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ABSTRACT

Text-attributed graphs integrate semantic information of node texts with topolog-
ical structure, offering significant value in various applications such as document
classification and information extraction. Existing approaches typically encode
textual content using language models (LMs), followed by graph neural networks
(GNNs) to process structural information. However, during the LM-based text
encoding phase, most methods not only perform semantic interaction solely at the
word-token granularity, but also neglect the structural dependencies among texts
from different nodes. In this work, we propose DuConTE, a dual-granularity text
encoder with topology-constrained attention. The model employs a cascaded ar-
chitecture of two pretrained LMs, encoding semantics first at the word-token gran-
ularity and then at the node granularity. During the self-attention computation in
each LM, we dynamically adjust the attention mask matrix based on node con-
nectivity, guiding the model to learn semantic correlations informed by the graph
structure. Furthermore, when composing node representations from word-token
embeddings, we separately evaluate the importance of tokens under the center-
node context and the neighborhood context, enabling the capture of more contex-
tually relevant semantic information. Extensive experiments on multiple bench-
mark datasets demonstrate that DuConTE achieves state-of-the-art performance
on the majority of them.

1 INTRODUCTION

Text-attributed graphs (Yang et al., 2021; Seo et al., 2024) have emerged as an increasingly signif-
icant research domain, with substantial applications in real-world scenarios such as social media
analysis (Seo et al., 2024), academic citation systems (Wang et al., 2025), and knowledge base con-
struction (Zhang et al., 2024). In such graphs, each node is associated with a piece of textual content,
resulting in richly structured data that encapsulates both semantic text information and topological
structure. Learning high-quality representations that effectively capture both the textual and struc-
tural characteristics of nodes is crucial for downstream tasks such as node classification (Zhao et al.,
2024).

Recently, a growing body of research (Chen et al., 2023; Chien et al., 2021; Zhu et al., 2024) has
begun leveraging Transformer-based language models (LMs) to model textual information in text-
attributed graphs, aiming to enhance graph neural networks (GNNs). Thanks to their strong pre-
trained understanding of natural language, LMs can produce highly expressive representations of
textual content. For example, GraphBridge(Wang et al., 2024) attempts to combine the text from
the center-node and its neighbors into the LM, enabling the model to jointly encode the central text
and its contextual information from neighboring nodes. Current approaches (Zhu et al., 2024; He
et al., 2023; Jin et al., 2023) that jointly employ GNNs and LMs largely follow a common paradigm:
the LM is responsible for encoding textual features, while the GNN focuses on capturing structural
information.

However, existing approaches typically perform semantic interaction only at the word-token gran-
ularity when using LMs for text encoding, failing to capture meaningful node-granularity semantic
interactions—where the textual content of different nodes is treated as holistic units and interacts
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Figure 1: Overview of the text-attributed graph learning pipeline (top) and comparison between
existing methods and the proposed DuConTE (bottom).

across the graph. Moreover, current methods either do not incorporate structural information into the
LM at all, or the injected structural signals are insufficient to guide the encoding process effectively.
Additionally, existing methods lack an effective mechanism for composing node representations
from word-token embeddings.

To address these limitations, we propose DuConTE, a dual-granularity text encoder with topology-
constrained attention for text-attributed graphs. As illustrated in the top panel of Figure 1, the text-
attributed graph learning pipeline consists of three stages, with DuConTE acting as a plug-and-play
text encoder module. It takes as input the text of each node and its sampled neighborhood structure
(e.g., from random walks or k-hop sampling), obtained through upstream preprocessing, and outputs
enriched node representations for downstream GNN models.

DuConTE performs dual-granularity semantic encoding, in which two pretrained LMs sequen-
tially encode textual semantics at the word-token and node granularities, respectively. This design
aligns with the inherent multi-granular nature of text-attributed graphs, allowing for a more com-
plete capture of textual semantics. During the encoding process, DuConTE employs a topology-
constrained attention mechanism to leverage graph structural information for enhanced text en-
coding. This is achieved through an attention masking strategy specifically designed for TAG, mo-
tivated by the homophily analysis in Section 6.3, enabling pretrained LMs to better process graph-
structured textual data without architectural modification. Furthermore, we design a node represen-
tation composer that assesses the importance of individual word tokens under both center-node and
neighborhood semantic contexts. This enables the model to capture salient semantic information
more effectively when composing node representations from word-token embeddings.

• We propose DuConTE, a dual-granularity text encoder with topology-constrained attention for
text-attributed graphs. It performs dual-granularity semantic encoding to model textual se-
mantics at both the word-token granularity and node granularity, capturing a comprehensive,
multi-scale understanding of the text-attributed graph.

• We introduce a topology-constrained attention mechanism that leverages an attention masking
strategy, specifically designed for TAGs and grounded in the homophily analysis in Section 6.3,
to effectively incorporate structural guidance into the textual encoding process.

• We design a node representation composer that distinctly models token importance under
center-node and neighborhood contexts, enabling effective fusion of word-token embeddings
into comprehensive node representations.
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2 RELATED WORK

2.1 TEXT-ATTRIBUTED GRAPH LEARNING

Learning on text-attributed graphs has evolved from employing simple text features like Bag-of-
Words (Zhang et al., 2010) to sophisticated methods centered on language models (LMs) (Chen
et al., 2023; Chien et al., 2021; Zhu et al., 2024). These modern approaches generally follow two
main paradigms. The first relies on a single, powerful LM to jointly process text and structure.
For instance, LLaGA (Chen et al., 2024) injects structural information by mapping it into the LM’s
token space and relies solely on the LM to generate predictions. While conceptually unified, this
paradigm is often computationally demanding, suffers from poor scalability, and achieves limited
effectiveness in leveraging structural information. The second, more common paradigm, employs
a hybrid LM-GNN pipeline where an LM first serves as a text encoder, and a subsequent GNN
performs the downstream task using the resulting node embeddings. Representative works like
GraphBridge (Wang et al., 2024) enrich node text with neighbor semantics before encoding, whereas
Engine (Zhu et al., 2024) uses a GNN to process features from multiple LM layers. A critical
limitation across most hybrid models is that the LM encoding process remains largely unaware of
the graph topology. This decoupled approach hinders the deep fusion of structural and semantic
information, a key challenge we address in this work.

2.2 TRANSFORMERS FOR MODELING STRUCTURED DATA

In recent years, numerous studies have leveraged Transformers to process graph-structured data
(Shehzad et al., 2024). An early effort in this direction is Graph-BERT (Zhang et al., 2020), which
applies a BERT-style Transformer to sampled subgraphs without relying on message passing. More
recent approaches further enhance structural awareness: Graphormer (Ying et al., 2021) enhances
the Transformer’s understanding of graph structures by introducing spatial encoding and degree
encoding. Another work NeuralWalker (Chen et al., 2025) generates serialized representations of
graphs through random walks to exploit the self-attention mechanism of Transformers for model-
ing purposes. Edge-augmented methods (Rampášek et al., 2022; Satorras et al., 2021) explicitly
model edge features to enhance the Transformer’s sensitivity towards different edge types. Masked
Graph Modeling (Hou et al., 2023; Tian et al., 2024) employs a masking strategy to learn struc-
tural information by predicting masked node or edge features. Notably, another strategy enhances
structural awareness by using attention masks to explicitly control token interactions. K-BERT (Liu
et al., 2020) employs a visibility mask to prevent injected knowledge tokens from attending to irrel-
evant input positions, preserving original semantics. UniD2T (Li et al., 2024) constructs attention
masks based on the connectivity of a unified graph derived from structured data (e.g., tables, knowl-
edge graphs) to enforce structure-aware interactions during pre-training. In this work, based on the
homophily analysis in Section 6.3, we design a TAG-specific attention masking strategy to inject
structural information at both word-token and node granularities.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Definition 1. Text-Attributed Graph. A text-attributed graph (TAG) is formally defined as a
triplet G = (V, E , T ). Here, V = {v1, v2, . . . , vN} is the set of N nodes, and E ⊆ V × V is the
set of edges describing the graph’s topological structure, which can be represented by an adjacency
matrix A ∈ {0, 1}N×N . Each node vi ∈ V is associated with a text description wi, and T =
{w1,w2, . . . ,wN} denotes the collection of all node-associated text descriptions, where each wi =
(wi1, wi2, . . . , wiLi

) is a sequence of word tokens of length Li.

Definition 2. Node Classification in Text-Attributed Graphs. Given a text-attributed graph G
and a set of K predefined classes C = {c1, c2, . . . , cK}, the task of node classification aims to learn
a mapping function f : V → C. The objective of this function is to predict the correct label yi ∈ C
for every node vi ∈ V by jointly considering the graph structure E and the semantic information T .

3
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3.2 TRANSFORMER AND SELF-ATTENTION WITH MASKING

The Transformer architecture utilizes self-attention to capture dependencies within sequences.
Given input X ∈ Rn×d, query, key, and value projections are computed as Q = XWQ,
K = XWK , V = XWV . The process is:

Attention(Q,K,V ) = softmax
(
QK⊤
√
dk

+M

)
V , (1)

where M is derived from a binary mask matrix Mmask ∈ {0, 1}n×n: valid attention positions are
marked as 1 in Mmask, and their corresponding entries in M are set to 0; invalid positions are
marked as 0 in Mmask, and their entries in M are set to −∞. This mechanism enables the model
to selectively attend to semantic interactions between specific tokens, a property that we leverage to
design our topology-constrained attention mechanism.

4 METHOD

In this section, we propose DuConTE illustrated in Figure 2, a dual-granularity text encoder with
topology-constrained attention. It employs two language models as a word-token encoder ML and
a node encoder MN respectively, both incorporating topology-constrained attention mechanisms.
Given a target node vi and its neighborhood N (vi), DuConTE first concatenates the textual content
of vi and all nodes in N (vi), and applies ML to this combined sequence to generate word-token
representations. A node representation composer then aggregates these into first-stage node repre-
sentations. Subsequently, MN encodes the sequence of first-stage node representations to produce a
second-stage node representation for vi. The final representation oi is obtained through a weighted
fusion of the node’s first-stage and second-stage representations.

Figure 2: Overview of DuConTE with the dual-granularity cascaded architecture (middle), the
topology-constrained attention mechanism (left), and the target node representation construction
process in the node representation composer (right). The node representation composer is denoted
as Composer in the figure.

4.1 DUAL-GRANULARITY SEMANTIC ENCODING

To capture semantics at the word-token and node granularities, which naturally exist in text graphs,
we propose a dual-granularity cascaded architecture, illustrated in the middle of Figure 2. This archi-
tecture employs the word-token encoder ML for the word-token granularity and the node encoder
MN for the node granularity, in a sequential manner.
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Word-Token Granularity Encoding. Given a target node vi ∈ V and its neighborhood N (vi) ⊆
V , let S(i) = {vi} ∪ N (vi) denote the set consisting of the target node and its neighbors. For each
node vj ∈ S(i), we obtain its associated word-token sequence wj = (wj1, . . . , wjLj ) ∈ T . These
sequences are concatenated with [SEP] tokens inserted between adjacent nodes to form a unified
neighborhood input:

W(i) = [wj1 ;[SEP]; · · · ;wj|N(vi)|
;[SEP];wi] ∈ RL×dL , (2)

where vj1 , . . . , vj|N(vi)|
∈ N (vi).

The word-token encoder ML (a pre-trained LM) processes W(i) to perform semantic interaction at
the word-token granularity, producing word-token embeddings H(i) ∈ RL×dL :

H(i) = ML(W
(i)) =

[
h
(i)
j1
;h

(i)
SEP1

; . . . ;h
(i)
i

]
, (3)

where h
(i)
j ∈ RLj×dL is the embedding matrix for the tokens of node vj after such interaction,

h
(i)
SEPk

denotes the embedding of the k-th [SEP] token, and dL is the hidden dimension of ML.

To distill these fine-grained word-token features into node semantics, we employ a node representa-
tion composer f , detailed in Section 4.3. This function maps H(i) to a sequence of first-stage node
representations Z(i):

Z(i) = f
(
H(i)

)
, (4)

Z(i) = [z
(i)
j1
; . . . ; z

(i)
j|N(vi)|

; z
(i)
i ], (5)

where each z
(i)
j ∈ RdL denotes the first-stage node representation of vj .

Node Granularity Encoding. To further model semantic interactions at the node granularity, we
feed Z(i) into node encoder MN (another pre-trained LM), to produce a sequence of second-stage
node representations E(i):

E(i) = MN (Z(i)) ∈ R(k+1)×dL , (6)

E(i) = [e
(i)
j1
; . . . ; e

(i)
j|N(vi)|

; e
(i)
i ], (7)

where each e
(i)
j ∈ RdL denotes the second-stage node representation of vj .

Note that for vj ∈ N (vi), z
(i)
j and e

(i)
j are computed within the context of target node vi, and

thus represents a context-dependent, neighbor-oriented encoding—distinct from the representation
obtained when vj is treated as a target node.

Dual-Granularity Representation Fusion. To integrate complementary semantic information
from both granularities, we compute the final representation of the target node vi through a weighted
combination of its first-stage and second-stage node representations:

oi = α · z(i)
i + (1− α) · e(i)i , (8)

where α ∈ [0, 1] is a fixed fusion coefficient.

4.2 TOPOLOGY-CONSTRAINED ATTENTION MECHANISM

To endow our dual-granularity encoders with topological awareness, we transform their standard
self-attention mechanism into a topology-constrained variant, as illustrated on the left in Figure 2.
This is achieved through an attention masking strategy specifically designed for TAG. Informed by
the homophily analysis in Section 6.3, it constructs masks based on node connectivity, applied at
every layer and attention head to restrict attention exclusively between structurally connected word-
tokens or nodes. The approach seamlessly integrates graph information without altering the core
Transformer architecture.

5
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Word-Token Mask Construction. For the word-token encoder ML processing sequence W(i) ∈
RL×dL , we allow attention only between pairs of word-tokens within the same node or in connected
nodes. Additionally, attention between [SEP] tokens and any word-token is always allowed to
preserve a basic awareness of inter-node boundaries at the word-token granularity.

Accordingly, the attention mask matrix Mword
mask is constructed as follows: for any two tokens at

positions p and q in W(i), if neither token is a [SEP] token, let v(p) and v(q) denote their associated
nodes in the graph. The entry Mword

p,q ∈ {0, 1}L×L is defined as:

Mword
p,q =


1 if the token at p or q is [SEP],
1 if v(p) = v(q) or (v(p), v(q)) ∈ E ,
0 otherwise.

(9)

Node Mask Construction. For the node encoder MN processing the sequence Z(i) ∈
R(k+1)×dL , we allow attention only between node representations that correspond to the same node
or to connected nodes in the graph.

Accordingly, the attention mask matrix Mnode
mask is constructed as follows: for any two positions m

and n in Z(i), let v(m) and v(n) denote the corresponding nodes in the graph. The entry M node
m,n ∈

{0, 1}(k+1)×(k+1) is defined as:

M node
m,n =

{
1 if v(m) = v(n) or (v(m), v(n)) ∈ E ,
0 otherwise.

(10)

4.3 NODE REPRESENTATION COMPOSER

To effectively fuse the word-token embeddings H(i) into high-quality first-stage node representa-
tions, we design a Node Representation Composer f . The composer employs two distinct modules:
a more sophisticated module f1 to compute the representation of the target node vi, and a lightweight
module f2 to independently encode each neighbor node vj ∈ N (i). This asymmetric design enables
the target node to capture rich contextual information while ensuring efficient and undisturbed rep-
resentation learning for neighbors.

Target Node Representation Construction. To capture the most salient semantics of the target
node vi under both center-node and neighborhood context—and to explicitly balance their relative
influence—we design f1 to assess word-token significance from dual perspectives, as shown on
the right in Figure 2. Specifically, f1 employs a specialized attention mechanism to compute the
importance of each word-token in the target node’s text wi.

With learnable projection matrices WQ,WK ∈ RdL×dL , we compute the queries Q(i) as the pro-
jected embeddings of all word-tokens in the neighborhood, and the keys K(i) as the projected em-
beddings of the target node’s word-tokens:

Q(i) = H(i)WQ ∈ RL×dL , (11)

K(i) = h
(i)
i WK ∈ RLi×dL . (12)

As defined in 3.1, wjp is the p-th word-token in node vj . The attention weight a(i)j,p,q from wjp to wiq

is computed using the scaled dot-product attention mechanism, with softmax normalization over all
queries attending to wiq .

The total importance of wiq is decomposed into two components:

• Importance under center-node context: αcen
q =

∑Li

p=1 a
(i)
i,p,q;

• Importance under neighborhood context: αneigh
q =

∑
vj∈N (i)

∑Lj

p=1 a
(i)
j,p,q .

Each component is independently normalized via softmax to obtain µcen
q and µneigh

q , which are fused
into the final importance score µq using a fixed coefficient β ∈ [0, 1]:

µq = β · µcen
q + (1− β) · µneigh

q . (13)

6
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The final representation z
(i)
i is a weighted sum over the target node’s word-token embeddings:

z
(i)
i =

Li∑
q=1

µqh
(i)
i,q. (14)

Neighbor Node Representation Construction. To enable efficient encoding while preserving
each neighbor’s intrinsic semantic content, we design a lightweight module f2 that employs local
attention pooling. Given a neighbor node vj ∈ N (i), an importance score sj,p is computed for each
word-token embedding h

(i)
j,p via a learnable projection vector wa ∈ RdL . After softmax normaliza-

tion to obtain weights πj,p, the first-stage representation of vj is computed as a weighted sum:

z
(i)
j =

Lj∑
p=1

πj,ph
(i)
j,p. (15)

4.4 TWO-STAGE TRAINING PROCEDURE

We train DuConTE using a two-stage procedure. We first train ML and f1 to learn high-quality
first-stage node representations, then train MN and f2 based on these representations. The full
training procedure is detailed in Appendix B.

5 EXPERIMENTS

5.1 DATASETS

In this paper, we evaluate DuConTE for node classification on five widely-used datasets: Cora (Sen
et al., 2008), CiteSeer (Giles et al., 1998), WikiCS (Mernyei & Cangea, 2007), ArXiv-2023 (He
et al., 2023), OGBN-Products (Hu et al., 2020) and Ele-Photo (Yan et al., 2023). For detailed
descriptions of each dataset, please refer to Appendix F.

5.2 BASELINES

To evaluate the effectiveness of our proposed model, we employ several baseline models for compar-
ison. For a detailed description of all baseline models, please refer to Appendix C. These baselines
can be categorized into three main types:

• Graph-Specific Models: Models specifically designed and trained from scratch for graph-
structured data, e.g., NodeFormer (Wu et al., 2022), GraphFormers (Yang et al., 2021).

• Pure LMs: Language models that perform inference solely based on node texts while completely
ignoring the graph structure, e.g., BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019).

• Recent TAG Methods: Leading approaches that have demonstrated strong performance on text-
attributed graph benchmarks, e.g., GraphBridge (Wang et al., 2024), ENGINE (Zhu et al., 2024).

5.3 EXPERIMENTAL SETTINGS

Evaluation Task and Metric. In this study, we focus on node classification as the downstream task
for text-attributed graphs, and adopt classification accuracy as the evaluation metric.

Implementation Details. We instantiate a text-attributed graph learning pipeline, as illustrated in
the top panel of Figure 1. DuConTE serves as the text encoder in this pipeline, implemented with
two RoBERTa-base models serving as the word-token encoder and node encoder respectively. In
the downstream phase, a two-layer GraphSAGE with a hidden dimension of 64 is employed as
the GNN component. All methods are evaluated under a unified experimental protocol to ensure
a fair comparison. Detailed configurations for model hyperparameters, upstream preprocessing,
implementation settings of baseline methods, and training procedures are provided in Appendix D.

5.4 PERFORMANCE COMPARISON AND DISCUSSIONS

We compare the performance of various models on text-attributed graph node classification, with re-
sults reported in Table 1. DuConTE achieves state-of-the-art performance on most datasets, outper-
forming the second-best method by 2.7% on ArXiv-2023 and 1.6% on Cora. The results demonstrate

7
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Table 1: Experiment results: Mean accuracy and standard deviation over 10 runs with different
random seeds. Bold indicates the best performance, underlined denotes the second-best, and ‘–’
signifies that the method is not applicable to the dataset.“DuConTE” refers to the pipeline instance
using DuConTE as the text encoder, as described in Section 5.3.
Methods Cora CiteSeer WikiCS ArXiv-2023 OGBN-Products Ele-Photo
GraphFormers 80.29± 1.74 71.84± 1.23 71.37± 0.35 63.14± 0.59 68.09± 0.57 78.16± 0.17

NodeFormer 88.24± 0.34 74.96± 0.61 75.56± 0.51 67.68± 0.47 67.37± 0.83 77.47± 0.04
GraphSAGE 87.42± 1.31 72.26± 1.21 76.91± 0.77 68.56± 0.53 70.56± 0.27 79.87± 0.26

BERT 79.63± 1.81 71.27± 1.11 77.96± 0.57 76.84± 0.09 76.45± 0.16 68.73± 0.13

Sentence-BERT 78.94± 1.43 72.93± 1.84 77.84± 0.06 77.41± 0.55 74.98± 0.15 68.47± 0.24

RoBERTa-base 78.37± 1.29 71.76± 1.23 76.86± 0.52 77.24± 0.19 76.03± 0.12 69.31± 0.19
RoBERTa-large 79.81± 1.37 72.31± 1.74 77.64± 0.95 77.81± 0.43 76.24± 0.35 71.46± 0.13

GLEM 87.59± 0.17 77.42± 0.68 78.23± 0.56 79.23± 0.17 76.04± 0.34 83.56± 0.54

TAPE 87.48± 0.76 – – 80.04± 0.31 79.23± 0.13 –
SimTeG 86.74± 1.71 78.51± 1.04 79.73± 0.84 79.45± 0.53 76.43± 0.49 83.71± 0.26
ENGINE 87.61± 1.34 76.84± 1.41 77.92± 0.89 78.57± 0.19 77.68± 1.31 82.46± 0.10

GraphBridge 93.60± 0.98 88.62± 0.76 80.47± 0.26 86.43± 0.29 77.92± 0.27 89.23± 0.15

DuConTE 95.24± 0.79 89.45± 1.22 81.09± 0.43 90.31± 0.35 78.80± 0.10 91.89± 0.18

DuConTE’s ability to produce high-quality, semantically rich node representations that effectively
support downstream GNN models.

6 ANALYSIS

6.1 ABLATION STUDY

We conduct ablation studies to evaluate the three key innovations in DuConTE. The variants are de-
fined in Appendix H, including NoDual, NoMask-T/D/Both, and MeanPool/Center-Only/Neigh-
Only/UnifiedContext. All variants are evaluated under the same experimental setup.

As shown in Table 2, DuConTE outperforms all variants, confirming the effectiveness of its three key
designs: (1) DuConTE surpasses NoDual by +0.8% on Cora and OGBN-Products, verifying that
dual-granularity encoding aligns with the inherent semantic granularity of text-structured graphs
and thus better captures rich semantic information. (2) Performance drops in NoMask-T/D/Both
confirm that topology-constrained attention effectively injects structural information at both word-
token and node granularities; notably, NoMask-D consistently outperforms NoMask-T, suggesting
that structural information is critical even at the finest semantic granularity. (3) The lower perfor-
mance of MeanPool further validates that importance-based weighted fusion captures key semantic
information more effectively than uniform averaging. Gains over Center-Only, Neigh-Only, and
UnifiedContext demonstrate that both center-node and neighborhood contexts are important for as-
sessing word-token importance, and explicitly differentiating their distinct influences leads to more
accurate semantic weighting.

Table 2: Ablation results on Cora, CiteSeer, and OGBN-Products
Methods Cora CiteSeer OGBN-Products
NoDual 94.46± 0.76 89.22± 1.34 77.98± 0.38
NoMask-T 94.23± 0.76 88.84± 1.28 78.19± 0.13
NoMask-D 94.59± 0.58 88.86± 1.27 78.52± 0.15
NoMask-Both 94.10± 0.85 89.04± 0.99 78.40± 0.17
MeanPool 94.43± 0.94 88.57± 0.95 78.27± 0.12
Center-Only 95.13± 0.80 88.46± 1.20 78.17± 0.18
Neigh-Only 95.09± 0.74 88.71± 1.40 78.36± 0.15
UnifiedContext 95.09± 0.86 88.98± 1.10 78.56± 0.23
DuConTE 95.24± 0.79 89.45± 1.22 78.80± 0.10
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Figure 3: Sensitive analysis of the fusion coefficient α

Figure 4: Sensitive analysis of the fusion coefficient β.

6.2 SENSITIVITY ANALYSIS

We analyze the sensitivity of DuConTE to the fusion coefficients α and β over the range [0, 1]. The
performance trends are shown in figure 3 and figure 4. Across all experiments, the performance
variation remains within 1%, demonstrating the model’s robustness to these hyperparameters.

For α, which controls the fusion of dual-granularity semantic representations, the optimal perfor-
mance on Cora and CiteSeer falls within the range [0.7, 0.9]. This indicates a clear fusion pattern:
word-token granularity semantics provide stable and reliable information, while node granularity se-
mantics contribute complementary yet essential signals—consistent with their role as more abstract,
high-level features.

For β, which balances the influence of center-node and neighborhood contexts in word-token im-
portance assessment, the performance trend varies across datasets, indicating that the relative im-
portance of these two contexts is dataset-dependent. On Cora and CiteSeer, strong performance
is observed within [0.4, 0.7] and [0.2, 0.8], respectively, confirming that both contexts contribute
meaningfully. Notably, the optimal values consistently fall within [0.6, 0.8], suggesting that the
center-node context exerts a stronger influence—aligning with the intuition that a token’s relevance
is primarily shaped by the target node itself.

6.3 WHY TOPOLOGY-CONSTRAINED ATTENTION WORKS: A HOMOPHILY PERSPECTIVE

In this subsection, we analyze the effectiveness of topology-constrained attention from the perspec-
tive of the homophily assumption, which posits that connected nodes in a graph are more likely to
share similar semantic properties. To the best of our knowledge, this assumption is well-supported
by most widely used text-attributed graph benchmarks, where adjacent nodes are more likely to be-
long to the same class.This is further supported by the homophily statistics reported in Appendix G.

In the topology-constrained attention mechanism, the masks M token
mask and Mnode

mask are injected into
the attention layers of the word-token encoder and the node encoder, respectively. As a result, cross-
node attention interactions are constrained to occur between semantic information from connected
nodes at both granularities. Under the homophily assumption, such information is more likely to be
semantically related, thereby enabling mutually complementary interactions. This allows the model
to effectively leverage the graph structure to learn higher-quality representations.

9
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6.4 ADDITIONAL EVALUATION ON LINK PREDICTION

To assess the general applicability of DuConTE beyond node classification, we conduct link pre-
diction experiments on the Cora, CiteSeer, and ArXiv-2023 datasets, using AUC as the evaluation
metric. Detailed configurations and training procedures are provided in Appendix E. According to
Table 3, DuConTE consistently outperforms baseline methods on the link prediction task, indicat-
ing that it is highly effective at representation learning on text-attributed graphs. This result further
highlights the versatility of DuConTE and its potential for broader applications across diverse TAG-
based tasks.

Table 3: Experimental Results on Link Prediction
Methods Cora CiteSeer ArXiv-2023
GraphSAGE 97.10± 0.43 87.29± 1.22 91.81± 0.26
SimTeG 97.86± 0.44 90.06± 1.34 93.12± 0.46
GraphBridge 98.07± 0.77 91.86± 1.03 94.35± 0.65
DuConTE 99.13± 0.19 93.29± 0.75 95.40± 0.33

6.5 PARAMETER EFFICIENCY ANALYSIS

To evaluate the parameter efficiency of DuConTE, we replace the LM backbone in baseline methods
with RoBERTa-large (340M parameters) while keeping other configurations unchanged. We then
compare their performance against DuConTE using two RoBERTa-base models (150M parameters
each) as its LM backbones. In this setup, every baseline has a larger total parameter count than
DuConTE. TAPE is excluded from the comparison as it relies on a large language model. As shown
in Table 4, DuConTE achieves the best performance despite using fewer parameters, highlighting
its parameter efficiency. This suggests a novel parameter-efficient scaling paradigm: rather than
improving performance by scaling up a single large LM, DuConTE achieves greater gains with
fewer total parameters by leveraging two smaller LMs.

Table 4: Experiment results: Subscript (large) indicates the use of RoBERTa-large as the LM back-
bone, while (base) indicates RoBERTa-base.
Methods Cora CiteSeer WikiCS ArXiv-2023 OGBN-Products Ele-Photo
GLEM(large) 89.07± 0.25 78.04± 0.36 78.14± 0.81 78.94± 0.45 78.37± 0.29 84.73± 0.67

SimTeG(large) 88.64± 0.89 79.89± 1.23 80.16± 0.65 80.69± 0.49 78.31± 0.61 84.97± 0.41

ENGINE(large) 88.57± 1.25 78.14± 0.74 80.36± 0.24 77.37± 0.43 78.44± 0.57 83.43± 0.23
GraphBridge(large) 94.06± 0.94 88.91± 0.98 80.96± 0.57 87.14± 0.36 78.51± 0.68 90.96± 0.19

DuConTE(base) 95.24± 0.79 89.45± 1.22 81.09± 0.43 90.31± 0.35 78.80± 0.10 91.89± 0.18

6.6 COMPUTATIONAL OVERHEAD OF THE NODE REPRESENTATION COMPOSER

We measure the training and inference time of DuConTE and its ablation variant MeanPool on
Cora, CiteSeer, and Ele-Photo. As reported in Appendix I, the Node Representation Composer
introduces an average overhead of 23.8% in training time and 19.9% in inference time. This cost is
generally acceptable, and further acceleration is possible by reducing the dimensionality of keys and
queries in f1 to lower computational load. A key direction for future work is to design methods that
convert word-token embeddings into node representations with both higher performance and lower
computational cost. This is crucial for TAG representation learning but remains underexplored.

7 CONCLUSION

In this paper, we introduce DuConTE, a dual-granularity text encoder with topology-constrained
attention for text-attributed graphs. DuConTE encodes node semantics at both word-token and
node granularity to capture the inherent dual-granularity semantic structure of text-attributed graphs.
Our topology-constrained attention mechanism utilizes an attention masking strategy specifically
designed for TAG, offering an effective and architecture-preserving approach to adapt LMs to
graph-structured data. In the node representation composer, the contexts of the center node and
its neighborhood are separately considered to more effectively assess the semantic importance of
word-tokens in the target node. Extensive experiments on multiple benchmark datasets show that
DuConTE achieves state-of-the-art performance on the majority of them.
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Dataset description. We provide a detailed description of the datasets, including information on
their sources, in Appendix F. We describe the dataset splitting strategy in Appendix D.2.

Baseline description. We provide a detailed description of the baseline models we used and in-
clude links to their source code in Appendix C.

Implementation details. We provide a detailed description of the model hyperparameter settings
and training configurations in Appendix D to facilitate reproducibility.

Open access to code. The source code of DuConTE is included as a ZIP file in the supplementary
materials. We will release it publicly via an open-source repository upon publication.

B TWO-STAGE TRAINING PROCEDURE OF DUCONTE

We train DuConTE using a two-stage procedure: the word-token encoder is trained first to learn
high-quality representations, and the node encoder is then trained based on these representations.
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Stage 1: Word-Token Encoder Training. We first train the word-token encoder ML and the
aggregator f1, while the node encoder MN and the aggregator f2 are not involved in this stage.
The first-stage representation of the target node, z(i)

i , serves as input to a learnable linear classifier
W

(1)
cls . The objective is to minimize the standard cross-entropy loss over the training set Vtrain:

L1 = −
∑

i∈Vtrain

y⊤
i log(softmax(W

(1)
cls z

(i)
i )). (16)

Stage 2: Node Encoder Training. We then fix ML and f1, and train the node encoder MN and
the aggregator f2. The final node representation oi is fed to a new learnable classifier W(2)

cls for
prediction. The objective is to minimize the cross-entropy loss:

L2 = −
∑

i∈Vtrain

y⊤
i log(softmax(W

(2)
cls oi)). (17)

C BASELINE

Graph-Specific Models: We adopt two graph transformers: GraphFormers (Yang et al.,
2021)[Code] and NodeFormer (Wu et al., 2022)[Code]. We also adopt GraphSAGE (Hamil-
ton et al., 2017)[Code], a Graph Neural Network, which also serves as the GNN backbone for
other baseline models.

Pure LMs: We adopt four commonly used pre-trained language models: BERT (Devlin et al.,
2019)[Code], Sentence-BERT (Reimers & Gurevych, 2019)[Code], and two versions of
RoBERTa (Liu et al., 2019): RoBERTa-base[Code] and RoBERTa-large[Code].

Recent TAG Methods: GLEM (Zhao et al., 2022)[Code], is a framework that integrates lan-
guage models and GNNs during training using a variational EM approach. TAPE (He et al.,
2023)[Code], leverages large language models such as ChatGPT to generate pseudo labels and
explanations for textual nodes. These are then used to fine-tune pre-trained language models along-
side the original texts. SimTeG (Duan et al., 2023)[Code] uses a cascading structure specifically
designed for textual graphs. It employs a two-stage training paradigm: first, it fine-tunes language
models, and then it trains GNNs. ENGINE (Zhu et al., 2024)[Code] is an efficient fine-tuning and
inference framework for text-attributed graphs. It co-trains large language models and GNNs using a
ladder-side approach to optimize both memory and time efficiency. For inference, ENGINE utilizes
an early exit strategy to further accelerate the process. GraphBridge (Wang et al., 2024)[Code]
first encodes both local and global text information using a language model, by incorporating neigh-
boring nodes’ text. A GNN is then applied to further refine node representations.

D NODE CLASSIFICTION: IMPLEMENTATION AND EXPERIMENTAL DETAILS

D.1 COMPUTATIONAL RESOURCES

In our experiments, we use four NVIDIA GeForce RTX 3090 GPUs, each with 24 GB of VRAM.
The LM components are trained and run on these four GPUs, while the GNN module is executed on
a single GPU.

D.2 DATASET SPLIT

For Cora and CiteSeer, we use a random node split with 60% of nodes for training, 20% for vali-
dation, and 20% for testing. For WikiCS, ArXiv-2023, and OGBN-Products, we adopt the official
training, validation, and test splits (Mernyei & Cangea, 2007; He et al., 2023; Hu et al., 2020).

D.3 BASELINE MODEL DEPLOYMENT SETTINGS

Graph-Specific Models: For NodeFormer and GraphSAGE, we use the raw node features from
each dataset, constructed via one-hot encoding. For GraphFormers, we implement the model using
its official source code.
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Pure LMs: For BERT, Sentence-BERT, and RoBERTa-base, we perform full-parameter fine-
tuning using the raw texts of each node. For RoBERTa-large, we employ Low-Rank Adaptation
(LoRA) with a rank of 8.

Recent TAG Methods: We use RoBERTa-base as the language model backbone and a two-layer
GraphSAGE with hidden size 64 as the GNN backbone. This configuration is consistent with that
of DuConTE to ensure a fair comparison. We implement these models using their official source
code, and the training epochs as well as learning rates for both the LM and GNN components are
kept consistent with DuConTE.

D.4 IMPLEMENTATION DETAILS OF OUR PIPELINE INSTANCE

We provide a comprehensive overview of the configuration and training parameters adopted by the
pipeline instantiated in Section 5.3.

Upstream Preprocessing Configurations. We adopt 2-hop neighborhood sampling with a max-
imum of 39 neighbors per node. This means that for any node vi ∈ V , the sampled neighborhood
N (vi) satisfies |N (vi)| ≤ 39, and we denote S(i) = {vi} ∪ N (vi) with |S(i)| ≤ 40.

The text of each node is processed using a reduction module (Wang et al., 2024) to fit the input
length limit of the LM. This module, introduced in the GraphBridge framework, is a token selector
pre-trained on the training set that assigns importance scores to word tokens within each node’s text.
Given that the RoBERTa-base model has a maximum context length of 512 tokens, we enforce a
uniform token budget across all nodes in S(i). Specifically, let

B =

⌊
512

|S(i)|

⌋
− 1

be the per-node token budget (excluding the [SEP] token). For any node vj ∈ S(i) whose original
token sequence wj exceeds B tokens, we retain only the top-B most important tokens as ranked
by the reduction module, preserving their original order. The resulting truncated sequences are then
concatenated with [SEP] separators to form the unified input W(i).

Hyperparameter Settings of DuConTE. For the internal hyperparameters α and β of DuConTE,
we perform a grid search over the range [0, 1] with a step size of 0.1, selecting the best combination
based on performance on the validation set. The selected hyperparameter values for each dataset are
reported in Table 5.

Table 5: Hyperparameter settings of α and β in the experiments.
Hyperparameter Cora CiteSeer WikiCS ArXiv-2023 OGBN-Products Ele-Photo

α 0.7 0.9 0.9 0.6 0.8 0.6
β 0.7 0.8 0.8 0.9 0.9 0.7

Training Setup for DuConTE. DuConTE uses two pre-trained RoBERTa-base models for ML

and MN . ML has positional encoding enabled. MN takes H(i) as input directly, bypassing the
token embedding layer, with positional encoding kept on.

The detailed two-stage training procedure of DuConTE is described in Section B. In both Stage
1 and Stage 2, the learning rate is set to 5e−5, and the number of training epochs is specified in
Table 6.

Training Setup for the Downstream GNN. We adopt a two-layer GraphSAGE with a hidden
dimension of 64 as the GNN backbone in the downstream task. The model is trained using the final
node representations generated by DuConTE as input features. We employ a learning rate of 1e−2,
train for up to 500 epochs, and apply early stopping with a patience of 20 epochs based on validation
performance.
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Table 6: Training Epochs in Stage 1 and Stage 2
Stage Cora CiteSeer WikiCS ArXiv-2023 OGBN-Products Ele-Photo

Stage 1 8 8 16 8 8 8
Stage 2 8 8 16 8 8 8

E LINK PREDICTION: IMPLEMENTATION AND EXPERIMENTAL DETAILS

E.1 DATASET SPLIT

For Cora, CiteSeer, and ArXiv-2023, we randomly split edges into training, validation, and test sets
in a 6:2:2 ratio.

E.2 BASELINE MODEL DEPLOYMENT SETTINGS

GraphSAGE: We use a one-layer GraphSAGE with hidden dimension 16 and a two-layer MLP
link predictor.

Recent TAG Methods: We use RoBERTa-base as the language model backbone and a one-layer
GraphSAGE with hidden dimension 16 as the GNN backbone, paired with a two-layer MLP link
predictor. This configuration matches that of DuConTE to ensure a fair comparison. We implement
these models using their official source code, and the training epochs as well as learning rates for
both the LM and GNN components are kept consistent with DuConTE.

E.3 IMPLEMENTATION DETAILS OF OUR PIPELINE INSTANCE

We instantiate a text-attributed graph learning pipeline for link prediction, with DuConTE serving as
the text encoder. In the downstream phase, we use a one-layer GraphSAGE with hidden dimension
16 and a two-layer MLP link predictor.

Upstream Preprocessing Configurations. We use the same upstream preprocessing configura-
tion as in D.4.

Hyperparameter Settings of DuConTE. The values of the internal hyperparameters α and β are
set as in Table 5.

Training Setup for DuConTE. The training configuration of DuConTE follows that in D.4.The
detailed training procedure is described in E.4.

Training Setup for the Downstream GNN. We adopt a one-layer GraphSAGE with hidden di-
mension 16 as the downstream GNN, followed by a two-layer MLP link predictor, using the final
node representations from DuConTE as input features. The model is trained with a learning rate of
1e−2, up to 500 epochs, and early stopping (patience = 20) based on validation performance.

E.4 TWO-STAGE TRAINING PROCEDURE OF DUCONTE

We train DuConTE using a two-stage procedure tailored for link prediction. In both stages, link
scores are computed as the dot product of node representations, and the model is optimized using
binary cross-entropy loss on positive and negative edges.

Stage 1: Word-Token Encoder Training. We train the word-token encoder ML and the com-
poser f1, while MN and f2 remain frozen. For each training edge (i, j) ∈ Etrain, we compute the
dot-product score between first-stage representations:

s
(1)
ij = (z

(i)
i )⊤z

(j)
j .
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A corresponding negative edge (i, k) is sampled by replacing j with a uniformly random node k.
The loss is computed as:

L1 =
∑

(i,j)∈Etrain

[
ℓ(s

(1)
ij , 1) + ℓ(s

(1)
ik , 0)

]
, (18)

where ℓ(ŷ, y) = BCEWithLogits(ŷ, y).

Stage 2: Node Encoder Training. We freeze ML and f1, and train MN together with f2. The
final representations oi and oj are scored analogously:

s
(2)
ij = o⊤

i oj .

Using the same positive/negative edge sampling strategy, the second-stage loss is:

L2 =
∑

(i,j)∈Etrain

[
ℓ(s

(2)
ij , 1) + ℓ(s

(2)
ik , 0)

]
. (19)

F DATASET DESCRIPTIONS

The experiments are conducted on five benchmark text-attributed graph datasets, widely adopted in
graph representation learning. Below we provide a brief overview of each. For detailed statistics,
including the number of nodes, edges, classes, and average token count per node, please refer to
Table 7.

Cora (Sen et al., 2008) The Cora dataset contains 2,708 scientific publications divided into seven
classes: case-based reasoning, genetic algorithms, neural networks, probabilistic methods, rein-
forcement learning, rule learning, and theory. The papers form a citation network with 5,429 undi-
rected edges, where each node has at least one citation link.

CiteSeer (Giles et al., 1998) The CiteSeer dataset consists of 3,186 scientific documents cat-
egorized into six areas: Agents, Machine Learning, Information Retrieval, Databases, Hu-
man–Computer Interaction, and Artificial Intelligence. Each document is represented by its title
and abstract, and the task is to classify papers based on this text and the citation structure.

WikiCS (Mernyei & Cangea, 2007) WikiCS is a Wikipedia-based dataset for evaluating graph
neural networks. It includes 10 classes corresponding to computer science topics and exhibits high
connectivity. Node features are obtained from the text of the corresponding Wikipedia articles.

ArXiv-2023 (He et al., 2023) ArXiv-2023 is a directed citation network introduced in TAPE,
containing computer science papers from arXiv published in 2023 or later. Nodes represent papers,
and directed edges represent citations. The task is to classify each paper into one of 40 subject areas,
such as cs.AI, cs.LG, and cs.OS, using labels provided by authors and arXiv moderators.

OGBN-Products (Hu et al., 2020) OGBN-Products is a dataset of Amazon products with co-
purchase relations. The full version has over 2 million nodes and 61 million edges. The subset used
here, created via node sampling in TAPE (He et al., 2023), contains 54,000 nodes and 74,000 edges.
Each node corresponds to a product and is labeled with one of 47 top-level categories.

Ele-Photo (Yan et al., 2023) Ele-Photo is a text-attributed graph derived from the AmazonElec-
tronics dataset (Ni et al., 2019), where nodes represent electronics products and edges denote fre-
quent co-purchases or co-views. Each node is assigned a label from a three-level hierarchy of elec-
tronics categories, with the task formulated as 12-way classification. The textual attribute of each
node is constructed from the user review with the highest number of votes; if no such review exists,
a random review is selected.
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Table 7: Dataset statistics. Nodes, Edges, Classes and Avg.degrees mean the number of nodes,
edges, classes and average degrees for each dataset, respectively. Avg.tokens represents the average
number of tokens per node in each dataset when using the RoBERTa-base’s tokenizer.

Dataset Nodes Edges classes Avg.degrees Avg.tokens
Cora 2708 5492 7 3.90 194
CiteSeer 3186 4277 6 1.34 196
WikiCS 11701 215863 10 36.70 545
ArXiv-2023 46198 78543 40 3.90 194
OGBN-Products(subset) 54025 74420 47 2.68 163
Ele-Photo 48362 500928 12 18.07 185

G HOMOPHILY ANALYSIS

In this section, we analyze the homophily of the six datasets used in our experiments: Cora (Sen
et al., 2008), CiteSeer (Giles et al., 1998), WikiCS (Mernyei & Cangea, 2007), ArXiv-2023 (He
et al., 2023), OGBN-Products (subset) (Hu et al., 2020) and Ele-Photo (Yan et al., 2023). Specifi-
cally, we compute the label homophily ratio H , defined as:

H =
1

|E|
∑

(i,j)∈E

I(yi = yj), (20)

where E denotes the set of edges, yi is the class label of node i, and I(·) is the indicator function
that equals 1 if the condition is true and 0 otherwise. This metric measures the proportion of edges
connecting nodes with identical labels; a higher value indicates stronger homophily. The results are
summarized in Table 8.

Table 8: Label Homophily Ratios Across Datasets
Dataset Cora CiteSeer WikiCS ArXiv-2023 OGBN-Products (subset) Ele-Photo
Homophily (H) 0.8100 0.7451 0.6547 0.6465 0.7950 0.7351

According to the results, all datasets exhibit homophily ratios above 0.6, indicating a relatively high
level of homophily.

H ABLATION VARIANTS

In this section, we detail the design of each ablation variant used in our experiments.

NoDual It encodes semantic information only at the word-token granularity, achieved by setting
the hyperparameter α = 0.

NoMask-T It uses the vanilla self-attention mechanism in every attention layer of the word-token
encoder.

NoMask-D It uses the vanilla self-attention mechanism in every attention layer of the node en-
coder.

NoMask-Both It uses the vanilla self-attention mechanism in every attention layer of both en-
coders.

MeanPool It directly converts word-token embeddings into node representations using mean pool-
ing.

Center-Only Its node representation composer evaluates word-token importance only in the
center-node semantic context, with the hyperparameter β set to 1.

Neigh-Only Its node representation composer evaluates word-token importance only in the neigh-
borhood semantic context, with the hyperparameter β set to 0.
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UnifiedContext Its node representation composer evaluates word-token importance in a shared
context, without differentiating the contextual influence from the center-node and its neighborhood.
The unnormalized importance of token wiq is computed as:

µ′
q =

Li∑
p=1

a
(i)
i,p,q +

∑
vj∈N (i)

Lj∑
p=1

a
(i)
j,p,q, (21)

and the final importance score µq is obtained by applying softmax normalization over all word-
tokens in vi.

I COMPUTATIONAL OVERHEAD STATISTICS

We report the total training time (over 8 epochs) and single-pass inference time on the full dataset
for DuConTE and its ablation variant MeanPool across Cora, CiteSeer, and Ele-Photo. All timing
measurements were conducted on a system equipped with four NVIDIA GeForce RTX 4090 GPUs,
each with 24GB of memory.

Table 9: Total Training Time (seconds)
Method Cora(training) CiteSeer(training) Ele-Photo(training)
DuConTE 1054 434 5074
MeanPool 880 326 4278
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Table 10: Total Inference Time (seconds)
Method Cora(inference) CiteSeer(inference) Ele-Photo(inference)
DuConTE 185 62 796
MeanPool 163 49 663
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