
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DUCONTE: DUAL-GRANULARITY TEXT ENCODER
WITH TOPOLOGY-CONSTRAINED ATTENTION FOR
TEXT-ATTRIBUTED GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-attributed graphs integrate semantic information of node texts with topolog-
ical structure, offering significant value in various applications such as document
classification and information extraction. Existing approaches typically encode
textual content using language models (LMs), followed by graph neural networks
(GNNs) to process structural information. However, during the LM-based text
encoding phase, most methods not only perform semantic interaction solely at the
word-token granularity, but also neglect the structural dependencies among texts
from different nodes. In this work, we propose DuConTE, a dual-granularity text
encoder with topology-constrained attention. The model employs a cascaded ar-
chitecture of two pretrained LMs, encoding semantics first at the word-token gran-
ularity and then at the node granularity. During the self-attention computation in
each LM, we dynamically adjust the attention mask matrix based on node con-
nectivity, guiding the model to learn semantic correlations informed by the graph
structure. Furthermore, when composing node representations from word-token
embeddings, we separately evaluate the importance of tokens under the center-
node context and the neighborhood context, enabling the capture of more contex-
tually relevant semantic information. Extensive experiments on multiple bench-
mark datasets demonstrate that DuConTE achieves state-of-the-art performance
on the majority of them.

1 INTRODUCTION

Text-attributed graphs (Yang et al., 2021; Seo et al., 2024) have emerged as an increasingly signif-
icant research domain, with substantial applications in real-world scenarios such as social media
analysis (Seo et al., 2024), academic citation systems (Wang et al., 2025), and knowledge base con-
struction (Zhang et al., 2024). In such graphs, each node is associated with a piece of textual content,
resulting in richly structured data that encapsulates both semantic text information and topological
structure. Learning high-quality representations that effectively capture both the textual and struc-
tural characteristics of nodes is crucial for downstream tasks such as node classification (Zhao et al.,
2024).

Recently, a growing body of research (Chen et al., 2023; Chien et al., 2021; Zhu et al., 2024) has
begun leveraging Transformer-based language models (LMs) to model textual information in text-
attributed graphs, aiming to enhance graph neural networks (GNNs). Thanks to their strong pre-
trained understanding of natural language, LMs can produce highly expressive representations of
textual content. For example, GraphBridge(Wang et al., 2024) attempts to combine the text from
the center-node and its neighbors into the LM, enabling the model to jointly encode the central text
and its contextual information from neighboring nodes. Current approaches (Zhu et al., 2024; He
et al., 2023; Jin et al., 2023) that jointly employ GNNs and LMs largely follow a common paradigm:
the LM is responsible for encoding textual features, while the GNN focuses on capturing structural
information.

However, existing approaches typically perform semantic interaction only at the word-token gran-
ularity when using LMs for text encoding, failing to capture meaningful node-granularity semantic
interactions—where the textual content of different nodes is treated as holistic units and interacts

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the text-attributed graph learning pipeline (top) and comparison between
existing methods and the proposed DuConTE (bottom).

across the graph. Moreover, current methods either do not incorporate structural information into the
LM at all, or the injected structural signals are insufficient to guide the encoding process effectively.
Additionally, existing methods lack an effective mechanism for composing node representations
from word-token embeddings.

To address these limitations, we propose DuConTE, a dual-granularity text encoder with topology-
constrained attention for text-attributed graphs. As illustrated in the top panel of Figure 1, the text-
attributed graph learning pipeline consists of three stages, with DuConTE acting as a plug-and-play
text encoder module. It takes as input the text of each node and its sampled neighborhood structure
(e.g., from random walks or k-hop sampling), obtained through upstream preprocessing, and outputs
enriched node representations for downstream GNN models.

DuConTE performs dual-granularity semantic encoding, in which two pretrained LMs sequen-
tially encode textual semantics at the word-token and node granularities, respectively. This design
aligns with the inherent multi-granular nature of text-attributed graphs, allowing for a more com-
plete capture of textual semantics. During the encoding process, DuConTE employs a topology-
constrained attention mechanism to leverage graph structural information for enhanced text en-
coding. This is achieved through an attention masking strategy specifically designed for TAG, mo-
tivated by the homophily analysis in Section 6.3, enabling pretrained LMs to better process graph-
structured textual data without architectural modification. Furthermore, we design a node represen-
tation composer that assesses the importance of individual word tokens under both center-node and
neighborhood semantic contexts. This enables the model to capture salient semantic information
more effectively when composing node representations from word-token embeddings.

• We propose DuConTE, a dual-granularity text encoder with topology-constrained attention for
text-attributed graphs. It performs dual-granularity semantic encoding to model textual se-
mantics at both the word-token granularity and node granularity, capturing a comprehensive,
multi-scale understanding of the text-attributed graph.

• We introduce a topology-constrained attention mechanism that leverages an attention masking
strategy, specifically designed for TAGs and grounded in the homophily analysis in Section 6.3,
to effectively incorporate structural guidance into the textual encoding process.

• We design a node representation composer that distinctly models token importance under
center-node and neighborhood contexts, enabling effective fusion of word-token embeddings
into comprehensive node representations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 TEXT-ATTRIBUTED GRAPH LEARNING

Learning on text-attributed graphs has evolved from employing simple text features like Bag-of-
Words (Zhang et al., 2010) to sophisticated methods centered on language models (LMs) (Chen
et al., 2023; Chien et al., 2021; Zhu et al., 2024). These modern approaches generally follow two
main paradigms. The first relies on a single, powerful LM to jointly process text and structure.
For instance, LLaGA (Chen et al., 2024) injects structural information by mapping it into the LM’s
token space and relies solely on the LM to generate predictions. While conceptually unified, this
paradigm is often computationally demanding, suffers from poor scalability, and achieves limited
effectiveness in leveraging structural information. The second, more common paradigm, employs
a hybrid LM-GNN pipeline where an LM first serves as a text encoder, and a subsequent GNN
performs the downstream task using the resulting node embeddings. Representative works like
GraphBridge (Wang et al., 2024) enrich node text with neighbor semantics before encoding, whereas
Engine (Zhu et al., 2024) uses a GNN to process features from multiple LM layers. A critical
limitation across most hybrid models is that the LM encoding process remains largely unaware of
the graph topology. This decoupled approach hinders the deep fusion of structural and semantic
information, a key challenge we address in this work.

2.2 TRANSFORMERS FOR MODELING STRUCTURED DATA

In recent years, numerous studies have leveraged Transformers to process graph-structured data
(Shehzad et al., 2024). An early effort in this direction is Graph-BERT (Zhang et al., 2020), which
applies a BERT-style Transformer to sampled subgraphs without relying on message passing. More
recent approaches further enhance structural awareness: Graphormer (Ying et al., 2021) enhances
the Transformer’s understanding of graph structures by introducing spatial encoding and degree
encoding. Another work NeuralWalker (Chen et al., 2025) generates serialized representations of
graphs through random walks to exploit the self-attention mechanism of Transformers for model-
ing purposes. Edge-augmented methods (Rampášek et al., 2022; Satorras et al., 2021) explicitly
model edge features to enhance the Transformer’s sensitivity towards different edge types. Masked
Graph Modeling (Hou et al., 2023; Tian et al., 2024) employs a masking strategy to learn struc-
tural information by predicting masked node or edge features. Notably, another strategy enhances
structural awareness by using attention masks to explicitly control token interactions. K-BERT (Liu
et al., 2020) employs a visibility mask to prevent injected knowledge tokens from attending to irrel-
evant input positions, preserving original semantics. UniD2T (Li et al., 2024) constructs attention
masks based on the connectivity of a unified graph derived from structured data (e.g., tables, knowl-
edge graphs) to enforce structure-aware interactions during pre-training. In this work, based on the
homophily analysis in Section 6.3, we design a TAG-specific attention masking strategy to inject
structural information at both word-token and node granularities.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Definition 1. Text-Attributed Graph. A text-attributed graph (TAG) is formally defined as a
triplet G = (V, E , T). Here, V = {v1, v2, . . . , vN} is the set of N nodes, and E ⊆ V × V is the
set of edges describing the graph’s topological structure, which can be represented by an adjacency
matrix A ∈ {0, 1}N×N . Each node vi ∈ V is associated with a text description wi, and T =
{w1,w2, . . . ,wN} denotes the collection of all node-associated text descriptions, where each wi =
(wi1, wi2, . . . , wiLi

) is a sequence of word tokens of length Li.

Definition 2. Node Classification in Text-Attributed Graphs. Given a text-attributed graph G
and a set of K predefined classes C = {c1, c2, . . . , cK}, the task of node classification aims to learn
a mapping function f : V → C. The objective of this function is to predict the correct label yi ∈ C
for every node vi ∈ V by jointly considering the graph structure E and the semantic information T .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 TRANSFORMER AND SELF-ATTENTION WITH MASKING

The Transformer architecture utilizes self-attention to capture dependencies within sequences.
Given input X ∈ Rn×d, query, key, and value projections are computed as Q = XWQ,
K = XWK , V = XWV . The process is:

Attention(Q,K,V) = softmax
(
QK⊤
√
dk

+M

)
V , (1)

where M is derived from a binary mask matrix Mmask ∈ {0, 1}n×n: valid attention positions are
marked as 1 in Mmask, and their corresponding entries in M are set to 0; invalid positions are
marked as 0 in Mmask, and their entries in M are set to −∞. This mechanism enables the model
to selectively attend to semantic interactions between specific tokens, a property that we leverage to
design our topology-constrained attention mechanism.

4 METHOD

In this section, we propose DuConTE illustrated in Figure 2, a dual-granularity text encoder with
topology-constrained attention. It employs two language models as a word-token encoder ML and
a node encoder MN respectively, both incorporating topology-constrained attention mechanisms.
Given a target node vi and its neighborhood N (vi), DuConTE first concatenates the textual content
of vi and all nodes in N (vi), and applies ML to this combined sequence to generate word-token
representations. A node representation composer then aggregates these into first-stage node repre-
sentations. Subsequently, MN encodes the sequence of first-stage node representations to produce a
second-stage node representation for vi. The final representation oi is obtained through a weighted
fusion of the node’s first-stage and second-stage representations.

Figure 2: Overview of DuConTE with the dual-granularity cascaded architecture (middle), the
topology-constrained attention mechanism (left), and the target node representation construction
process in the node representation composer (right). The node representation composer is denoted
as Composer in the figure.

4.1 DUAL-GRANULARITY SEMANTIC ENCODING

To capture semantics at the word-token and node granularities, which naturally exist in text graphs,
we propose a dual-granularity cascaded architecture, illustrated in the middle of Figure 2. This archi-
tecture employs the word-token encoder ML for the word-token granularity and the node encoder
MN for the node granularity, in a sequential manner.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Word-Token Granularity Encoding. Given a target node vi ∈ V and its neighborhood N (vi) ⊆
V , let S(i) = {vi} ∪ N (vi) denote the set consisting of the target node and its neighbors. For each
node vj ∈ S(i), we obtain its associated word-token sequence wj = (wj1, . . . , wjLj) ∈ T . These
sequences are concatenated with [SEP] tokens inserted between adjacent nodes to form a unified
neighborhood input:

W(i) = [wj1 ;[SEP]; · · · ;wj|N(vi)|
;[SEP];wi] ∈ RL×dL , (2)

where vj1 , . . . , vj|N(vi)|
∈ N (vi).

The word-token encoder ML (a pre-trained LM) processes W(i) to perform semantic interaction at
the word-token granularity, producing word-token embeddings H(i) ∈ RL×dL :

H(i) = ML(W
(i)) =

[
h
(i)
j1
;h

(i)
SEP1

; . . . ;h
(i)
i

]
, (3)

where h
(i)
j ∈ RLj×dL is the embedding matrix for the tokens of node vj after such interaction,

h
(i)
SEPk

denotes the embedding of the k-th [SEP] token, and dL is the hidden dimension of ML.

To distill these fine-grained word-token features into node semantics, we employ a node representa-
tion composer f , detailed in Section 4.3. This function maps H(i) to a sequence of first-stage node
representations Z(i):

Z(i) = f
(
H(i)

)
, (4)

Z(i) = [z
(i)
j1
; . . . ; z

(i)
j|N(vi)|

; z
(i)
i], (5)

where each z
(i)
j ∈ RdL denotes the first-stage node representation of vj .

Node Granularity Encoding. To further model semantic interactions at the node granularity, we
feed Z(i) into node encoder MN (another pre-trained LM), to produce a sequence of second-stage
node representations E(i):

E(i) = MN (Z(i)) ∈ R(k+1)×dL , (6)

E(i) = [e
(i)
j1
; . . . ; e

(i)
j|N(vi)|

; e
(i)
i], (7)

where each e
(i)
j ∈ RdL denotes the second-stage node representation of vj .

Note that for vj ∈ N (vi), z
(i)
j and e

(i)
j are computed within the context of target node vi, and

thus represents a context-dependent, neighbor-oriented encoding—distinct from the representation
obtained when vj is treated as a target node.

Dual-Granularity Representation Fusion. To integrate complementary semantic information
from both granularities, we compute the final representation of the target node vi through a weighted
combination of its first-stage and second-stage node representations:

oi = α · z(i)
i + (1− α) · e(i)i , (8)

where α ∈ [0, 1] is a fixed fusion coefficient.

4.2 TOPOLOGY-CONSTRAINED ATTENTION MECHANISM

To endow our dual-granularity encoders with topological awareness, we transform their standard
self-attention mechanism into a topology-constrained variant, as illustrated on the left in Figure 2.
This is achieved through an attention masking strategy specifically designed for TAG. Informed by
the homophily analysis in Section 6.3, it constructs masks based on node connectivity, applied at
every layer and attention head to restrict attention exclusively between structurally connected word-
tokens or nodes. The approach seamlessly integrates graph information without altering the core
Transformer architecture.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Word-Token Mask Construction. For the word-token encoder ML processing sequence W(i) ∈
RL×dL , we allow attention only between pairs of word-tokens within the same node or in connected
nodes. Additionally, attention between [SEP] tokens and any word-token is always allowed to
preserve a basic awareness of inter-node boundaries at the word-token granularity.

Accordingly, the attention mask matrix Mword
mask is constructed as follows: for any two tokens at

positions p and q in W(i), if neither token is a [SEP] token, let v(p) and v(q) denote their associated
nodes in the graph. The entry Mword

p,q ∈ {0, 1}L×L is defined as:

Mword
p,q =


1 if the token at p or q is [SEP],
1 if v(p) = v(q) or (v(p), v(q)) ∈ E ,
0 otherwise.

(9)

Node Mask Construction. For the node encoder MN processing the sequence Z(i) ∈
R(k+1)×dL , we allow attention only between node representations that correspond to the same node
or to connected nodes in the graph.

Accordingly, the attention mask matrix Mnode
mask is constructed as follows: for any two positions m

and n in Z(i), let v(m) and v(n) denote the corresponding nodes in the graph. The entry M node
m,n ∈

{0, 1}(k+1)×(k+1) is defined as:

M node
m,n =

{
1 if v(m) = v(n) or (v(m), v(n)) ∈ E ,
0 otherwise.

(10)

4.3 NODE REPRESENTATION COMPOSER

To effectively fuse the word-token embeddings H(i) into high-quality first-stage node representa-
tions, we design a Node Representation Composer f . The composer employs two distinct modules:
a more sophisticated module f1 to compute the representation of the target node vi, and a lightweight
module f2 to independently encode each neighbor node vj ∈ N (i). This asymmetric design enables
the target node to capture rich contextual information while ensuring efficient and undisturbed rep-
resentation learning for neighbors.

Target Node Representation Construction. To capture the most salient semantics of the target
node vi under both center-node and neighborhood context—and to explicitly balance their relative
influence—we design f1 to assess word-token significance from dual perspectives, as shown on
the right in Figure 2. Specifically, f1 employs a specialized attention mechanism to compute the
importance of each word-token in the target node’s text wi.

With learnable projection matrices WQ,WK ∈ RdL×dL , we compute the queries Q(i) as the pro-
jected embeddings of all word-tokens in the neighborhood, and the keys K(i) as the projected em-
beddings of the target node’s word-tokens:

Q(i) = H(i)WQ ∈ RL×dL , (11)

K(i) = h
(i)
i WK ∈ RLi×dL . (12)

As defined in 3.1, wjp is the p-th word-token in node vj . The attention weight a(i)j,p,q from wjp to wiq

is computed using the scaled dot-product attention mechanism, with softmax normalization over all
queries attending to wiq .

The total importance of wiq is decomposed into two components:

• Importance under center-node context: αcen
q =

∑Li

p=1 a
(i)
i,p,q;

• Importance under neighborhood context: αneigh
q =

∑
vj∈N (i)

∑Lj

p=1 a
(i)
j,p,q .

Each component is independently normalized via softmax to obtain µcen
q and µneigh

q , which are fused
into the final importance score µq using a fixed coefficient β ∈ [0, 1]:

µq = β · µcen
q + (1− β) · µneigh

q . (13)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The final representation z
(i)
i is a weighted sum over the target node’s word-token embeddings:

z
(i)
i =

Li∑
q=1

µqh
(i)
i,q. (14)

Neighbor Node Representation Construction. To enable efficient encoding while preserving
each neighbor’s intrinsic semantic content, we design a lightweight module f2 that employs local
attention pooling. Given a neighbor node vj ∈ N (i), an importance score sj,p is computed for each
word-token embedding h

(i)
j,p via a learnable projection vector wa ∈ RdL . After softmax normaliza-

tion to obtain weights πj,p, the first-stage representation of vj is computed as a weighted sum:

z
(i)
j =

Lj∑
p=1

πj,ph
(i)
j,p. (15)

4.4 TWO-STAGE TRAINING PROCEDURE

We train DuConTE using a two-stage procedure. We first train ML and f1 to learn high-quality
first-stage node representations, then train MN and f2 based on these representations. The full
training procedure is detailed in Appendix B.

5 EXPERIMENTS

5.1 DATASETS

In this paper, we evaluate DuConTE for node classification on five widely-used datasets: Cora (Sen
et al., 2008), CiteSeer (Giles et al., 1998), WikiCS (Mernyei & Cangea, 2007), ArXiv-2023 (He
et al., 2023), OGBN-Products (Hu et al., 2020) and Ele-Photo (Yan et al., 2023). For detailed
descriptions of each dataset, please refer to Appendix F.

5.2 BASELINES

To evaluate the effectiveness of our proposed model, we employ several baseline models for compar-
ison. For a detailed description of all baseline models, please refer to Appendix C. These baselines
can be categorized into three main types:

• Graph-Specific Models: Models specifically designed and trained from scratch for graph-
structured data, e.g., NodeFormer (Wu et al., 2022), GraphFormers (Yang et al., 2021).

• Pure LMs: Language models that perform inference solely based on node texts while completely
ignoring the graph structure, e.g., BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019).

• Recent TAG Methods: Leading approaches that have demonstrated strong performance on text-
attributed graph benchmarks, e.g., GraphBridge (Wang et al., 2024), ENGINE (Zhu et al., 2024).

5.3 EXPERIMENTAL SETTINGS

Evaluation Task and Metric. In this study, we focus on node classification as the downstream task
for text-attributed graphs, and adopt classification accuracy as the evaluation metric.

Implementation Details. We instantiate a text-attributed graph learning pipeline, as illustrated in
the top panel of Figure 1. DuConTE serves as the text encoder in this pipeline, implemented with
two RoBERTa-base models serving as the word-token encoder and node encoder respectively. In
the downstream phase, a two-layer GraphSAGE with a hidden dimension of 64 is employed as
the GNN component. All methods are evaluated under a unified experimental protocol to ensure
a fair comparison. Detailed configurations for model hyperparameters, upstream preprocessing,
implementation settings of baseline methods, and training procedures are provided in Appendix D.

5.4 PERFORMANCE COMPARISON AND DISCUSSIONS

We compare the performance of various models on text-attributed graph node classification, with re-
sults reported in Table 1. DuConTE achieves state-of-the-art performance on most datasets, outper-
forming the second-best method by 2.7% on ArXiv-2023 and 1.6% on Cora. The results demonstrate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Experiment results: Mean accuracy and standard deviation over 10 runs with different
random seeds. Bold indicates the best performance, underlined denotes the second-best, and ‘–’
signifies that the method is not applicable to the dataset.“DuConTE” refers to the pipeline instance
using DuConTE as the text encoder, as described in Section 5.3.
Methods Cora CiteSeer WikiCS ArXiv-2023 OGBN-Products Ele-Photo
GraphFormers 80.29± 1.74 71.84± 1.23 71.37± 0.35 63.14± 0.59 68.09± 0.57 78.16± 0.17

NodeFormer 88.24± 0.34 74.96± 0.61 75.56± 0.51 67.68± 0.47 67.37± 0.83 77.47± 0.04
GraphSAGE 87.42± 1.31 72.26± 1.21 76.91± 0.77 68.56± 0.53 70.56± 0.27 79.87± 0.26

BERT 79.63± 1.81 71.27± 1.11 77.96± 0.57 76.84± 0.09 76.45± 0.16 68.73± 0.13

Sentence-BERT 78.94± 1.43 72.93± 1.84 77.84± 0.06 77.41± 0.55 74.98± 0.15 68.47± 0.24

RoBERTa-base 78.37± 1.29 71.76± 1.23 76.86± 0.52 77.24± 0.19 76.03± 0.12 69.31± 0.19
RoBERTa-large 79.81± 1.37 72.31± 1.74 77.64± 0.95 77.81± 0.43 76.24± 0.35 71.46± 0.13

GLEM 87.59± 0.17 77.42± 0.68 78.23± 0.56 79.23± 0.17 76.04± 0.34 83.56± 0.54

TAPE 87.48± 0.76 – – 80.04± 0.31 79.23± 0.13 –
SimTeG 86.74± 1.71 78.51± 1.04 79.73± 0.84 79.45± 0.53 76.43± 0.49 83.71± 0.26
ENGINE 87.61± 1.34 76.84± 1.41 77.92± 0.89 78.57± 0.19 77.68± 1.31 82.46± 0.10

GraphBridge 93.60± 0.98 88.62± 0.76 80.47± 0.26 86.43± 0.29 77.92± 0.27 89.23± 0.15

DuConTE 95.24± 0.79 89.45± 1.22 81.09± 0.43 90.31± 0.35 78.80± 0.10 91.89± 0.18

DuConTE’s ability to produce high-quality, semantically rich node representations that effectively
support downstream GNN models.

6 ANALYSIS

6.1 ABLATION STUDY

We conduct ablation studies to evaluate the three key innovations in DuConTE. The variants are de-
fined in Appendix H, including NoDual, NoMask-T/D/Both, and MeanPool/Center-Only/Neigh-
Only/UnifiedContext. All variants are evaluated under the same experimental setup.

As shown in Table 2, DuConTE outperforms all variants, confirming the effectiveness of its three key
designs: (1) DuConTE surpasses NoDual by +0.8% on Cora and OGBN-Products, verifying that
dual-granularity encoding aligns with the inherent semantic granularity of text-structured graphs
and thus better captures rich semantic information. (2) Performance drops in NoMask-T/D/Both
confirm that topology-constrained attention effectively injects structural information at both word-
token and node granularities; notably, NoMask-D consistently outperforms NoMask-T, suggesting
that structural information is critical even at the finest semantic granularity. (3) The lower perfor-
mance of MeanPool further validates that importance-based weighted fusion captures key semantic
information more effectively than uniform averaging. Gains over Center-Only, Neigh-Only, and
UnifiedContext demonstrate that both center-node and neighborhood contexts are important for as-
sessing word-token importance, and explicitly differentiating their distinct influences leads to more
accurate semantic weighting.

Table 2: Ablation results on Cora, CiteSeer, and OGBN-Products
Methods Cora CiteSeer OGBN-Products
NoDual 94.46± 0.76 89.22± 1.34 77.98± 0.38
NoMask-T 94.23± 0.76 88.84± 1.28 78.19± 0.13
NoMask-D 94.59± 0.58 88.86± 1.27 78.52± 0.15
NoMask-Both 94.10± 0.85 89.04± 0.99 78.40± 0.17
MeanPool 94.43± 0.94 88.57± 0.95 78.27± 0.12
Center-Only 95.13± 0.80 88.46± 1.20 78.17± 0.18
Neigh-Only 95.09± 0.74 88.71± 1.40 78.36± 0.15
UnifiedContext 95.09± 0.86 88.98± 1.10 78.56± 0.23
DuConTE 95.24± 0.79 89.45± 1.22 78.80± 0.10

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Sensitive analysis of the fusion coefficient α

Figure 4: Sensitive analysis of the fusion coefficient β.

6.2 SENSITIVITY ANALYSIS

We analyze the sensitivity of DuConTE to the fusion coefficients α and β over the range [0, 1]. The
performance trends are shown in figure 3 and figure 4. Across all experiments, the performance
variation remains within 1%, demonstrating the model’s robustness to these hyperparameters.

For α, which controls the fusion of dual-granularity semantic representations, the optimal perfor-
mance on Cora and CiteSeer falls within the range [0.7, 0.9]. This indicates a clear fusion pattern:
word-token granularity semantics provide stable and reliable information, while node granularity se-
mantics contribute complementary yet essential signals—consistent with their role as more abstract,
high-level features.

For β, which balances the influence of center-node and neighborhood contexts in word-token im-
portance assessment, the performance trend varies across datasets, indicating that the relative im-
portance of these two contexts is dataset-dependent. On Cora and CiteSeer, strong performance
is observed within [0.4, 0.7] and [0.2, 0.8], respectively, confirming that both contexts contribute
meaningfully. Notably, the optimal values consistently fall within [0.6, 0.8], suggesting that the
center-node context exerts a stronger influence—aligning with the intuition that a token’s relevance
is primarily shaped by the target node itself.

6.3 WHY TOPOLOGY-CONSTRAINED ATTENTION WORKS: A HOMOPHILY PERSPECTIVE

In this subsection, we analyze the effectiveness of topology-constrained attention from the perspec-
tive of the homophily assumption, which posits that connected nodes in a graph are more likely to
share similar semantic properties. To the best of our knowledge, this assumption is well-supported
by most widely used text-attributed graph benchmarks, where adjacent nodes are more likely to be-
long to the same class.This is further supported by the homophily statistics reported in Appendix G.

In the topology-constrained attention mechanism, the masks M token
mask and Mnode

mask are injected into
the attention layers of the word-token encoder and the node encoder, respectively. As a result, cross-
node attention interactions are constrained to occur between semantic information from connected
nodes at both granularities. Under the homophily assumption, such information is more likely to be
semantically related, thereby enabling mutually complementary interactions. This allows the model
to effectively leverage the graph structure to learn higher-quality representations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6.4 ADDITIONAL EVALUATION ON LINK PREDICTION

To assess the general applicability of DuConTE beyond node classification, we conduct link pre-
diction experiments on the Cora, CiteSeer, and ArXiv-2023 datasets, using AUC as the evaluation
metric. Detailed configurations and training procedures are provided in Appendix E. According to
Table 3, DuConTE consistently outperforms baseline methods on the link prediction task, indicat-
ing that it is highly effective at representation learning on text-attributed graphs. This result further
highlights the versatility of DuConTE and its potential for broader applications across diverse TAG-
based tasks.

Table 3: Experimental Results on Link Prediction
Methods Cora CiteSeer ArXiv-2023
GraphSAGE 97.10± 0.43 87.29± 1.22 91.81± 0.26
SimTeG 97.86± 0.44 90.06± 1.34 93.12± 0.46
GraphBridge 98.07± 0.77 91.86± 1.03 94.35± 0.65
DuConTE 99.13± 0.19 93.29± 0.75 95.40± 0.33

6.5 PARAMETER EFFICIENCY ANALYSIS

To evaluate the parameter efficiency of DuConTE, we replace the LM backbone in baseline methods
with RoBERTa-large (340M parameters) while keeping other configurations unchanged. We then
compare their performance against DuConTE using two RoBERTa-base models (150M parameters
each) as its LM backbones. In this setup, every baseline has a larger total parameter count than
DuConTE. TAPE is excluded from the comparison as it relies on a large language model. As shown
in Table 4, DuConTE achieves the best performance despite using fewer parameters, highlighting
its parameter efficiency. This suggests a novel parameter-efficient scaling paradigm: rather than
improving performance by scaling up a single large LM, DuConTE achieves greater gains with
fewer total parameters by leveraging two smaller LMs.

Table 4: Experiment results: Subscript (large) indicates the use of RoBERTa-large as the LM back-
bone, while (base) indicates RoBERTa-base.
Methods Cora CiteSeer WikiCS ArXiv-2023 OGBN-Products Ele-Photo
GLEM(large) 89.07± 0.25 78.04± 0.36 78.14± 0.81 78.94± 0.45 78.37± 0.29 84.73± 0.67

SimTeG(large) 88.64± 0.89 79.89± 1.23 80.16± 0.65 80.69± 0.49 78.31± 0.61 84.97± 0.41

ENGINE(large) 88.57± 1.25 78.14± 0.74 80.36± 0.24 77.37± 0.43 78.44± 0.57 83.43± 0.23
GraphBridge(large) 94.06± 0.94 88.91± 0.98 80.96± 0.57 87.14± 0.36 78.51± 0.68 90.96± 0.19

DuConTE(base) 95.24± 0.79 89.45± 1.22 81.09± 0.43 90.31± 0.35 78.80± 0.10 91.89± 0.18

6.6 COMPUTATIONAL OVERHEAD OF THE NODE REPRESENTATION COMPOSER

We measure the training and inference time of DuConTE and its ablation variant MeanPool on
Cora, CiteSeer, and Ele-Photo. As reported in Appendix I, the Node Representation Composer
introduces an average overhead of 23.8% in training time and 19.9% in inference time. This cost is
generally acceptable, and further acceleration is possible by reducing the dimensionality of keys and
queries in f1 to lower computational load. A key direction for future work is to design methods that
convert word-token embeddings into node representations with both higher performance and lower
computational cost. This is crucial for TAG representation learning but remains underexplored.

7 CONCLUSION

In this paper, we introduce DuConTE, a dual-granularity text encoder with topology-constrained
attention for text-attributed graphs. DuConTE encodes node semantics at both word-token and
node granularity to capture the inherent dual-granularity semantic structure of text-attributed graphs.
Our topology-constrained attention mechanism utilizes an attention masking strategy specifically
designed for TAG, offering an effective and architecture-preserving approach to adapt LMs to
graph-structured data. In the node representation composer, the contexts of the center node and
its neighborhood are separately considered to more effectively assess the semantic importance of
word-tokens in the target node. Extensive experiments on multiple benchmark datasets show that
DuConTE achieves state-of-the-art performance on the majority of them.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Dexiong Chen, Till Hendrik Schulz, and Karsten M. Borgwardt. Learning long range depen-
dencies on graphs via random walks. In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language
and graph assistant. arXiv preprint arXiv:2402.08170, 2024.

Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang
Tang. Label-free node classification on graphs with large language models (llms). arXiv preprint
arXiv:2310.04668, 2023.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, and
Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighborhood predic-
tion. arXiv preprint arXiv:2111.00064, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference
of the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan, Wei Tsang Ooi, Qizhe Xie, and Junxian
He. Simteg: A frustratingly simple approach improves textual graph learning. arXiv preprint
arXiv:2308.02565, 2023.

C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, pp. 89–98, 1998.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1024–
1034, 2017.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Har-
nessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation
learning. arXiv preprint arXiv:2305.19523, 2023.

Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
Graphmae2: A decoding-enhanced masked self-supervised graph learner. In Proceedings of the
ACM web conference 2023, pp. 737–746, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Bowen Jin, Yu Zhang, Qi Zhu, and Jiawei Han. Heterformer: Transformer-based deep node repre-
sentation learning on heterogeneous text-rich networks. In Ambuj K. Singh, Yizhou Sun, Leman
Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (eds.),
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD 2023, Long Beach, CA, USA, August 6-10, 2023, pp. 1020–1031. ACM, 2023.

Shujie Li, Liang Li, Ruiying Geng, Min Yang, Binhua Li, Guanghu Yuan, Wanwei He, Shao
Yuan, Can Ma, Fei Huang, et al. Unifying structured data as graph for data-to-text pre-training.
Transactions of the Association for Computational Linguistics, 12:210–228, 2024.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang. K-bert:
Enabling language representation with knowledge graph. In Proceedings of the AAAI conference
on artificial intelligence, volume 34, pp. 2901–2908, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Peter Mernyei and C Wiki-CS Cangea. A wikipedia-based benchmark for graph neural networks.
arxiv 2020. arXiv preprint arXiv:2007.02901, 2007.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp. 188–197, 2019.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
works. In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Hyunjin Seo, Taewon Kim, June Yong Yang, and Eunho Yang. Unleashing the potential of
text-attributed graphs: Automatic relation decomposition via large language models. CoRR,
abs/2405.18581, 2024.

Ahsan Shehzad, Feng Xia, Shagufta Abid, Ciyuan Peng, Shuo Yu, Dongyu Zhang, and Karin Ver-
spoor. Graph transformers: A survey. CoRR, abs/2407.09777, 2024.

Yijun Tian, Chuxu Zhang, Ziyi Kou, Zheyuan Liu, Xiangliang Zhang, and Nitesh V Chawla. Ugmae:
A unified framework for graph masked autoencoders. arXiv preprint arXiv:2402.08023, 2024.

Yaoke Wang, Yun Zhu, Wenqiao Zhang, Yueting Zhuang, Liyunfei Liyunfei, and Siliang Tang.
Bridging local details and global context in text-attributed graphs. In Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024, pp.
14830–14841. Association for Computational Linguistics, 2024.

Zehong Wang, Sidney Liu, Zheyuan Zhang, Tianyi Ma, Chuxu Zhang, and Yanfang Ye. Can llms
convert graphs to text-attributed graphs? In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.),
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL 2025 - Volume 1: Long
Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025, pp. 1412–1432. Association
for Computational Linguistics, 2025.

Qitian Wu, Wentao Zhao, Zenan Li, David P. Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. In NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin, Peiyan
Zhang, Weihao Han, Hao Sun, et al. A comprehensive study on text-attributed graphs: Bench-
marking and rethinking. Advances in Neural Information Processing Systems, 36:17238–17264,
2023.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 28798–28810, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 28877–
28888, 2021.

Delvin Ce Zhang, Menglin Yang, Rex Ying, and Hady W. Lauw. Text-attributed graph representation
learning: Methods, applications, and challenges. In Tat-Seng Chua, Chong-Wah Ngo, Roy Ka-
Wei Lee, Ravi Kumar, and Hady W. Lauw (eds.), Companion Proceedings of the ACM on Web
Conference 2024, WWW 2024, Singapore, Singapore, May 13-17, 2024, pp. 1298–1301. ACM,
2024.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a statistical frame-
work. Int. J. Mach. Learn. Cybern., 1(1-4):43–52, 2010.

Huanjing Zhao, Beining Yang, Yukuo Cen, Junyu Ren, Chenhui Zhang, Yuxiao Dong, Evgeny
Kharlamov, Shu Zhao, and Jie Tang. Pre-training and prompting for few-shot node classification
on text-attributed graphs. In Ricardo Baeza-Yates and Francesco Bonchi (eds.), Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024,
Barcelona, Spain, August 25-29, 2024, pp. 4467–4478. ACM, 2024.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning
on large-scale text-attributed graphs via variational inference. arXiv preprint arXiv:2210.14709,
2022.

Yun Zhu, Yaoke Wang, Haizhou Shi, and Siliang Tang. Efficient tuning and inference for large lan-
guage models on textual graphs. In Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024, pp. 5734–5742. ij-
cai.org, 2024.

AI USE DISCLOSURE

The authors used ChatGPT (OpenAI, 2025) solely for English grammar and punctuation correction.
No scientific content was generated or modified by the AI.

A REPRODUCIBILITY STATEMENT

Dataset description. We provide a detailed description of the datasets, including information on
their sources, in Appendix F. We describe the dataset splitting strategy in Appendix D.2.

Baseline description. We provide a detailed description of the baseline models we used and in-
clude links to their source code in Appendix C.

Implementation details. We provide a detailed description of the model hyperparameter settings
and training configurations in Appendix D to facilitate reproducibility.

Open access to code. The source code of DuConTE is included as a ZIP file in the supplementary
materials. We will release it publicly via an open-source repository upon publication.

B TWO-STAGE TRAINING PROCEDURE OF DUCONTE

We train DuConTE using a two-stage procedure: the word-token encoder is trained first to learn
high-quality representations, and the node encoder is then trained based on these representations.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Stage 1: Word-Token Encoder Training. We first train the word-token encoder ML and the
aggregator f1, while the node encoder MN and the aggregator f2 are not involved in this stage.
The first-stage representation of the target node, z(i)

i , serves as input to a learnable linear classifier
W

(1)
cls . The objective is to minimize the standard cross-entropy loss over the training set Vtrain:

L1 = −
∑

i∈Vtrain

y⊤
i log(softmax(W

(1)
cls z

(i)
i)). (16)

Stage 2: Node Encoder Training. We then fix ML and f1, and train the node encoder MN and
the aggregator f2. The final node representation oi is fed to a new learnable classifier W(2)

cls for
prediction. The objective is to minimize the cross-entropy loss:

L2 = −
∑

i∈Vtrain

y⊤
i log(softmax(W

(2)
cls oi)). (17)

C BASELINE

Graph-Specific Models: We adopt two graph transformers: GraphFormers (Yang et al.,
2021)[Code] and NodeFormer (Wu et al., 2022)[Code]. We also adopt GraphSAGE (Hamil-
ton et al., 2017)[Code], a Graph Neural Network, which also serves as the GNN backbone for
other baseline models.

Pure LMs: We adopt four commonly used pre-trained language models: BERT (Devlin et al.,
2019)[Code], Sentence-BERT (Reimers & Gurevych, 2019)[Code], and two versions of
RoBERTa (Liu et al., 2019): RoBERTa-base[Code] and RoBERTa-large[Code].

Recent TAG Methods: GLEM (Zhao et al., 2022)[Code], is a framework that integrates lan-
guage models and GNNs during training using a variational EM approach. TAPE (He et al.,
2023)[Code], leverages large language models such as ChatGPT to generate pseudo labels and
explanations for textual nodes. These are then used to fine-tune pre-trained language models along-
side the original texts. SimTeG (Duan et al., 2023)[Code] uses a cascading structure specifically
designed for textual graphs. It employs a two-stage training paradigm: first, it fine-tunes language
models, and then it trains GNNs. ENGINE (Zhu et al., 2024)[Code] is an efficient fine-tuning and
inference framework for text-attributed graphs. It co-trains large language models and GNNs using a
ladder-side approach to optimize both memory and time efficiency. For inference, ENGINE utilizes
an early exit strategy to further accelerate the process. GraphBridge (Wang et al., 2024)[Code]
first encodes both local and global text information using a language model, by incorporating neigh-
boring nodes’ text. A GNN is then applied to further refine node representations.

D NODE CLASSIFICTION: IMPLEMENTATION AND EXPERIMENTAL DETAILS

D.1 COMPUTATIONAL RESOURCES

In our experiments, we use four NVIDIA GeForce RTX 3090 GPUs, each with 24 GB of VRAM.
The LM components are trained and run on these four GPUs, while the GNN module is executed on
a single GPU.

D.2 DATASET SPLIT

For Cora and CiteSeer, we use a random node split with 60% of nodes for training, 20% for vali-
dation, and 20% for testing. For WikiCS, ArXiv-2023, and OGBN-Products, we adopt the official
training, validation, and test splits (Mernyei & Cangea, 2007; He et al., 2023; Hu et al., 2020).

D.3 BASELINE MODEL DEPLOYMENT SETTINGS

Graph-Specific Models: For NodeFormer and GraphSAGE, we use the raw node features from
each dataset, constructed via one-hot encoding. For GraphFormers, we implement the model using
its official source code.

14

https://github.com/microsoft/GraphFormers
https://github.com/qitianwu/NodeFormer
https://github.com/williamleif/GraphSAGE
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/sentence-transformers
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-large
https://github.com/AndyJZhao/GLEM
https://github.com/XiaoxinHe/TAPE
https://github.com/vermouthdky/SimTeG
https://github.com/ZhuYun97/ENGINE
 https://github.com/wykk00/GraphBridge

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Pure LMs: For BERT, Sentence-BERT, and RoBERTa-base, we perform full-parameter fine-
tuning using the raw texts of each node. For RoBERTa-large, we employ Low-Rank Adaptation
(LoRA) with a rank of 8.

Recent TAG Methods: We use RoBERTa-base as the language model backbone and a two-layer
GraphSAGE with hidden size 64 as the GNN backbone. This configuration is consistent with that
of DuConTE to ensure a fair comparison. We implement these models using their official source
code, and the training epochs as well as learning rates for both the LM and GNN components are
kept consistent with DuConTE.

D.4 IMPLEMENTATION DETAILS OF OUR PIPELINE INSTANCE

We provide a comprehensive overview of the configuration and training parameters adopted by the
pipeline instantiated in Section 5.3.

Upstream Preprocessing Configurations. We adopt 2-hop neighborhood sampling with a max-
imum of 39 neighbors per node. This means that for any node vi ∈ V , the sampled neighborhood
N (vi) satisfies |N (vi)| ≤ 39, and we denote S(i) = {vi} ∪ N (vi) with |S(i)| ≤ 40.

The text of each node is processed using a reduction module (Wang et al., 2024) to fit the input
length limit of the LM. This module, introduced in the GraphBridge framework, is a token selector
pre-trained on the training set that assigns importance scores to word tokens within each node’s text.
Given that the RoBERTa-base model has a maximum context length of 512 tokens, we enforce a
uniform token budget across all nodes in S(i). Specifically, let

B =

⌊
512

|S(i)|

⌋
− 1

be the per-node token budget (excluding the [SEP] token). For any node vj ∈ S(i) whose original
token sequence wj exceeds B tokens, we retain only the top-B most important tokens as ranked
by the reduction module, preserving their original order. The resulting truncated sequences are then
concatenated with [SEP] separators to form the unified input W(i).

Hyperparameter Settings of DuConTE. For the internal hyperparameters α and β of DuConTE,
we perform a grid search over the range [0, 1] with a step size of 0.1, selecting the best combination
based on performance on the validation set. The selected hyperparameter values for each dataset are
reported in Table 5.

Table 5: Hyperparameter settings of α and β in the experiments.
Hyperparameter Cora CiteSeer WikiCS ArXiv-2023 OGBN-Products Ele-Photo

α 0.7 0.9 0.9 0.6 0.8 0.6
β 0.7 0.8 0.8 0.9 0.9 0.7

Training Setup for DuConTE. DuConTE uses two pre-trained RoBERTa-base models for ML

and MN . ML has positional encoding enabled. MN takes H(i) as input directly, bypassing the
token embedding layer, with positional encoding kept on.

The detailed two-stage training procedure of DuConTE is described in Section B. In both Stage
1 and Stage 2, the learning rate is set to 5e−5, and the number of training epochs is specified in
Table 6.

Training Setup for the Downstream GNN. We adopt a two-layer GraphSAGE with a hidden
dimension of 64 as the GNN backbone in the downstream task. The model is trained using the final
node representations generated by DuConTE as input features. We employ a learning rate of 1e−2,
train for up to 500 epochs, and apply early stopping with a patience of 20 epochs based on validation
performance.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Training Epochs in Stage 1 and Stage 2
Stage Cora CiteSeer WikiCS ArXiv-2023 OGBN-Products Ele-Photo

Stage 1 8 8 16 8 8 8
Stage 2 8 8 16 8 8 8

E LINK PREDICTION: IMPLEMENTATION AND EXPERIMENTAL DETAILS

E.1 DATASET SPLIT

For Cora, CiteSeer, and ArXiv-2023, we randomly split edges into training, validation, and test sets
in a 6:2:2 ratio.

E.2 BASELINE MODEL DEPLOYMENT SETTINGS

GraphSAGE: We use a one-layer GraphSAGE with hidden dimension 16 and a two-layer MLP
link predictor.

Recent TAG Methods: We use RoBERTa-base as the language model backbone and a one-layer
GraphSAGE with hidden dimension 16 as the GNN backbone, paired with a two-layer MLP link
predictor. This configuration matches that of DuConTE to ensure a fair comparison. We implement
these models using their official source code, and the training epochs as well as learning rates for
both the LM and GNN components are kept consistent with DuConTE.

E.3 IMPLEMENTATION DETAILS OF OUR PIPELINE INSTANCE

We instantiate a text-attributed graph learning pipeline for link prediction, with DuConTE serving as
the text encoder. In the downstream phase, we use a one-layer GraphSAGE with hidden dimension
16 and a two-layer MLP link predictor.

Upstream Preprocessing Configurations. We use the same upstream preprocessing configura-
tion as in D.4.

Hyperparameter Settings of DuConTE. The values of the internal hyperparameters α and β are
set as in Table 5.

Training Setup for DuConTE. The training configuration of DuConTE follows that in D.4.The
detailed training procedure is described in E.4.

Training Setup for the Downstream GNN. We adopt a one-layer GraphSAGE with hidden di-
mension 16 as the downstream GNN, followed by a two-layer MLP link predictor, using the final
node representations from DuConTE as input features. The model is trained with a learning rate of
1e−2, up to 500 epochs, and early stopping (patience = 20) based on validation performance.

E.4 TWO-STAGE TRAINING PROCEDURE OF DUCONTE

We train DuConTE using a two-stage procedure tailored for link prediction. In both stages, link
scores are computed as the dot product of node representations, and the model is optimized using
binary cross-entropy loss on positive and negative edges.

Stage 1: Word-Token Encoder Training. We train the word-token encoder ML and the com-
poser f1, while MN and f2 remain frozen. For each training edge (i, j) ∈ Etrain, we compute the
dot-product score between first-stage representations:

s
(1)
ij = (z

(i)
i)⊤z

(j)
j .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A corresponding negative edge (i, k) is sampled by replacing j with a uniformly random node k.
The loss is computed as:

L1 =
∑

(i,j)∈Etrain

[
ℓ(s

(1)
ij , 1) + ℓ(s

(1)
ik , 0)

]
, (18)

where ℓ(ŷ, y) = BCEWithLogits(ŷ, y).

Stage 2: Node Encoder Training. We freeze ML and f1, and train MN together with f2. The
final representations oi and oj are scored analogously:

s
(2)
ij = o⊤

i oj .

Using the same positive/negative edge sampling strategy, the second-stage loss is:

L2 =
∑

(i,j)∈Etrain

[
ℓ(s

(2)
ij , 1) + ℓ(s

(2)
ik , 0)

]
. (19)

F DATASET DESCRIPTIONS

The experiments are conducted on five benchmark text-attributed graph datasets, widely adopted in
graph representation learning. Below we provide a brief overview of each. For detailed statistics,
including the number of nodes, edges, classes, and average token count per node, please refer to
Table 7.

Cora (Sen et al., 2008) The Cora dataset contains 2,708 scientific publications divided into seven
classes: case-based reasoning, genetic algorithms, neural networks, probabilistic methods, rein-
forcement learning, rule learning, and theory. The papers form a citation network with 5,429 undi-
rected edges, where each node has at least one citation link.

CiteSeer (Giles et al., 1998) The CiteSeer dataset consists of 3,186 scientific documents cat-
egorized into six areas: Agents, Machine Learning, Information Retrieval, Databases, Hu-
man–Computer Interaction, and Artificial Intelligence. Each document is represented by its title
and abstract, and the task is to classify papers based on this text and the citation structure.

WikiCS (Mernyei & Cangea, 2007) WikiCS is a Wikipedia-based dataset for evaluating graph
neural networks. It includes 10 classes corresponding to computer science topics and exhibits high
connectivity. Node features are obtained from the text of the corresponding Wikipedia articles.

ArXiv-2023 (He et al., 2023) ArXiv-2023 is a directed citation network introduced in TAPE,
containing computer science papers from arXiv published in 2023 or later. Nodes represent papers,
and directed edges represent citations. The task is to classify each paper into one of 40 subject areas,
such as cs.AI, cs.LG, and cs.OS, using labels provided by authors and arXiv moderators.

OGBN-Products (Hu et al., 2020) OGBN-Products is a dataset of Amazon products with co-
purchase relations. The full version has over 2 million nodes and 61 million edges. The subset used
here, created via node sampling in TAPE (He et al., 2023), contains 54,000 nodes and 74,000 edges.
Each node corresponds to a product and is labeled with one of 47 top-level categories.

Ele-Photo (Yan et al., 2023) Ele-Photo is a text-attributed graph derived from the AmazonElec-
tronics dataset (Ni et al., 2019), where nodes represent electronics products and edges denote fre-
quent co-purchases or co-views. Each node is assigned a label from a three-level hierarchy of elec-
tronics categories, with the task formulated as 12-way classification. The textual attribute of each
node is constructed from the user review with the highest number of votes; if no such review exists,
a random review is selected.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Dataset statistics. Nodes, Edges, Classes and Avg.degrees mean the number of nodes,
edges, classes and average degrees for each dataset, respectively. Avg.tokens represents the average
number of tokens per node in each dataset when using the RoBERTa-base’s tokenizer.

Dataset Nodes Edges classes Avg.degrees Avg.tokens
Cora 2708 5492 7 3.90 194
CiteSeer 3186 4277 6 1.34 196
WikiCS 11701 215863 10 36.70 545
ArXiv-2023 46198 78543 40 3.90 194
OGBN-Products(subset) 54025 74420 47 2.68 163
Ele-Photo 48362 500928 12 18.07 185

G HOMOPHILY ANALYSIS

In this section, we analyze the homophily of the six datasets used in our experiments: Cora (Sen
et al., 2008), CiteSeer (Giles et al., 1998), WikiCS (Mernyei & Cangea, 2007), ArXiv-2023 (He
et al., 2023), OGBN-Products (subset) (Hu et al., 2020) and Ele-Photo (Yan et al., 2023). Specifi-
cally, we compute the label homophily ratio H , defined as:

H =
1

|E|
∑

(i,j)∈E

I(yi = yj), (20)

where E denotes the set of edges, yi is the class label of node i, and I(·) is the indicator function
that equals 1 if the condition is true and 0 otherwise. This metric measures the proportion of edges
connecting nodes with identical labels; a higher value indicates stronger homophily. The results are
summarized in Table 8.

Table 8: Label Homophily Ratios Across Datasets
Dataset Cora CiteSeer WikiCS ArXiv-2023 OGBN-Products (subset) Ele-Photo
Homophily (H) 0.8100 0.7451 0.6547 0.6465 0.7950 0.7351

According to the results, all datasets exhibit homophily ratios above 0.6, indicating a relatively high
level of homophily.

H ABLATION VARIANTS

In this section, we detail the design of each ablation variant used in our experiments.

NoDual It encodes semantic information only at the word-token granularity, achieved by setting
the hyperparameter α = 0.

NoMask-T It uses the vanilla self-attention mechanism in every attention layer of the word-token
encoder.

NoMask-D It uses the vanilla self-attention mechanism in every attention layer of the node en-
coder.

NoMask-Both It uses the vanilla self-attention mechanism in every attention layer of both en-
coders.

MeanPool It directly converts word-token embeddings into node representations using mean pool-
ing.

Center-Only Its node representation composer evaluates word-token importance only in the
center-node semantic context, with the hyperparameter β set to 1.

Neigh-Only Its node representation composer evaluates word-token importance only in the neigh-
borhood semantic context, with the hyperparameter β set to 0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

UnifiedContext Its node representation composer evaluates word-token importance in a shared
context, without differentiating the contextual influence from the center-node and its neighborhood.
The unnormalized importance of token wiq is computed as:

µ′
q =

Li∑
p=1

a
(i)
i,p,q +

∑
vj∈N (i)

Lj∑
p=1

a
(i)
j,p,q, (21)

and the final importance score µq is obtained by applying softmax normalization over all word-
tokens in vi.

I COMPUTATIONAL OVERHEAD STATISTICS

We report the total training time (over 8 epochs) and single-pass inference time on the full dataset
for DuConTE and its ablation variant MeanPool across Cora, CiteSeer, and Ele-Photo. All timing
measurements were conducted on a system equipped with four NVIDIA GeForce RTX 4090 GPUs,
each with 24GB of memory.

Table 9: Total Training Time (seconds)
Method Cora(training) CiteSeer(training) Ele-Photo(training)
DuConTE 1054 434 5074
MeanPool 880 326 4278

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Total Inference Time (seconds)
Method Cora(inference) CiteSeer(inference) Ele-Photo(inference)
DuConTE 185 62 796
MeanPool 163 49 663

20

	Introduction
	Related Work
	Text-attributed graph learning
	Transformers for Modeling Structured Data

	Preliminaries
	Problem Formulation
	Transformer and Self-Attention with Masking

	Method
	Dual-Granularity Semantic Encoding
	Topology-constrained attention mechanism
	Node Representation Composer
	Two-stage training procedure

	Experiments
	Datasets
	Baselines
	Experimental Settings
	Performance Comparison and Discussions

	Analysis
	Ablation Study
	Sensitivity Analysis
	Why Topology-Constrained Attention Works: A Homophily Perspective
	Additional Evaluation on Link Prediction
	Parameter Efficiency Analysis
	Computational Overhead of the Node Representation Composer

	Conclusion
	Reproducibility Statement
	Two-Stage Training Procedure of DuConTE
	Baseline
	Node Classifiction: Implementation and Experimental Details
	Computational Resources
	Dataset Split
	Baseline Model Deployment Settings
	Implementation Details of our Pipeline Instance

	Link Prediction: Implementation and Experimental Details
	Dataset Split
	Baseline Model Deployment Settings
	Implementation Details of our Pipeline Instance
	Two-Stage Training Procedure of DuConTE

	Dataset Descriptions
	Homophily Analysis
	Ablation Variants
	Computational Overhead Statistics

