DUCONTE: DUAL-GRANULARITY TEXT ENCODER WITH TOPOLOGY-CONSTRAINED ATTENTION FOR TEXT-ATTRIBUTED GRAPHS

Anonymous authorsPaper under double-blind review

000

001

002

003

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

030 031 032

033

035

037

038

040

041 042

043

044

046

047

048

051

052

ABSTRACT

Text-attributed graphs integrate semantic information of node texts with topological structure, offering significant value in various applications such as document classification and information extraction. Existing approaches typically encode textual content using language models (LMs), followed by graph neural networks (GNNs) to process structural information. However, during the LM-based text encoding phase, most methods not only perform semantic interaction solely at the word-token granularity, but also neglect the structural dependencies among texts from different nodes. In this work, we propose DuConTE, a dual-granularity text encoder with topology-constrained attention. The model employs a cascaded architecture of two pretrained LMs, encoding semantics first at the word-token granularity and then at the node granularity. During the self-attention computation in each LM, we dynamically adjust the attention mask matrix based on node connectivity, guiding the model to learn semantic correlations informed by the graph structure. Furthermore, when composing node representations from word-token embeddings, we separately evaluate the importance of tokens under the centernode context and the neighborhood context, enabling the capture of more contextually relevant semantic information. Extensive experiments on multiple benchmark datasets demonstrate that DuConTE achieves state-of-the-art performance on the majority of them.

1 Introduction

Text-attributed graphs (Yang et al., 2021; Seo et al., 2024) have emerged as an increasingly significant research domain, with substantial applications in real-world scenarios such as social media analysis (Seo et al., 2024), academic citation systems (Wang et al., 2025), and knowledge base construction (Zhang et al., 2024). In such graphs, each node is associated with a piece of textual content, resulting in richly structured data that encapsulates both semantic text information and topological structure. Learning high-quality representations that effectively capture both the textual and structural characteristics of nodes is crucial for downstream tasks such as node classification (Zhao et al., 2024).

Recently, a growing body of research (Chen et al., 2023; Chien et al., 2021; Zhu et al., 2024) has begun leveraging Transformer-based language models (LMs) to model textual information in text-attributed graphs, aiming to enhance graph neural networks (GNNs). Thanks to their strong pre-trained understanding of natural language, LMs can produce highly expressive representations of textual content. For example, GraphBridge(Wang et al., 2024) attempts to combine the text from the center-node and its neighbors into the LM, enabling the model to jointly encode the central text and its contextual information from neighboring nodes. Current approaches (Zhu et al., 2024; He et al., 2023; Jin et al., 2023) that jointly employ GNNs and LMs largely follow a common paradigm: the LM is responsible for encoding textual features, while the GNN focuses on capturing structural information.

However, existing approaches typically perform semantic interaction only at the word-token granularity when using LMs for text encoding, failing to capture meaningful node-granularity semantic interactions—where the textual content of different nodes is treated as holistic units and interacts

Figure 1: Overview of the text-attributed graph learning pipeline (top) and comparison between existing methods and the proposed DuConTE (bottom).

across the graph. Moreover, current methods either do not incorporate structural information into the LM at all, or the injected structural signals are insufficient to guide the encoding process effectively. Additionally, existing methods lack an effective mechanism for composing node representations from word-token embeddings.

To address these limitations, we propose **DuConTE**, a dual-granularity text encoder with topology-constrained attention for text-attributed graphs. As illustrated in the top panel of Figure 1, the text-attributed graph learning pipeline consists of three stages, with DuConTE acting as a plug-and-play text encoder module. It takes as input the text of each node and its sampled neighborhood structure (e.g., from random walks or k-hop sampling), obtained through upstream preprocessing, and outputs enriched node representations for downstream GNN models.

DuConTE adopts a **dual-granularity cascaded architecture**, in which two pretrained LMs sequentially encode textual semantics at the **word-token** and **node** granularities, respectively. This design aligns with the inherent multi-granular nature of text-attributed graphs, allowing for a more complete capture of textual semantics. During the encoding process, DuConTE employs a **topology-constrained attention mechanism** to leverage graph structural information for enhanced text encoding. This is achieved through a novel attention masking strategy, enabling pretrained LMs to better process graph-structured textual data without architectural modification. Furthermore, we design a **node representation composer** that assesses the importance of individual word tokens under both **center-node** and **neighborhood** semantic contexts. This enables the model to capture salient semantic information more effectively when composing node representations from word-token embeddings.

- We propose DuConTE, a dual-granularity text encoder with topology-constrained attention for text-attributed graphs. It leverages a dual-granularity cascaded architecture to model textual semantics at both the word-token granularity and node granularity, capturing a comprehensive, multi-scale understanding of the text-attributed graph.
- We introduce a topology-constrained attention mechanism that leverages a novel attention
 masking strategy to effectively incorporate structural guidance into the encoding process, without modifying the LM architecture.
- We design a node representation composer that distinctly models token importance under center-node and neighborhood contexts, enabling effective fusion of word-token embeddings into comprehensive node representations.

2 RELATED WORK

2.1 Text-attributed graph learning

Learning on text-attributed graphs has evolved from employing simple text features like Bag-of-Words (Zhang et al., 2010) to sophisticated methods centered on language models (LMs) (Chen et al., 2023; Chien et al., 2021; Zhu et al., 2024). These modern approaches generally follow two main paradigms. The first relies on a single, powerful LM to jointly process text and structure. For instance, LLaGA (Chen et al., 2024) injects structural information by mapping it into the LM's token space and relies solely on the LM to generate predictions. While conceptually unified, this paradigm is often computationally demanding, suffers from poor scalability, and achieves limited effectiveness in leveraging structural information. The second, more common paradigm, employs a hybrid LM-GNN pipeline where an LM first serves as a text encoder, and a subsequent GNN performs the downstream task using the resulting node embeddings. Representative works like GraphBridge (Wang et al., 2024) enrich node text with neighbor semantics before encoding, whereas Engine (Zhu et al., 2024) uses a GNN to process features from multiple LM layers. A critical limitation across most hybrid models is that the LM encoding process remains largely unaware of the graph topology. This decoupled approach hinders the deep fusion of structural and semantic information, a key challenge we address in this work.

2.2 TRANSFORMERS IN GRAPH REPRESENTATION LEARNING

In recent years, numerous studies have leveraged Transformers to process graph-structured data (Shehzad et al., 2024). For instance, Graphormer (Ying et al., 2021) enhances the Transformer's understanding of graph structures by introducing spatial encoding and degree encoding. Another work (Chen et al., 2025; Yeh et al., 2023), Revisiting, generates serialized representations of graphs through random walks to exploit the self-attention mechanism of Transformers for modeling purposes. Edge-augmented explicitly models edge features to enhance the Transformer's sensitivity towards different edge types. Masked Graph Modeling employs a masking strategy to learn structural information by predicting masked node or edge features. However, existing approaches aimed at augmenting the structural awareness of Transformers, particularly in the domain of text-graphs, have not identified efficient and accurate methods for injecting structural information. Furthermore, these approaches have yet to address the challenge of integrating structural information into pretrained Transformer models tailored for specific tasks, such as text, while preserving their original expressive power. This paper aims to bridge this gap by proposing an innovative method that injects structure signals—compatible with the intrinsic mechanisms of Transformers—into pre-trained models, thereby advancing the state-of-the-art in graph representation learning for text-rich graphs.

3 Preliminaries

3.1 PROBLEM FORMULATION

Definition 1. Text-Attributed Graph. A text-attributed graph (TAG) is formally defined as a triplet $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{T})$. Here, $\mathcal{V} = \{v_1, v_2, \dots, v_N\}$ is the set of N nodes, and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges describing the graph's topological structure, which can be represented by an adjacency matrix $\mathbf{A} \in \{0,1\}^{N \times N}$. Each node $v_i \in \mathcal{V}$ is associated with a text description \mathbf{w}_i , and $\mathcal{T} = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_N\}$ denotes the collection of all node-associated text descriptions, where each $\mathbf{w}_i = (w_{i1}, w_{i2}, \dots, w_{iL_i})$ is a sequence of word tokens of length L_i .

Definition 2. Node Classification in Text-Attributed Graphs. Given a text-attributed graph \mathcal{G} and a set of K predefined classes $\mathcal{C} = \{c_1, c_2, \dots, c_K\}$, the task of node classification aims to learn a mapping function $f: \mathcal{V} \to \mathcal{C}$. The objective of this function is to predict the correct label $y_i \in \mathcal{C}$ for every node $v_i \in \mathcal{V}$ by jointly considering the graph structure \mathcal{E} and the semantic information \mathcal{T} .

3.2 Transformer and Self-Attention with Masking

The Transformer architecture utilizes self-attention to capture dependencies within sequences. Given input $X \in \mathbb{R}^{n \times d}$, query, key, and value projections are computed as $Q = XW_Q$,

 $K = XW_K$, $V = XW_V$. The process is:

$$\operatorname{Attention}(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = \operatorname{softmax}\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\top}}{\sqrt{d_k}} + \boldsymbol{M}\right)\boldsymbol{V}, \tag{1}$$

where M is derived from a binary mask matrix $M_{mask} \in \{0,1\}^{n \times n}$: valid attention positions are marked as 1 in M_{mask} , and their corresponding entries in M are set to 0; invalid positions are marked as 0 in M_{mask} , and their entries in M are set to $-\infty$. This mechanism enables the model to selectively attend to semantic interactions between specific tokens, a property that we leverage to design our topology-constrained attention mechanism.

4 METHOD

In this section, we propose **DuConTE** illustrated in Figure 2, a dual-granularity text encoder with topology-constrained attention. It employs two language models as a word-token encoder \mathcal{M}_L and a node encoder \mathcal{M}_N respectively, both incorporating topology-constrained attention mechanisms. Given a target node v_i and its neighborhood $\mathcal{N}(v_i)$, DuConTE first concatenates the textual content of v_i and all nodes in $\mathcal{N}(v_i)$, and applies \mathcal{M}_L to this combined sequence to generate word-token representations. A node representation composer then aggregates these into first-stage node representations. Subsequently, \mathcal{M}_N encodes the sequence of first-stage node representations to produce a second-stage node representation for v_i . The final representation o_i is obtained through a weighted fusion of the node's first-stage and second-stage representations. The training procedure of DuConTE is detailed in Appendix B.

Figure 2: Overview of DuConTE with the dual-granularity cascaded architecture (middle), the topology-constrained attention mechanism (left), and the target node representation construction process in the node representation composer (right). The node representation composer is denoted as **Composer** in the figure.

4.1 DUAL-GRANULARITY SEMANTIC ENCODING

To capture semantics at the word-token and node granularities, which naturally exist in text graphs, we propose a dual-granularity cascaded architecture, illustrated in the middle of Figure 2. This architecture employs the word-token encoder \mathcal{M}_L for the word-token granularity and the node encoder \mathcal{M}_N for the node granularity, in a sequential manner.

Word-Token Granularity Encoding. Given a target node $v_i \in \mathcal{V}$ and its neighborhood $\mathcal{N}(v_i) \subseteq \mathcal{V}$, let $S^{(i)} = \{v_i\} \cup \mathcal{N}(v_i)$ denote the set consisting of the target node and its neighbors. For each

node $v_j \in S^{(i)}$, we obtain its associated word-token sequence $\mathbf{w}_j = (w_{j1}, \dots, w_{jL_j}) \in \mathcal{T}$. These sequences are concatenated with [SEP] tokens inserted between adjacent nodes to form a unified neighborhood input:

$$\mathbf{W}^{(i)} = [\mathbf{w}_{i_1}; [SEP]; \dots; \mathbf{w}_{i_k}; [SEP]; \mathbf{w}_i] \in \mathbb{R}^{L \times d_L}, \tag{2}$$

where $v_{j_1}, \ldots, v_{j_k} \in \mathcal{N}(v_i)$.

The word-token encoder \mathcal{M}_L (a pre-trained LM) processes $\mathbf{W}^{(i)}$ to perform semantic interaction at the word-token granularity, producing word-token embeddings $\mathbf{H}^{(i)} \in \mathbb{R}^{L \times d_L}$:

$$H^{(i)} = \mathcal{M}_L(\mathbf{W}^{(i)}) = [h_{i_1}^{(i)}; h_{\text{SEP}_1}^{(i)}; \dots; h_i^{(i)}],$$
 (3)

where $h_j^{(i)} \in \mathbb{R}^{L_j \times d_L}$ is the embedding matrix for the tokens of node v_j after such interaction, $h_{\mathrm{SEP}_k}^{(i)}$ denotes the embedding of the k-th [SEP] token, and d_L is the hidden dimension of \mathcal{M}_L .

To distill these fine-grained word-token features into node semantics, we employ a node representation composer f, detailed in Section 4.3. This function maps $\mathbf{H}^{(i)}$ to a sequence of first-stage node representations $\mathbf{Z}^{(i)}$:

$$\boldsymbol{Z}^{(i)} = f\left(\boldsymbol{H}^{(i)}\right),\tag{4}$$

$$Z^{(i)} = [z_{j_1}^{(i)}; \dots; z_{j_k}^{(i)}; z_i^{(i)}],$$
 (5)

where each $z_i^{(i)} \in \mathbb{R}^{d_L}$ denotes the first-stage node representation of v_j .

Node Granularity Encoding. To further model semantic interactions at the node granularity, we feed $Z^{(i)}$ into node encoder \mathcal{M}_N (another pre-trained LM), to produce a sequence of second-stage node representations $E^{(i)}$:

$$\boldsymbol{E}^{(i)} = \mathcal{M}_N(\boldsymbol{Z}^{(i)}) \in \mathbb{R}^{(k+1) \times d_L}, \tag{6}$$

$$\boldsymbol{E}^{(i)} = [\boldsymbol{e}_{j_1}^{(i)}; \dots; \boldsymbol{e}_{j_k}^{(i)}; \boldsymbol{e}_i^{(i)}], \tag{7}$$

where each $oldsymbol{e}_{j}^{(i)} \in \mathbb{R}^{d_L}$ denotes the second-stage node representation of v_j .

Note that for $v_j \in \mathcal{N}(v_i)$, $\boldsymbol{z}_j^{(i)}$ and $\boldsymbol{e}_j^{(i)}$ are computed within the context of target node v_i , and thus represents a context-dependent, neighbor-oriented encoding—distinct from the representation obtained when v_j is treated as a target node.

Dual-Granularity Representation Fusion. To integrate complementary semantic information from both granularities, we compute the final representation of the target node v_i through a weighted combination of its first-stage and second-stage node representations:

$$o_i = \alpha \cdot \mathbf{z}_i^{(i)} + (1 - \alpha) \cdot \mathbf{e}_i^{(i)}, \tag{8}$$

where $\alpha \in [0, 1]$ is a fixed fusion coefficient.

4.2 TOPOLOGY-CONSTRAINED ATTENTION MECHANISM

To endow our dual-granularity encoders with topological awareness, we transform their standard self-attention mechanism into a topology-constrained variant, as illustrated on the left in Figure 2. This is achieved through a **novel attention masking strategy** that constructs masks based on node connectivity, applied at every layer and attention head to restrict attention exclusively between structurally connected word-tokens or nodes. The approach seamlessly integrates graph information without altering the core Transformer architecture.

Word-Token Mask Construction. For the word-token encoder \mathcal{M}_L processing sequence $\mathbf{W}^{(i)} \in \mathbb{R}^{L \times d_L}$, we allow attention only between pairs of word-tokens within the same node or in connected nodes. Additionally, attention between [SEP] tokens and any word-token is always allowed to preserve a basic awareness of inter-node boundaries at the word-token granularity.

 Accordingly, the attention mask matrix M_{mask}^{word} is constructed as follows: for any two tokens at positions p and q in $\mathbf{W}^{(i)}$, if neither token is a <code>[SEP]</code> token, let v(p) and v(q) denote their associated nodes in the graph. The entry $M_{p,q}^{word} \in \{0,1\}^{L \times L}$ is defined as:

$$\boldsymbol{M}_{p,q}^{\text{word}} = \begin{cases} 1 & \text{if the token at } p \text{ or } q \text{ is [SEP]}, \\ 1 & \text{if } v(p) = v(q) \text{ or } (v(p), v(q)) \in \mathcal{E}, \\ 0 & \text{otherwise.} \end{cases}$$
(9)

Node Mask Construction. For the node encoder \mathcal{M}_N processing the sequence $\mathbf{Z}^{(i)} \in \mathbb{R}^{(k+1)\times d_L}$, we allow attention only between node representations that correspond to the same node or to connected nodes in the graph.

Accordingly, the attention mask matrix $\boldsymbol{M}_{mask}^{node}$ is constructed as follows: for any two positions m and n in $\boldsymbol{Z}^{(i)}$, let v(m) and v(n) denote the corresponding nodes in the graph. The entry $\boldsymbol{M}_{m,n}^{\text{node}} \in \{0,1\}^{(k+1)\times(k+1)}$ is defined as:

$$\boldsymbol{M}_{m,n}^{\text{node}} = \begin{cases} 1 & \text{if } v(m) = v(n) \text{ or } (v(m), v(n)) \in \mathcal{E}, \\ 0 & \text{otherwise.} \end{cases}$$
 (10)

4.3 Node Representation Composer

To effectively fuse the word-token embeddings $\boldsymbol{H}^{(i)}$ into high-quality first-stage node representations, we design a Node Representation Composer f. The composer employs two distinct modules: a more sophisticated module f_1 to compute the representation of the target node v_i , and a lightweight module f_2 to independently encode each neighbor node $v_j \in \mathcal{N}(i)$. This asymmetric design enables the target node to capture rich contextual information while ensuring efficient and undisturbed representation learning for neighbors.

Target Node Representation Construction. To capture the most salient semantics of the target node v_i under both center-node and neighborhood context—and to explicitly balance their relative influence—we design f_1 to assess word-token significance from dual perspectives, as shown on the right in Figure 2. Specifically, f_1 employs a specialized attention mechanism to compute the importance of each word-token in the target node's text \mathbf{w}_i .

With learnable projection matrices $W_Q, W_K \in \mathbb{R}^{d_L \times d_L}$, we compute the queries $Q^{(i)}$ as the projected embeddings of all word-tokens in the neighborhood, and the keys $K^{(i)}$ as the projected embeddings of the target node's word-tokens:

$$\mathbf{Q}^{(i)} = \mathbf{H}^{(i)} \mathbf{W}_Q \in \mathbb{R}^{L \times d_L}, \tag{11}$$

$$\boldsymbol{K}^{(i)} = \boldsymbol{h}_i^{(i)} \boldsymbol{W}_K \in \mathbb{R}^{L_i \times d_L}. \tag{12}$$

As defined in 3.1, w_{jp} is the p-th word-token in node v_j . The attention weight $a_{j,p,q}^{(i)}$ from w_{jp} to w_{iq} is computed using the scaled dot-product attention mechanism, with softmax normalization over all queries attending to w_{iq} .

The total importance of w_{iq} is decomposed into two components:

- Importance under center-node context: $\alpha_q^{\rm cen} = \sum_{p=1}^{L_i} a_{i,p,q}^{(i)};$
- Importance under neighborhood context: $\alpha_q^{\text{neigh}} = \sum_{v_j \in \mathcal{N}(i)} \sum_{p=1}^{L_j} a_{j,p,q}^{(i)}$

Each component is independently normalized via softmax to obtain μ_q^{cen} and μ_q^{neigh} , which are fused into the final importance score μ_q using a fixed coefficient $\beta \in [0, 1]$:

$$\mu_q = \beta \cdot \mu_q^{\text{cen}} + (1 - \beta) \cdot \mu_q^{\text{neigh}}.$$
 (13)

The final representation $z_i^{(i)}$ is a weighted sum over the target node's word-token embeddings:

$$\boldsymbol{z}_{i}^{(i)} = \sum_{q=1}^{L_{i}} \mu_{q} \boldsymbol{h}_{i,q}^{(i)}.$$
 (14)

Neighbor Node Representation Construction. To enable efficient encoding while preserving each neighbor's intrinsic semantic content, we design a lightweight module f_2 that employs local attention pooling. Given a neighbor node $v_j \in \mathcal{N}(i)$, an importance score $s_{j,p}$ is computed for each word-token embedding $\boldsymbol{h}_{j,p}^{(i)}$ via a learnable projection vector $\boldsymbol{w}_a \in \mathbb{R}^{d_L}$. After softmax normalization to obtain weights $\pi_{j,p}$, the first-stage representation of v_j is computed as a weighted sum:

$$\boldsymbol{z}_{j}^{(i)} = \sum_{p=1}^{L_{j}} \pi_{j,p} \boldsymbol{h}_{j,p}^{(i)}.$$
 (15)

5 EXPERIMENTS

5.1 Datasets

In this paper, we evaluate DuConTE for node classification on five widely-used datasets: Cora (Sen et al., 2008), CiteSeer (Giles et al., 1998), WikiCS (Mernyei & Cangea, 2007), ArXiv-2023 (He et al., 2023), and OGBN-Products (Hu et al., 2020). For detailed descriptions of each dataset, please refer to Appendix E.

5.2 Baselines

To evaluate the effectiveness of our proposed model, we employ several baseline models for comparison. For a detailed description of all baseline models, please refer to Appendix C. These baselines can be categorized into three main types:

- **Graph-Specific Models:** Models specifically designed and trained from scratch for graph-structured data, *e.g.*, NodeFormer (Wu et al., 2022), GraphFormers (Yang et al., 2021).
- **Pure LMs:** Language models that perform inference solely based on node texts while completely ignoring the graph structure, *e.g.*, BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019).
- **Recent TAG Methods:** Leading approaches that have demonstrated strong performance on text-attributed graph benchmarks, *e.g.*, GraphBridge (Wang et al., 2024), ENGINE (Zhu et al., 2024).

Table 1: **Experiment results**: Mean accuracy and standard deviation over 10 runs with different random seeds. **Bold** indicates the best performance, <u>underlined</u> denotes the second-best, and '–' signifies that the method is not applicable to the dataset."DuConTE" refers to the pipeline instance using DuConTE as the text encoder, as described in Section 5.3.

Methods	Cora	CiteSeer	WikiCS	ArXiv-2023	OGBN-Products
GraphFormers	80.29 ± 1.74	71.84 ± 1.23	71.37 ± 0.35	63.14 ± 0.59	68.09 ± 0.57
NodeFormer	88.24 ± 0.34	74.96 ± 0.61	75.56 ± 0.51	67.68 ± 0.47	67.37 ± 0.83
GraphSAGE	87.42 ± 1.31	72.26 ± 1.21	76.91 ± 0.77	68.56 ± 0.53	70.56 ± 0.27
BERT	79.63 ± 1.81	71.27 ± 1.11	77.96 ± 0.57	76.84 ± 0.09	76.45 ± 0.16
Sentence-BERT	78.94 ± 1.43	72.93 ± 1.84	77.84 ± 0.06	77.41 ± 0.55	74.98 ± 0.15
RoBERTa-base	78.37 ± 1.29	71.76 ± 1.23	76.86 ± 0.52	77.24 ± 0.19	76.03 ± 0.12
RoBERTa-large	79.81 ± 1.37	72.31 ± 1.74	77.64 ± 0.95	77.81 ± 0.43	76.24 ± 0.35
GLEM	87.59 ± 0.17	77.42 ± 0.68	78.23 ± 0.56	79.23 ± 0.17	76.04 ± 0.34
TAPE	87.48 ± 0.76	_	_	80.04 ± 0.31	79.23 ± 0.13
SimTeG	86.74 ± 1.71	78.51 ± 1.04	79.73 ± 0.84	79.45 ± 0.53	76.43 ± 0.49
ENGINE	87.61 ± 1.34	76.84 ± 1.41	77.92 ± 0.89	78.57 ± 0.19	77.68 ± 1.31
GraphBridge	93.60 ± 0.98	88.62 ± 0.76	80.47 ± 0.26	86.43 ± 0.29	77.92 ± 0.27
DuConTE	95.24 ± 0.79	$\overline{89.45\pm1.22}$	81.09 ± 0.43	90.31 ± 0.35	78.80 ± 0.10

5.3 EXPERIMENTAL SETTINGS

Evaluation Task and Metric. In this study, we focus on node classification as the downstream task for text-attributed graphs, and adopt classification accuracy as the evaluation metric.

Implementation Details. We instantiate a text-attributed graph learning pipeline, as illustrated in the top panel of Figure 1. DuConTE serves as the text encoder in this pipeline, implemented with

two RoBERTa-base models serving as the word-token encoder and node encoder respectively. In the downstream phase, a two-layer GraphSAGE with a hidden dimension of 64 is employed as the GNN component. All methods are evaluated under a unified experimental protocol to ensure a fair comparison. Detailed configurations for model hyperparameters, upstream preprocessing, implementation settings of baseline methods, and training procedures are provided in Appendix D.

5.4 PERFORMANCE COMPARISON AND DISCUSSIONS

We compare the performance of various models on text-attributed graph node classification, with results reported in Table 1. DuConTE achieves state-of-the-art performance on most datasets, outperforming the second-best method by 2.7% on ArXiv-2023 and 1.6% on Cora. The results demonstrate DuConTE's ability to produce high-quality, semantically rich node representations that effectively support downstream GNN models.

6 Analysis

6.1 ABLATION STUDY

We conduct ablation studies to evaluate the three key innovations in DuConTE. The variants are defined in Appendix G, including **NoDual**, **NoMask-T/D/Both**, and **Center-Only/Neigh-Only/UnifiedContext**. All variants are evaluated under the same experimental setup.

As shown in Table 2, DuConTE outperforms all variants, confirming the effectiveness of its three key designs: (1) DuConTE surpasses **NoDual** by +0.8% on Cora and OGBN-Products, verifying that dual-granularity encoding aligns with the inherent semantic granularity of text-structured graphs and thus better captures rich semantic information. (2) Performance drops in **NoMask-T/D/Both** confirm that topology-constrained attention effectively injects structural information at both word-token and node granularities; notably, **NoMask-D** consistently outperforms **NoMask-T**, suggesting that structural information is critical even at the finest semantic granularity. (3) Gains over **Center-Only**, **Neigh-Only**, and **UnifiedContext** demonstrate that both center-node and neighborhood contexts are important for assessing word-token importance, and explicitly differentiating their distinct influences leads to more accurate semantic weighting.

Table 2: Ablation results on Cora, CiteSeer, and OGBN-Products

Methods	Cora	CiteSeer	OGBN-Products
NoDual	94.46 ± 0.76	89.22 ± 1.34	77.98 ± 0.38
NoMask-T	94.23 ± 0.76	88.84 ± 1.28	78.19 ± 0.13
NoMask-D	94.59 ± 0.58	88.86 ± 1.27	78.52 ± 0.15
NoMask-Both	94.10 ± 0.85	89.04 ± 0.99	78.40 ± 0.17
Center-Only	95.13 ± 0.80	88.46 ± 1.20	78.17 ± 0.18
Neigh-Only	95.09 ± 0.74	88.71 ± 1.40	78.36 ± 0.15
UnifiedContext	95.09 ± 0.86	88.98 ± 1.10	78.56 ± 0.23
DuConTE	95.24 ± 0.79	89.45 ± 1.22	78.80 ± 0.10

Figure 3: Sensitive analysis of the fusion coefficient α

Figure 4: Sensitive analysis of the fusion coefficient β .

6.2 SENSITIVITY ANALYSIS

We analyze the sensitivity of DuConTE to the fusion coefficients α and β over the range [0,1]. The performance trends are shown in figure 3 and figure 4. Across all experiments, the performance variation remains within 1%, demonstrating the model's robustness to these hyperparameters.

For α , which controls the fusion of dual-granularity semantic representations, the optimal performance on Cora and CiteSeer falls within the range [0.7,0.9]. This indicates a clear fusion pattern: word-token granularity semantics provide stable and reliable information, while node granularity semantics contribute complementary yet essential signals—consistent with their role as more abstract, high-level features.

For β , which balances the influence of center-node and neighborhood contexts in word-token importance assessment, the performance trend varies across datasets, indicating that the relative importance of these two contexts is dataset-dependent. On Cora and CiteSeer, strong performance is observed within [0.4, 0.7] and [0.2, 0.8], respectively, confirming that both contexts contribute meaningfully. Notably, the optimal values consistently fall within [0.6, 0.8], suggesting that the center-node context exerts a stronger influence—aligning with the intuition that a token's relevance is primarily shaped by the target node itself.

6.3 WHY TOPOLOGY-CONSTRAINED ATTENTION WORKS: A HOMOPHILY PERSPECTIVE

In this subsection, we analyze the effectiveness of topology-constrained attention from the perspective of the homophily assumption, which posits that connected nodes in a graph are more likely to share similar semantic properties. To the best of our knowledge, this assumption is well-supported by most widely used text-attributed graph benchmarks, where adjacent nodes are more likely to belong to the same class. This is further supported by the homophily statistics reported in Appendix F.

In the topology-constrained attention mechanism, the masks M_{mask}^{token} and M_{mask}^{node} are injected into the attention layers of the word-token encoder and the node encoder, respectively. As a result, cross-node attention interactions are constrained to occur between semantic information from connected nodes at both granularities. Under the homophily assumption, such information is more likely to be semantically related, thereby enabling mutually complementary interactions. This allows the model to effectively leverage the graph structure to learn higher-quality representations.

7 Conclusion

In this paper, we introduce **DuConTE**, a dual-granularity text encoder with topology-constrained attention for text-attributed graphs. DuConTE encodes node semantics at both word-token and node granularity to capture the inherent dual-granularity semantic structure of text-attributed graphs. Our topology-constrained attention mechanism introduces a novel attention masking strategy, offering an effective and architecture-preserving approach to adapt Transformers to graph-structured data. In the node representation composer, the contexts of the center node and its neighborhood are separately considered to more effectively assess the semantic importance of word-tokens in the target node. Extensive experiments on multiple benchmark datasets show that DuConTE achieves state-of-theart performance on the majority of them.

REFERENCES

- Dexiong Chen, Till Hendrik Schulz, and Karsten M. Borgwardt. Learning long range dependencies on graphs via random walks. In The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.
- Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language and graph assistant. arXiv preprint arXiv:2402.08170, 2024.
- Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang Tang. Label-free node classification on graphs with large language models (llms). <u>arXiv preprint</u> arXiv:2310.04668, 2023.
 - Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, and Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighborhood prediction. arXiv preprint arXiv:2111.00064, 2021.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.
 - Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan, Wei Tsang Ooi, Qizhe Xie, and Junxian He. Simteg: A frustratingly simple approach improves textual graph learning. <u>arXiv preprint</u> arXiv:2308.02565, 2023.
 - C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing system. In Proceedings of the third ACM conference on Digital libraries, pp. 89–98, 1998.
 - William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1024–1034, 2017.
 - Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Harnessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph representation learning. arXiv preprint arXiv:2305.19523, 2023.
 - Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. <u>Advances in neural information processing systems</u>, 33:22118–22133, 2020.
 - Bowen Jin, Yu Zhang, Qi Zhu, and Jiawei Han. Heterformer: Transformer-based deep node representation learning on heterogeneous text-rich networks. In Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (eds.), Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023, pp. 1020–1031. ACM, 2023.
 - Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.
 - Peter Mernyei and C Wiki-CS Cangea. A wikipedia-based benchmark for graph neural networks. arxiv 2020. arXiv preprint arXiv:2007.02901, 2007.
- Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.
 - Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.
 - Hyunjin Seo, Taewon Kim, June Yong Yang, and Eunho Yang. Unleashing the potential of text-attributed graphs: Automatic relation decomposition via large language models. <u>CoRR</u>, abs/2405.18581, 2024.

- Ahsan Shehzad, Feng Xia, Shagufta Abid, Ciyuan Peng, Shuo Yu, Dongyu Zhang, and Karin Verspoor. Graph transformers: A survey. CoRR, abs/2407.09777, 2024.
 - Yaoke Wang, Yun Zhu, Wenqiao Zhang, Yueting Zhuang, Liyunfei Liyunfei, and Siliang Tang. Bridging local details and global context in text-attributed graphs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024, pp. 14830–14841. Association for Computational Linguistics, 2024.
 - Zehong Wang, Sidney Liu, Zheyuan Zhang, Tianyi Ma, Chuxu Zhang, and Yanfang Ye. Can Ilms convert graphs to text-attributed graphs? In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2025 Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 May 4, 2025, pp. 1412–1432. Association for Computational Linguistics, 2025.
 - Qitian Wu, Wentao Zhao, Zenan Li, David P. Wipf, and Junchi Yan. Nodeformer: A scalable graph structure learning transformer for node classification. In <u>NeurIPS 2022</u>, New Orleans, LA, USA, November 28 December 9, 2022, 2022.
 - Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh, Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation learning on textual graph. In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), <u>Advances in Neural Information Processing Systems 34</u>: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 28798–28810, 2021.
 - Pei-Kai Yeh, Hsi-Wen Chen, and Ming-Syan Chen. Random walk conformer: Learning graph representation from long and short range. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.), Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pp. 10936–10944. AAAI Press, 2023.
 - Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation? In Marc'Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 28877–28888, 2021.
 - Delvin Ce Zhang, Menglin Yang, Rex Ying, and Hady W. Lauw. Text-attributed graph representation learning: Methods, applications, and challenges. In Tat-Seng Chua, Chong-Wah Ngo, Roy Ka-Wei Lee, Ravi Kumar, and Hady W. Lauw (eds.), Companion Proceedings of the ACM on Web Conference 2024, WWW 2024, Singapore, Singapore, May 13-17, 2024, pp. 1298–1301. ACM, 2024.
 - Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a statistical framework. Int. J. Mach. Learn. Cybern., 1(1-4):43–52, 2010.
 - Huanjing Zhao, Beining Yang, Yukuo Cen, Junyu Ren, Chenhui Zhang, Yuxiao Dong, Evgeny Kharlamov, Shu Zhao, and Jie Tang. Pre-training and prompting for few-shot node classification on text-attributed graphs. In Ricardo Baeza-Yates and Francesco Bonchi (eds.), Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024, Barcelona, Spain, August 25-29, 2024, pp. 4467–4478. ACM, 2024.
- Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learning on large-scale text-attributed graphs via variational inference. <u>arXiv preprint arXiv:2210.14709</u>, 2022.
 - Yun Zhu, Yaoke Wang, Haizhou Shi, and Siliang Tang. Efficient tuning and inference for large language models on textual graphs. In Proceedings of the Thirty-Third International Joint Conference

on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024, pp. 5734–5742. ijcai.org, 2024.

AI USE DISCLOSURE

The authors used ChatGPT (OpenAI, 2025) solely for English grammar and punctuation correction. No scientific content was generated or modified by the AI.

A REPRODUCIBILITY STATEMENT

Dataset description. We provide a detailed description of the datasets, including information on their sources, in Appendix E. We describe the dataset splitting strategy in Appendix D.2.

Baseline description. We provide a detailed description of the baseline models we used and include links to their source code in Appendix C.

Implementation details. We provide a detailed description of the model hyperparameter settings and training configurations in Appendix D to facilitate reproducibility.

Open access to code. The source code of DuConTE is included as a ZIP file in the supplementary materials. We will release it publicly via an open-source repository upon publication.

B Two-Stage Training Procedure of DuConTE

We train DuConTE using a two-stage procedure: the word-token encoder is trained first to learn high-quality representations, and the node encoder is then trained based on these representations.

Stage 1: Word-Token Encoder Training. We first train the word-token encoder \mathcal{M}_L and the aggregator f_1 , while the node encoder \mathcal{M}_N and the aggregator f_2 are not involved in this stage. The first-stage representation of the target node, $\mathbf{z}_i^{(i)}$, serves as input to a learnable linear classifier $\mathbf{W}_{\text{cls}}^{(1)}$. The objective is to minimize the standard cross-entropy loss over the training set $\mathcal{V}_{\text{train}}$:

$$\mathcal{L}_{1} = -\sum_{i \in \mathcal{V}_{\text{train}}} \boldsymbol{y}_{i}^{\top} \log(\operatorname{softmax}(\mathbf{W}_{\text{cls}}^{(1)} \boldsymbol{z}_{i}^{(i)})). \tag{16}$$

Stage 2: Node Encoder Training. We then fix \mathcal{M}_L and f_1 , and train the node encoder \mathcal{M}_N and the aggregator f_2 . The final node representation o_i is fed to a new learnable classifier $\mathbf{W}_{\mathrm{cls}}^{(2)}$ for prediction. The objective is to minimize the cross-entropy loss:

$$\mathcal{L}_2 = -\sum_{i \in \mathcal{V}_{\text{train}}} \boldsymbol{y}_i^{\top} \log(\operatorname{softmax}(\mathbf{W}_{\text{cls}}^{(2)} \boldsymbol{o}_i)). \tag{17}$$

C BASELINE

Graph-Specific Models: We adopt two graph transformers: GraphFormers (Yang et al., 2021) [Code] and NodeFormer (Wu et al., 2022) [Code]. We also adopt GraphSAGE (Hamilton et al., 2017) [Code], a Graph Neural Network, which also serves as the GNN backbone for other baseline models.

Pure LMs: We adopt four commonly used pre-trained language models: BERT (Devlin et al., 2019) [Code], Sentence-BERT (Reimers & Gurevych, 2019) [Code], and two versions of RoBERTa (Liu et al., 2019): RoBERTa-base [Code] and RoBERTa-large [Code].

Recent TAG Methods: GLEM (Zhao et al., 2022) [Code], is a framework that integrates language models and GNNs during training using a variational EM approach. TAPE (He et al., 2023) [Code], leverages large language models such as ChatGPT to generate pseudo labels and explanations for textual nodes. These are then used to fine-tune pre-trained language models alongside the original texts. SimTeG (Duan et al., 2023) [Code] uses a cascading structure specifically designed for textual graphs. It employs a two-stage training paradigm: first, it fine-tunes language models, and then it trains GNNs. ENGINE (Zhu et al., 2024) [Code] is an efficient fine-tuning and inference framework for text-attributed graphs. It co-trains large language models and GNNs using a ladder-side approach to optimize both memory and time efficiency. For inference, ENGINE utilizes an early exit strategy to further accelerate the process. GraphBridge (Wang et al., 2024) [Code] first encodes both local and global text information using a language model, by incorporating neighboring nodes' text. A GNN is then applied to further refine node representations.

D IMPLEMENTATION AND EXPERIMENTAL DETAILS

D.1 COMPUTATIONAL RESOURCES

In our experiments, we use four NVIDIA GeForce RTX 3090 GPUs, each with 24 GB of VRAM. The LM components are trained and run on these four GPUs, while the GNN module is executed on a single GPU.

D.2 DATASET SPLIT

For Cora and CiteSeer, we use a random node split with 60% of nodes for training, 20% for validation, and 20% for testing. For WikiCS, ArXiv-2023, and OGBN-Products, we adopt the official training, validation, and test splits (Mernyei & Cangea, 2007; He et al., 2023; Hu et al., 2020).

D.3 BASELINE MODEL DEPLOYMENT SETTINGS

Graph-Specific Models: For NodeFormer and GraphSAGE, we use the raw node features from each dataset, constructed via one-hot encoding. For GraphFormers, we implement the model using its official source code.

Pure LMs: For BERT, Sentence-BERT, and RoBERTa-base, we perform full-parameter fine-tuning using the raw texts of each node. For RoBERTa-large, we employ Low-Rank Adaptation (LoRA) with a rank of 8.

Recent TAG Methods: We use RoBERTa-base as the language model backbone and a two-layer GraphSAGE with hidden size 64 as the GNN backbone. This configuration is consistent with that of DuConTE to ensure a fair comparison. We implement these models using their official source code, and the training epochs as well as learning rates for both the LM and GNN components are kept consistent with DuConTE.

D.4 IMPLEMENTATION DETAILS OF OUR PIPELINE INSTANCE

We provide a comprehensive overview of the configuration and training parameters adopted by the pipeline instantiated in Section 5.3.

Upstream Preprocessing Configurations. We adopt 2-hop neighborhood sampling with a maximum of 40 neighbors per node. The text of each node is processed using a reduction module (Wang et al., 2024) to fit the input length limit of the LM.

Hyperparameter Settings of DuConTE. For the internal hyperparameters α and β of DuConTE, we perform a grid search over the range [0,1] with a step size of 0.1, selecting the best combination based on performance on the validation set. The selected hyperparameter values for each dataset are reported in Table 3.

Table 3: Hyperparameter settings of α and β in the experiments.

Hyperparameter	Cora	CiteSeer	WikiCS	ArXiv-2023	OGBN-Products
α	0.7	0.9	0.9	0.6	0.8
eta	0.7	0.8	0.8	0.9	0.9

Training Setup for DuConTE. DuConTE uses two pre-trained RoBERTa-base models for \mathcal{M}_L and \mathcal{M}_N . \mathcal{M}_L has positional encoding enabled. \mathcal{M}_N takes $\boldsymbol{H}^{(i)}$ as input directly, bypassing the token embedding layer, with positional encoding kept on.

The detailed two-stage training procedure of DuConTE is described in Section B. In both Stage 1 and Stage 2, the learning rate is set to 5e-5, and the number of training epochs is specified in Table 4.

Training Setup for the Downstream GNN. We adopt a two-layer GraphSAGE with a hidden dimension of 64 as the GNN backbone in the downstream task. The model is trained using the final node representations generated by DuConTE as input features. We employ a learning rate of 1e–2, train for up to 500 epochs, and apply early stopping with a patience of 20 epochs based on validation performance.

Table 4: Training Epochs in Stage 1 and Stage 2

-	Stage	Cora	CiteSeer	WikiCS	ArXiv-2023	OGBN-Products
	Stage 1	8	8	16	8	8
	Stage 2	8	8	16	8	8

E DATASET DESCRIPTIONS

The experiments are conducted on five benchmark text-attributed graph datasets, widely adopted in graph representation learning. Below we provide a brief overview of each. For detailed statistics, including the number of nodes, edges, classes, and average token count per node, please refer to Table 5.

Cora (Sen et al., 2008) The Cora dataset contains 2,708 scientific publications divided into seven classes: case-based reasoning, genetic algorithms, neural networks, probabilistic methods, reinforcement learning, rule learning, and theory. The papers form a citation network with 5,429 undirected edges, where each node has at least one citation link.

CiteSeer (Giles et al., 1998) The CiteSeer dataset consists of 3,186 scientific documents categorized into six areas: Agents, Machine Learning, Information Retrieval, Databases, Human–Computer Interaction, and Artificial Intelligence. Each document is represented by its title and abstract, and the task is to classify papers based on this text and the citation structure.

WikiCS (Mernyei & Cangea, 2007) WikiCS is a Wikipedia-based dataset for evaluating graph neural networks. It includes 10 classes corresponding to computer science topics and exhibits high connectivity. Node features are obtained from the text of the corresponding Wikipedia articles.

ArXiv-2023 (He et al., 2023) ArXiv-2023 is a directed citation network introduced in TAPE, containing computer science papers from arXiv published in 2023 or later. Nodes represent papers, and directed edges represent citations. The task is to classify each paper into one of 40 subject areas, such as cs.AI, cs.LG, and cs.OS, using labels provided by authors and arXiv moderators.

OGBN-Products (**Hu et al., 2020**) OGBN-Products is a dataset of Amazon products with copurchase relations. The full version has over 2 million nodes and 61 million edges. The subset used here, created via node sampling in TAPE (He et al., 2023), contains 54,000 nodes and 74,000 edges. Each node corresponds to a product and is labeled with one of 47 top-level categories.

Table 5: Dataset statistics. Nodes, Edges, Classes and Avg.degrees mean the number of nodes, edges, classes and average degrees for each dataset, respectively. **Avg.tokens** represents the average number of tokens per node in each dataset when using the RoBERTa-base's tokenizer.

Dataset	Nodes	Edges	classes	Avg.degrees	Avg.tokens
Cora	2708	5492	7	3.90	194
CiteSeer	3186	4277	6	1.34	196
WikiCS	11701	215863	10	36.70	545
ArXiv-2023	46198	78543	40	3.90	194
OGBN-Products(subset)	54025	74420	47	2.68	163

HOMOPHILY ANALYSIS

In this section, we analyze the homophily of the five datasets used in our experiments: Cora (Sen et al., 2008), CiteSeer (Giles et al., 1998), WikiCS (Mernyei & Cangea, 2007), ArXiv-2023 (He et al., 2023), and OGBN-Products (subset) (Hu et al., 2020). Specifically, we compute the label **homophily ratio** H, defined as:

$$H = \frac{1}{|\mathcal{E}|} \sum_{(i,j)\in\mathcal{E}} \mathbb{I}(y_i = y_j), \tag{18}$$

where \mathcal{E} denotes the set of edges, y_i is the class label of node i, and $\mathbb{I}(\cdot)$ is the indicator function that equals 1 if the condition is true and 0 otherwise. This metric measures the proportion of edges connecting nodes with identical labels; a higher value indicates stronger homophily. The results are summarized in Table 6.

Table 6: Label Homophily Ratios Across Datasets

			· r J		
Dataset	Cora	CiteSeer	WikiCS	ArXiv-2023	OGBN-Products (subset)
Homophily (H)	0.8100	0.7451	0.6547	0.6465	0.7950

According to the results, all datasets exhibit homophily ratios above 0.6, indicating a relatively high level of homophily.

ABLATION VARIANTS

In this section, we detail the design of each ablation variant used in our experiments.

NoDual It encodes semantic information only at the word-token granularity, achieved by setting the hyperparameter $\alpha = 0$.

NoMask-T It uses the vanilla self-attention mechanism in every attention layer of the word-token encoder.

NoMask-D It uses the vanilla self-attention mechanism in every attention layer of the node encoder.

NoMask-Both It uses the vanilla self-attention mechanism in every attention layer of both encoders.

Center-Only Its node representation composer evaluates word-token importance only in the center-node semantic context, with the hyperparameter β set to 1.

Neigh-Only Its node representation composer evaluates word-token importance only in the neighborhood semantic context, with the hyperparameter β set to 0.

UnifiedContext Its node representation composer evaluates word-token importance in a shared context, without differentiating the contextual influence from the center-node and its neighborhood. The unnormalized importance of token w_{iq} is computed as:

$$\mu_q' = \sum_{p=1}^{L_i} a_{i,p,q}^{(i)} + \sum_{v_j \in \mathcal{N}(i)} \sum_{p=1}^{L_j} a_{j,p,q}^{(i)},$$
(19)

and the final importance score μ_q is obtained by applying softmax normalization over all word-tokens in v_i .