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ABSTRACT

We present OmniBooth, an image generation framework that enables spatial
control with instance-level multi-modal customization. For all instances, the multi-
modal instruction can be described through text prompts or image references. Given
a set of user-defined masks and associated text or image guidance, our objective is
to generate an image, where multiple objects are positioned at specified coordinates
and their attributes are precisely aligned with the corresponding guidance. This
approach significantly expands the scope of text-to-image generation, and elevates
it to a more versatile and practical dimension in controllability. In this paper, our
core contribution lies in the proposed latent control signals, a high-dimensional
spatial feature that provides a unified representation to integrate the spatial, textual,
and image conditions seamlessly. The text condition extends ControlNet to provide
instance-level open-vocabulary generation. The image condition further enables
fine-grained control with personalized identity. In practice, our method empow-
ers users with more flexibility in controllable generation, as users can choose
multi-modal conditions from text or images as needed. Furthermore, thorough
experiments demonstrate our enhanced performance in image synthesis fidelity
and alignment across different tasks and datasets.

1 INTRODUCTION

Image generation is flourishing with the booming advancement of diffusion models (Ho et al.,
2020; Rombach et al., 2022). These models have been trained on extensive datasets containing
billions of image-text pairs, such as LAION-5B (Schuhmann et al., 2022), and have demonstrated
remarkable text-to-image generation capabilities, exhibiting impressive artistry, authenticity, and
semantic alignment. An important feature of such synthesis is controllability – generating images
that meet user-defined conditions or constraints. For example, a user may draw specific instances in
desired locations. However, in the context of text-to-image, users mostly generate favored images by
global text description, which only provides a coarse description of the visual environment, and can
be difficult to express complex layouts and shapes precisely using language prompts.

Previous methods have proposed to leverage image conditions to provide spatial control, but have
been limited in their ability to offer instance-level customization. For example, ControlNet (Zhang
et al., 2023) and GLIGEN (Li et al., 2023b) employ various types of conditional inputs, including
semantic masks, bounding box layouts, and depth maps to enable spatial-level control. These methods
leverage global text prompts in conjunction with plain image conditions to guide the generation
process. While they effectively manage the spatial details of the generated images, they fall short in
offering precise and fine-grained descriptions to manipulate the instance-level visual character.

In this paper, we investigate a critical problem, “spatial control with instance-level customization”,
which refers to generating instances at their specified locations (panoptic mask), and ensuring their
attributes precisely align with the corresponding user-defined instruction. To achieve comprehensive
and omnipotent of controllability, we describe the instruction using multi-modal input such as
textual prompts and image references. In this manner, the user is empowered to freely define the
characteristics of instance according to their desired specifications.

While this problem has been identified as a critical area of need, it remains largely unexplored in the
existing literature. This problem is usually designed as two distinct tasks. The first is instance-level
control for image generation. Prior works provide extra prompt control for each instance in an
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image. They learn regional attention (Zhou et al., 2024b) or modified text embedding and cross
attention (Wang et al., 2024b) to perform controllable generation. The second task is subject-driven
image generation. Several works (Ma et al., 2023; Shi et al., 2024) leverage image as condition and
generate images with the same identity. Optimization-based methods such as DreamBooth (Ruiz et al.,
2023) require fine-tuning the diffusion model using multiple target images, and can not generalize
to new instances. Some of them treat the whole images as reference, and can not generate multiple
instances with spatial control. Consequently, these limitations significantly impede the practical
applicability of these methods in real-world scenarios.

To achieve spatial control with instance-level customization, we propose a unified framework that
enables controllable image synthesis through multi-modal instruction. The core contribution of
our method is our proposed latent control signal, denoted as lc. We first use lc to represent the
input panoptic mask for spatial control. Then, by painting text embedding or warping image
embedding into the unified lc, we form a unified condition comprising different modalities of control.
Furthermore, as image modality contains a more complex structure, we propose spatial warping to
encode and transform irregular image identity into lc. Finally, we develop an enhanced ControlNet
framework (Zhang et al., 2023) to learn feature alignment of the latent input rather than spatial image.
Through extensive experiments and benchmarks in MS COCO (Lin et al., 2014) and DreamBooth
dataset (Ruiz et al., 2023), our method achieves better image quality and label alignment than prior
methods. In summary, our contributions include:

• We present OmniBooth, a holistic image generation framework to attain multi-modal con-
trol, including textual description and image reference. Our unified framework unlocks a
spectrum of applications such as subject-driven generation, instance-level customization,
and geometric-controlled generation.

• We propose latent control signal, a novel generalization of spatial control from RGB-image
into the latent domain, enabling highly expressive instance-level customization within a
latent space.

• Our extensive experimental results demonstrate that our method achieves high-quality image
generation and precise alignment across different settings and tasks.

2 RELATED WORK

2.1 DIFFUSION MODELS FOR TEXT-TO-IMAGE GENERATION

Recently, diffusion-based image generation has developed rapidly. Image Diffusion (Song et al.,
2020a;b) learn the process of generating images by progressive denoising a random variable drawn
from a Gaussian distribution. Latent diffusion (LDMs) (Rombach et al., 2022) further leverage a
UNet (Ronneberger et al., 2015) and perform diffusion process in the latent space of a Variational
AutoEncoder (Kingma & Welling, 2013), significantly improving computational efficiency.

2.2 CONTROLLABLE IMAGE GENERATION THROUGH MULTI-MODAL INSTRUCTION

In this paper, we explore instance-level controllable image synthesis using two primary modalities:
text prompts and image conditions, which serve as the two most commonly used modalities by users.

Text-Control Text-controlled image generation typically involves learning a cross-attention module
that builds interaction between image features and text embeddings. These text embeddings can be
extracted using CLIP (Radford et al., 2021) or T5 (Raffel et al., 2019) text encoders. While this
approach effectively controls the high-level appearance or style of generated images, it often struggles
to manage detailed spatial contents and preserve subject identity. As a result, we further incorporate
image references as additional conditions to control the specific instance identity.

Subject-Control Subject-driven image synthesis typically leverages image references to control
and customize generation. DreamBooth (Ruiz et al., 2023) fine-tunes the entire UNet network using
target images to capture the identity of target objects. To enable zero-shot personalization, some
works treat the identity as the text embedding to the diffusion model. IP-Adapter (Ye et al., 2023b)
and InstantBooth (Shi et al., 2024) learning an image encoder to extract the identity of objects.
Relevant work (Wang et al., 2024a; Dahary et al., 2024) further learning multi-object generation
through regional attention.
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Figure 1: Overview of OmniBooth. We represent our conditions as a high-dimensional latent feature
that seamlessly incorporates mask guidance and multi-modal instruction. We denote our conditions
as latent control signal lc. By painting the text embedding or warping the image embedding into lc,
we enable various modalities of control for image generation. In our framework, users can edit the
input panoptic mask and instance instructions as needed to control the generated image.

Spatial-Control To enable spatial control image generation, a series of works introduce spatial con-
ditions to guide image generation. Spatext (Avrahami et al., 2023) and SceneComposer (Zeng et al.,
2023) learning open-vocabulary scene control by using spatial-textual representation. GLIGEN (Li
et al., 2023b), InstanceDiffusion (Wang et al., 2024b) and MIGC(++) (Zhou et al., 2024b;a) learning
spatial control through newly added attention modules with spatial layout. MultiDiffusion (Bar-Tal
et al., 2023), StructureDiffusion (Feng et al., 2022), and BoxDiff (Xie et al., 2023) add location con-
trols to diffusion models without fine-tuning the pretrained text-to-image models. ControlNet (Zhang
et al., 2023) learning a zero-initialed UNet encoder to extract the features from image conditions,
then add them to the decoder part of diffusion UNet as conditions.

3 METHOD

Problem Definition As shown in Fig. 1, we aim to achieve spatial control with instance-level
customization in image generation. In our setting, users will define the following as control signals:

Instruction: s = (P,M,D), with (1)
Instance masks: M = [M1, · · · ,MN ], (2)

Descriptions: D = [(T1 or I1), · · · , (TN or IN )], (3)

where P stands for global prompt, Mi is a binary mask of each instance that indicates their spatial
location, D is the instance description, which consist of Ti or Ii, corresponding text or image
descriptions of each instance. Given the multi-modal conditions, the model needs to generate images
with instances at their specified locations and ensure their attributes precisely align with the conditions.
Compared with prior work, which rely on single-modality input, or employ coarse bounding boxes
for single-instance spatial control, our approach offers more versatile and flexible controllability.

3.1 EXTRACT MULTI-MODAL EMBEDDING

3.1.1 TEXT EMBEDDING

Given the textual description Ti of each instance in a scene, we aim to generate an image with
instances that align with the text input. We extract the textual embedding using CLIP text en-
coder (Radford et al., 2021). The output is a 1D embedding ei ∈ R1024. In contrast to the global
prompt that interacts with the feature map of the whole image, we leverage the instance prompt for
regional control, which will be discussed in Sec. 3.2.

3.1.2 IMAGE EMBEDDING

To enable subject-driven image generation, image reference Ii is utilized to provide conditional
information. Instead of fine-tuning the diffusion model on target images like DreamBooth (Ruiz et al.,
2023), we learn generalizable generation that only requires a single image as reference during testing.
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Figure 2: Users are empowered to freely select either text or image as the condition. Spatial warping:
To provide spatial-level identity features, we warp the 2D DINO spatial feature into our latent control
signal. The mechanism is to use ROI align to map pixel-align latent into latent control signal. Then
we randomly drop 10% of the spatial embedding si and replace it with the DINO global embedding
gi to encode global identity.

Learning a zero-shot image customization is challenging. Consequently, it would be beneficial and
necessary to leverage the pre-trained vision foundation model to extract the identity information of
the target object. Previous works (Ma et al., 2023; Shi et al., 2024; Ye et al., 2023b) chose to use
a pretrained CLIP image encoder to embed the target object. However, given that CLIP is trained
through a contrastive loss between images and high-level textual description, it only encodes the
semantic meaning of objects while neglecting the identity details. To extract the discriminative
spatial identity, we use DINOv2 (Oquab et al., 2023) as the feature extractor. Trained through
patch-level objectives via random masking, the feature extracted by DINOv2 preserves discriminative
information, thus it is expressive for conditions. The output of the image encoder is a spatial
embedding si ∈ R26×26×1024 that contain patch features, and a global embedding gi ∈ R1024

contain global information. These embeddings are further fused with text embedding to perform
multi-modal controlled generation.

3.2 UNIFY MULTI-MODAL INSTRUCTIONS BY LATENT CONTROL SIGNAL

To establish a unified generation framework, we introduce latent control signal, denoted as lc, which
is a latent feature with a size of lc ∈ RC×H′×W ′

. This latent feature constitutes the spatial-level
multi-modal instruction in latent space, extending the RGB image conditions from ControlNet (Zhang
et al., 2023) to the latent dimension for enhanced control flexibility and adaptability. Unlike traditional
RGB conditions, latent control signal not only provides spatial conditions but also incorporates highly
expressive latent information that surpasses the original RGB channel.

In detail, we build upon ControlNet’s foundational framework, and extend conditions from the RGB
space into latent space R3×H×W → RC×H′×W ′

, where H,W is the size of the generated image,
and H ′,W ′ = H/8,W/8 is the size of the latent feature after VAE encoding. The hidden dimension
C is set as 1024. By generalizing conditions from plain images to latent features, this approach
enables more nuanced control over image generation, surpassing the original scratch-based condition
from RGB space and providing a highly expressive control signal. In the following, we describe how
we inject text and image embeddings into latent control signal for multi-modal instruction.

Text Control: Latent Painting As text embedding ei is a 1D vector, we simply paint the region of
latent control signal using the given mask. Every coordinate of an instance mask has the same text
embedding. This process ensures that the textual information is accurately and efficiently integrated
into the given region of latent control signal. The formulation is:

lc =

n∑
i=1

Paint(ei,Mi). (4)
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(a) Global Prompt: 
A young man doing a 
flip on a skateboard 
in a busy street.
Instance Prompt: 
- a skateboard
- a person
······

  

(c) Global Prompt: 
A woman stands in the 
dining area at the table.
Instance Prompt: 
- a wooden floor
- a dining table
- a red vase
  ······

Input mask InstanceDiffusion Ours Ground Truth
Language 
Instruction

(b) Global Prompt: 
A plate topped with a 
piece of cake.
Instance Prompt: 
- a silver fork
- a piece of cake with 
frosting
  

(d) Global Prompt: 
A man and his 
surfboard survey a 
stormy sea
Instance Prompt: 
- a surfboard
- a person

Figure 3: Visualizations of text-instructed image generation. We compare our method with In-
stanceDiffusion (Wang et al., 2024b). Our method exhibits a distinct advantage in handling dense and
occluded scenarios, yielding images with pronounced depth relationships and hierarchical structures.

Image Control: Spatial Warping Incorporating image conditions into image generation poses a
distinct challenge compared to text-based conditions. Utilizing a 1D embedding for image identity is
suboptimal, as it fails to capture the geometric intricacies of the image. To preserve spatial details,
we introduce a simple and effective technique termed spatial warping to encode image embeddings.

We provide a detailed illustration of spatial warping in Fig. 2. Given a target region (instance mask),
we first align the bounding rectangle of the mask with the input DINO feature maps using box
coordinates. Subsequently, we use the dense grids of the mask within this rectangle to interpolate
features from the input DINO features. This process is similar to ROI Align (He et al., 2017), but the
resolution of ROI is flexible and follows the size of the mask. The features will form an ROI feature
(orange region in Fig. 2) of the latent control signal. Finally, to further incorporate global embedding,
we randomly drop 10% of the spatial embedding si and replace it with the DINO global embedding
gi. As our target mask may have a different silhouette from the shape of input image, injecting global
embedding enhances the model’s generalizability and adaptability across diverse image conditions.
The final ROI feature is then warped into the original region of latent control signal.

lc =

n∑
i=1

Drop Replace(Interpolate(si,Mi,Bi),gi), (5)

where Bi is the bounding box of the target mask Mi. This method can be viewed as a customized
ROI Align and is specifically adapted for conditional generation.

3.3 FEATURE ALIGNMENT

After obtaining the latent control signal in spatial and latent dimension, we develop a simple but
effective feature alignment network to inject our conditions into latent features. As we represent our
latent control signal as latent features with the same width and height as the latent diffusion, we first
use a 1×1 convolution to align the channel dimension. Then, we employ a UNet encoder to extract
features and integrate them into the diffusion UNet via adding, following the standard ControlNet
approach (Zhang et al., 2023). Since we perform controllable generation through feature adding, we
don’t need to fine-tune the diffusion UNet or inject specific layers. Consequently, our method not only
achieves computational efficiency, but is also naturally compatible with various community plugins.
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Input mask Different image reference Generated image 1 Generated image 2
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(b) 
Global Prompt: 
A F-35 fighter 
jet or 
commercial 
plane parked 
on an airport

(a) 
Global Prompt: 
A person doing 
skateboard 
ticks at a skate 
park

(c) 
Global Prompt: 
A cat pausing 
as it's picture is 
taken

or

Figure 4: Image-instructed generation. Given a reference image and a target location described by
instance mask, our method aims to generate instance with the same identity in the target location.

These include personalized LoRA (Hu et al., 2021) in Civitai (Civitai, 2022), and IP-Adapter (Ye
et al., 2023b) as shown in Fig 6 (e).

3.4 ENHANCE STRUCTURE SUPERVISION BY EDGE LOSS

In the training process of diffusion model, each pixels in an image contribute equally during super-
vision. However, in the scenes characterized by challenging hierarchy and overlapping object, the
importance of object edges may differ markedly from that of the plain background pixels. To enhance
the supervision over the high-frequency area and improve generation quality, we propose edge loss.
We first extract the edge map of the input image through Sobel filtering. Then apply Progressive
Foreground Enhancement (detailed in Sec. C) from SyntheOcc (Li et al., 2024b) to the edge pixel.
Since we perform edge detection in the latent size of input images, we regard the edge map as a loss
weight map to enhance structure supervision. The detailed formulation is:

w(x,m, n) = Progressive Enhance(Edge(x),m, n), (6)

where x is the groundtruth image, n is the current training step, and w is the loss reweight map which
has the same spatial resolution as the latent space of the diffusion model.

3.5 TRAINING PARADIGM

Multi-Scale Training The training of the diffusion model typically leverages a fixed-resolution
scheme. This behavior limits the application in generating images with different resolutions and
aspect ratios. In this paper, we introduce a multi-scale training scheme that enhances the model’s
flexibility and generalizability across various resolutions and ratios. In detail, we split the training
images into different groups of ratios. During training, we sample images from the same group, and
resize them to the same resolution as the training images in a batch, thereby enabling a robust and
adaptable image generation during inference.

Random Modality Select To enable a unified image generation framework that accommodates
multi-modal conditions, we employ a stochastic selection process during training. We randomly
choose either a textual description Ti or an image reference Ii as the conditional input of each
instance, each with 50% probability. The image reference is copy-pasted from ground-truth image
using instance mask. This random approach ensures flexibility and adaptability in the controllable
generation, allowing the model to effectively integrate various types of conditions.
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COCO Instance Segmentation
Method APmask APmask

50 APmask
75 APmask

small APmask
large ARmask

1 ARmask
100 FID

Oracle (YOLOv8) 40.8 63.5 43.6 21.9 58.2 32.9 56.0 -

SpaText (Avrahami et al., 2023) 5.3 12.1 5.8 3.1 11.2 10.7 14.2 23.1
ControlNet (Zhang et al., 2023) 6.5 13.8 6.1 3.6 12.5 12.9 15.1 20.3
InstanceDiff. (Wang et al., 2024b) 26.4 48.4 25.3 4.7 47.0 24.1 37.7 23.9
OmniBooth 28.0 46.7 29.1 10.0 46.7 25.1 41.0 17.8

Table 1: Downstream evaluation on the MS COCO val2017 set. We report YOLO score and FID to
evaluate the alignment accuracy and image quality of our method.

Objective Function Our final objective function is formulated as a standard denoising objective
with reweighing:

L = EE(x),ϵ,t∥ϵ− ϵθ(zt, t, τθ(y))∥2 ⊙ w, (7)

where w is the loss reweight map that enhances structure supervision.

4 EXPERIMENT

Basic Setup We experiment with our model on the MS COCO dataset (Lin et al., 2014). To obtain
panoptic annotations for the images, we utilize the COCONut annotation (Deng et al., 2024). As the
annotation only contains category-level captions of instances, we employ BLIP-2 (Li et al., 2023a) to
generate textual descriptions for each instance in the COCO dataset.

Networks We use Stable Diffusion (Rombach et al., 2022) XL as initialization. During training,
we only train our feature alignment network while keeping the diffusion UNet and DINO network
frozen. Additionally, we train two separate Multi-Layer Perceptron (MLP) layers to extract features
from both text and image embeddings, which are subsequently integrated into latent control signal.

Hyperparameters During training, we resize the height of training image to 1024 and keep the
aspect ratio. We train our model in 12 epochs with batch size = 16. The learning rate is set at 4e−5.
The training phase takes around 3 days using 8 NVIDIA A100 80G GPUs. We use the classifier-free
guidance (CFG) (Ho & Salimans, 2022) that is set as 7.5. For each image reference, we perform a
random horizon flip and random brightness as data augmentation to simulate multi-view condition.

Baselines We compare our method with prior methods in Tab. 1. SpaText uses a CLIP text encoder
or CLIP image encoder to extract embedding from conditional input. Then it concatenates the spatial
feature to the latent feature in diffusion UNet to control the image generation. ControlNet leverages
an RGB image as condition input to provide layout guidance. The conditions include canny edge,
semantic map, and depth map. They either comprise a predefined and fixed vocabulary or focus
solely on geometric controls. At the same time, we argue that ControlNet can be hard to precisely
control the individual instances through global prompts (see Tab. 1), due to their fixed length and
lack of spatial correspondence in global prompts. On the other hand, InstanceDiffusion enables
instance-level control through modified global textual embedding. The textual embedding contains
the point coordinates of boxes or masks for each instance, along with instance descriptions. Detailed
comparison will be provided in Sec. 4.2.

4.1 DATASET AND METRICS

Text-Guided Instance-Level Image Generation Following InstanceDiffusion (Wang et al.,
2024b), we conduct our experiments on the COCO dataset (Lin et al., 2014) val-set to evaluate
the alignment between given layout and the generated images. We report YOLO score (Li et al.,
2021) and FID (Heusel et al., 2017) to evaluate the alignment accuracy and image quality of our
method. Specifically, we first use the text and mask annotation from val-set to generate a synthetic
COCO val-set, and then we use a pretrained YOLOv8m-seg (Jocher et al., 2023) to evaluate instance
segmentation accuracy on it. The performance will be more effective as it is close to the oracle
performance (real val-set).

7
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Methods Type DINO CLIP-I CLIP-T
Real Images - 0.774 0.885 -

Textual Inversion (Gal et al., 2022) Fine-Tune 0.569 0.780 0.255
DreamBooth (Ruiz et al., 2023) Fine-Tune 0.668 0.803 0.305

ELITE (Wei et al., 2023) Zero-Shot 0.621 0.771 0.293
BLIP-Diffusion (Li et al., 2024a) Zero-Shot 0.594 0.779 0.300
Subject-Diffusion (Ma et al., 2023) Zero-Shot 0.711 0.787 0.293

OmniBooth Zero-Shot 0.736 0.776 0.310

Table 2: Evaluation of subject-driven image generation on DreamBooth dataset (Ruiz et al., 2023).

Image-Guided Subject-Driven Image Customization We use the official DreamBooth
dataset (Ruiz et al., 2023) to evaluate the accuracy of image-guided generation. For image alignment,
we calculate the CLIP image similarity (CLIP-I) and DINO similarity between the generated images
and the target concept images. For text alignment, we calculate the CLIP text-image similarity
(CLIP-T) between the generated images and the given global text prompts.

4.2 QUANTITATIVE RESULTS

Text-Guided Generation In Tab. 1, we provide experiments that evaluate the YOLO score
(instance segmentation accuracy) in the COCO validation set. Our method achieves better overall
performance as shown in APmask. Additionally, we remind that the YOLO score only reflects the
condition-generation alignment, and does not reflect the visual harmony and image quality. So we
further provide FID evaluation in COCO dataset.

Compared with InstanceDiffusion, our method achieves better overall performance in APmask. We
empirically find that InstanceDiffusion has a slight advantage in the aspect of generating large objects,
as shown in APmask

50 and APmask
large. However, it lags behind in the small object metric as shown in

APmask
75 and APmask

small. This disparity may suggests that parameterized encoding of object masks
through text embedding is more effective than quantized masks for manipulating large objects, given
that our OmniBooth inevitably introduces some quantized error in representing object contours. In
contrast, we suppose that InstanceDiffusion’s cross-attention module may struggle to accurately
identify small object regions, as the attention module is in a global receptive field, and does not
contain spatial alignment. This property potentially makes it less effective than pixel-aligned direct
addition. In conclusion, our OmniBooth represents all instances using a unified and spatial-aligned
latent feature, providing a more effective performance both quantitatively and qualitatively.

Image-Guided Generation We present experiments on subject-driven image generation in Tab. 2.
Our method achieves competitive performance compared to prior work. Notably, we do not provide
extra adaptation for this task. It emerged as a beneficial outcome from the universality of our
multi-modal instruction. We provide a user-drawing example in our supplementary video.

We find that our method achieves highly competitive performance in the DINO score. The main
reason can be the spatial features extracted by DINO are cleaner and more discriminative, aligning
with observations from AnyDoor (Chen et al., 2024). Furthermore, we achieve a better CLIP-T
score as we don’t modify the original text embedding, thus retaining the original text controllability.
However, we find that our CLIP-I score lags behind Subject-Diffusion. This may be attributed to
Subject-Diffusion’s introduction of dedicated layers into the diffusion UNet, which is equivalent to
the global prompt’s cross-attention. This layer improves image controllability but may squeeze and
hurt text controllability. As a result, we hypothesize that there exists a trade-off between achieving
image references and maintaining the original global textual control.

4.3 QUALITATIVE RESULTS

Text-Guided Generation In Fig. 3, we provide a comparison of our method with prior work
in text-guided image synthesis. We empirically find that InstanceDiffusion (Wang et al., 2024b)
performs poorly when generating images with complex occlusion relationships. Besides, the example
(a) generated by InstanceDiffusion contains human instance with unsatisfactory topology. In contrast,
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Image reference Generated image 1 Generated image 2 Generated image 3 Generated image 4

(a)

(b)

(c)

Figure 5: Zero-shot image-instructed generation. We condition image references from the Dream-
Booth dataset and utilize different global prompts and target masks to generate images. The input
instances are masked out for conditioning.

our method generates images with more realistic appearances. We attribute our reasonable generation
to our novel spatial-level conditions, specifically the latent control signal. An interesting finding is
that, although we do not provide explicit 3D conditions, our generated images exhibit harmonious 3D
relationships, primarily derived from the spatial 3D cues, such as vanishing point of the input mask.
More discussion is provided in Sec. A.1.

Image-Guided Generation We present our results in Fig. 4 and Fig. 5. Our framework seamlessly
integrates subject-identity with layout guidance. The generated images closely adhere to the input
mask in Fig. 4, demonstrating our effectiveness. We also find that our method achieves a remarkable
level of accuracy in identity reconstruction. Our method can generate fine-grain geometry and texture
details of the input image reference, such as the pink tongue in Fig. 5 (b).

Meanwhile, our method exhibits robust generalizability when the image reference significantly differs
in shape and silhouette from the input mask. As illustrated in Fig. 4 (b), the fighter jet’s distinct
shape and silhouette are notably different from those of the input mask. Nonetheless, our approach
successfully produces a coherent shape and texture that is contextually appropriate. This capability
can be attributed to the flip augmentation employed during training, and the incorporation of global
embeddings. Despite discrepancies in pose between the input image and the target layout, our model
effectively learns to generate a plausible instance that aligns with the provided instance mask.

Method Condition Type FID
ControlNet RGB map 20.37
GeoDiffusion Text embedding 20.16
MIGC Regional attention 24.52
InstanceDiff. Text embedding 23.90
Ours Latent Control 17.80

Table 3: Comparison of FID with previous methods
on the COCO dataset.

Ablation Study Metric
Edge loss CLIP to DINO Spatial warping DINO score

- - - 0.662
✓ - - 0.681
✓ ✓ - 0.714
✓ ✓ ✓ 0.736

Table 4: Ablation of different designs of our model in DreamBooth
benchmark.

9
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Global Prompt: 
Two draft horses 
pulling plow, 
under cloudy skies 
with trees and 
other horses in 
background.

Instance Prompt: 
- two horses with 
harness
- a person
 ······

  

(a) Input mask
(e) Style of Zelda 
using IP-Adapter(b) Our generation (f) Ground Truth(c) Horse→Sheep (d) Horse→Dog

Figure 6: Text-instructed generation. We highlight that our method enables image generation with
instance-level control through open-vocabulary text guidance.

4.4 ABLATION STUDY

In Tab. 4, we present ablation studies across various design spaces of our method. We first initialize
our model with a CLIP image encoder and utilize the 1D CLIP embedding to paint the latent
control signal. Subsequently, we apply edge loss to enhance structural supervision. The ”CLIP to
DINO” column indicates the replacement of the CLIP embedding with the global DINO embedding.
As global embedding only contains high-level classification features, we further propose ”Spatial
warping”. It denotes we warp patch token from DINO into lc to inject spatial identity features. Our
experiments demonstrate that the proposed components consistently improve upon the baseline.

5 LIMITATION AND BROADER IMPACTS

Granularity Conflict In our research, we aim to achieve a unified controllable image synthesis
by utilizing multi-modal instructions. We consider both textual descriptions and image references
as equivalent conditional descriptors for representing instances. However, it is crucial to note that
textual descriptions operate within a global representation, treating all relevant instances uniformly.
This approach contrasts with the use of image references, which offer distinctive features tailored to
individual instances. The amalgamation of these two types of descriptors into a single latent space,
latent control signal, can inadvertently lead to a blending of inconsistent levels of detail, potentially
undermining the fine-grained distinctions necessary for precise image synthesis.

3D Conditioning and Overlapping Objects In scenarios where the input layout features multiple
objects in close proximity or overlapping, discerning individual elements can be challenging for our
method. A suboptimal solution is to use “another” description in the instance prompt, to distinguish
the overlapping instances with the same textual property. Future work can enhance our model by
integrating 3D conditioning techniques, such as depth cues or multiple plane images (MPIs) (Li et al.,
2024b), to enrich the spatial context and improve the model’s ability to discern overlapping objects.

Future Research Our framework provides application in dataset generation, enabling the creation
of free annotated panoptic masks. It allows for the conditioning of these masks to produce aligned
images, thereby offering a rich resource for free-labeled data. Additionally, we envision adapting
our framework to facilitate controllable video generation, which would empower users to precisely
manipulate video content following their specifications. We hope this property will offer substantial
benefits in applications of content creation and robotics (Yang et al., 2023; Zhou et al., 2024c).

6 CONCLUSION

In this paper, we introduce OmniBooth, a unified framework to enable omnipotent types of control,
including spatial-level mask control, open vocabulary text control, and image reference control
for instances. OmniBooth represents a pioneering approach in the field, being the pioneering
framework to perform spatial mask control with instance-level multi-modal customization. Our
proposed latent control signal is capable of processing a wide spectrum of input conditions. This
innovation significantly enhances user flexibility in controllable image generation, allowing users to
conduct multi-modal instruction from text or images as needed. Finally, our extensive experiments
and visualization demonstrate our framework achieves high-quality image generation and precise
instruction alignments across various benchmarks and settings.
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APPENDIX

In the appendix, we provide the following content:

Sec. A: Potential discussion. Sec. A.1: Compare with Cross-Attention.
Sec. A.2: Compare with ControlNet. Sec. A.3: Discuss input-target misalignment.
Sec. A.4: How to obtain mask input? Sec. A.5: Further scale up.
Sec. B: Counterfactual generation. Sec. C: Detail of progressive reweighting.
Sec. D: Edit the layout for generation. Sec. E: Ablate drop and replace.
Sec. F: More Visualization. Sec. G: Visualization of Failure Cases.

Figure 7: Text-instructed image generation. The input panoptic mask is plotted inside the generated
image.

A POTENTIAL DISCUSSION

To help a comprehensive understanding of our paper, we discuss intuitive questions that might be
raised.

A.1 COMPARISON WITH CROSS-ATTENTION-BASED CONTROL

What accounts for the more effective performance of our approach compared to InstanceDiffusion
and other methods based on cross-attention mechanisms? Our method employs a spatial latent
feature as an input, which encapsulates critical depth cues inherent in 3D scenes, such as occlusion,
relative size, distance to horizon, and vanishing points. These cues are pivotal for generating realistic
multi-instance scenes with complex hierarchical structures. In contrast, InstanceDiffusion processes
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Global Prompt: 
A man stands beside his motorcycle 
near a park.

Red motorcycle → Yellow motorcycle

Instance Prompt: 
- a red motorcycle parked
- a person with jacket

Input mask InstanceDiffusion Ours

Figure 8: We demonstrate our capability for instance-level open-vocabulary generation. Our method
ensures that generated instances adhere to the instance prompt and mask silhouettes. When changing
the colors of moto, we only modify the instance prompt and keep the global prompt unchanged.

instances as isolated prompts, relying on neural networks to implicitly learn object relations and
depth cues, which sometimes struggle to learn and may fail. We consider the cross-attention module
to be more effective in global style manipulation. Nevertheless, it falls slightly short in spatial control
compared to ControlNet-like approaches. This approach necessitates additional learning efforts and
is less efficient compared to our method’s spatial conditioning, which inherently encodes relational
information.

A.2 COMPARISON WITH CONTROLNET-BASED CONTROL

In this section, we draw a comparison between our approach and ControlNet, examining its two
primary variants. The first is to condition an RGB semantic mask. This is a degradation of our
method, where each color in the semantic mask represents a category in a fixed vocabulary. This
method, while effective for instances aligning with a predefined vocabulary, is limited in its scope. It
does not accommodate open-vocabulary generation or subject-driven generation.

The second variant uses geometry layout as conditions, then leverages global prompts to instruct the
specific instance with open-vocabulary control. The geometry layout can be a depth map or edge
map without semantics. This approach is efficacious in scenarios with a limited number of instances
or simple topological structures. However, its efficacy diminishes when confronted with complex
layouts and a multitude of instances, as the token length may surpass the text encoder’s maximum
capacity of 77 tokens. Additionally, the weak spatial reference in global prompts poses a challenge in
accurately targeting each instance with its description. Furthermore, the depth map and edge map
can be difficult for users to draw. Consequently, we consider these ControlNet variants to be less
effective baselines for our method.

A.3 ANALYSIS OF INPUT-TARGET MISALIGNMENT IN SPATIAL WARPING

This section discusses the impact of input-target misalignment in Spatial Warping. Specifically, we
explore the implications when the input image’s silhouette diverges from that of the target mask. Fig. 4
(b) depicts a scenario wherein the jet’s mask in the input image is markedly distinct from the target
mask, which is that of a commercial aircraft. Nonetheless, our diffusion model effectively harnesses
an intrinsic image prior to generate specific instances that align with the target mask. In essence,
despite the silhouette of the input object varies in shape from the target mask, the diffusion UNet is
adept at applying reasonable deformations to match the target mask’s requirements. Additionally,
the global embedding we introduce serves to enhance the object prior, further refining the alignment
process. This example demonstrates our generalization ability.

Another example is Fig. 6 (d). When there is a discrepancy between the input text description and
the target mask, our generated image avoids a simplistic merging of the instance with the mask,
a deformed and abnormal dog for example. Notably, the morphological and skeletal contours of
horses and dogs are markedly distinct; dogs, for instance, do not typically exhibit a neck-lifting
posture when standing. As a result, to mitigate this issue, our method generates a second dog on
the dog’s back. This example demonstrates our robustness against multiple conflicting conditions.
This capability is crucial for ensuring that our model can handle complex and nuanced user inputs
effectively, maintaining a high level of accuracy and reliability in image generation tasks.
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In summary, in user cases where the input instruction is distinct from the target mask, our model is
adequately robust to perform effective adaptation to generate reasonable instances in the target mask.

A.4 HOW TO OBTAIN MASK INPUT?

Our approach is confined to a conditional generation framework that should have a mask input first.
In the current setting, our mask is sampled from the original dataset annotation. Thus most of the
augmented data is generated using the same layout, or with minimal human editing. Future research
can incorporate the recent research (Ye et al., 2023a) that trains a generative model to generate
mask annotation to synthesize images with novel semantic layouts. Moreover, a dedicated drawing
software or user interface (UI) can be developed to facilitate downstream applications. We provide a
user-drawing example in our supplementary video.

A.5 SCALING UP

At present, our experimental setting is confined to a modest scale, employing the single-view MS
COCO dataset and relatively small model and computing. Moving forward, we aim to scale our model
capacity, dataset scope, and computational capabilities to a more extensive scale, aiming to address a
wider and more complex array of scenarios. We also plan to integrate video datasets or multi-view
datasets to advance our subject-driven image generation task, particularly in cross-instance scenarios.
We also anticipate extending our framework to the realm of controllable video generation, where we
aim to enable more granular control over video content creation and manipulation.

A.6 IMAGE RESOLUTION

During training, we use a dynamic image resolution as described in our multi-scale training. Specifi-
cally, we set image height at 1024, image width follows the ground-truth image ratio. For each image
reference, we resize them into 364× 364 before feeding them into the DINO network.

B COUNTERFACTUAL AND OOD SCENARIOS GENERATION

During the training phase of our model, we utilized real-world images from the COCO dataset as our
training set. In this section, we aim to investigate the behavior of our method under counterfactual
and out-of-distribution (OOD) scenarios for image generation, despite being trained exclusively on
typical real-world datasets.

Input mask

Generation of 
Counterfactual 
and OOD scenarios

Hogwarts style Platform→Flame 

Figure 9: Counterfactual and OOD scenarios generation. We display two generation scenarios
within counterfactual or out-of-distribution (OOD) contexts. First, we exhibit a non-realistic gener-
ation case, emulating the aesthetic of Hogwarts. Subsequently, we demonstrate a skateboard field
engulfed in flames that rarely happens in the real world.
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Cat→human Original generationInput mask

Background→sky Original generationInput mask

Figure 10: Counterfactual and OOD scenarios generation. Top: Counterfactual scenarios that a
dog flying in the sky. Bottom: Use a mask of cat to generate a human.

In Fig. 9 and Fig. 11, our method achieves satisfactory generation quality outside the domain of
the COCO dataset, such as the Hogwarts-style building in a magic space that never appears in our
training set. In the upper panel of Fig. 10, when we alter the background instance (all instances except
the dog) to the sky, our method accurately generates an image of a dog flying in the sky. In the lower
panel of Fig. 10, by filling the embedding of a human into the mask of a cat, our method successfully
warps the human body to conform to the contour of the mask.

In conclusion, despite being trained solely on typical real-world datasets, our method exhibits
satisfactory generation quality in both counterfactual and out-of-distribution (OOD) scenarios. We
attribute this robust performance to the foundational prior training on stable diffusion, which endows
our model with the ability to generalize effectively.

C DETAILED ILLUSTRATION OF PROGRESSIVE FOREGROUND ENHANCEMENT

To mitigate the complexity of the learning task, we use a progressive reweighting method from
SyntheOcc (Li et al., 2024b) that incrementally enhances the loss associated with the foreground
regions (based on edge detection) as the training progresses. The detailed formulation is:

w(x,m, n) =
(m− 1)

2
· (1 + cos(

x

n
· π + π)) + 1, (8)

where x is the current training step, m is the maximum value of weights that set at 2, and n is the
total training steps. This approach is engineered to facilitate a learning trajectory that progresses from

Input mask Sketches-generation Comic-animation-generation

Figure 11: Stylize generation using global prompt. We display generated results in sketches and
comic animation styles that do not happen in our training set.
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Rate of Drop and Replace 0% (full spatial embedding) 10% 30% 50% 100% (full global embedding)

Metric: DINO score 0.722 0.736 0.732 0.727 0.714

Table 5: Ablation of different rates of Drop and Replace in our spatial warping module.

simplicity to complexity, thereby aiding in the convergence of the model. This reweight function is
applied to the edge region of the denoised image. This curve can be interpreted as a cosine annealing
but inverted to amplify the importance of the edge region.

D CONTROLLABLE GENERATION BY EDITING THE LAYOUT

Powered by our proposed latent control signal, we can change the layout to control the generated
image. As illustrated in Fig. 12, manipulating the instance mask directly impacts the generated
images. Our model is capable to produce a tennis player with an accurate shape and pose that
corresponds to the modified mask. We provide a user-drawing example in supplementary video.

E ABLATION OF SPATIAL WARPING

As detailed in Sec. 3.2, we introduce spatial warping to incorporate spatial identity features. The
spatial identity features is interpolated from DINO spatial embedding, and randomly injected global
embedding in a 10% percent. We now ablate the impact of the percentage of injected global
embedding in Tab. 5. In general, we find that using only spatial embedding outperforms using only
global embedding. In our experiments, although the disparity of different ratios is not significant, we
find that 10% leads to the best effectiveness. This could imply that, due to potential misalignment
between input image and target mask, part of spatial embedding has negative impacts. This part
of regions should be re-interpreted with a global context for better generation. We argue that 10%
percent may not be the optimal ratio. We suggest further investigation to balance a trade-off between
spatial identity and global identity, determine the optimal proportion or dynamic ratio and replace
area of each inference.

F MORE VISUALIZATION

Text-instructed Image Generation We extend our analysis by presenting the image generation
results in Fig. 7 and Fig. 13. Our method consistently produces highly realistic images, and our
results are characterized by a remarkable degree of realism. Notably, it demonstrates the capability to
generate images with intricate structures, diverse styles, varied human poses, and nuanced textures.
We envision that our framework will provide artists with greater control over the image-generation
process, thereby enriching their creative output.

Global Prompt:  A woman holding a tennis racquet on a tennis court.

OmniBooth

Input Mask 2Input Mask 1 Generated image 2Generated image 1Edit the layout

Figure 12: We present a user case demonstrating the capability for controllable generation through
layout editing. Our method ensures that generated instances strictly adhere to the specified mask
locations and silhouettes.
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Figure 13: Random text-instructed image generation results.

In Fig. 8, we illustrate a user example of open-vocabulary instance-level generation. When we change
the motorcycle from red color to yellow color, we do not modify global prompt and only modify
instance prompt. In our results, the generated motorcycle displays satisfactory alignment with the
input instance prompt, demonstrating our effectiveness.

Image-instructed Image Generation In Fig. 15, We compare our image-instructed image genera-
tion framework with IP-Adapter (Ye et al., 2023b). Our findings reveal that our approach consistently
achieves superior fidelity in preserving the identity of the generated images. Specifically, as depicted
in Fig. 15 (b), even minute details such as the pointer of the alarm clock are meticulously recon-
structed with high precision. We further empirically ascertain that the IP-Adapter exhibits significant
difficulty in accurately reconstructing the morphological attributes and geometrical configurations of
the input image reference, whereas our proposed OmniBooth, demonstrates commendable efficacy in
this regard.

G FAILURE CASES

In Fig. 14, we present several failure cases of our method. Fig. 14 (a) illustrates a crowd scene, where
our method occasionally struggles to achieve accurate generaetion. When using the text prompt:
crowd of humans, the generated image 3 fails to provide clear guidance. In Fig. 14 (b), while the first
two generated donut images demonstrate satisfactory alignment with the given mask, the generated
image 3 exhibits an extraneous object (highlighted by a red box). We attribute this effect to the finite
resolution of our latent control signal. The down-sampling and up-sampling processes of the feature
map introduce quantization errors, potentially propagating instance features to unintended locations.

In general, our methodology is susceptible to prevalent challenges associated with diffusion models.
For instance, the model’s capacity to accurately reconstruct human figures or hands is significantly
impeded in the absence of specialized fine-tuning or adaptation on human-centric datasets. Notably,
the human hand often exhibits aberrant structural artifacts, which represent a key area for future
enhancement.
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Input mask Generated image 1 Generated image 2 Generated image 3 Ground Truth

(a)

(b)

Figure 14: Failure cases of our controllable image generation results. Our method is challenging to
distinguish a crowd of people by giving only a coarse mask.
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OmniBooth generation

IP Adapter generation

Image reference

(c)

(b)

(a)

OmniBooth generation

IP Adapter generation

Image reference

OmniBooth generation

IP Adapter generation

Image reference

Figure 15: We demonstrate image-instructed generation in the DreamBooth dataset. Compared with
prior work IP-Adatper, our method displays satisfactory geometric preservation.
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