Figure 2a, or the
1st key in Figure 2b. Pairwise cosine similarity of keys is solely a function of the keys in the cache,
which are independent of input queries; the surprising aspect of Figure 2 is the negative correlation
with attention weights. These distinctive keys essentially recover the attention sink phenomenon [35].

3.2 KEYDIFF

Based on the observation in Section 3.1, we propose KEYDIFF, which evicts tokens from the KV
cache based on key similarity. If the cache C has intermediate size n and budget N where n > N ,
πKEYDIFF
N is defined as:

S = topk(−CosSim(K)1, N),

K ′ = gather(K,S), V ′ = gather(V, S)
(7)

where K ∈ Rn×d and V ∈ Rn×d are the cached keys and values, CosSim(K) ∈ Rn×n is the
pairwise cosine similarity matrix of keys in K with CosSim(K)ij =

ki·kj

∥ki∥∥kj∥ , and 1 ∈ Rn is a
vector of ones.

0 1 2 3 4 5

0 1 2 3 4 5

Negative Cosine Similarity

1 2 4

Anchor

Top-K

Key-Value

Anchor

Eviction Score

Retained Token

Figure 3: An overview of KEYDIFF. (1)
KEYDIFF first computes the anchor vector
by taking the average of the keys in the KV
cache, (2) computes the cosine similarity be-
tween the keys and the anchor resulting in
eviction scores whose color intensities indi-
cate the score values, and (3) retains the KV
pairs with the lowest similarities.

Efficient Variant of KEYDIFF Unlike attention-
based eviction policies, KEYDIFF does not require
access to the attention weights A, facilitating opti-
mized attention kernels that do not materialize A
such as FlashAttention [8]. However, computing the
pairwise cosine similarities runs in O(n2) time. For-
tunately, we can compute the score of each token in
Equation (7) in O(n) as follows:

S = topk(−CosSim(µ(K̂), k̂i), N) (8)

where µ(K̂) = 1
n

∑n
i=1 k̂i and k̂i =

ki

||ki|| . We refer

to µ(K̂) as the anchor vector. We show this formu-
lation retains the same KVs of Equation (7) under
a mild condition. (see Appendix C.2). Our exper-
imentation has shown that the anchor vector µ(K̂)
can be replaced with µ(K) without losing accuracy
(see Table 15). We evaluate the efficient KEYDIFF
described in Figure 3 using unnormalized keys k in
all subsequent sections. Figures 5 and 8 to 10 visu-
alize the keys retained and evicted by sink attention
[35], TOVA [24] and KEYDIFF via PCA. KEYDIFF retains more varied keys. A full complexity and
FLOP analysis can be found in Appendices B and B.1

KEYDIFF with Sliding Window In tasks such as reasoning and coding, where the most recent
tokens are often important, we can augment KEYDIFF and its efficient variant to use a percentage
of the cache budget for a sliding window [6], which we call KEYDIFF with sliding window. This
extension introduces no complexity or memory overhead and we observe better results on certain
tasks than vanilla KEYDIFF (Table 14 and Appendix E).

3.3 Why KEYDIFF Works: A Theoretical Perspective

To solidify the theoretical foundation of KEYDIFF and show that KEYDIFF ultimately selects keys
most aligned with queries, we prove the following two results. We first validate the relationship
between cosine similarity and attention scores observed in Figure 2 by bounding the attention score
of a new incoming key k⋆ in terms cosine similarity with a fixed query q:
Lemma 3.1. Suppose that for a fixed query token q, there is a set of key tokens {ki}ni=1 such that
||ki||22 < M, ∀ i. Without loss of generality suppose ||q|| = 1 and assume k∗ is a key not in {ki}ni=1

5

(a) Sink Attention (b) TOVA (c) KEYDIFF (d) Retained keys only

Figure 5: (a, b, and c) PCA Visualizations in two dimensions of a key cache managed with Sink,
TOVA, and KEYDIFF. Retained tokens are blue, while evicted tokens are orange. Keys are taken
from layer 5 and head 3 of Llama3.2-3B-Instruct, and generated using the NarrativeQA dataset. (d)
PCA visualization of the retained keys for each KV cache eviction method.

with ||k∗||22 < M that has attention weight w > 0. Then, for n→∞,

− log(1− w)

2M
− 1 ≤ CosSim(k∗, q)

We then establish a relationship between the cosine similarities of k⋆, q, and the mean of prior keys k̄:
Theorem 3.2. Consider tokens k∗, q as above, and the average of the keys tokens k̄. Suppose
CosSim(k∗, q) = βq > 0 and CosSim(k̄, q) = αq < 0. Then

CosSim(k̄, k∗) ≤ 1 + αqβq − 0.5α2
q − 0.5β2

q . (9)

20 10 0 10
1st principle component

7.5

5.0

2.5

0.0

2.5

5.0

7.5

2n
d

pr
in

cip
le

 c
om

po
ne

nt

Query Key PCA Plot (Layer0 Head0)

Query
Top KeyDiff key
Average key
Key

-1.00

-0.09
-0.64

-0.64

Figure 4: PCA embedding of keys and queries
from Llama 3.2 3B

By combining Lemma 3.1 and Theorem 3.2,
we establish a relationship between the attention
weight w and the KEYDIFF score CosSim(k̄, k∗).
As CosSim(k̄, q) decreases and CosSim(k∗, q) in-
creases (along with the attention weight w), then
CosSim(k̄, k∗) tends to−1: this means KEYDIFF se-
lects distinct keys most aligned with q. We visualize
this in Figure 4 with a PCA embedding of keys and
queries from a single head of Llama 3.2 3B, high-
lighting the relationship between top scoring keys
via KEYDIFF, the anchor vector and queries. Simi-
lar trends are found from the other layers and heads
as shown in Figure 11. The proofs of Lemma 3.1
and Theorem 3.2 are in Appendix C.3, along with
empirical motivation for the chosen assumptions.

4 Experiments

In this section, we empirically demonstrate the effectiveness of KEYDIFF. We begin with a description
of competing, state-of-the-art eviction methods, followed by a detailed description of the evaluation
setup, then present our experimental results. Our findings can be summarized as follows:

• Needle-In-a-Haystack. KEYDIFF outperforms competing eviction policies on the Needle-In-A-
Haystack benchmark (Section 4.1).

• LongBench. KEYDIFF outperforms competing eviction policies with block size B = 128 on
LongBench, achieving an 1.5% accuracy drop with a 6K cache budget (∼33% compression rate)
and ≤ .04% with a 8k cache budget (∼23% compression rate) with Llama-3.1-8B-Instruct and
Llama-3.2-3B-Instruct (Section 4.2).

• Reasoning. KEYDIFF performs competitively on the Math-500 reasoning benchmark with other
eviction methods using the DeepSeek-R1-Distill-Qwen-7B and Llama-8B, and shows near eviction-
free baseline performance when augmented with a sliding window (Section 4.3) for DeepSeek-R1-
Distill-Llama-8B.

• Ablation Study. We perform an ablation study on the main parameters of KEYDIFF and show
that utilizing negative cosine similarity as the eviction criteria and the mean of cached keys as the
anchor vector performs best. (Section 4.4).

6

10
00

42
22

74
44

10
66

7
13

88
9

17
11

1
20

33
3

23
55

6
26

77
8

30
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) TOVA

10
00

42
22

74
44

10
66

7
13

88
9

17
11

1
20

33
3

23
55

6
26

77
8

30
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(b) SnapKV

10
00

42
22

74
44

10
66

7
13

88
9

17
11

1
20

33
3

23
55

6
26

77
8

30
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(c) KEYDIFF

Figure 6: Accuracy across document length and needle depth for needle in a haystack test. Cache
size is 6K with B = 128.

• Efficiency. We compare the end-to-end inference latency of KEYDIFF, [20] and [24] and observe a
30% latency improvement with KEYDIFF (Section 4.5).

Experimental Setup We apply several cache eviction methods to several decoder-only transformer-
based language models, including Llama 3.1-8B-Instruct [10], Llama 3.2-3B-Instruct [10], and Qwen
2.5-3B/7B-Instruct [38]. We evaluate these models using H2O [43], TOVA [24], SnapKV [20], and
StreamingLLM [35], (or “sink attention") cache eviction policies, along with the eviction-free model
as a baseline. We simulate a resource constrained environment by processing prompts and generating
responses using Equation (6), with a block size of B = 128 for prompt processing and B = 1 for
token generation using greedy decoding for all experiments. We denote the cache budgets of 2048,
4096, 6144 and 8192 as 2K, 4K, 6K and 8K, respectively.

4.1 Needle In a Haystack

To compare the impact of various cache eviction policies on fact retrieval, we conduct the “Needle In
a Haystack" test [21, 16]. This test embeds specific information (“needle") at different points within
a body of unrelated text (“haystack"); finding and retaining the needle is challenging for eviction
policies, which can’t know what information must be retained during block prompt processing. The
results are shown in Figure 6 and Figure 19, where we show the recall accuracy of Llama3.2-3B-
Instruct across different document lengths (x-axis) and needle depths (y-axis) with a cache size of
6K. KEYDIFF performs similarly to TOVA, SnapKV and sink attention for shorter documents and
outperforms all three methods as the document length increases.

4.2 LongBench

LongBench [4] is a bilingual, multi-task benchmark suite for LLMs, providing a comprehensive
stress test for long prompt inputs. LongBench is useful for evaluating cache eviction methods in a
resource constrained environments with a fixed memory budget: 51% of prompts are longer than
the largest KV cache size of 8K. For cache budgets of 6k and 8k tokens, prompts in LongBench are
compressed by 33% and 23% respectively on average, (see Appendix F.3 for more detail.)

Table 1 summarizes the evaluation results of Llama 3.1-8B-Instruct and Llama 3.2-3B-Instruct on the
English subset of LongBench with 2K, 4K, 6K, and 8K cache budgets using various eviction policies
with block prompt processing enabled with B = 128. As shown in Table 1, KEYDIFF outperforms
other eviction strategies across most tasks, even demonstrating better performance with smaller cache
budgets. KEYDIFF shows significant a improvement on the PassageRetrieval-en (PR-en) dataset,
which tests whether long-term dependencies within a long prompt can be correctly recognized [4],
while achieving near full-context model performance even with the smallest budget. Adding a sliding
window to KEYDIFF improves coding task performance (Table 14). We observed similar trends in
the full LongBench task suite as shown in Table 11 and in the additional results in Appendix F.

KEYDIFF exhibits similar or better performance compared to competing methods. Notably, the
attention-based methods (e.g., H2O, TOVA, and SnapKV) show significant performance improve-
ments over the B = 128 case. This result supports our hypothesis: an eviction scheme robust to
changes in the scope of comparison among tokens is essential in memory constrained environments
where token-wise attention weight can’t be fully materialized.

Additional Results We present the full evaluation results in Table 11 and more complete compar-
isons on LongBench in Appendix F, such as: standard prompt processing with a single large block

7

Table 1: Llama-3.1-8B/3.2-3B-Instruct LongBench results with B = 128 (Higher is better). We
highlight the best and second best methods within a given budget with bold and underline. We omit
Chinese dataset results and other model results due to space limit. The full evaluation results are in
Table 11. †: A subset of samples (183/200) were evaluated due to OOM errors.

Single Doc. QA Multi Doc. QA Summarization Fewshot Learning Synthetic Code

Narrative QA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount PR-en Lcc RB-P Avg.

Llama3.1-8B 30.05† 47.00 56.12 57.33 47.81 32.25 34.86 25.32 27.02 73.00 91.61 43.37 8.33 99.50 61.66 51.94 49.20

H2O

2K 1.74 21.15 25.33 26.11 24.15 8.78 2.17 2.70 16.78 44.00 29.36 7.62 2.25 5.88 40.15 12.14 16.89
4K 4.07 36.16 36.00 33.52 32.87 17.78 6.66 5.95 24.09 55.00 47.65 17.41 4.00 24.50 54.85 21.43 26.37
6K 8.52 43.31 44.80 40.03 42.46 21.68 11.85 8.78 26.03 62.00 56.39 25.72 5.75 45.50 58.62 29.53 33.19
8K 13.85 44.94 47.81 43.64 44.90 23.65 18.78 11.35 26.49 69.50 69.05 33.41 5.25 62.50 59.74 36.26 38.20

TOVA

2K 22.57 37.26 39.43 45.74 34.48 14.77 28.87 21.17 26.95 62.50 90.73 42.74 0.00 18.00 62.68 52.48 37.52
4K 22.68 44.55 47.87 46.76 44.54 20.56 30.95 22.13 26.96 61.50 90.56 43.27 3.00 43.50 61.62 53.40 41.49
6K 24.59 45.93 53.92 55.09 47.43 25.07 32.33 24.10 27.00 68.50 90.81 43.89 4.25 67.00 61.50 52.39 45.24
8K 24.86 46.78 54.83 54.52 49.00 26.40 33.44 24.76 27.00 71.00 91.11 43.29 6.25 87.00 61.49 51.79 47.09

Sink

2K 21.83 34.27 29.24 38.64 29.50 12.59 28.51 20.21 26.62 65.00 89.46 42.20 2.00 25.50 64.95 59.54 36.88
4K 22.94 43.01 39.08 44.04 41.39 19.09 31.08 21.57 26.78 70.00 91.53 42.29 3.00 38.50 62.12 58.84 40.95
6K 25.41 47.40 44.13 47.39 45.73 21.90 32.53 22.19 26.87 72.00 91.25 43.41 3.08 52.50 62.22 56.24 43.39
8K 23.53 46.63 48.68 49.61 47.16 21.14 33.10 23.20 26.92 72.00 91.29 43.79 3.25 66.00 62.18 56.43 44.68

SnapKV

2K 21.81 37.22 37.19 46.10 35.42 16.53 29.83 21.05 26.77 61.00 88.84 42.56 4.03 51.50 62.37 51.45 39.60
4K 24.79 44.22 47.30 48.49 46.73 20.55 32.19 22.68 26.95 67.50 90.98 43.14 5.17 89.50 61.44 51.20 45.18
6K 24.10 45.57 50.44 53.12 48.41 24.27 33.43 23.53 27.03 71.50 92.28 43.58 5.25 98.00 61.32 52.16 47.12
8K 25.15 46.55 53.39 56.00 48.75 27.82 33.67 24.85 27.01 72.50 91.78 43.54 5.08 100.00 61.48 51.41 48.06

KEYDIFF

2K 26.64 41.73 50.99 51.59 46.47 22.84 29.02 23.86 26.76 66.50 85.92 39.26 3.17 96.00 59.17 39.42 44.33
4K 28.70 45.62 56.06 54.58 49.31 28.25 32.30 25.03 27.07 70.00 90.85 42.84 4.21 99.00 60.80 48.00 47.66
6K 29.90 46.33 55.11 56.80 49.50 31.52 33.44 24.58 26.98 72.00 90.99 43.10 5.27 99.50 61.40 49.70 48.51
8K 33.57 46.77 55.48 56.87 49.37 30.88 34.17 25.12 27.01 72.50 92.28 42.81 5.83 99.50 61.48 50.90 49.03

Llama3.2-3B 23.76 40.23 50.09 50.69 42.29 26.84 33.09 24.30 25.21 72.50 90.11 42.58 3.00 96.50 56.22 56.52 45.87

H2O

2K 1.63 19.96 20.20 18.02 19.56 2.88 0.78 1.55 15.97 41.00 21.97 9.83 0.50 0.50 39.71 13.91 14.25
4K 2.92 31.94 33.23 24.49 28.08 7.55 5.44 6.30 22.77 53.00 38.85 20.33 1.50 7.50 51.23 22.94 22.38
6K 4.62 38.81 39.06 34.66 35.52 15.21 10.51 10.01 24.25 61.50 53.23 27.37 0.50 13.00 54.55 32.29 28.44
8K 9.65 39.66 43.20 38.09 40.41 21.46 17.80 13.28 24.67 70.00 64.30 32.19 2.00 24.50 55.00 39.09 33.46

TOVA

2K 17.14 30.14 32.44 35.96 30.05 13.08 26.15 19.70 25.04 56.50 87.81 40.48 2.50 11.50 55.51 52.36 33.52
4K 20.52 39.53 42.47 44.12 38.42 18.22 29.36 21.36 24.96 63.50 88.98 41.50 3.00 23.50 55.72 56.66 38.24
6K 20.22 39.78 45.86 49.08 41.54 20.43 30.50 22.17 25.11 66.50 89.00 42.50 4.00 46.50 55.57 57.53 41.02
8K 21.08 40.67 49.07 48.69 41.93 23.05 31.64 22.85 25.21 69.00 89.25 42.19 2.50 71.00 55.77 57.47 43.21

Sink

2K 16.85 30.69 26.58 33.26 25.27 13.82 26.74 19.15 25.15 65.00 86.17 40.79 1.50 19.50 56.65 52.73 33.74
4K 19.46 38.61 36.22 41.97 35.84 13.37 29.34 20.19 25.06 71.00 88.06 41.31 2.50 35.50 56.48 52.43 37.96
6K 19.33 40.29 37.95 46.48 40.29 15.31 30.43 21.35 25.14 71.50 88.93 42.04 3.50 47.00 56.55 54.11 40.01
8K 20.15 40.02 41.94 48.15 42.24 16.01 31.64 22.10 25.20 73.00 89.26 42.37 3.50 62.50 56.86 56.63 41.97

SnapKV

2K 17.38 31.37 31.48 37.77 30.05 11.54 27.03 19.93 24.97 59.00 88.13 40.48 3.50 32.50 56.32 55.91 35.46
4K 19.85 39.22 39.86 46.70 37.98 16.64 29.79 21.21 25.01 65.50 89.35 40.95 2.50 62.50 55.74 56.88 40.60
6K 20.83 39.65 44.48 49.30 40.18 20.28 31.27 22.73 25.09 69.00 89.95 41.47 4.00 85.00 55.69 57.82 43.55
8K 20.49 40.80 48.16 48.78 41.65 24.79 31.81 23.46 25.17 70.00 90.17 41.99 5.00 94.00 55.77 57.29 44.96

KEYDIFF

2K 18.29 36.65 45.44 46.09 35.41 13.79 28.16 21.45 25.01 60.00 85.24 37.00 1.00 60.50 54.13 42.01 38.14
4K 22.34 40.60 49.15 50.14 40.30 21.65 31.38 23.44 25.06 66.50 87.92 41.41 2.50 88.50 55.55 52.24 43.67
6K 22.29 40.68 50.14 51.74 42.19 24.83 32.39 23.53 25.19 71.00 90.02 42.00 3.00 95.00 55.86 54.39 45.27
8K 22.41 40.77 50.10 49.83 43.58 28.09 32.78 23.60 25.17 72.00 90.17 42.46 3.50 96.50 55.85 55.65 45.78

(i.e. B =∞) in Table 10; eviction method performance with Qwen 2.5-3B/7B-Instruct in Table 12;
performance behavior with block sizes B = [64, 256] in Table 13; and performance on KEYDIFF
combined with a sliding window as described in Section 3.2. We also compare against the L2-norm
minimizing eviction method of [9] in Table 11.

4.3 Math-500 Reasoning Benchmark

Reasoning is an important long-context task for LLMs. Unlike other long-context use cases, reasoning
typically involves a relatively short prompt followed by a long generation, which presents unique
challenges for token eviction methods. To evaluate the effectiveness of token eviction methods, we
apply KEYDIFF and SnapKV to the DeepSeek-R1-Distill-Qwen-7B and Llama-8B distilled models
[12], and assess their performance on the Math-500 reasoning benchmark [13]. Surprisingly, we
found that Llama equipped with KEYDIFF and a moderate KV cache budget performs comparably to,
or slightly better than, the eviction-free baseline, while also outperforming SnapKV. We kindly refer
the reader to Appendix E for additional details on the reasoning task evaluation.

4.4 Ablation Study

We evaluate the design choices of KEYDIFF, including the similarity metrics and the choice of the
anchor vector, and validate the efficacy of KEYDIFF. We provide a full description of the test setup
in Appendix G and summarize the findings here:

• KEYDIFF anchor choice does not greatly impact benchmark accuracies (See Table 15).

• KEYDIFF using cosine similarity as the distance metric outperforms other metrics (See Table 16)

4.5 Latency and Complexity

Additionally, in order to demonstrate that KEYDIFF decreases end-to-end inference latency, we
measured time to first token for the Llama 3.2 3B instruct model using different block prompt

8

Figure 7: Time-to-first-token (TTFT) for Llama 3.2-3B using Flash Attention with different eviction
strategies with block prompt processing sizes 64, 128, and 256.

processing sizes and cache strategies. These results are visualized in Figures 7 and 17. Since
KEYDIFF does not require attention weight materialization, FlashAttention [8] can be used, resulting
in up to 30% lower latency than TOVA and SnapKV. We compare the complexity of KEYDIFF with
competitors in Appendix B and perform a complete FLOP count in Appendix B.1.

5 Related Work

Sparse Attention LLMs often exhibit high attention sparsity, where a small subset of keys receives a
significant proportion of attention scores. This characteristic allows sparse approximation techniques
to reduce the computational cost of attention. Similar to PagedAttention [18], Tang et al. [30]
estimates the importance of a page (a contiguous set of keys) to a given query, whereas Rehg [26]
further refined the budgets in a per-head manner. On the contrary, sample-based methods [44, 27]
attempt to approximate token importance by inspecting the attention scores from the last few queries
or certain query channel dimensions. Despite their effectiveness in reducing computational costs,
these methods do not address the memory overhead of the KV cache, which typically retains all KVs.

KV Cache Compression Different approaches to compress the KV cache include architecture
modification such as GQA [2], which shares a KV cache across a small number of heads. Other
techniques to compress the KV cache include quantization such as in [15, 23, 42] in which the authors
use various techniques to take advantage of existing patterns to efficiently quantize and compress the
KV cache. More related to our work [40] uses a scoring mechanism to determine the precision of the
quantization for different tokens.

Token Eviction Methods Unlike the sparse attention and KV cache compression methods, eviction
methods evict KVs from the cache to reduce the size of the KV cache. As discussed in Section 2.3,
the majority of the token eviction methods employ their own rules to decide the importance of the
tokens by manipulating the attention score A. For example, by appropriately choosing the aggregation
functions ϕ(A) of Equation (4), we can obtain existing attention-based eviction methods as discussed
in Appendix A.1. Attention-based eviction may be a better choice when the entire prompt is being
processed at once, as the eviction can be done by assessing the importance of all tokens simultaneously.
However, computing the full attention score of long prompts could be prohibitively expensive in
resource-constrained environments.

6 Conclusion

Inspired by our observation that distinctive keys tend to have high attention scores, we propose
KEYDIFF, a training-free KV cache eviction method based on key similarity that enables large
language models to operate in memory and compute constrained environments. We justify KEYDIFF
by showing that it minimizes the pairwise cosine similarity among keys in the KV cache, maximizing
the aforementioned diversity. KEYDIFF significantly outperforms state-of-the-art KV cache eviction
methods under similar memory constraints, with only a 1.5% and 0.04% accuracy drop from the
non-evicting baseline while achieving 33% and 23% KV cache memory reduction on LongBench.
Similar to other token eviction methods, KEYDIFF is primarily designed and evaluated for the GQA
attention mechanism used in models such as Llama and Qwen. In future work, we plan to extend
KEYDIFF for seamless integration with other attention variants, such as Multi-Head Latent Attention
[12].

9

References
[1] Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S Gulavani, and

Ramachandran Ramjee. Sarathi: Efficient llm inference by piggybacking decodes with chunked
prefills. arXiv preprint arXiv:2308.16369, 2023.

[2] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and
Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. arXiv preprint arXiv:2305.13245, 2023.

[3] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik Cho, Carlo C
Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. Llm in a flash: Efficient large
language model inference with limited memory. arXiv preprint arXiv:2312.11514, 2023.

[4] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao
Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A
bilingual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 3119–3137, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172.
URL https://aclanthology.org/2024.acl-long.172.

[5] Federico Barbero, Álvaro Arroyo, Xiangming Gu, Christos Perivolaropoulos, Michael Bronstein,
Razvan Pascanu, et al. Why do llms attend to the first token? arXiv preprint arXiv:2504.02732,
2025.

[6] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[8] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

[9] Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective
l_2 norm-based strategy for kv cache compression. arXiv preprint arXiv:2406.11430, 2024.

[10] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[11] Nathan Godey, Éric de la Clergerie, and Benoît Sagot. Anisotropy is inherent to self-attention
in transformers. arXiv preprint arXiv:2401.12143, 2024.

[12] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[13] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[14] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad Awan, Jeff Rasley, Samyam
Rajbhandari, Reza Yazdani Aminabadi, Heyang Qin, Arash Bakhtiari, Lev Kurilenko, et al.
Deepspeed-fastgen: High-throughput text generation for llms via mii and deepspeed-inference.
arXiv preprint arXiv:2401.08671, 2024.

[15] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm
inference with kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

10

https://aclanthology.org/2024.acl-long.172

[16] G. Kamradt. Needle in a haystack - pressure testing llms. GitHub repository, 2023. URL
https://github.com/gkamradt/LLMTest_NeedleInAHaystack.

[17] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

[18] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

[19] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing
Systems, 33:9459–9474, 2020.

[20] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,
Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for
before generation. arXiv preprint arXiv:2404.14469, 2024.

[21] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. Transactions of
the Association for Computational Linguistics, 12:157–173, 2024.

[22] Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov,
Yunyang Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm:
Optimizing sub-billion parameter language models for on-device use cases. arXiv preprint
arXiv:2402.14905, 2024.

[23] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv
preprint arXiv:2402.02750, 2024.

[24] Matanel Oren, Michael Hassid, Yossi Adi, and Roy Schwartz. Transformers are multi-state
rnns. arXiv preprint arXiv:2401.06104, 2024.

[25] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[26] Isaac Rehg. Kv-compress: Paged kv-cache compression with variable compression rates per
attention head. arXiv preprint arXiv:2410.00161, 2024.

[27] Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas
Orr. Sparq attention: Bandwidth-efficient llm inference. In Forty-first International Conference
on Machine Learning.

[28] Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

[29] Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

[30] Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

[31] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[32] Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality for llm
quantization. arXiv preprint arXiv:2402.15319, 2024.

11

https://github.com/gkamradt/LLMTest_NeedleInAHaystack

[33] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[34] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[35] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024.

[36] Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Mengwei Xu, and Xuanzhe
Liu. Empowering 1000 tokens/second on-device llm prefilling with mllm-npu. arXiv preprint
arXiv:2407.05858, 2024.

[37] Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha,
Caiming Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv
preprint arXiv:2407.21018, 2024.

[38] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu,
Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin
Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

[39] Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramid-
infer: Pyramid kv cache compression for high-throughput llm inference. arXiv preprint
arXiv:2405.12532, 2024.

[40] June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via
importance-aware mixed precision quantization. arXiv preprint arXiv:2402.18096, 2024.

[41] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

[42] Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per
channel: Efficient large language model inference with coupled quantization. arXiv preprint
arXiv:2405.03917, 2024.

[43] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024.

[44] Qianchao Zhu, Jiangfei Duan, Chang Chen, Siran Liu, Xiuhong Li, Guanyu Feng, Xin Lv,
Huanqi Cao, Xiao Chuanfu, Xingcheng Zhang, et al. Sampleattention: Near-lossless accelera-
tion of long context llm inference with adaptive structured sparse attention. CoRR, 2024.

12

https://arxiv.org/abs/2407.10671

KEYDIFF
Supplementary Material

A Extended Related Work

A.1 Attention-based eviction methods

In this section, we provide a unified framework to understand prominent attention-based eviction
methods. As mentioned in Equation (5), we can specify attention-based eviction methods under the
unified framework with proper selection of the aggregation function ϕ(A) as follows:

• TOVA [24]: ϕTOVA(A) = A−1,:,

• H2O [43]: ϕH2O(A) = Aprev +A⊤1,

• SnapKV [35]: ϕSnapKV(A) = (A⊤1) ∗K, where K is a vector of 1
k and k is the kernel size of

average smoothing.

B Runtime and Memory Complexity

We analyze the runtime and memory complexity for the prominent KV cache eviction algorithms
in Table 2. For a given block size B and cache budget N , KEYDIFF requires O(N + B) runtime
and memory. The same holds true for TOVA, since it only requires computing the bottom row of
A. Sink attention retains the k first tokens in the input sequence, followed by a sliding window of
size L, resulting in O(k + L) = O(N) memory and runtime, since k + L equals the chosen cache
budget. SnapKV computes attention over a sliding window of size L against N +B keys from the
incoming block and the key cache, so the memory and runtime complexity is O((N +B)L). H2O
accumulates attention weights over all tokens, and computes the attention over the current block, so it
will require O(NB +B2) memory overhead and runtime. We summarize these details in Table 2

Table 2: Runtime and memory complexity of token eviction methods.

Runtime Complexity Memory Complexity

KEYDIFF O(N +B) O(N +B)
TOVA O(N +B) O(N +B)
H2O O(NB +B2) O(NB +B2)
SnapKV O((N +B)L) O((N +B)L)
Sink O(N) O(1)

B.1 FLOP count of KeyDiff

The bulk of the computation in KeyDiff (neglecting the ‘topk‘ operator) is the following two expres-
sions:

• µ(K̂) = 1
n

∑n
i=1

ki

∥ki∥

• si = CosSim(µ(K̂), ki) =
µ(K̂)·ki

max(∥µ(K̂)∥·∥ki∥, ϵ)
, i = 1, . . . , n

We will count the total number of additions, multiplications, square roots and divisions required by
KeyDiff separately, since division and square root implementation are hardware-dependent, then

13

assign weights to each operation at the end for a final count. Norms are assumed to be 2-norms. We
count the FLOPs required for each operation as follows:

• ∥ki∥ =
√
ki · ki: since ki ∈ Rd: d multiplications, d− 1 additions, one square root. Repeating for

each i, this contributes nd multiplications, n(d− 1) additions, and n square roots.

• ki

c : naively, d divisions, but can be rewritten as one division and d multiplications. Repeating for
each i, this contributes nd multiplications and n divisions.

• 1
n

∑n
i=1 ci, for c ∈ Rd: one division, (n− 1)d additions.

Combining the above, we can compute the anchor vector using 2nd multiplications, 2nd− n− d
additions, n square roots and n+ 1 divisions.

To compute the cosine similarity score, we have from above that µ(K̂) ·ki requires nd multiplications
and n(d− 1) additions. Also from above, we have that computing ∥µ(K̂)∥ requires d multiplications,
d − 1 additions and one square root. We reuse the computation of ∥ki∥ from the previous step
and compute ∥ki∥∥µ(K̂)∥ in n multiplications and max(∥ki∥∥µ(K̂)∥, ϵ) with more n additions
(assuming boolean comparison equals addition in cost). We can then divide through to compute

µ(K̂)·ki

max(∥ki∥∥µ(K̂)∥, ϵ) with n divisions. Therefore, computing the cosine similarity between the anchor
and each key requires nd + d + n multiplications, nd + d − 1 additions, n + 1 divisions and one
square root.

Adding everything up, KeyDiff requires:

1. 3nd+ d+ n multiplications,
2. 3nd− n− 1 additions,
3. 2n+ 2 divisions,
4. n+ 1 square roots,

If, based on x86 instruction tables, we declare additions and square roots cost one FLOP (i.e. can be
computed in one cycle), multiplications cost three FLOPs, division is roughly 47 FLOPs, we arrive at
a final FLOP count of:

3(3nd+ d+ n) + (3nd− n− 1) + 47 ∗ (2n+ 2) + (n+ 1) = (12d+ 97)n+ 3d+ 94. (A.1)

This is linear in the number of keys n with a small constant, relative to the quadratic complexity of
the attention operator.

C KEYDIFF: A Theoretical Perspective

C.1 Additional PCA Visualizations

In order to demonstrate the phenomena in Figure 11 persists across all heads and layers, we have
included several more visualizations as seen in Figure 8, Figure 9, and Figure 10.

(a) Sink Attention (b) TOVA (c) KEYDIFF (d) Retained keys only

Figure 8: (a, b, and c) PCA Visualizations in two dimensions of a key cache managed with Sink,
TOVA, and KEYDIFF. Retained tokens are blue, while evicted tokens are orange. Keys are taken
from layer 27 and head 4 of Llama3.2-3B-Instruct, and generated using the NarrativeQA dataset. (d)
PCA visualization of the retained keys for each KV cache eviction method

14

(a) Sink Attention (b) TOVA (c) KEYDIFF (d) Retained keys only

Figure 9: Keys taken from layer 20 and head 0 of Llama3.2-3B-Instruct

(a) Sink Attention (b) TOVA (c) KEYDIFF (d) Retained keys only

Figure 10: Keys taken from layer 8 and head 1 of Llama3.2-3B-Instruct

20 10 0 10 20
1st principle component

7.5

5.0

2.5

0.0

2.5

5.0

7.5

2n
d

pr
in

cip
le

 c
om

po
ne

nt

Query Key PCA Plot (Layer0 Head1)
Query
Top KeyDiff key
Average key
Key

-1.00-0.09

-0.64

-0.64

(a) Layer 0 Head 1

10 5 0 5 10 15
1st principle component

5

0

5

10

2n
d

pr
in

cip
le

 c
om

po
ne

nt

Query Key PCA Plot (Layer10 Head0)
Query
Top KeyDiff key
Average key
Key

-1.000.84

-0.39
-0.39

(b) Layer 10 Head 1

15 10 5 0 5 10
1st principle component

6

4

2

0

2

4

6
2n

d
pr

in
cip

le
 c

om
po

ne
nt

Query Key PCA Plot (Layer20 Head0)
Query
Top KeyDiff key
Average key
Key

-1.00 0.87

-0.68

-0.69

(c) Layer 20 Head 1

10 5 0 5 10 15
1st principle component

6

4

2

0

2

4

6

2n
d

pr
in

cip
le

 c
om

po
ne

nt

Query Key PCA Plot (Layer25 Head0)

Query
Top KeyDiff key
Average key
Key

-1.000.68
-0.63
-0.63

(d) Layer 25 Head 1

Figure 11: PCA plots of Query and Keys from Llama-3.2-3B-Instruct

C.2 Derivation of KEYDIFF from an Optimization Perspective

To leverage the observation in Section 3.1, we minimize the sum of pairwise cosine similarities of
each key retained in the cache. This can be formulated as a constrained optimization problem with
the keys K ∈ Rn×d whose element is ki, and budget N smaller than n:

minimize
S

∑
i∈S

∑
j∈S

ki · kj
∥ki∥∥kj∥

subject to S ⊆ {1, . . . , n},
|S| = N

(A.2)

This is a combinatorial optimization problem, which is difficult to solve efficiently, particularly during
inference. However, we can relax Equation (A.2) to produce a more tractable approximation to
the original problem. First, we rewrite Equation (A.2) by normalizing keys ki such that k̂i = ki

∥ki∥
resulting in:

∑
i∈S

∑
j∈S

k̂i · k̂j =
∑
i∈S

k̂i ·

∑
j∈S

k̂j

 =
∑
i∈S

⟨k̂i, Nµ(K̂S)⟩

where µ(K̂S) =
1
N

∑
j∈S

k̂j is the empirical mean of normalized keys in S. This objective requires

recomputing µ(K̂S) for each candidate subset S. The sub-sampled mean tends to converge to the
mean over the entire set, the problem can be further relaxed by replacing µ(K̂S) with µ(K̂) =

15

1
n

∑n
i=1 k̂i. Dropping N from the objective (since it doesn’t affect the solution) yields:

minimize
S

∑
i∈S

k̂i · µ(K̂)

subject to S ⊆ {1, . . . , n},
|S| = N

(A.3)

The optimal solution of Equation (A.3) can be found by sorting tokens using their cosine similarity
with µ(K̂) and selecting the smallest N , leading to the algorithm described in Equation (8).

Key Cache Diversity and KEYDIFF To empirically verify KEYDIFF’s ability to retain diverse
keys, we apply PCA to the keys computed in an attention block of Llama 3.2-3B-Instruct after
evaluating a long context prompt. We visualize the distribution of retained and evicted keys by
applying sink attention [35], TOVA [24], and KEYDIFF as eviction policies in Figure 11. Visual
observation reveals the tokens retained by sink attention and TOVA tend to tightly cluster together
while KEYDIFF’s retained tokens are more evenly distributed. This observation generalizes across
heads and layers, as shown in Appendix C.1.

We also visualize the log determinant of the Gram matrix of the key cache log(det(KKT)) generated
using different eviction policies in Figure 12. This quantity corresponds to the volume of space
spanned by the keys in C. The distribution of volumes for KEYDIFF attains higher values, indicating
that the retained keys are more distinctive than TOVA and sink, corroborating the results of Figure 11.
Details of how these plots were generated are discussed in Appendix F.1.

940 950 960 970 980 990 1000 1010

log Volume
0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

KeyDiff
TOVA
Sink

Figure 12: Distribution of log
(
det
(
KKT

))
from the Qasper dataset in LongBench. Larger values

mean more of the key space is spanned by the key cache. KEYDIFF retains keys that span a greater
volume of the ambient space than TOVA or sink attention.

C.3 Attention Sinks and Approximate Collinearity

(a) Keys (b) Queries
Figure 13: Cosine similarity between keys and their mean (left) and queries and their mean (right)
across heads and layers

To better understand why there exists a negative correlation between cosine similarity between keys
and attention scores, we look to recent research that seeks to the importance of attention sinks in
decoder-based LLMs. The authors in [5] show that attention sinks emerge from training decoder-
based LLMs since they can denoise the model and prevent rank collapse by limiting over mixing
in attention heads. Moreover, attention patterns in decoder based models demonstrate that most

16

Figure 14: Cosine similarity of mean key and mean query for each head and layer.

attention logits are quite small (and almost always negative) for most keys and queries. This allows
the attention sink to have high attention activation, preventing over mixing in addition to allowing the
heads to specialize and selectively identify important tokens.

At the same time, the results in [11] suggest that hidden states, keys and queries are all approximately
collinear in the sense that CosSim(xi, xj)≫ 0. In geometric terms, this means that most key tokens
and query tokens lie in the same direction in Euclidean space. Our own results, seen in Figure 13
demonstrate that this is the case for both keys and queries. Our experiments show that most keys
and queries lie within a small angular distance from the mean key and query. More than this, we
see that across all heads, the mean key and mean query have negative cosine similarity Figure 14.
Moreover, as seen in Figure 15, we find that the norms of keys and queries are tightly clustered
around a relatively fixed value. This means that variations in the norm of key and query tokens
have less impact on the magnitude of attention scores than their direction. These three observations
indicate that most keys and queries combine to create uniformly small attention logits, and that larger
attention weights are constructed by projecting keys closer to the direction of the mean query. This
appears to be the fundamental mechanism through which over mixing is prevented: if most attention
activations are very small, each head can increase the activations of a small number of keys across
most queries selectively projecting them to be more aligned with the distribution of queries. This
hypothesis is further supported by the fact that sink tokens themselves often have small norm, which
results in an approximate no-op in the attention head as in [5], however in this case, the only way for
a key corresponding to a sink token to have high attention scores is if it is as parallel as possible to
the set of query tokens.

Figure 15: Distribution of L2 norms for keys and queries across heads and layers.

17

Figure 16: Cosine similarity between highest KEYDIFF scoring key token with mean query.

To verify the above hypothesis, we show Figure 16 that keys which have maximum angular difference
from the mean key are aligned with the mean query, resulting in very large attention weights. This
demonstrates how LLMs exploit the geometry of the hidden states and projections to limit over
mixing, and selectively identify important tokens.

To summarize, we have for all attention heads in decoder based transformer models:

• The majority of keys and queries are approximately collinear with their mean.

• Mean keys and mean queries have negative cosine similarity across all heads.

• Most keys and queries have a similar L2 norm.

• Decoder based attention heads can selectively increase attention weights for a fixed key by aligning
it with the mean query.

• Key token importance can hence be measured by the angular distance between a key and the mean
key.

We can show mathematically with some reasonable assumptions based on the above observations
that key tokens with persistently high attention scores must be geometrically aligned with queries.

Theorem C.1. Suppose that for a fixed query token q, there is a set of key tokens {ki}ni=1 such that
||ki||22 < M, ∀ i. Without loss of generality suppose ||q|| = 1, the scaling parameter is 1 and assume
k∗ is a key not in {ki}ni=1 with ||k∗||22 < M that has attention weight w > 0:

w =
exp(k∗⊤q)

exp(k∗⊤q) +
n∑

i=1

exp(k⊤i q)
.

Then

log(n
n+1)− log(1− w)

2M
− 1 ≤ CosSim(k∗, q)

18

Proof. To show this we have that

w =
exp(k∗⊤q)

exp(k∗⊤q) +
n∑

i=1

exp(k⊤i q)

w

(
exp(k∗⊤q) +

n∑
i=1

exp(k⊤i q)

)
= exp(k∗⊤q)

w

n∑
i=1

exp(k⊤i q) = (1− w) exp(k∗⊤q)

Note that −M ≤ k⊤i q ≤M and hence

w

n∑
i=1

exp(−M) ≤ (1− w) exp(k∗⊤q)

wn exp(−M) ≤ (1− w) exp(k∗⊤q)

wn exp(−M)

1− w
≤ exp(k∗⊤q)

log(wn)−M − log(1− w) ≤MCosSim(k∗, q)

log(wn)−M − log(1− w)

M
≤ CosSim(k∗, q)

log(exp(k∗⊤q)

exp(k∗⊤q)+
n∑

i=1
exp(k⊤

i q)
n)−M − log(1− w)

M
≤ CosSim(k∗, q)

log(exp(k∗⊤q)
(n+1) exp(M)n)−M − log(1− w)

M
≤ CosSim(k∗, q)

−MCosSim(k∗, q) + log(n
n+1)− 2M − log(1− w)

M
≤ CosSim(k∗, q)

log(n
n+1)− 2M − log(1− w)

M
≤ 2CosSim(k∗, q)

log(n
n+1)− log(1− w)

2M
− 1 ≤ CosSim(k∗, q)

Taking the limit as n→∞ produces Lemma 3.1

The above proof demonstrates that as long as the norms of the keys are bounded, in order for an
attention head to be able to freely allocate w attention weight to a given key k∗, the cosine similarity
between k∗ and q must be high, therefore k∗ and q must be approximately collinear.

Using this result, we can also show that as long as the cosine similarity between k∗ and q is high,
while the cosine similarity between k̄ and q is low, CosSim(k∗, k̄) is small. Note that, since empirical
results demonstrate that most keys have high cosine similarity with their mean k̄, a key with high
importance, approximately collinear to q, will also have low cosine similarity to k̄. Generally, this
also suggests that key tokens with low cosine similarity to k̄ have greater importance.

In order to show this, we need the following auxiliary result.

Lemma C.2. Suppose {x1, ..., xn} is an orthonormal basis of Rn and y ∈ Rn. Define αi =

CosSim(xi, y). Then
n∑

i=1

α2
i = 1.

19

Proof. Note that αi =
y⊤xi

||y||||xi|| =
y⊤xi

||y|| . If we expand y
||y|| in the basis {x1, ..., xn} we see that

y

||y||
=

n∑
i=1

(
y

||y||
⊤
xi

)
xi

=

n∑
i=1

αixi

But then, we know that since
∣∣∣∣∣∣ y

||y||

∣∣∣∣∣∣2
2
= 1, then

〈
n∑

i=1

αixi,
n∑

i=1

αixi

〉
= 1. But we have

〈
n∑

i=1

αixi,

n∑
i=1

αixi

〉
=

n∑
i=1

n∑
j=1

⟨αixi, αjxj⟩

=

n∑
i=1

⟨αixi, αixi⟩

=

n∑
i=1

α2
i

proving the result.

Theorem C.3. Consider tokens k∗, q, k̄ as above where k̄ is the average of the keys tokens. Suppose
CosSim(k∗, q) = βq > 0 and CosSim(k̄, q) = αq < 0. Then CosSim(k̄, k∗) ≤ 1 + αqβq − 1

2α
2
q −

1
2β

2
q .

Proof. Consider the cosine similarity of k̄ and k∗:

CosSim(k̄, k∗) =
k∗⊤k̄

||k∗||||k̄||

expand k̄ in an orthonormal basis which contains q, {q, r1, ..., rn−1} such that

k̄ = ||k̄||

(
αqq +

n−1∑
i=1

αiri

)

where αi = CosSim(k̄, ri). Additionally, define βi = CosSim(k∗, ri) and note that by the definition
of an orthonormal basis and the cosine similarity operation, using the result from Lemma C.2 we

have that α2
q +

n−1∑
i=1

α2
i = 1 and that β2

q +
n−1∑
i=1

β2
i = 1. Now we have that

k∗⊤k̄

||k∗||||k̄||
=

k∗⊤
(
||k̄||αqq +

n−1∑
i=1

||k̄||αiri

)
||k∗||||k̄||

= αqβq +
1

||k∗||

n−1∑
i=1

αik
∗⊤ri

= αqβq +

n−1∑
i=1

αiβi

≤ αqβq +

n−1∑
i=1

|αi||βi|

20

Table 3: Spearman correlation (ρ) between negative key cosine similarity and attention scores for
each transformer layer of Llama-3.2-3B-Instruct.

Layer 1 2 3 4 5 6 7

ρ 0.8997 0.9561 0.9332 0.9496 0.9517 0.9484 0.9587

Layer 8 9 10 11 12 13 14

ρ 0.9578 0.9534 0.9570 0.9628 0.9554 0.9658 0.9578

Layer 15 16 17 18 19 20 21

ρ 0.9477 0.9538 0.9280 0.9373 0.9328 0.9340 0.9311

Layer 22 23 24 Mean ± Std

ρ 0.9140 0.9060 0.8950 0.94 ± 0.02

Applying Young’s inequality we obtain

≤ αqβq +
1

2

n−1∑
i=1

α2
q + β2

q

= αqβq +
1

2
(1− α2

q) +
1

2
(1− β2

q)

= 1 + αqβq −
1

2
α2
q −

1

2
β2
q

Note that on the domain αq ∈ [−1, 0), βq ∈ (0, 1] the function 1 + αqβq − 1
2α

2
q − 1

2β
2
q is bounded

above by 1 and decreasing to − 1
2 as α→ −1. Hence, the smaller CosSim(k̄, q) = αq is, the smaller

CosSim(k̄, k∗) must be.

C.4 Correlation Analysis

We report the Spearman rank correlation between key cosine similarity and attention scores for
each layer of the Llama-3.2-3B-Instruct model. Correlations are averaged over randomly sampled
LongBench-Musique prompts. From Table 3, we observe a consistently high correlation (ρ ≈ 0.94 on
average) across all layers, indicating that geometrically distinctive keys (i.e., those with low pairwise
cosine similarity) are strongly aligned with tokens receiving higher attention scores. This empirical
evidence supports our theoretical claim in Section 3.3 that key diversity serves as a reliable proxy for
token importance.

D TTFT Analysis

We have measured end-to-end inference latency (measured as time to first token (TTFT)) for Llama
3.2-3B via the standard Huggingface API when the model is using eager attention and FlashAttention
as in Figure 17 and Figure 7. Tests are performed on NVIDIA A100 80GB GPUs. We test various
block sizes and KV cache budgets. KeyDiff outperforms TOVA and SnapKV with FlashAttention as
well as with eager attention for large cache budgets. We can see inference latency with KeyDiff is
independent of block size when using FlashAttention because of KeyDiff’s linear complexity and its
lack of required materialized attention weights.

E Math-500 reasoning benchmark

In order to measure the effectiveness of different caching methods on reasoning tasks, we tested
several different model using various caching algorithms on the Math 500 reasoning benchmark.
Specifically, we test KEYDIFF with a sliding window whose window size is 20% of the KV cache
budget, and SnapKV on the DeepSeek-R1-Distill-Llama-8B and DeepSeek-R1-Distill-Qwen-7B

21

Figure 17: TTFT for eager attention with different cache eviction strategies using block size 64, 128,
256 for block prompt processing.

models. We randomly sample 5 responses with TopP = 0.95, Temperature = 0.95 with the 4096,
6144, and 32,786 max generation lengths. The reported scores are the average of accuracies over the
random samples.

Table 4 summarizes the Math-500 evaluation results for Llama-8B. As shown in the table, token
eviction methods generally perform well even with KV cache budgets that are strictly smaller than
the maximum generation length. Surprisingly, we found that KEYDIFF slightly outperforms baseline
methods in certain configurations (e.g., KEYDIFF with a 2K budget for 4K generation length, and
KEYDIFF with a 4K budget for 8K generation length).

To further analyze the effectiveness of token eviction, we measure accuracy in cases where the context
length of the baseline method (i.e., prompt length + generation length) exceeds the available KV
cache budget. As shown in Table 5, for samples where eviction is actively triggered, KEYDIFF
continues to outperform the token eviction baseline (SnapKV), and often achieves accuracy close to
or slightly better than the non-evicting baseline.

We also conducted a similar evaluation on DeepSeek-R1-Distill-Qwen-7B and observed a slight
performance degradation for token eviction methods compared to full KV cache baselines (See
Tables 6 and 7.) However, KEYDIFF still demonstrates comparable performance to SnapKV overall.
This discrepancy may stem from architectural differences that Llama uses a lower GQA [2] ratio than
Qwen, which results in more information compression in the KV cache. We hypothesize that models
with more compression like Qwen are more sensitive to eviction since each evicted token contains
more information in Qwen than Llama by design.

F Additional discussion for LongBench

F.1 Empirical Motivation for KEYDIFF Setup

To generate Figure 11, we used the first sample from the test split of the narrativeqa task in LongBench
to prefill the KV cache of Llama3.2-3B-Instruct with a block size of B = 128. The KV cache had a
maximum size of 4096 while the sample was much longer, requiring KV eviction. We applied PCA
to the key cache and repeated the process for sink attention, TOVA and KEYDIFF.

To construct Figure 12, we sample 100 prompts from the Qasper dataset in LongBench [4], compute
the log determinant of KKT of the keys in the KV caches of each head and layer of Llama 3.2-3B-
Instruct using a cache budget of N = 2048 and a block size of B = 128, and plot the distribution in
Figure 12. We show this key distribution for sink attention, TOVA and KEYDIFF.

F.2 Experiment Setup

In this subsection, we provide the experimental setup for KEYDIFF and the baselines for the Long-
Bench experiments. The LongBench evaluation is conducted using the default parameters of the
LongBench evaluator with predefined prompt templates. Tests are performed on NVIDIA A100
80GB GPUs.

22

Table 4: Math 500 results on DeepSeek-R1-Llama-8B distilled model (Higher is better). We
highlight the methods showing the best performance within a given budget with boldface.

Method Max Gen. Length Budget Flex Match Exact Match Avg. Gen. Length

Full 4K N/A 0.711 0.537 2769

KeyDiff 4K 1024 0.695 0.531 2753
2048 0.720 0.546 2740

SnapKV 4K 1024 0.689 0.529 2759
2048 0.714 0.544 2757

Full 8K N/A 0.840 0.628 3812

KeyDiff 8K 2048 0.819 0.617 3888
4096 0.844 0.634 3805

SnapKV 8K 2048 0.805 0.610 3898
4096 0.828 0.627 3898

Full 32K N/A 0.898 0.668 6869

KeyDiff 32K
2048 0.883 0.662 7678
4096 0.894 0.668 7312
8192 0.894 0.667 7096

SnapKV 32K
2048 0.849 0.641 7509
4096 0.884 0.661 7218
8192 0.893 0.665 7005

For TOVA, H2O, and SnapKV, the set of attention weights computed from a single key cache
due to grouped query attention [2] is aggregated by taking the average over the attention weights.
Additionally, only for SnapKV, we apply average smoothing to the attention score with a kernel size
of 7 and keep the most recent 32 tokens in the cache, following the suggestion of the original paper.
For Sink, we used the first four tokens as the attention sink, following the suggestion of the original
paper.

F.3 Longbench dataset statistics

In this section, we provide the length statistics of the Longbench Benchmark and in-depth analysis of
compression ratios for the given KV cache budgets, such as 2K, 4K, 6K, and 8K.

Prompt lengths We measure the number of tokens in the samples using LLama tokenizer [31]. As
shown in Figure 18, LongBench exhibits variability in sample length from the datasets.

0.0000

0.0001

0.0002

De
ns

ity

Single Doc Qa
qasper
multifieldqa_en
multifieldqa_zh

0.0000

0.0002

0.0004

De
ns

ity

Multi Doc Qa
hotpotqa
2wikimqa
musique
dureader

0.0000

0.0001

0.0002

0.0003

De
ns

ity

Summarization
gov_report
qmsum
multi_news
vcsum

0 10000 20000 30000 40000 50000 60000
Prompt Length (#. tokens)

0.00000

0.00005

0.00010

De
ns

ity

Few Shot Learning
trec
triviaqa
samsum
lsht

0 10000 20000 30000 40000 50000 60000
Prompt Length (#. tokens)

0.0000

0.0002

0.0004

De
ns

ity

Synthetic
passage_count
passage_retrieval_en
passage_retrieval_zh

0 10000 20000 30000 40000 50000 60000
Prompt Length (#. tokens)

0.0000

0.0001

0.0002

0.0003

De
ns

ity

Code Completion
lcc
repobench-p

Figure 18: Histograms of sample lengths measured by number of tokens

Compression ratio The majority of other KV cache eviction studies assume an unconstrained
memory footprint. Before they compress the cache by applying an eviction policy, they first set the
target compression ratio and evict the appropriate number of KV pairs to satisfy the compression ratio
[43, 24, 20]. On the other hand, we fix the KV cache size and ensure the number of cached tokens is
less than or equal to the predefined cache size. Due to these differences, it is less straightforward to

23

Table 5: Math 500 results on DeepSeek-R1-Llama-8B distilled model (Higher is better). We
highlight the methods showing the best performance within a given budget with boldface.

Max Gen. Length = 4K

Num Tokens > 1K (497/500 samples)

Budget Flex Exact

Full N/A 0.709 0.534

KeyDiff 1024 0.693 0.528
SnapKV 1024 0.687 0.526

Num Tokens > 2K (240/500 samples)

Full N/A 0.604 0.449

KeyDiff 2048 0.618 0.463
SnapKV 2048 0.610 0.458

Max Gen. Length = 8K

Num Tokens > 2K (353/500 samples)

Budget Flex Exact

Full N/A 0.783 0.584

KeyDiff 2048 0.756 0.570
SnapKV 2048 0.736 0.560

Num Tokens > 4K (195/500 samples)

Full N/A 0.650 0.455

KeyDiff 4096 0.662 0.470
SnapKV 4096 0.637 0.453

Max Gen. Length = 32K

Num Tokens > 2K (353/500 samples)

Budget Flex Exact

Full N/A 0.783 0.584

KeyDiff 2048 0.756 0.570
SnapKV 2048 0.736 0.560

Num Tokens > 4K (195/500 samples)

Full N/A 0.650 0.455

KeyDiff 4096 0.662 0.470
SnapKV 4096 0.637 0.453

Num Tokens > 8K (162/500 samples)

Full N/A 0.793 0.550

KeyDiff 8192 0.786 0.545
SnapKV 8192 0.782 0.541

set appropriate KV cache budgets to satisfy the target compression ratios. Instead, we provide the
average compression ratio, which is defined as:

Average Compression Ratio =
1

I

I∑
i=1

N

Li
,

where N is the KV cache budget, and Li is the length of the i-th prompt (sample). We replace the
summand with 1 whenever N ≥ Li, as compression doesn’t occur in that setting.

As summarized in Table 9, 2K cache budgets have a 0.31 average compression ratio, which indicates
69% of input prompts are compressed. Our largest cache budget, 8K, exhibits a 0.77 average
compression ratio.

F.4 Additional Results

G Ablation study

Selecting the Anchor Vector We have mainly evaluated KEYDIFF using the method described in
Equation (7). Scores to determine eviction are measured via cosine similarity with an anchor vector
which can be computed in several ways. We run LongBench on Llama3.2-3B-Instruct with eviction

24

Table 6: Math 500 results on DeepSeek-R1-Qwen-7B distilled model (Higher is better). We
highlight the methods showing the best performance within a given budget with boldface.

Method Max Gen. Length Budget Flex Match Exact Match Avg. Gen. Length

Full 4K N/A 0.764 0.579 2630

KeyDiff 4K 1024 0.666 0.512 2692
2048 0.749 0.570 2629

SnapKV 4K 1024 0.692 0.533 2655
2048 0.749 0.566 2637

Full N/A 0.877 0.658 3287

KeyDiff 8K 2048 0.811 0.613 3348
4096 0.867 0.647 3208

SnapKV 8K 2048 0.812 0.612 3328
4096 0.868 0.647 3214

Full 32K N/A 0.923 0.682 4051

KeyDiff 32K
2048 0.811 0.613 4322
4096 0.897 0.647 3800
8192 0.891 0.663 3741

SnapKV 32K
2048 0.812 0.612 4279
4096 0.868 0.647 3828
8192 0.891 0.662 3808

10
00

42
22

74
44

10
66

7
13

88
9

17
11

1
20

33
3

23
55

6
26

77
8

30
00

0

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 19: Needle in a Haystack results for Sink Attention [35]

policies using the following anchor choices: pairwise cosine similarity from Equation (7), denoted
Pairwise; KEYDIFF, using the mean of all normalized keys as an anchor, and using the median of
keys as an anchor, denoted Median. Table 15 summarizes the average LongBench accuracy for the
different methods to Llama 3.2-3B-Instruct. KEYDIFF shows similar average scores to Pairwise.
Additionally, KEYDIFF and Median show similar scores, demonstrating that KEYDIFF is robust to
the selection of the anchor design.

Selecting the Similarity Metric We use cosine similarity as the scoring metric for eviction in
KEYDIFF based on our discussion in Section 2.2. This could be replaced with other metrics like the
dot product or Euclidean distance. We evaluate KEYDIFF variants using dot product and Euclidean
distance as the similarity metric, denoted DotProd and Euclidean respectively, and report the results
in Table 16. KEYDIFF and DotProd show similar performance for 6K and 8K budgets. However,
KEYDIFF outperforms DotProd for smaller cache sizes. This implies that considering both the
direction and the magnitude of the keys to compute similarity are important for identifying the tokens
to evict. On the other hand, Euclidean shows a significant performance drop relative to KEYDIFF.

G.1 Needle in a Haystack results for Sink attention

25

Table 7: Math 500 results on DeepSeek-R1-Qwen-7B distilled model (Higher is better). We
highlight the methods showing the best performance within a given budget with boldface.

Max Gen. Length = 4K

Num Tokens > 1K (497/500 samples)

Budget Flex Exact

Full N/A 0.762 0.578

KeyDiff 1024 0.664 0.511
SnapKV 1024 0.690 0.532

Num Tokens > 2K (328/500 samples)

Full N/A 0.650 0.478

KeyDiff 2048 0.628 0.464
SnapKV 2048 0.629 0.459

Max Gen. Length = 8K

Num Tokens > 2K (317/500 samples)

Budget Flex Exact

Full N/A 0.816 0.603

KeyDiff 2048 0.713 0.533
SnapKV 2048 0.718 0.533

Num Tokens > 4K (179/500 samples)

Full N/A 0.626 0.441

KeyDiff 4096 0.611 0.419
SnapKV 4096 0.615 0.422

Max Gen. Length = 32K

Num Tokens > 2K (360/500 samples)

Budget Flex Exact

Full N/A 0.889 0.642

KeyDiff 2048 0.713 0.533
SnapKV 2048 0.718 0.533

Num Tokens > 4K (141/500 samples)

Full N/A 0.787 0.524

KeyDiff 4096 0.611 0.419
SnapKV 4096 0.615 0.422

Num Tokens > 8K (53/500 samples)

Full N/A 0.550 0.275

KeyDiff 8192 0.392 0.222
SnapKV 8192 0.381 0.215

≤ 2K 2K ≤ L ≤ 4K 4K ≤ L ≤ 6K 6K ≤ L ≤ 8K ≥ 8K Total
NarrativeQA 0 0 0 8 192 200

Qasper 1 77 83 25 14 200
MultifidelityQA-En 9 31 21 32 57 150
MultifidelityQA-Zh 14 69 47 33 37 200

HotPotQA 1 4 12 12 171 200
2wikimqa 8 17 68 54 53 200

musique 0 0 0 3 197 200
dureader 0 0 0 16 184 200

gov report 0 20 29 45 106 200
qmsum 0 1 17 15 167 200

multi news 99 71 19 6 5 200
vcsum 4 20 18 32 126 200

trec 4 43 41 39 73 200
triviaqa 4 21 15 21 139 200
samsum 6 29 34 17 114 200

lsht 0 0 3 8 189 200
passage count 0 0 3 13 184 200

passage-retrieval-En 0 0 0 0 200 200
passage-retrieval-Zh 0 0 160 10 0 170

lcc 80 86 21 4 9 200
repobench-p 0 25 37 25 113 200

Table 8: Distribution of sample length measured by Llama2 tokenizer

26

2K 4K 6K 8K
NarrativeQA 0.10 0.20 0.30 0.40

Qasper 0.47 0.82 0.96 0.98
MultifidelityQA-En 0.40 0.66 0.82 0.93
MultifidelityQA-Zh 0.49 0.78 0.91 0.98

HotPotQA 0.19 0.37 0.52 0.66
2wikimqa 0.36 0.65 0.85 0.92

musique 0.13 0.27 0.40 0.53
dureader 0.17 0.34 0.52 0.68

gov report 0.28 0.52 0.70 0.81
qmsum 0.18 0.36 0.52 0.66

multi news 0.81 0.96 0.98 0.53
vcsum 0.27 0.49 0.65 0.68

trec 0.38 0.66 0.84 0.94
triviaqa 0.26 0.46 0.60 0.72
samsum 0.32 0.55 0.71 0.82

lsht 0.13 0.27 0.39 0.52
passage count 0.15 0.31 0.46 0.60

passage-retrieval-En 0.16 0.33 0.49 0.66
passage-retrieval-Zh 0.37 0.74 0.99 1.00

lcc 0.78 0.95 0.98 0.99
repobench-p 0.27 0.52 0.67 0.78

average 0.31 0.53 0.67 0.77
Table 9: Compression ratio of prompts w.r.t. various KV cache budgets

H Additional Experiments and Analyses

To further substantiate the empirical findings presented in Sections 3 and 4, we provide an extended
set of experiments and complementary analyses. These additional studies examine the correlation
between key geometry and attention, evaluate retrieval-critical and reasoning scenarios, and measure
the efficiency of KEYDIFF under constrained hardware settings. Together, they offer a broader view
of the method’s robustness, efficiency, and general applicability across diverse inference conditions.

H.1 Retrieval-Critical Evaluation: Phonebook Lookup

We evaluate KEYDIFF on a retrieval-critical setting using the Phonebook Lookup task, where the
model retrieves a phone number corresponding to a queried name from a long list of entries. Accuracy
is averaged across five random phonebooks of varying lengths. As shown in Table 17, KEYDIFF
maintains high retrieval accuracy for shorter contexts and degrades more gracefully than attention-
based baselines as context length increases.

H.2 RULER Benchmark Validation

To assess the generalizability of KEYDIFF across diverse architectures, we reference the results
reported by the community-maintained KVPress RULER benchmark. KEYDIFF consistently achieves
competitive or superior leaderboard scores compared to methods such as TOVA, SnapKV, QFilter,
and Knorm on both Llama-3.2-3B and Qwen-3-8B backbones, demonstrating its robustness and
transferability.

H.3 Needle-in-a-Haystack Recall Saturation

We further analyze the recall behavior of KEYDIFF under varying context lengths in the Needle-in-a-
Haystack benchmark. Table 18 reports the recall difference between KEYDIFF and the full-cache
baseline as a function of depth and context length. As shown in Table 18, KEYDIFF achieves near-
parity recall with the full-cache baseline up to 30k tokens, confirming its stability under long-context
compression.

27

https://huggingface.co/spaces/kvpress/leaderboard

H.4 On-Device Latency Evaluation

We further evaluate the runtime characteristics of KEYDIFF on a mobile-class device by measuring the
latency required to compute key-eviction scores on an Android platform. All methods are tested on a
recent Samsung smartphone under identical FP16 inference precision, and the results are normalized
by the latency of KEYDIFF with a cache budget of 512 KVs.

As shown in Table 19, KEYDIFF performs on par with competing methods for small cache sizes
and achieves substantially lower scoring latency as the cache size increases, demonstrating both
scalability and minimal overhead on edge hardware. Minor runtime fluctuations can be attributed to
kernel-level optimizations and proprietary hardware characteristics.

28

Table 10: Resource unrestricted LongBench Results (Higher is better). All methods processes
the input prompt in parallel (i.e., block size = ∞) and make an eviction decision with all token
information in the input. The token eviction is made at every step of generation if the budget exceeds.
We highlight the methods showing the best performance within a given budget with boldface. We
omit NarrativeQA from evaluation due to higher chance of OOM errors.

Si
ng

le
D

oc
.Q

A
M

ul
ti

D
oc

.Q
A

Su
m

m
ar

iz
at

io
n

Fe
w

sh
ot

Le
ar

ni
ng

Sy
nt

he
tic

C
od

e

Q
as

pe
r

M
F-

en
M

F-
zh

H
ot

po
tQ

A
2W

ik
iM

Q
A

M
us

iq
ue

D
uR

ea
de

r
G

ov
R

ep
or

t
Q

M
Su

m
M

ul
tiN

ew
s

V
C

Su
m

TR
EC

Tr
iv

ia
Q

A
SA

M
Su

m
LS

H
T

PC
ou

nt
PR

-e
n

PR
-z

h
Lc

c
R

B
-P

A
vg

.

Ll
am

a3
.1

-8
B

47
.0

0
56

.1
2

59
.8

6
57

.3
3

47
.8

1
32

.2
5

35
.6

4
34

.8
6

25
.3

2
27

.0
2

17
.2

8
73

.0
0

91
.6

1
43

.3
7

45
.5

0
8.

33
99

.5
0

99
.0

0
61

.6
6

51
.9

4
50

.7
2

H
2O

2K
22

.7
5

32
.7

3
25

.9
3

43
.5

6
29

.4
9

0.
00

5.
35

3.
70

4.
73

17
.4

2
4.

44
46

.1
9

54
.8

8
10

.3
9

12
.2

0
16

.1
3

10
0.

00
37

.7
5

42
.4

4
16

.4
4

26
.3

3
4K

35
.4

9
43

.1
4

39
.8

0
52

.8
2

36
.6

0
10

.0
0

6.
11

9.
34

7.
54

24
.6

1
7.

38
54

.3
1

65
.8

3
23

.1
8

16
.6

7
16

.3
9

10
0.

00
61

.5
0

55
.9

6
28

.6
8

34
.7

7
6K

44
.0

5
47

.7
4

47
.8

8
52

.6
7

45
.9

0
11

.1
1

7.
97

15
.5

5
13

.7
7

26
.5

8
9.

13
60

.1
1

78
.4

2
32

.3
5

13
.6

4
12

.0
4

10
0.

00
94

.0
0

60
.2

3
39

.8
2

40
.6

5
8K

45
.9

3
51

.1
2

55
.7

2
53

.0
9

48
.8

3
13

.5
8

15
.6

3
25

.8
9

17
.3

9
27

.1
8

12
.3

9
67

.7
1

86
.9

1
40

.0
5

13
.3

3
13

.7
3

10
0.

00
99

.0
0

60
.8

2
45

.1
7

44
.6

7

TO
VA

2K
44

.3
7

55
.4

7
58

.0
7

59
.1

6
48

.2
6

16
.6

7
26

.5
8

30
.5

4
24

.3
7

26
.8

1
16

.6
6

71
.0

0
91

.9
3

45
.2

9
28

.8
9

9.
84

10
0.

00
96

.5
8

61
.6

5
51

.8
3

48
.2

0
4K

46
.4

5
56

.2
3

58
.8

2
60

.7
2

49
.9

6
15

.2
8

29
.9

3
33

.5
2

25
.5

6
27

.1
8

17
.4

0
72

.0
8

91
.4

0
44

.4
9

29
.7

9
13

.0
6

10
0.

00
99

.0
0

61
.9

5
52

.1
9

49
.2

5
6K

46
.6

6
54

.2
6

59
.3

1
55

.9
9

50
.2

6
16

.2
2

34
.5

4
34

.3
5

25
.2

1
27

.2
2

17
.3

4
72

.9
6

91
.5

6
44

.8
2

30
.4

3
14

.7
2

10
0.

00
99

.0
0

62
.1

8
53

.3
3

49
.5

2
8K

46
.5

7
55

.4
4

59
.1

6
59

.8
7

51
.7

7
13

.5
8

35
.2

8
35

.2
1

25
.9

8
27

.2
7

16
.8

0
73

.2
3

90
.7

0
44

.7
1

34
.7

8
13

.5
9

10
0.

00
99

.0
0

61
.9

6
54

.3
2

49
.9

6

Si
nk

2K
33

.3
3

33
.7

4
34

.7
3

45
.3

7
38

.4
6

20
.9

7
18

.3
1

26
.0

8
21

.4
1

24
.9

8
16

.0
8

67
.5

0
90

.0
0

40
.9

9
21

.2
5

2.
50

36
.0

0
18

.0
0

57
.0

8
53

.8
1

35
.0

3
4K

38
.5

7
41

.1
5

46
.3

8
48

.0
7

40
.8

7
22

.5
1

17
.5

0
29

.2
8

21
.8

9
25

.1
2

16
.8

4
71

.5
0

90
.5

2
41

.3
2

24
.7

5
2.

50
49

.0
0

22
.5

0
57

.9
4

53
.6

4
38

.0
9

6K
40

.4
1

43
.7

4
52

.6
0

50
.0

8
42

.5
7

22
.3

2
17

.7
1

30
.5

4
22

.3
8

25
.2

5
17

.3
7

72
.5

0
90

.7
7

41
.9

4
26

.2
5

2.
50

57
.0

0
21

.0
0

57
.1

4
54

.0
7

39
.4

1
8K

40
.5

3
44

.5
8

54
.7

7
49

.1
3

42
.3

8
23

.7
5

20
.3

5
31

.3
5

22
.6

1
25

.2
8

17
.4

5
72

.5
0

90
.7

7
42

.2
7

27
.7

5
3.

00
70

.0
0

20
.5

0
57

.1
3

55
.3

5
40

.5
7

Sn
ap

K
V

2K
45

.0
1

52
.5

3
56

.1
5

57
.5

4
50

.1
7

25
.0

0
32

.3
5

32
.9

9
25

.3
8

27
.2

4
18

.1
4

70
.8

5
89

.4
8

39
.7

1
26

.5
3

15
.8

6
98

.5
7

87
.0

4
60

.5
6

51
.9

2
48

.1
5

4K
46

.2
8

55
.0

5
59

.5
7

55
.4

9
49

.7
0

24
.6

9
35

.0
9

33
.7

8
26

.6
3

27
.1

5
17

.4
8

72
.6

8
90

.2
8

42
.5

9
28

.5
7

13
.3

8
98

.0
8

98
.5

0
61

.1
4

52
.0

5
49

.4
1

6K
46

.8
2

55
.8

3
59

.0
7

59
.6

8
50

.2
7

22
.2

2
35

.8
2

34
.8

9
25

.1
7

27
.2

4
17

.5
1

72
.3

1
90

.7
6

44
.3

1
23

.2
6

14
.0

0
10

0.
00

99
.0

0
62

.1
3

54
.4

3
49

.7
4

8K
46

.7
2

55
.3

3
59

.7
9

57
.1

8
51

.5
1

15
.2

8
34

.8
3

35
.2

8
25

.7
1

27
.2

4
17

.4
0

71
.9

6
90

.4
6

45
.0

8
23

.2
6

10
.9

2
10

0.
00

98
.9

9
61

.7
6

54
.8

0
49

.1
7

K
E

Y
D

IF
F

2K
44

.5
8

53
.8

8
53

.6
5

57
.4

0
47

.6
6

14
.8

9
33

.4
4

29
.9

7
25

.8
8

26
.9

5
16

.1
0

72
.0

0
92

.2
7

43
.5

1
31

.8
2

11
.3

8
10

0.
00

95
.9

2
59

.2
6

45
.6

6
47

.8
1

4K
46

.0
5

54
.8

7
57

.5
2

59
.0

4
49

.9
7

13
.5

8
36

.5
1

33
.1

7
25

.9
2

27
.1

2
16

.8
5

73
.0

0
90

.1
3

43
.8

7
31

.8
2

13
.2

8
10

0.
00

97
.6

7
60

.5
7

50
.4

9
49

.0
7

6K
46

.6
1

54
.4

9
59

.1
9

59
.7

0
50

.0
3

12
.9

9
36

.0
4

34
.4

2
26

.6
7

27
.2

7
17

.4
7

73
.3

3
90

.9
4

44
.6

2
33

.3
3

11
.8

3
10

0.
00

99
.0

0
61

.2
9

53
.2

0
49

.6
2

8K
46

.5
5

55
.1

1
59

.2
8

57
.4

8
50

.5
1

13
.5

8
35

.0
1

34
.8

1
25

.8
7

27
.2

2
17

.1
5

72
.5

9
91

.2
2

44
.6

9
27

.2
7

11
.2

0
10

0.
00

99
.0

0
61

.9
5

53
.6

2
49

.2
1

Ll
am

a3
.2

-3
B

40
.2

3
50

.0
9

55
.8

4
50

.6
9

42
.2

9
26

.8
4

36
.2

4
33

.0
9

24
.3

0
25

.2
1

16
.4

1
72

.5
0

90
.1

1
42

.5
8

34
.0

0
3.

00
96

.5
0

20
.5

0
56

.2
2

56
.5

2
43

.6
6

H
2O

2K
20

.2
1

24
.2

3
18

.9
8

28
.2

8
23

.5
1

9.
88

10
.4

0
1.

43
4.

13
16

.1
4

3.
05

48
.0

0
41

.3
6

12
.2

3
16

.0
0

4.
81

1.
52

0.
50

40
.1

6
17

.5
8

17
.1

2
4K

32
.5

8
33

.8
7

35
.4

6
35

.2
9

27
.4

6
17

.8
4

12
.2

5
6.

96
9.

26
23

.1
0

5.
17

56
.0

0
59

.1
1

21
.7

7
13

.7
0

4.
95

13
.7

1
7.

25
51

.4
9

29
.5

8
24

.8
4

6K
38

.6
1

44
.2

8
46

.6
8

42
.3

4
36

.9
3

11
.6

1
15

.5
7

13
.5

2
13

.0
3

24
.4

4
7.

74
63

.5
0

72
.8

1
30

.4
6

12
.8

6
4.

76
63

.0
0

19
.0

0
54

.2
8

39
.8

5
32

.7
6

8K
40

.2
3

44
.8

3
52

.9
0

46
.1

3
39

.7
8

14
.7

4
20

.7
9

22
.6

5
17

.0
6

24
.7

7
10

.5
5

70
.5

0
83

.5
5

35
.0

8
15

.0
7

4.
04

81
.9

1
20

.0
0

55
.3

5
45

.8
3

37
.2

9

TO
VA

2K
38

.2
2

48
.8

3
54

.0
9

48
.0

8
42

.2
1

14
.8

1
27

.8
9

28
.7

1
23

.2
7

24
.9

4
15

.6
4

70
.5

0
89

.4
7

42
.9

7
22

.2
2

5.
88

95
.9

2
18

.5
0

56
.1

4
55

.6
8

41
.2

0
4K

40
.5

5
50

.7
7

56
.1

0
54

.2
6

42
.6

8
17

.0
8

31
.6

6
31

.0
9

23
.4

4
25

.3
7

16
.0

0
71

.5
0

89
.7

7
43

.0
0

21
.9

2
5.

88
95

.5
0

18
.5

0
56

.3
3

56
.5

2
42

.4
0

6K
40

.5
7

50
.1

2
56

.6
2

52
.6

7
43

.1
2

19
.4

4
34

.7
8

32
.9

1
23

.8
8

25
.3

0
15

.8
7

72
.5

0
89

.0
7

42
.7

3
24

.0
0

4.
35

94
.9

7
20

.0
0

56
.3

0
57

.3
8

42
.8

3
8K

40
.8

6
49

.7
9

56
.3

1
52

.9
1

42
.0

3
15

.3
4

36
.7

4
33

.3
4

24
.1

1
25

.3
0

16
.1

5
72

.5
0

89
.4

0
42

.3
9

24
.3

2
5.

77
95

.5
0

20
.0

0
56

.2
7

56
.8

5
42

.7
9

Si
nk

2K
33

.3
3

33
.7

4
34

.7
3

45
.3

7
38

.4
6

20
.9

7
18

.3
1

26
.0

8
21

.4
1

24
.9

8
16

.0
8

67
.5

0
90

.0
0

40
.9

9
21

.2
5

2.
50

36
.0

0
18

.0
0

57
.0

8
53

.8
1

35
.0

3
4K

38
.5

7
41

.1
5

46
.3

8
48

.0
7

40
.8

7
22

.5
1

17
.5

0
29

.2
8

21
.8

9
25

.1
2

16
.8

4
71

.5
0

90
.5

2
41

.3
2

24
.7

5
2.

50
49

.0
0

22
.5

0
57

.9
4

53
.6

4
38

.0
9

6K
40

.4
1

43
.7

4
52

.6
0

50
.0

8
42

.5
7

22
.3

2
17

.7
1

30
.5

4
22

.3
8

25
.2

5
17

.3
7

72
.5

0
90

.7
7

41
.9

4
26

.2
5

2.
50

57
.0

0
21

.0
0

57
.1

4
54

.0
7

39
.4

1
8K

40
.5

3
44

.5
8

54
.7

7
49

.1
3

42
.3

8
23

.7
5

20
.3

5
31

.3
5

22
.6

1
25

.2
8

17
.4

5
72

.5
0

90
.7

7
42

.2
7

27
.7

5
3.

00
70

.0
0

20
.5

0
57

.1
3

55
.3

5
40

.5
7

K
E

Y
D

IF
F

2K
38

.1
5

49
.5

8
51

.1
5

48
.7

3
42

.0
4

20
.2

4
33

.4
7

29
.1

3
23

.9
1

25
.1

0
14

.4
7

70
.5

0
88

.3
1

42
.2

8
20

.5
5

4.
90

89
.0

0
17

.5
0

55
.2

1
48

.7
3

40
.6

5
4K

40
.5

5
51

.3
8

55
.8

8
51

.5
6

41
.8

8
18

.7
8

35
.9

3
31

.6
3

24
.1

5
25

.3
8

15
.8

0
71

.5
0

89
.9

8
42

.5
5

19
.1

8
4.

95
95

.8
5

21
.0

0
55

.7
9

55
.5

5
42

.4
6

6K
40

.5
4

51
.0

4
55

.4
2

51
.7

8
41

.7
1

15
.2

6
36

.6
0

32
.8

0
24

.6
7

25
.3

4
16

.3
2

72
.5

0
90

.5
8

43
.1

9
22

.2
2

5.
21

97
.4

2
20

.5
0

55
.8

7
56

.2
8

42
.7

6
8K

40
.6

6
50

.9
3

56
.1

6
53

.5
2

42
.0

7
17

.7
9

37
.0

8
33

.3
1

24
.2

7
25

.3
1

16
.0

0
72

.5
0

89
.4

8
42

.5
2

25
.3

3
5.

00
96

.4
6

20
.0

0
56

.2
0

56
.8

0
43

.0
7

29

Table 11: Full Llama-3.1-8B/3.2-3B-Instruct LongBench Results with B = 128 (Higher is
better). We highlight the methods showing the best performance within a given budget with boldface.
†: A subset of samples were evaluated due to OOM errors (183/200 samples are evaluated).

Si
ng

le
D

oc
.Q

A
M

ul
ti

D
oc

.Q
A

Su
m

m
ar

iz
at

io
n

Fe
w

sh
ot

Le
ar

ni
ng

Sy
nt

he
tic

Co
de

N
ar

ra
tiv

e
Q

A
Q

as
pe

r
M

F-
en

M
F-

zh
H

ot
po

tQ
A

2W
ik

iM
Q

A
M

us
iq

ue
D

uR
ea

de
r

G
ov

Re
po

rt
Q

M
Su

m
M

ul
tiN

ew
s

V
CS

um
TR

EC
Tr

iv
ia

Q
A

SA
M

Su
m

LS
H

T
PC

ou
nt

PR
-e

n
PR

-z
h

Lc
c

RB
-P

Av
g.

Ll
am

a3
.1

-8
B

30
.0

5†
47

.0
0

56
.1

2
59

.8
6

57
.3

3
47

.8
1

32
.2

5
35

.6
4

34
.8

6
25

.3
2

27
.0

2
17

.2
8

73
.0

0
91

.6
1

43
.3

7
45

.5
0

8.
33

99
.5

0
99

.0
0

61
.6

6
51

.9
4

49
.7

4

H
2O

2K
1.

74
21

.1
5

25
.3

3
21

.6
5

26
.1

1
24

.1
5

8.
78

5.
90

2.
17

2.
70

16
.7

8
3.

97
44

.0
0

29
.3

6
7.

62
14

.5
0

2.
25

5.
88

4.
00

40
.1

5
12

.1
4

15
.2

5
4K

4.
07

36
.1

6
36

.0
0

38
.0

2
33

.5
2

32
.8

7
17

.7
8

5.
68

6.
66

5.
95

24
.0

9
6.

03
55

.0
0

47
.6

5
17

.4
1

18
.5

0
4.

00
24

.5
0

31
.2

5
54

.8
5

21
.4

3
24

.8
3

6K
8.

52
43

.3
1

44
.8

0
46

.2
4

40
.0

3
42

.4
6

21
.6

8
7.

33
11

.8
5

8.
78

26
.0

3
7.

82
62

.0
0

56
.3

9
25

.7
2

18
.0

0
5.

75
45

.5
0

90
.0

0
58

.6
2

29
.5

3
33

.3
5

8K
13

.8
5

44
.9

4
47

.8
1

56
.1

4
43

.6
4

44
.9

0
23

.6
5

11
.0

1
18

.7
8

11
.3

5
26

.4
9

9.
96

69
.5

0
69

.0
5

33
.4

1
19

.5
0

5.
25

62
.5

0
98

.6
7

59
.7

4
36

.2
6

38
.4

0

TO
VA

2K
22

.5
7

37
.2

6
39

.4
3

36
.9

6
45

.7
4

34
.4

8
14

.7
7

16
.9

8
28

.8
7

21
.1

7
26

.9
5

16
.2

1
62

.5
0

90
.7

3
42

.7
4

18
.7

5
0.

00
18

.0
0

32
.0

0
62

.6
8

52
.4

8
34

.3
5

4K
22

.6
8

44
.5

5
47

.8
7

51
.1

6
46

.7
6

44
.5

4
20

.5
6

22
.5

0
30

.9
5

22
.1

3
26

.9
6

16
.7

5
61

.5
0

90
.5

6
43

.2
7

25
.2

5
3.

00
43

.5
0

84
.0

0
61

.6
2

53
.4

0
41

.1
2

6K
24

.5
9

45
.9

3
53

.9
2

55
.4

5
55

.0
9

47
.4

3
25

.0
7

27
.6

8
32

.3
3

24
.1

0
27

.0
0

16
.9

1
68

.5
0

90
.8

1
43

.8
9

29
.0

0
4.

25
67

.0
0

98
.6

7
61

.5
0

52
.3

9
45

.3
1

8K
24

.8
6

46
.7

8
54

.8
3

57
.9

5
54

.5
2

49
.0

0
26

.4
0

31
.1

5
33

.4
4

24
.7

6
27

.0
0

17
.3

3
71

.0
0

91
.1

1
43

.2
9

33
.2

5
6.

25
87

.0
0

98
.6

7
61

.4
9

51
.7

9
47

.2
3

Si
nk

2K
21

.8
3

34
.2

7
29

.2
4

32
.8

2
38

.6
4

29
.5

0
12

.5
9

16
.1

8
28

.5
1

20
.2

1
26

.6
2

15
.5

4
65

.0
0

89
.4

6
42

.2
0

22
.2

5
2.

00
25

.5
0

32
.5

0
64

.9
5

59
.5

4
33

.7
8

4K
22

.9
4

43
.0

1
39

.0
8

46
.1

6
44

.0
4

41
.3

9
19

.0
9

16
.5

4
31

.0
8

21
.5

7
26

.7
8

16
.7

3
70

.0
0

91
.5

3
42

.2
9

29
.2

5
3.

00
38

.5
0

71
.0

0
62

.1
2

58
.8

4
39

.7
6

6K
25

.4
1

47
.4

0
44

.1
3

52
.7

8
47

.3
9

45
.7

3
21

.9
0

17
.5

5
32

.5
3

22
.1

9
26

.8
7

17
.0

5
72

.0
0

91
.2

5
43

.4
1

33
.7

5
3.

08
52

.5
0

98
.0

0
62

.2
2

56
.2

4
43

.4
9

8K
23

.5
3

46
.6

3
48

.6
8

55
.7

7
49

.6
1

47
.1

6
21

.1
4

19
.5

4
33

.1
0

23
.2

0
26

.9
2

16
.9

1
72

.0
0

91
.2

9
43

.7
9

37
.0

0
3.

25
66

.0
0

99
.0

0
62

.1
8

56
.4

3
44

.9
1

Sn
ap

K
V

2K
21

.8
1

37
.2

2
37

.1
9

38
.2

9
46

.1
0

35
.4

2
16

.5
3

16
.3

7
29

.8
3

21
.0

5
26

.7
7

16
.1

6
61

.0
0

88
.8

4
42

.5
6

21
.7

5
4.

03
51

.5
0

81
.1

7
62

.3
7

51
.4

5
38

.4
5

4K
24

.7
9

44
.2

2
47

.3
0

50
.2

7
48

.4
9

46
.7

3
20

.5
5

22
.0

4
32

.1
9

22
.6

8
26

.9
5

16
.9

5
67

.5
0

90
.9

8
43

.1
4

25
.0

0
5.

17
89

.5
0

96
.6

7
61

.4
4

51
.2

0
44

.4
6

6K
24

.1
0

45
.5

7
50

.4
4

55
.2

7
53

.1
2

48
.4

1
24

.2
7

27
.4

6
33

.4
3

23
.5

3
27

.0
3

16
.8

4
71

.5
0

92
.2

8
43

.5
8

27
.0

0
5.

25
98

.0
0

99
.0

0
61

.3
2

52
.1

6
46

.6
5

8K
25

.1
5

46
.5

5
53

.3
9

57
.6

5
56

.0
0

48
.7

5
27

.8
2

32
.6

6
33

.6
7

24
.8

5
27

.0
1

17
.3

7
72

.5
0

91
.7

8
43

.5
4

33
.7

5
5.

08
10

0.
00

98
.6

7
61

.4
8

51
.4

1
48

.0
5

K
ey

L2
N

or
m

[9
]

2K
8.

66
36

.6
3

41
.7

0
37

.7
0

33
.7

5
32

.2
5

5.
39

17
.7

3
19

.6
4

14
.9

6
26

.6
9

11
.0

2
63

.0
0

58
.9

4
28

.4
5

22
.5

0
3.

05
17

.7
5

20
.1

3
52

.4
0

25
.6

3
27

.5
2

4K
15

.3
8

44
.0

6
51

.7
5

47
.5

2
50

.2
2

45
.5

6
18

.4
4

27
.6

1
29

.5
0

22
.2

7
26

.9
3

13
.4

4
69

.5
0

79
.4

1
37

.5
0

27
.0

0
4.

50
58

.0
0

80
.5

0
58

.8
2

35
.0

8
40

.1
4

6K
21

.7
5

45
.6

3
55

.0
6

53
.7

7
52

.9
3

47
.7

0
25

.6
3

32
.1

7
32

.6
6

24
.8

5
26

.9
4

15
.1

2
70

.0
0

86
.8

9
40

.5
1

34
.5

0
5.

25
75

.0
0

98
.0

0
60

.9
8

43
.1

4
45

.1
7

8K
25

.1
2

45
.7

0
56

.0
2

56
.5

7
58

.1
4

47
.7

7
30

.2
9

34
.0

9
33

.8
1

24
.8

9
26

.9
4

15
.8

9
71

.5
0

89
.2

6
41

.3
4

39
.0

0
7.

25
87

.0
0

99
.0

0
62

.0
5

48
.2

8
47

.6
1

K
EY

D
IF

F

2K
26

.6
4

41
.7

3
50

.9
9

51
.1

8
51

.5
9

46
.4

7
22

.8
4

32
.3

7
29

.0
2

23
.8

6
26

.7
6

14
.8

1
66

.5
0

85
.9

2
39

.2
6

42
.2

5
3.

17
96

.0
0

96
.2

5
59

.1
7

39
.4

2
45

.0
6

4K
28

.7
0

45
.6

2
56

.0
6

56
.8

3
54

.5
8

49
.3

1
28

.2
5

33
.0

6
32

.3
0

25
.0

3
27

.0
7

16
.3

2
70

.0
0

90
.8

5
42

.8
4

44
.5

0
4.

21
99

.0
0

97
.6

7
60

.8
0

48
.0

0
48

.1
4

6K
29

.9
0

46
.3

3
55

.1
1

59
.0

0
56

.8
0

49
.5

0
31

.5
2

34
.9

7
33

.4
4

24
.5

8
26

.9
8

16
.8

0
72

.0
0

90
.9

9
43

.1
0

47
.0

0
5.

27
99

.5
0

99
.0

0
61

.4
0

49
.7

0
49

.1
9

8K
33

.5
7

46
.7

7
55

.4
8

59
.1

6
56

.8
7

49
.3

7
30

.8
8

34
.5

4
34

.1
7

25
.1

2
27

.0
1

17
.1

3
72

.5
0

92
.2

8
42

.8
1

46
.5

0
5.

83
99

.5
0

98
.6

7
61

.4
8

50
.9

0
49

.5
5

Ll
am

a3
.2

-3
B

23
.7

6
40

.2
3

50
.0

9
55

.8
4

50
.6

9
42

.2
9

26
.8

4
36

.2
4

33
.0

9
24

.3
0

25
.2

1
16

.4
1

72
.5

0
90

.1
1

42
.5

8
34

.0
0

3.
00

96
.5

0
20

.5
0

56
.2

2
56

.5
2

42
.7

1

H
2O

2K
1.

63
19

.9
6

20
.2

0
15

.2
0

18
.0

2
19

.5
6

2.
88

6.
47

0.
78

1.
55

15
.9

7
3.

11
41

.0
0

21
.9

7
9.

83
11

.7
5

0.
50

0.
50

0.
00

39
.7

1
13

.9
1

12
.6

0
4K

2.
92

31
.9

4
33

.2
3

33
.2

5
24

.4
9

28
.0

8
7.

55
10

.1
0

5.
44

6.
30

22
.7

7
4.

81
53

.0
0

38
.8

5
20

.3
3

15
.5

0
1.

50
7.

50
6.

25
51

.2
3

22
.9

4
20

.3
8

6K
4.

62
38

.8
1

39
.0

6
45

.1
7

34
.6

6
35

.5
2

15
.2

1
13

.3
6

10
.5

1
10

.0
1

24
.2

5
6.

66
61

.5
0

53
.2

3
27

.3
7

15
.2

5
0.

50
13

.0
0

19
.5

0
54

.5
5

32
.2

9
26

.4
3

8K
9.

65
39

.6
6

43
.2

0
52

.6
0

38
.0

9
40

.4
1

21
.4

6
18

.5
5

17
.8

0
13

.2
8

24
.6

7
9.

12
70

.0
0

64
.3

0
32

.1
9

17
.0

0
2.

00
24

.5
0

21
.5

0
55

.0
0

39
.0

9
31

.1
5

TO
VA

2K
17

.1
4

30
.1

4
32

.4
4

31
.6

4
35

.9
6

30
.0

5
13

.0
8

9.
62

26
.1

5
19

.7
0

25
.0

4
15

.4
7

56
.5

0
87

.8
1

40
.4

8
16

.7
5

2.
50

11
.5

0
6.

50
55

.5
1

52
.3

6
29

.3
5

4K
20

.5
2

39
.5

3
42

.4
7

45
.8

0
44

.1
2

38
.4

2
18

.2
2

17
.7

6
29

.3
6

21
.3

6
24

.9
6

16
.6

0
63

.5
0

88
.9

8
41

.5
0

18
.7

5
3.

00
23

.5
0

15
.0

0
55

.7
2

56
.6

6
34

.5
6

6K
20

.2
2

39
.7

8
45

.8
6

52
.9

3
49

.0
8

41
.5

4
20

.4
3

24
.7

8
30

.5
0

22
.1

7
25

.1
1

16
.3

7
66

.5
0

89
.0

0
42

.5
0

21
.0

0
4.

00
46

.5
0

20
.5

0
55

.5
7

57
.5

3
37

.7
1

8K
21

.0
8

40
.6

7
49

.0
7

55
.1

7
48

.6
9

41
.9

3
23

.0
5

31
.0

2
31

.6
4

22
.8

5
25

.2
1

16
.5

5
69

.0
0

89
.2

5
42

.1
9

22
.5

0
2.

50
71

.0
0

21
.5

0
55

.7
7

57
.4

7
39

.9
1

Si
nk

2K
16

.8
5

30
.6

9
26

.5
8

27
.3

2
33

.2
6

25
.2

7
13

.8
2

9.
38

26
.7

4
19

.1
5

25
.1

5
15

.8
8

65
.0

0
86

.1
7

40
.7

9
19

.5
0

1.
50

19
.5

0
8.

50
56

.6
5

52
.7

3
29

.5
4

4K
19

.4
6

38
.6

1
36

.2
2

41
.6

8
41

.9
7

35
.8

4
13

.3
7

9.
86

29
.3

4
20

.1
9

25
.0

6
16

.4
4

71
.0

0
88

.0
6

41
.3

1
21

.7
5

2.
50

35
.5

0
16

.0
0

56
.4

8
52

.4
3

33
.9

6
6K

19
.3

3
40

.2
9

37
.9

5
49

.6
8

46
.4

8
40

.2
9

15
.3

1
11

.1
0

30
.4

3
21

.3
5

25
.1

4
16

.6
4

71
.5

0
88

.9
3

42
.0

4
23

.5
0

3.
50

47
.0

0
19

.5
0

56
.5

5
54

.1
1

36
.2

2
8K

20
.1

5
40

.0
2

41
.9

4
53

.5
7

48
.1

5
42

.2
4

16
.0

1
14

.7
6

31
.6

4
22

.1
0

25
.2

0
16

.5
0

73
.0

0
89

.2
6

42
.3

7
26

.2
5

3.
50

62
.5

0
20

.5
0

56
.8

6
56

.6
3

38
.2

5

Sn
ap

K
V

2K
17

.3
8

31
.3

7
31

.4
8

29
.6

5
37

.7
7

30
.0

5
11

.5
4

9.
66

27
.0

3
19

.9
3

24
.9

7
15

.9
7

59
.0

0
88

.1
3

40
.4

8
16

.2
5

3.
50

32
.5

0
9.

00
56

.3
2

55
.9

1
30

.8
5

4K
19

.8
5

39
.2

2
39

.8
6

47
.3

3
46

.7
0

37
.9

8
16

.6
4

16
.8

8
29

.7
9

21
.2

1
25

.0
1

16
.7

4
65

.5
0

89
.3

5
40

.9
5

18
.2

5
2.

50
62

.5
0

22
.5

0
55

.7
4

56
.8

8
36

.7
3

6K
20

.8
3

39
.6

5
44

.4
8

51
.8

4
49

.3
0

40
.1

8
20

.2
8

25
.3

2
31

.2
7

22
.7

3
25

.0
9

16
.8

1
69

.0
0

89
.9

5
41

.4
7

18
.7

5
4.

00
85

.0
0

20
.5

0
55

.6
9

57
.8

2
39

.5
2

8K
20

.4
9

40
.8

0
48

.1
6

55
.4

4
48

.7
8

41
.6

5
24

.7
9

30
.4

0
31

.8
1

23
.4

6
25

.1
7

16
.4

4
70

.0
0

90
.1

7
41

.9
9

22
.0

0
5.

00
94

.0
0

21
.5

0
55

.7
7

57
.2

9
41

.2
0

K
ey

L2
N

or
m

[9
]

2K
7.

67
30

.3
9

31
.8

5
30

.6
4

29
.4

7
25

.7
6

7.
41

14
.1

7
15

.3
6

12
.4

2
24

.2
0

7.
91

48
.0

0
50

.9
9

23
.0

9
17

.5
0

2.
00

7.
50

5.
00

48
.9

2
26

.3
2

22
.2

2
4K

12
.9

2
37

.5
9

44
.7

1
43

.8
5

38
.8

9
33

.4
2

12
.4

1
22

.4
2

24
.6

3
19

.2
7

24
.7

7
11

.3
7

63
.0

0
72

.5
1

31
.7

5
19

.0
0

3.
87

9.
50

11
.0

0
55

.8
2

40
.0

8
30

.1
3

6K
13

.0
2

40
.5

5
48

.1
7

50
.8

7
43

.1
8

40
.1

7
17

.1
0

31
.2

9
28

.9
9

21
.4

7
25

.0
8

13
.3

0
65

.0
0

79
.6

1
37

.1
6

21
.5

0
2.

50
46

.5
0

18
.5

0
56

.4
9

47
.0

5
35

.6
0

8K
15

.7
2

40
.5

4
47

.8
8

54
.2

9
49

.2
9

43
.7

9
22

.2
2

33
.1

8
31

.8
6

22
.5

0
25

.1
9

14
.2

8
70

.0
0

84
.9

2
39

.4
5

23
.0

0
1.

50
69

.0
0

20
.5

0
56

.8
2

50
.7

3
38

.8
9

K
EY

D
IF

F

2K
18

.2
9

36
.6

5
45

.4
4

47
.4

7
46

.0
9

35
.4

1
13

.7
9

28
.8

9
28

.1
6

21
.4

5
25

.0
1

13
.5

6
60

.0
0

85
.2

4
37

.0
0

24
.8

8
1.

00
60

.5
0

12
.0

0
54

.1
3

42
.0

1
35

.0
9

4K
22

.3
4

40
.6

0
49

.1
5

52
.5

6
50

.1
4

40
.3

0
21

.6
5

32
.4

6
31

.3
8

23
.4

4
25

.0
6

15
.2

8
66

.5
0

87
.9

2
41

.4
1

27
.5

0
2.

50
88

.5
0

19
.5

0
55

.5
5

52
.2

4
40

.2
8

6K
22

.2
9

40
.6

8
50

.1
4

54
.5

1
51

.7
4

42
.1

9
24

.8
3

34
.6

4
32

.3
9

23
.5

3
25

.1
9

15
.8

8
71

.0
0

90
.0

2
42

.0
0

28
.7

5
3.

00
95

.0
0

21
.5

0
55

.8
6

54
.3

9
41

.8
8

8K
22

.4
1

40
.7

7
50

.1
0

55
.6

2
49

.8
3

43
.5

8
28

.0
9

34
.3

0
32

.7
8

23
.6

0
25

.1
7

15
.7

7
72

.0
0

90
.1

7
42

.4
6

30
.7

5
3.

50
96

.5
0

21
.5

0
55

.8
5

55
.6

5
42

.4
0

30

Table 12: Full Qwen-2.5-7B/3B-Instruct LongBench Results with B = 128 (Higher is better).
We highlight the best and second best methods within a given budget with bold and underline.

Si
ng

le
D

oc
.Q

A
M

ul
ti

D
oc

.Q
A

Su
m

m
ar

iz
at

io
n

Fe
w

sh
ot

L
ea

rn
in

g
Sy

nt
he

tic
C

od
e

N
ar

ra
tiv

e
Q

A
Q

as
pe

r
M

F-
en

M
F-

zh
H

ot
po

tQ
A

2W
ik

iM
Q

A
M

us
iq

ue
D

uR
ea

de
r

G
ov

R
ep

or
t

Q
M

Su
m

M
ul

tiN
ew

s
V

C
Su

m
T

R
E

C
Tr

iv
ia

Q
A

SA
M

Su
m

L
SH

T
PC

ou
nt

PR
-e

n
PR

-z
h

L
cc

R
B

-P
A

vg
.

Q
w

en
2.

5-
7B

15
.7

5
16

.9
4

32
.3

8
14

.8
7

11
.8

9
11

.8
8

7.
95

30
.5

6
34

.3
3

19
.9

1
22

.6
7

15
.2

8
65

.5
0

87
.0

5
44

.7
5

39
.4

7
4.

22
93

.0
8

68
.7

9
57

.7
4

61
.8

4
36

.0
4

H
2O

2K
2.

39
7.

29
12

.4
2

11
.7

3
8.

55
11

.0
6

2.
73

6.
07

3.
62

6.
60

15
.6

9
3.

44
42

.5
0

28
.2

1
10

.6
3

16
.0

0
0.

65
0.

00
1.

50
35

.1
0

18
.7

7
11

.6
6

4K
1.

99
11

.9
2

19
.8

8
14

.7
2

10
.2

4
10

.1
2

4.
73

7.
51

9.
08

10
.1

4
20

.8
5

6.
15

51
.0

0
37

.3
7

20
.5

7
15

.7
5

3.
16

6.
43

27
.6

2
52

.1
4

29
.0

9
17

.6
4

6K
3.

34
14

.7
9

23
.9

4
15

.3
3

11
.4

5
11

.3
0

5.
52

9.
30

14
.6

3
14

.2
7

22
.0

6
8.

68
55

.7
5

51
.9

9
28

.0
1

18
.5

0
1.

39
9.

41
54

.5
3

54
.6

8
38

.3
2

22
.2

5
8K

6.
10

15
.5

5
28

.2
9

14
.9

9
12

.3
7

14
.6

5
6.

24
16

.1
0

20
.7

8
17

.2
2

22
.4

4
11

.1
2

59
.0

0
58

.7
4

33
.0

5
24

.9
2

1.
82

15
.7

3
55

.1
6

55
.6

3
44

.5
6

25
.4

5

T
O

V
A

2K
8.

49
14

.0
1

21
.0

4
11

.5
5

14
.0

0
11

.5
1

5.
09

14
.4

5
27

.4
3

17
.8

4
22

.8
3

15
.7

5
56

.5
0

79
.5

6
40

.5
5

20
.5

0
2.

43
9.

29
20

.4
5

55
.9

9
56

.1
5

25
.0

2
4K

12
.8

3
17

.0
3

27
.0

1
14

.1
4

16
.8

0
13

.3
7

8.
05

21
.1

5
29

.2
1

19
.0

5
22

.7
3

15
.8

1
58

.5
0

82
.6

7
42

.7
1

27
.7

5
1.

67
15

.0
0

43
.5

3
56

.6
9

56
.5

9
28

.6
8

6K
15

.7
7

15
.3

3
30

.3
1

14
.5

8
19

.3
0

13
.7

8
9.

11
25

.7
0

30
.4

0
19

.9
5

22
.9

1
15

.1
0

61
.5

0
83

.4
7

42
.9

0
27

.6
0

1.
15

21
.7

5
55

.1
6

57
.6

8
57

.9
9

30
.5

4
8K

15
.6

9
15

.5
5

33
.0

9
14

.7
8

18
.3

7
13

.9
9

11
.2

6
27

.9
2

31
.3

3
20

.1
7

22
.8

2
15

.2
7

62
.0

0
84

.4
9

43
.0

1
33

.2
1

2.
78

30
.3

3
55

.1
6

57
.4

5
58

.9
6

31
.7

9

Si
nk

2K
7.

68
14

.6
8

19
.3

6
12

.9
8

8.
58

9.
34

3.
97

10
.6

6
27

.7
5

17
.9

6
22

.3
3

14
.2

6
62

.0
0

75
.2

6
42

.7
6

23
.0

0
1.

07
7.

50
21

.7
0

50
.1

1
49

.5
7

23
.9

3
4K

7.
68

17
.1

8
23

.4
6

14
.6

5
9.

09
9.

38
4.

39
10

.5
7

30
.2

3
18

.6
2

22
.7

9
15

.4
8

64
.5

0
83

.3
9

44
.1

9
29

.8
1

2.
74

18
.0

8
64

.9
5

55
.2

3
51

.3
0

28
.4

6
6K

7.
37

16
.6

1
25

.7
3

14
.7

4
11

.2
9

11
.2

7
5.

69
11

.4
9

31
.4

7
18

.7
2

22
.8

6
15

.6
2

64
.5

0
84

.8
6

44
.4

7
31

.0
7

3.
59

41
.4

8
71

.2
1

55
.8

9
55

.9
9

30
.7

6
8K

8.
22

16
.1

5
28

.6
3

15
.5

2
11

.5
9

11
.1

1
6.

44
17

.2
9

32
.5

6
18

.4
9

22
.9

1
15

.4
5

65
.0

0
83

.9
5

44
.1

5
35

.7
5

4.
14

48
.7

2
71

.7
1

56
.8

2
56

.4
2

31
.9

5

Sn
ap

K
V

2K
11

.6
0

12
.4

5
23

.6
6

12
.5

4
12

.3
8

10
.6

4
7.

03
14

.4
0

27
.5

7
18

.2
7

22
.8

5
15

.2
3

58
.0

0
81

.7
8

41
.1

3
23

.6
7

3.
76

19
.4

2
35

.0
9

55
.8

3
56

.5
3

26
.8

5
4K

14
.3

5
13

.4
5

28
.2

8
13

.7
6

16
.3

3
11

.7
4

8.
12

21
.9

6
29

.7
1

19
.1

8
22

.8
2

15
.2

0
57

.0
0

83
.8

0
43

.2
7

25
.5

1
2.

41
39

.8
3

55
.2

8
58

.1
2

58
.6

7
30

.4
2

6K
14

.3
4

16
.3

5
31

.1
2

14
.1

6
17

.5
6

14
.1

0
8.

74
25

.5
6

31
.0

9
20

.1
6

22
.8

4
15

.0
4

60
.0

0
83

.8
0

42
.9

9
30

.8
1

2.
91

54
.1

7
55

.1
6

57
.4

8
60

.2
6

32
.3

2
8K

15
.6

0
15

.8
1

33
.4

7
14

.7
7

18
.0

2
14

.4
9

10
.5

3
27

.4
5

31
.9

9
20

.0
9

22
.8

4
15

.2
0

61
.0

0
84

.0
8

43
.0

1
34

.2
8

4.
58

64
.2

5
55

.1
6

57
.4

6
60

.5
9

33
.5

6

K
E

Y
D

IF
F

2K
7.

17
10

.0
6

24
.2

8
12

.9
6

10
.0

3
10

.8
1

5.
71

23
.5

9
17

.0
9

18
.0

3
22

.7
1

11
.7

3
52

.0
0

53
.9

8
32

.2
2

30
.0

0
3.

52
33

.3
3

34
.3

7
53

.1
3

32
.0

5
23

.7
5

4K
13

.1
6

12
.0

0
32

.0
8

14
.1

5
13

.0
4

13
.6

8
5.

39
27

.8
3

25
.6

1
20

.4
2

22
.7

6
13

.3
7

54
.0

0
70

.9
0

40
.2

3
39

.6
2

3.
37

58
.4

2
54

.8
6

55
.9

5
42

.2
7

30
.1

5
6K

13
.4

2
14

.9
0

35
.1

1
14

.6
2

18
.7

0
14

.0
9

8.
34

30
.7

4
29

.8
3

21
.0

8
22

.8
6

14
.3

9
60

.5
0

77
.0

3
42

.0
0

38
.0

8
4.

13
69

.8
3

54
.3

3
56

.7
6

51
.5

0
32

.9
6

8K
14

.9
0

15
.7

7
34

.3
2

14
.9

0
19

.0
2

13
.9

3
9.

27
30

.6
5

31
.2

9
20

.9
0

22
.7

9
14

.6
9

60
.0

0
83

.0
1

43
.6

5
40

.7
0

3.
87

74
.1

3
55

.1
6

57
.3

3
52

.8
0

33
.9

6

Q
w

en
2.

5-
3B

18
.0

8
22

.4
9

39
.7

2
28

.9
9

27
.8

6
20

.4
5

18
.9

3
32

.9
5

32
.8

0
23

.7
4

24
.8

9
10

.9
5

67
.5

0
85

.0
5

43
.8

8
37

.5
0

5.
00

40
.9

7
20

.6
1

51
.9

1
47

.5
3

33
.4

2

H
2O

2K
1.

80
9.

18
11

.6
2

12
.6

2
8.

54
7.

31
2.

70
8.

57
5.

93
6.

97
16

.8
9

4.
15

38
.0

0
21

.8
7

7.
69

16
.0

0
1.

00
3.

00
2.

69
37

.3
6

22
.9

0
11

.7
5

4K
2.

82
17

.3
4

23
.2

7
21

.5
5

10
.1

8
10

.4
7

3.
03

11
.0

5
11

.0
6

10
.7

3
22

.9
3

5.
77

50
.7

5
34

.9
3

18
.0

3
16

.2
5

4.
35

7.
32

16
.6

4
47

.7
4

29
.4

2
17

.8
9

6K
5.

52
18

.6
2

27
.9

3
27

.2
6

12
.6

1
15

.0
7

4.
26

14
.6

5
14

.9
2

13
.8

9
24

.2
1

7.
55

58
.0

0
45

.9
4

24
.9

3
16

.0
0

2.
91

9.
10

21
.3

2
49

.5
0

34
.5

4
21

.3
7

8K
6.

16
19

.8
4

32
.3

2
29

.6
6

16
.0

1
17

.7
4

4.
99

19
.4

2
20

.2
1

16
.4

9
24

.5
4

9.
22

64
.0

0
56

.1
0

32
.5

6
20

.2
5

3.
13

11
.6

1
21

.3
2

50
.6

1
38

.8
0

24
.5

2

T
O

V
A

2K
11

.6
9

14
.9

4
25

.3
3

19
.9

0
17

.2
9

12
.5

8
5.

91
15

.3
4

26
.6

7
21

.4
9

24
.7

8
16

.5
8

51
.5

0
68

.8
0

41
.7

9
17

.7
5

0.
23

6.
00

8.
68

49
.7

9
48

.6
0

24
.0

8
4K

12
.1

9
18

.3
1

32
.5

6
27

.3
3

20
.5

8
13

.8
0

7.
74

21
.1

1
28

.8
2

22
.2

7
24

.9
8

15
.8

2
59

.0
0

80
.6

6
43

.0
5

21
.2

5
1.

11
9.

56
19

.1
8

49
.9

3
46

.7
4

27
.4

3
6K

13
.6

2
19

.5
6

34
.6

4
28

.7
2

21
.6

7
16

.2
5

8.
47

27
.2

6
30

.1
7

23
.1

0
24

.9
4

14
.5

3
63

.5
0

81
.8

8
42

.9
7

26
.2

5
1.

16
10

.5
8

21
.3

2
51

.3
0

47
.7

0
29

.0
3

8K
14

.6
6

20
.9

3
37

.7
7

29
.7

2
22

.5
7

17
.0

8
9.

63
29

.1
0

31
.1

2
23

.1
7

24
.8

3
13

.4
8

67
.0

0
84

.1
1

43
.5

5
28

.2
5

2.
06

13
.0

8
21

.3
2

51
.3

2
47

.6
4

30
.1

1

Si
nk

2K
9.

71
13

.7
5

22
.1

1
20

.9
7

11
.6

3
14

.6
7

4.
43

11
.8

9
27

.3
9

19
.4

5
24

.3
6

13
.0

0
56

.0
0

58
.7

7
42

.3
7

22
.7

5
2.

50
8.

75
4.

33
48

.2
7

49
.7

2
23

.1
8

4K
11

.4
6

18
.2

8
30

.4
0

24
.0

2
15

.5
0

14
.6

2
6.

97
11

.4
8

30
.0

8
20

.1
2

24
.8

6
13

.3
5

63
.0

0
68

.7
7

43
.1

1
29

.5
0

3.
00

11
.7

5
16

.7
5

51
.7

6
50

.4
7

26
.6

3
6K

13
.0

1
20

.0
3

32
.5

9
27

.0
6

18
.6

2
15

.7
7

9.
37

13
.3

5
30

.9
8

20
.7

0
24

.9
7

13
.0

5
66

.5
0

75
.3

9
42

.7
7

30
.0

0
4.

00
14

.9
2

20
.4

4
52

.3
2

50
.3

5
28

.3
9

8K
10

.2
6

21
.2

7
35

.1
5

29
.4

9
24

.3
1

17
.6

0
9.

40
17

.5
9

31
.8

1
21

.1
4

24
.9

9
12

.0
7

68
.5

0
79

.1
7

43
.3

2
34

.5
0

1.
00

24
.0

0
20

.4
4

51
.4

7
49

.3
8

29
.8

5

Sn
ap

K
V

2K
11

.7
0

13
.9

1
24

.2
8

20
.7

5
14

.8
0

10
.8

9
7.

42
15

.0
9

27
.4

0
21

.6
3

24
.6

4
15

.7
1

54
.5

0
75

.3
5

42
.7

2
22

.3
8

2.
50

18
.3

3
19

.0
6

49
.6

5
50

.5
9

25
.8

7
4K

12
.9

8
22

.2
1

31
.7

7
26

.5
7

18
.3

3
14

.4
1

10
.8

3
21

.1
4

29
.1

4
22

.3
8

24
.8

9
15

.8
8

61
.0

0
84

.1
7

42
.6

3
21

.1
7

3.
75

25
.4

2
22

.4
6

50
.2

2
48

.7
7

29
.0

5
6K

14
.1

6
20

.0
9

36
.1

5
28

.4
1

19
.1

4
15

.5
9

12
.7

0
26

.2
1

30
.3

5
22

.7
5

24
.9

1
14

.9
6

65
.0

0
83

.9
2

43
.5

2
25

.5
0

5.
00

32
.2

0
21

.3
2

51
.0

4
47

.4
9

30
.5

0
8K

12
.7

6
20

.8
8

37
.1

0
30

.1
0

22
.4

9
18

.1
9

13
.8

3
29

.5
4

31
.3

3
23

.3
7

24
.8

0
13

.7
5

65
.5

0
84

.8
8

44
.4

9
28

.0
0

5.
20

35
.8

3
21

.3
2

51
.3

1
47

.8
2

31
.5

5

K
E

Y
D

IF
F

2K
3.

99
10

.2
0

22
.7

1
15

.7
7

8.
93

13
.1

2
5.

51
24

.7
9

17
.3

5
16

.5
6

24
.3

1
10

.5
3

57
.5

0
41

.1
9

27
.4

3
25

.2
5

3.
88

11
.3

2
10

.6
8

46
.4

4
34

.3
3

20
.5

6
4K

9.
39

18
.6

1
31

.3
7

23
.6

4
18

.9
6

18
.1

0
7.

86
27

.0
1

25
.6

4
22

.2
8

24
.7

0
10

.9
3

65
.0

0
63

.0
2

37
.7

4
30

.5
0

4.
00

20
.0

8
26

.8
5

49
.2

7
39

.2
4

27
.3

4
6K

10
.5

1
19

.7
1

35
.5

1
28

.8
9

26
.9

2
18

.2
8

11
.4

7
31

.8
3

29
.3

2
23

.6
3

24
.9

0
11

.4
6

64
.5

0
75

.3
6

41
.5

1
34

.5
0

3.
57

31
.4

1
21

.3
2

50
.6

0
42

.9
5

30
.3

9
8K

12
.2

4
20

.4
9

38
.5

2
29

.6
0

23
.0

5
19

.4
1

15
.9

5
30

.9
2

31
.1

0
23

.8
9

24
.8

3
11

.8
0

67
.5

0
79

.0
5

41
.7

3
36

.5
0

3.
08

40
.2

1
21

.3
2

51
.0

5
45

.8
8

31
.8

2

31

Table 13: Llama-3.2-3B-Instruct LongBench Results with prompt block size B ∈ [64, 256]
(Higher is better). We highlight the best and second best methods within a given budget with bold
and underline.

Si
ng

le
D

oc
.Q

A
M

ul
ti

D
oc

.Q
A

Su
m

m
ar

iz
at

io
n

Fe
w

sh
ot

L
ea

rn
in

g
Sy

nt
he

tic
C

od
e

N
ar

ra
tiv

e
Q

A
Q

as
pe

r
M

F-
en

M
F-

zh
H

ot
po

tQ
A

2W
ik

iM
Q

A
M

us
iq

ue
D

uR
ea

de
r

G
ov

R
ep

or
t

Q
M

Su
m

M
ul

tiN
ew

s
V

C
Su

m
T

R
E

C
Tr

iv
ia

Q
A

SA
M

Su
m

L
SH

T
PC

ou
nt

PR
-e

n
PR

-z
h

L
cc

R
B

-P
A

vg
.

B
=

6
4

23
.7

6
40

.2
3

50
.0

9
55

.8
4

50
.6

9
42

.2
9

26
.8

4
36

.2
4

33
.0

9
24

.3
0

25
.2

1
16

.4
1

72
.5

0
90

.1
1

42
.5

8
34

.0
0

3.
00

96
.5

0
20

.5
0

56
.2

2
56

.5
2

42
.7

1

H
2O

2K
1.

30
18

.2
3

16
.9

6
14

.2
5

12
.2

6
16

.8
4

0.
72

6.
88

0.
78

1.
29

16
.2

4
2.

97
35

.0
0

18
.0

7
9.

78
13

.5
0

0.
50

1.
50

0.
25

39
.9

8
12

.6
8

11
.4

3
4K

2.
30

31
.9

2
31

.5
9

32
.4

4
25

.0
2

22
.5

8
4.

89
9.

29
5.

36
5.

57
23

.0
2

4.
80

50
.5

0
33

.0
5

18
.7

6
13

.7
5

1.
00

2.
50

3.
75

50
.1

1
21

.5
7

18
.7

5
6K

3.
12

38
.8

7
37

.6
3

44
.5

8
34

.3
8

35
.3

5
12

.1
3

12
.8

2
10

.4
3

9.
38

24
.3

1
6.

63
63

.0
0

45
.4

6
26

.0
8

14
.2

5
0.

00
8.

50
17

.5
0

53
.8

4
30

.6
6

25
.1

9
8K

9.
11

40
.0

9
45

.0
4

52
.5

8
39

.2
4

38
.2

5
15

.8
8

17
.8

2
17

.9
7

12
.9

6
24

.7
0

9.
26

70
.5

0
60

.5
7

32
.7

1
16

.0
0

0.
50

21
.5

0
19

.5
0

54
.7

2
39

.2
6

30
.3

9

T
O

V
A

2K
17

.2
4

30
.0

3
31

.0
4

32
.0

7
36

.5
8

28
.9

7
12

.1
7

10
.5

0
26

.3
5

19
.7

8
25

.0
7

15
.2

0
60

.5
0

87
.4

5
41

.0
7

15
.5

0
1.

00
10

.5
0

6.
00

55
.3

0
52

.3
6

29
.2

7
4K

19
.5

9
39

.2
7

42
.1

6
44

.5
4

44
.5

8
37

.6
3

18
.6

2
17

.4
4

28
.8

2
21

.4
6

25
.1

8
16

.4
9

62
.5

0
89

.4
8

41
.8

9
17

.5
0

3.
50

24
.0

0
15

.0
0

55
.1

4
56

.5
8

34
.3

5
6K

21
.5

3
40

.3
2

46
.1

6
52

.8
1

49
.4

4
40

.3
5

18
.7

3
25

.7
4

30
.4

7
22

.3
0

25
.2

3
16

.2
3

66
.0

0
90

.0
0

42
.4

8
21

.0
0

3.
00

47
.0

0
18

.5
0

55
.1

5
58

.0
3

37
.6

4
8K

21
.3

2
40

.8
7

50
.2

0
54

.8
4

49
.3

5
42

.1
1

24
.5

2
30

.7
1

31
.6

0
23

.0
5

25
.2

0
16

.5
7

69
.0

0
90

.5
0

41
.8

0
23

.2
5

5.
50

74
.5

0
19

.5
0

55
.4

5
58

.3
4

40
.3

9

Si
nk

2K
15

.6
8

29
.9

1
26

.6
1

27
.4

2
33

.1
6

25
.4

3
13

.3
6

9.
37

26
.7

0
19

.2
5

25
.0

1
16

.0
4

64
.5

0
86

.3
3

41
.0

4
19

.0
0

1.
50

19
.0

0
8.

50
56

.4
8

52
.9

1
29

.3
9

4K
19

.3
5

37
.7

7
36

.9
1

41
.6

1
41

.4
6

35
.2

6
12

.8
8

10
.3

0
29

.5
9

20
.2

7
25

.0
1

16
.0

9
69

.0
0

88
.0

6
41

.8
8

21
.2

5
2.

50
36

.0
0

16
.5

0
55

.8
5

52
.5

1
33

.8
1

6K
19

.3
6

40
.0

1
38

.1
6

49
.5

7
46

.3
9

39
.0

1
14

.2
0

10
.4

1
30

.5
4

21
.6

4
25

.0
7

16
.9

3
71

.0
0

88
.5

0
42

.0
9

23
.5

0
3.

50
47

.5
0

19
.5

0
56

.0
2

53
.9

7
36

.0
4

8K
20

.4
9

39
.8

9
42

.2
1

53
.0

8
47

.7
2

41
.4

4
16

.3
7

15
.0

8
31

.8
0

22
.0

4
25

.0
7

16
.8

9
72

.0
0

89
.2

6
42

.2
0

25
.2

5
3.

50
61

.5
0

20
.5

0
56

.2
1

56
.4

2
38

.0
4

Sn
ap

K
V

2K
18

.0
7

31
.2

1
30

.6
0

31
.3

2
37

.3
1

30
.6

9
11

.7
1

9.
98

26
.9

8
19

.8
7

25
.1

3
16

.0
5

61
.0

0
87

.8
5

40
.3

6
16

.2
5

3.
00

32
.0

0
8.

00
56

.7
8

55
.7

7
30

.9
5

4K
19

.3
0

39
.0

1
40

.8
1

44
.8

6
47

.8
3

37
.7

4
16

.7
5

16
.9

4
29

.9
0

21
.3

7
25

.2
5

16
.7

0
65

.0
0

88
.8

8
40

.9
9

16
.7

5
3.

50
59

.5
0

18
.0

0
55

.1
5

57
.2

0
36

.2
6

6K
20

.8
5

40
.3

2
45

.5
8

52
.8

0
48

.0
3

41
.6

3
18

.4
7

24
.9

8
30

.6
8

22
.3

2
25

.1
2

16
.7

1
68

.5
0

90
.0

0
41

.4
9

18
.2

5
4.

50
85

.0
0

18
.5

0
55

.4
6

57
.3

0
39

.3
6

8K
20

.6
4

41
.1

0
47

.8
9

54
.7

0
48

.4
9

41
.7

9
21

.5
8

31
.4

6
32

.0
3

23
.3

2
25

.2
2

16
.6

5
71

.0
0

90
.0

0
41

.4
4

21
.0

0
4.

00
95

.0
0

19
.5

0
55

.4
4

57
.5

4
40

.9
4

K
E

Y
D

IF
F

2K
17

.4
0

38
.1

2
45

.2
5

47
.0

9
45

.2
8

34
.2

3
13

.9
7

27
.9

6
28

.3
4

21
.0

9
24

.9
4

13
.4

5
56

.0
0

83
.2

9
38

.5
3

24
.2

5
1.

00
63

.5
0

12
.5

0
54

.4
1

40
.0

0
34

.7
9

4K
22

.3
8

42
.0

0
50

.8
4

53
.1

6
47

.3
4

40
.5

6
21

.4
3

32
.8

2
30

.9
6

23
.3

2
25

.0
8

15
.3

5
67

.5
0

87
.0

9
42

.5
3

27
.5

0
2.

00
89

.0
0

18
.5

0
54

.3
9

53
.0

9
40

.3
3

6K
22

.2
5

41
.5

5
50

.3
2

54
.9

1
51

.6
1

42
.0

2
24

.6
2

34
.6

0
32

.4
0

23
.6

3
25

.2
6

16
.1

8
71

.0
0

88
.4

2
41

.9
0

29
.2

5
3.

50
95

.0
0

19
.5

0
55

.6
9

55
.2

7
41

.8
5

8K
21

.5
7

41
.2

4
50

.1
2

55
.3

3
49

.9
8

43
.7

8
27

.4
5

34
.3

0
32

.4
3

23
.6

7
25

.2
1

15
.9

9
71

.5
0

90
.8

4
42

.3
2

30
.0

0
3.

00
96

.5
0

19
.5

0
55

.5
4

56
.5

6
42

.2
3

B
=

2
5
6

23
.7

6
40

.2
3

50
.0

9
55

.8
4

50
.6

9
42

.2
9

26
.8

4
36

.2
4

33
.0

9
24

.3
0

25
.2

1
16

.4
1

72
.5

0
90

.1
1

42
.5

8
34

.0
0

3.
00

96
.5

0
20

.5
0

56
.2

2
56

.5
2

42
.7

1

H
2O

2K
1.

87
19

.1
9

23
.3

5
16

.0
6

20
.9

5
17

.9
1

2.
33

7.
31

0.
83

1.
73

16
.2

9
3.

28
42

.5
0

25
.8

2
9.

83
14

.5
0

2.
75

0.
00

1.
00

38
.5

9
14

.5
7

13
.3

6
4K

5.
58

31
.4

9
33

.2
8

32
.3

6
26

.8
5

28
.3

4
8.

61
10

.8
3

5.
46

6.
27

23
.1

3
4.

98
54

.0
0

41
.7

3
19

.1
4

15
.0

0
1.

00
8.

00
6.

50
51

.3
9

24
.2

4
20

.8
7

6K
7.

49
37

.9
9

41
.5

4
44

.7
1

39
.5

3
36

.1
8

15
.4

6
13

.8
7

10
.7

7
10

.4
6

24
.6

0
6.

94
61

.5
0

58
.6

4
27

.2
0

15
.5

0
1.

00
15

.0
0

19
.0

0
54

.3
0

32
.4

5
27

.3
4

8K
9.

92
39

.7
1

43
.8

4
52

.1
5

39
.1

4
39

.2
3

19
.2

8
18

.0
4

17
.7

8
13

.6
0

24
.9

8
8.

99
71

.0
0

67
.6

4
32

.8
3

17
.2

5
2.

50
30

.0
0

21
.0

0
55

.2
5

39
.3

3
31

.5
9

T
O

V
A

2K
18

.4
6

30
.8

0
33

.7
4

32
.2

4
39

.7
3

32
.1

8
14

.1
0

10
.1

7
26

.3
2

20
.1

7
25

.1
8

15
.6

7
62

.0
0

89
.3

6
40

.6
0

16
.2

5
2.

00
16

.0
0

4.
50

55
.9

8
53

.4
2

30
.4

2
4K

20
.3

6
38

.1
8

42
.5

3
46

.1
8

46
.8

3
36

.6
0

17
.8

1
17

.0
9

28
.9

9
20

.5
4

25
.2

3
16

.3
4

63
.5

0
89

.1
3

41
.5

5
19

.1
2

3.
50

29
.5

0
14

.5
0

55
.5

5
55

.9
1

34
.7

1
6K

20
.7

1
40

.4
6

45
.8

2
52

.9
5

51
.3

3
40

.9
2

21
.4

7
24

.8
0

30
.7

1
22

.3
7

25
.4

8
16

.4
0

67
.0

0
88

.5
0

41
.9

1
20

.2
5

3.
50

49
.0

0
20

.0
0

55
.8

5
56

.7
4

37
.9

1
8K

20
.8

4
40

.7
9

48
.0

2
54

.8
2

50
.1

2
40

.7
1

25
.1

7
30

.8
5

31
.4

7
22

.9
8

25
.4

9
16

.4
1

71
.0

0
89

.0
0

41
.9

9
22

.2
5

2.
00

76
.5

0
21

.0
0

55
.9

3
57

.5
9

40
.2

3

Si
nk

2K
15

.4
8

30
.7

4
26

.9
3

27
.7

6
33

.8
6

25
.6

3
13

.3
0

9.
56

26
.7

0
19

.4
1

25
.1

5
15

.5
6

66
.0

0
86

.4
4

41
.1

7
18

.5
0

1.
00

19
.0

0
8.

50
56

.4
7

52
.3

7
29

.5
0

4K
18

.9
1

38
.3

8
37

.2
8

41
.7

6
41

.8
1

35
.1

7
13

.0
7

9.
96

29
.2

3
20

.6
1

25
.0

1
16

.3
8

70
.5

0
88

.0
6

42
.0

7
21

.7
5

1.
50

36
.0

0
17

.0
0

56
.0

5
51

.9
8

33
.9

3
6K

19
.3

7
40

.3
0

38
.1

4
49

.7
7

46
.1

4
39

.6
0

14
.1

8
11

.1
2

30
.4

8
21

.5
4

25
.2

0
16

.2
8

71
.0

0
88

.8
0

41
.7

9
23

.5
0

3.
50

47
.0

0
20

.0
0

55
.6

5
53

.5
3

36
.0

4
8K

20
.3

5
40

.1
9

42
.9

6
53

.2
5

47
.8

2
41

.1
0

17
.8

7
14

.8
3

31
.3

2
22

.1
4

25
.1

7
16

.5
6

72
.5

0
89

.2
6

42
.4

7
26

.2
5

5.
00

62
.5

0
20

.0
0

56
.0

0
56

.0
3

38
.2

7

Sn
ap

K
V

2K
17

.0
4

31
.5

5
31

.7
5

31
.8

7
37

.2
5

34
.0

3
12

.1
7

9.
80

27
.1

7
20

.1
6

25
.2

6
16

.2
7

61
.0

0
87

.6
3

40
.9

5
17

.5
0

4.
00

35
.0

0
10

.0
0

55
.9

3
54

.3
9

31
.4

6
4K

19
.6

7
39

.3
4

40
.9

5
45

.8
1

44
.2

7
38

.7
8

16
.1

7
16

.6
1

29
.9

9
21

.1
5

25
.4

9
16

.7
1

66
.5

0
89

.1
5

40
.7

6
19

.7
5

3.
50

66
.0

0
19

.0
0

55
.4

4
56

.4
5

36
.7

4
6K

22
.9

8
40

.1
3

44
.8

0
52

.3
9

50
.6

1
39

.2
8

20
.3

1
24

.8
4

31
.2

8
22

.1
7

25
.4

2
16

.5
5

70
.0

0
89

.7
9

41
.9

1
19

.7
5

3.
50

86
.5

0
20

.0
0

55
.9

3
57

.4
9

39
.7

9
8K

20
.2

3
40

.7
5

47
.4

0
54

.7
7

49
.7

4
41

.4
7

24
.7

4
31

.1
9

31
.9

5
22

.9
6

25
.4

5
16

.2
7

71
.5

0
90

.1
7

42
.1

2
23

.2
5

4.
00

93
.5

0
21

.0
0

55
.9

3
57

.3
6

41
.2

3

K
E

Y
D

IF
F

2K
18

.9
9

37
.2

0
46

.5
7

46
.6

1
45

.1
4

33
.1

2
15

.1
5

29
.5

4
28

.3
0

21
.9

2
25

.4
1

14
.4

4
58

.5
0

86
.3

0
37

.7
7

23
.7

5
1.

00
67

.0
0

13
.5

0
54

.0
7

41
.5

9
35

.5
2

4K
21

.0
0

41
.4

8
48

.6
9

52
.9

4
47

.0
7

40
.2

6
22

.6
9

33
.0

7
31

.1
1

23
.3

5
25

.2
2

15
.5

7
65

.5
0

88
.7

2
41

.7
9

26
.5

0
2.

00
91

.0
0

19
.0

0
55

.7
9

51
.5

0
40

.2
0

6K
21

.6
1

40
.7

8
49

.6
8

55
.0

8
50

.6
4

41
.3

8
24

.5
7

34
.6

2
32

.0
2

23
.3

6
25

.5
6

15
.8

6
71

.5
0

89
.4

2
42

.3
7

28
.7

5
3.

00
94

.0
0

21
.0

0
55

.9
6

55
.9

6
41

.7
7

8K
22

.2
4

40
.8

3
50

.2
3

55
.4

5
50

.5
0

43
.2

8
28

.3
7

33
.8

8
32

.6
7

23
.8

5
25

.4
8

15
.8

3
72

.5
0

90
.3

4
42

.3
1

30
.5

0
3.

00
95

.5
0

21
.0

0
56

.0
1

55
.5

8
42

.3
5

32

Table 14: KEYDIFF + Recent tokens Llama-3.1-8B/3.2-3B-Instruct LongBench Results with
B = 128 (Higher is better). We highlight the methods showing the best performance within a given
budget with boldface. X% indicates X% of KV cache budget is reserved to keep the recent tokens,
while the remaining cache budget is managed by KEYDIFF algorithm. †: A subset of samples were
evaluated due to OOM errors (183/200 samples are evaluated).

Si
ng

le
D

oc
.Q

A
M

ul
ti

D
oc

.Q
A

Su
m

m
ar

iz
at

io
n

Fe
w

sh
ot

L
ea

rn
in

g
Sy

nt
he

tic
C

od
e

N
ar

ra
tiv

e
Q

A
Q

as
pe

r
M

F-
en

M
F-

zh
H

ot
po

tQ
A

2W
ik

iM
Q

A
M

us
iq

ue
D

uR
ea

de
r

G
ov

R
ep

or
t

Q
M

Su
m

M
ul

tiN
ew

s
V

C
Su

m
T

R
E

C
Tr

iv
ia

Q
A

SA
M

Su
m

L
SH

T
PC

ou
nt

PR
-e

n
PR

-z
h

L
cc

R
B

-P
A

vg
.

L
la

m
a3

.1
-8

B
30

.0
5†

47
.0

0
56

.1
2

59
.8

6
57

.3
3

47
.8

1
32

.2
5

35
.6

4
34

.8
6

25
.3

2
27

.0
2

17
.2

8
73

.0
0

91
.6

1
43

.3
7

45
.5

0
8.

33
99

.5
0

99
.0

0
61

.6
6

51
.9

4
49

.7
4

Si
nk

2K
21

.8
3

34
.2

7
29

.2
4

32
.8

2
38

.6
4

29
.5

0
12

.5
9

16
.1

8
28

.5
1

20
.2

1
26

.6
2

15
.5

4
65

.0
0

89
.4

6
42

.2
0

22
.2

5
2.

00
25

.5
0

32
.5

0
64

.9
5

59
.5

4
33

.7
8

4K
22

.9
4

43
.0

1
39

.0
8

46
.1

6
44

.0
4

41
.3

9
19

.0
9

16
.5

4
31

.0
8

21
.5

7
26

.7
8

16
.7

3
70

.0
0

91
.5

3
42

.2
9

29
.2

5
3.

00
38

.5
0

71
.0

0
62

.1
2

58
.8

4
39

.7
6

6K
25

.4
1

47
.4

0
44

.1
3

52
.7

8
47

.3
9

45
.7

3
21

.9
0

17
.5

5
32

.5
3

22
.1

9
26

.8
7

17
.0

5
72

.0
0

91
.2

5
43

.4
1

33
.7

5
3.

08
52

.5
0

98
.0

0
62

.2
2

56
.2

4
43

.4
9

8K
23

.5
3

46
.6

3
48

.6
8

55
.7

7
49

.6
1

47
.1

6
21

.1
4

19
.5

4
33

.1
0

23
.2

0
26

.9
2

16
.9

1
72

.0
0

91
.2

9
43

.7
9

37
.0

0
3.

25
66

.0
0

99
.0

0
62

.1
8

56
.4

3
44

.9
1

Sn
ap

K
V

2K
21

.8
1

37
.2

2
37

.1
9

38
.2

9
46

.1
0

35
.4

2
16

.5
3

16
.3

7
29

.8
3

21
.0

5
26

.7
7

16
.1

6
61

.0
0

88
.8

4
42

.5
6

21
.7

5
4.

03
51

.5
0

81
.1

7
62

.3
7

51
.4

5
38

.4
5

4K
24

.7
9

44
.2

2
47

.3
0

50
.2

7
48

.4
9

46
.7

3
20

.5
5

22
.0

4
32

.1
9

22
.6

8
26

.9
5

16
.9

5
67

.5
0

90
.9

8
43

.1
4

25
.0

0
5.

17
89

.5
0

96
.6

7
61

.4
4

51
.2

0
44

.4
6

6K
24

.1
0

45
.5

7
50

.4
4

55
.2

7
53

.1
2

48
.4

1
24

.2
7

27
.4

6
33

.4
3

23
.5

3
27

.0
3

16
.8

4
71

.5
0

92
.2

8
43

.5
8

27
.0

0
5.

25
98

.0
0

99
.0

0
61

.3
2

52
.1

6
46

.6
5

8K
25

.1
5

46
.5

5
53

.3
9

57
.6

5
56

.0
0

48
.7

5
27

.8
2

32
.6

6
33

.6
7

24
.8

5
27

.0
1

17
.3

7
72

.5
0

91
.7

8
43

.5
4

33
.7

5
5.

08
10

0.
00

98
.6

7
61

.4
8

51
.4

1
48

.0
5

K
ey

D
iff

+
10

%
R

ec
en

tT
ok

en
s

2K
27

.3
6

40
.7

9
50

.6
3

50
.2

1
49

.4
4

44
.7

7
25

.0
4

30
.2

5
29

.4
1

23
.2

8
26

.7
6

15
.7

8
64

.0
0

85
.9

0
43

.7
6

44
.0

0
4.

25
98

.5
0

95
.8

3
62

.9
7

48
.7

0
45

.7
9

4K
27

.4
2

45
.6

7
53

.6
2

57
.4

0
53

.7
7

47
.3

0
27

.4
8

33
.4

0
31

.9
0

24
.1

8
26

.8
3

16
.5

1
70

.0
0

88
.8

9
43

.9
5

47
.0

0
5.

21
99

.0
0

98
.6

7
62

.2
0

52
.9

8
48

.2
6

6K
30

.5
8

46
.2

4
55

.5
8

57
.8

2
56

.4
4

47
.7

4
29

.0
3

34
.3

3
33

.1
5

24
.6

7
26

.9
1

16
.9

8
71

.5
0

92
.2

2
43

.9
6

47
.0

0
4.

23
99

.5
0

99
.0

0
62

.5
6

52
.9

8
49

.1
6

8K
32

.1
7

46
.6

6
55

.6
5

58
.6

5
57

.2
4

48
.6

4
30

.5
4

33
.4

4
33

.8
5

24
.9

3
26

.9
4

17
.1

2
72

.5
0

91
.7

2
43

.7
0

46
.0

0
5.

47
99

.5
0

99
.0

0
62

.5
6

51
.7

5
49

.4
3

K
ey

D
iff

+
20

%
R

ec
en

tT
ok

en
s

2K
26

.7
3

41
.8

8
49

.7
9

48
.4

6
49

.6
8

42
.5

1
26

.9
0

30
.9

0
28

.8
3

23
.3

4
26

.7
6

16
.1

1
62

.5
0

87
.3

9
43

.9
9

42
.5

0
4.

58
94

.0
0

95
.5

8
63

.3
3

50
.0

1
45

.5
1

4K
26

.0
5

45
.1

1
55

.5
1

55
.8

7
54

.1
4

47
.4

1
25

.5
2

33
.5

1
31

.8
7

24
.4

0
26

.9
5

16
.0

9
70

.0
0

90
.2

2
43

.7
6

43
.5

0
4.

00
99

.5
0

98
.6

7
62

.0
6

52
.2

7
47

.9
2

6K
28

.3
9

46
.4

3
55

.1
2

58
.2

7
57

.0
2

48
.9

4
28

.9
8

34
.3

1
33

.3
2

24
.6

2
26

.9
6

17
.2

0
71

.5
0

91
.7

2
44

.0
2

46
.5

0
5.

13
99

.5
0

99
.0

0
62

.3
9

52
.5

7
49

.1
4

8K
31

.3
5

46
.7

4
54

.7
1

58
.6

0
58

.1
9

48
.1

4
31

.7
7

34
.0

2
33

.5
5

24
.9

8
26

.9
5

17
.1

1
72

.5
0

91
.7

2
44

.1
7

46
.0

0
7.

38
99

.5
0

99
.0

0
62

.3
9

52
.0

4
49

.5
6

K
E

Y
D

IF
F

2K
26

.6
4

41
.7

3
50

.9
9

51
.1

8
51

.5
9

46
.4

7
22

.8
4

32
.3

7
29

.0
2

23
.8

6
26

.7
6

14
.8

1
66

.5
0

85
.9

2
39

.2
6

42
.2

5
3.

17
96

.0
0

96
.2

5
59

.1
7

39
.4

2
45

.0
6

4K
28

.7
0

45
.6

2
56

.0
6

56
.8

3
54

.5
8

49
.3

1
28

.2
5

33
.0

6
32

.3
0

25
.0

3
27

.0
7

16
.3

2
70

.0
0

90
.8

5
42

.8
4

44
.5

0
4.

21
99

.0
0

97
.6

7
60

.8
0

48
.0

0
48

.1
4

6K
29

.9
0

46
.3

3
55

.1
1

59
.0

0
56

.8
0

49
.5

0
31

.5
2

34
.9

7
33

.4
4

24
.5

8
26

.9
8

16
.8

0
72

.0
0

90
.9

9
43

.1
0

47
.0

0
5.

27
99

.5
0

99
.0

0
61

.4
0

49
.7

0
49

.1
9

8K
33

.5
7

46
.7

7
55

.4
8

59
.1

6
56

.8
7

49
.3

7
30

.8
8

34
.5

4
34

.1
7

25
.1

2
27

.0
1

17
.1

3
72

.5
0

92
.2

8
42

.8
1

46
.5

0
5.

83
99

.5
0

98
.6

7
61

.4
8

50
.9

0
49

.5
5

L
la

m
a3

.2
-3

B
23

.7
6

40
.2

3
50

.0
9

55
.8

4
50

.6
9

42
.2

9
26

.8
4

36
.2

4
33

.0
9

24
.3

0
25

.2
1

16
.4

1
72

.5
0

90
.1

1
42

.5
8

34
.0

0
3.

00
96

.5
0

20
.5

0
56

.2
2

56
.5

2
42

.7
1

Si
nk

2K
16

.8
5

30
.6

9
26

.5
8

27
.3

2
33

.2
6

25
.2

7
13

.8
2

9.
38

26
.7

4
19

.1
5

25
.1

5
15

.8
8

65
.0

0
86

.1
7

40
.7

9
19

.5
0

1.
50

19
.5

0
8.

50
56

.6
5

52
.7

3
29

.5
4

4K
19

.4
6

38
.6

1
36

.2
2

41
.6

8
41

.9
7

35
.8

4
13

.3
7

9.
86

29
.3

4
20

.1
9

25
.0

6
16

.4
4

71
.0

0
88

.0
6

41
.3

1
21

.7
5

2.
50

35
.5

0
16

.0
0

56
.4

8
52

.4
3

33
.9

6
6K

19
.3

3
40

.2
9

37
.9

5
49

.6
8

46
.4

8
40

.2
9

15
.3

1
11

.1
0

30
.4

3
21

.3
5

25
.1

4
16

.6
4

71
.5

0
88

.9
3

42
.0

4
23

.5
0

3.
50

47
.0

0
19

.5
0

56
.5

5
54

.1
1

36
.2

2
8K

20
.1

5
40

.0
2

41
.9

4
53

.5
7

48
.1

5
42

.2
4

16
.0

1
14

.7
6

31
.6

4
22

.1
0

25
.2

0
16

.5
0

73
.0

0
89

.2
6

42
.3

7
26

.2
5

3.
50

62
.5

0
20

.5
0

56
.8

6
56

.6
3

38
.2

5

Sn
ap

K
V

2K
17

.3
8

31
.3

7
31

.4
8

29
.6

5
37

.7
7

30
.0

5
11

.5
4

9.
66

27
.0

3
19

.9
3

24
.9

7
15

.9
7

59
.0

0
88

.1
3

40
.4

8
16

.2
5

3.
50

32
.5

0
9.

00
56

.3
2

55
.9

1
30

.8
5

4K
19

.8
5

39
.2

2
39

.8
6

47
.3

3
46

.7
0

37
.9

8
16

.6
4

16
.8

8
29

.7
9

21
.2

1
25

.0
1

16
.7

4
65

.5
0

89
.3

5
40

.9
5

18
.2

5
2.

50
62

.5
0

22
.5

0
55

.7
4

56
.8

8
36

.7
3

6K
20

.8
3

39
.6

5
44

.4
8

51
.8

4
49

.3
0

40
.1

8
20

.2
8

25
.3

2
31

.2
7

22
.7

3
25

.0
9

16
.8

1
69

.0
0

89
.9

5
41

.4
7

18
.7

5
4.

00
85

.0
0

20
.5

0
55

.6
9

57
.8

2
39

.5
2

8K
20

.4
9

40
.8

0
48

.1
6

55
.4

4
48

.7
8

41
.6

5
24

.7
9

30
.4

0
31

.8
1

23
.4

6
25

.1
7

16
.4

4
70

.0
0

90
.1

7
41

.9
9

22
.0

0
5.

00
94

.0
0

21
.5

0
55

.7
7

57
.2

9
41

.2
0

K
ey

D
iff

+
10

%
R

ec
en

tT
ok

en
s

2K
19

.9
2

37
.5

8
45

.9
9

46
.4

1
44

.2
4

34
.8

1
15

.2
0

29
.2

2
28

.2
3

22
.4

9
24

.9
9

14
.7

1
59

.0
0

84
.0

8
41

.3
8

24
.3

8
3.

00
70

.5
0

15
.5

0
57

.4
9

51
.9

1
36

.7
2

4K
21

.9
7

40
.7

0
49

.7
6

52
.5

3
47

.7
9

41
.9

2
20

.7
1

32
.8

3
31

.1
2

23
.3

7
25

.0
7

15
.7

7
67

.5
0

87
.4

7
41

.2
8

25
.0

0
2.

50
91

.0
0

20
.0

0
57

.1
4

56
.2

5
40

.5
6

6K
23

.7
6

40
.5

6
50

.7
9

54
.2

3
50

.5
4

42
.1

5
25

.2
0

34
.1

2
31

.9
5

23
.1

0
25

.2
1

15
.9

1
71

.5
0

88
.1

7
41

.6
7

26
.5

0
3.

50
96

.0
0

20
.5

0
56

.8
0

55
.1

8
41

.7
8

8K
23

.6
5

40
.5

8
49

.9
6

55
.7

1
51

.5
2

44
.1

0
25

.9
5

34
.4

1
32

.8
0

23
.7

7
25

.2
5

15
.7

5
73

.5
0

89
.6

7
41

.8
3

28
.7

5
3.

00
96

.0
0

20
.5

0
57

.0
0

56
.1

2
42

.3
7

K
ey

D
iff

+
20

%
R

ec
en

tT
ok

en
s

2K
19

.2
7

34
.8

6
45

.2
6

44
.9

4
42

.8
1

34
.1

5
14

.2
7

27
.3

1
28

.1
0

22
.1

3
25

.0
8

14
.9

6
61

.5
0

85
.0

7
41

.6
2

24
.1

7
2.

00
71

.5
0

16
.0

0
57

.5
6

53
.5

8
36

.4
8

4K
22

.5
6

41
.2

8
48

.3
7

52
.0

0
47

.5
0

42
.6

4
19

.6
4

32
.2

8
31

.1
7

22
.8

3
25

.0
8

15
.6

8
68

.5
0

88
.1

7
41

.3
8

24
.2

5
2.

00
90

.5
0

19
.5

0
57

.0
4

55
.0

5
40

.3
5

6K
22

.8
8

40
.7

4
50

.3
7

55
.0

2
49

.9
0

42
.3

4
25

.0
2

34
.9

5
31

.9
7

23
.2

8
25

.2
4

16
.3

2
71

.5
0

89
.6

1
41

.4
3

27
.0

0
3.

00
95

.5
0

20
.5

0
56

.8
2

55
.7

7
41

.8
6

8K
23

.8
2

40
.5

8
50

.0
2

55
.7

1
51

.2
5

43
.6

4
24

.5
2

34
.3

3
33

.0
2

23
.8

2
25

.2
0

16
.0

8
73

.5
0

89
.6

7
41

.9
9

29
.2

5
3.

00
97

.0
0

20
.5

0
57

.0
5

56
.4

8
42

.4
0

K
E

Y
D

IF
F

2K
18

.2
9

36
.6

5
45

.4
4

47
.4

7
46

.0
9

35
.4

1
13

.7
9

28
.8

9
28

.1
6

21
.4

5
25

.0
1

13
.5

6
60

.0
0

85
.2

4
37

.0
0

24
.8

8
1.

00
60

.5
0

12
.0

0
54

.1
3

42
.0

1
35

.0
9

4K
22

.3
4

40
.6

0
49

.1
5

52
.5

6
50

.1
4

40
.3

0
21

.6
5

32
.4

6
31

.3
8

23
.4

4
25

.0
6

15
.2

8
66

.5
0

87
.9

2
41

.4
1

27
.5

0
2.

50
88

.5
0

19
.5

0
55

.5
5

52
.2

4
40

.2
8

6K
22

.2
9

40
.6

8
50

.1
4

54
.5

1
51

.7
4

42
.1

9
24

.8
3

34
.6

4
32

.3
9

23
.5

3
25

.1
9

15
.8

8
71

.0
0

90
.0

2
42

.0
0

28
.7

5
3.

00
95

.0
0

21
.5

0
55

.8
6

54
.3

9
41

.8
8

8K
22

.4
1

40
.7

7
50

.1
0

55
.6

2
49

.8
3

43
.5

8
28

.0
9

34
.3

0
32

.7
8

23
.6

0
25

.1
7

15
.7

7
72

.0
0

90
.1

7
42

.4
6

30
.7

5
3.

50
96

.5
0

21
.5

0
55

.8
5

55
.6

5
42

.4
0

33

Table 15: Anchor vector ablation study. Average of Full Longbench results for Llama 3.2-3B-
Instruct. KEYDIFF results match Table 11. (Higher is better)

2K 4K 6K 8K

KEYDIFF 35.09 40.28 41.88 42.40

Pairwise 35.24 40.61 41.87 42.45
Median 35.43 40.67 41.89 42.26

Table 16: Distance metric ablation study. Average of Full Longbench results of Llama 3.2-3B-
Instruct. KEYDIFF results match Table 11. (Higher is better)

2K 4K 6K 8K

KEYDIFF 35.09 40.28 41.88 42.40

DotProd 30.14 38.01 41.09 42.23
Euclidean 13.68 21.06 25.91 29.53

Table 17: Accuracy (%) on the Phonebook Lookup task using Llama-3.2-3B-Instruct with a 6k cache
budget.

Method 100 478 856 1233 1611 1989 2367 2744 3122 3500

Dense 1.0 1.0 1.0 0.8 1.0 0.8 0.6 0.6 0.8 0.6
KeyDiff 1.0 1.0 1.0 0.6 0.4 0.2 0.0 0.0 0.2 0.2
TOVA 1.0 1.0 1.0 0.4 0.2 0.0 0.0 0.0 0.0 0.0

Table 18: Recall difference (KEYDIFF-Full) on NIAH benchmark for Llama-3.2-3B.
Depth 1000 4222 7444 10667 13889 17111 20333 23556 26778 30000

0.0 0.02 −0.06 −0.06 0.20 0.16 −0.16 0.18 0.20 0.06 0.04
11.0 0.10 −0.04 −0.04 0.30 0.28 −0.18 0.26 0.28 0.10 −0.08
22.0 0.04 −0.12 0.00 0.32 0.30 −0.18 0.16 0.28 0.14 −0.04
33.0 0.02 0.06 −0.20 0.34 0.08 −0.16 0.26 0.26 0.20 −0.16
44.0 −0.06 −0.08 −0.16 0.30 0.26 −0.12 0.24 0.22 −0.10 0.04
56.0 −0.06 0.00 −0.24 0.26 0.26 −0.20 0.18 0.14 0.04 −0.02
67.0 0.02 0.02 −0.14 0.36 0.28 −0.26 0.24 0.16 0.04 −0.08
78.0 −0.10 0.08 −0.26 0.26 0.30 −0.26 0.20 0.30 0.02 −0.04
89.0 0.02 0.08 −0.06 0.30 0.26 −0.32 0.30 0.22 0.06 −0.12
100.0 0.00 −0.06 −0.26 0.00 −0.06 −0.02 0.00 −0.04 0.14 −0.04

Table 19: Relative latency of key scoring on an Android device (normalized by KEYDIFF at 512 KVs).
Lower is better.

Method 512 1024 2048 4096 8192

SnapKV 1.92 2.46 4.50 8.94 11.42
TOVA 1.02 0.94 1.25 1.95 3.06
KeyDiff 1.00 1.03 1.01 1.07 1.37
H2O 1.10 0.99 1.52 2.32 4.23

34

	Introduction
	Background
	Transformers
	KV Caching
	KV Cache Eviction Methods
	KV Caching in Resource-Constrained Environments

	Method
	Correlation of Attention Scores and Key Dissimilarity
	KeyDiff
	Why KeyDiff Works: A Theoretical Perspective

	Experiments
	Needle In a Haystack
	LongBench
	Math-500 Reasoning Benchmark
	Ablation Study
	Latency and Complexity

	Related Work
	Conclusion
	
	
	Extended Related Work
	Attention-based eviction methods

	Runtime and Memory Complexity
	FLOP count of KeyDiff

	KeyDiff: A Theoretical Perspective
	Additional PCA Visualizations
	Derivation of KeyDiff from an Optimization Perspective
	Attention Sinks and Approximate Collinearity
	Correlation Analysis

	TTFT Analysis
	Math-500 reasoning benchmark
	Additional discussion for LongBench
	Empirical Motivation for KeyDiff Setup
	Experiment Setup
	Longbench dataset statistics
	Additional Results

	Ablation study
	Needle in a Haystack results for Sink attention

	Additional Experiments and Analyses
	Retrieval-Critical Evaluation: Phonebook Lookup
	RULER Benchmark Validation
	Needle-in-a-Haystack Recall Saturation
	On-Device Latency Evaluation

