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ABSTRACT

Large vision-language models (VLMs) such as GPT-4o, Llama-3.2 have shown re-
markable capabilities in visual understanding and reasoning, prompting us to test
their off-the-shelf ability to reason and act as a 3D design assistant. This study
investigates VLMs’ visual reasoning capabilities using 3D indoor scene layout
synthesis i.e. placement of furniture in a room, as a test-bed. We study three
key primitive abilities in this context: (1) communication of spatial locations, (2)
reasoning about free space and object collision, and (3) reasoning about object
alignment, orientation, and functionality, each crucial to creating a VLM agent-
based scene layout synthesis pipeline. We evaluate five state-of-the-art VLMs,
both proprietary and open, on a new dataset incorporating 3400 questions that
assess VLMs’ current visual reasoning abilities in our context. Our findings re-
veal several remarkable insights: (1) VLMs consistently prefer normalized coordi-
nates for spatial communication over absolute coordinates or pointing with image
markers. (2) Contrary to expectations, VLMs perform best with simplified sketch
based scene representation or, most strikingly, with no visual input at all, com-
pared to detailed renderings. (3) Free space reasoning remains challenging, with
performance only slightly above random guessing, though frontier models show
significant improvement with collision checking tools. Surprisingly, free space
reasoning with clear visible collisions in the image can also fail. (4) Reasoning
about object alignment, size, orientation and functionality together compounds er-
rors leading to near chance performance on our dataset. These findings serve to
offer insights into current potential and limitations of using VLMs off-the-shelf
towards developing advanced visual assistants capable of understanding and ma-
nipulating 3D environments.

1 INTRODUCTION

Large vision-language models (VLMs) that take vision and text as input and output text such as
GPT-4o, Claude, Gemini, Qwen-V2, Llama-3.2 have showcased unprecedented capabilities in gen-
eralized image understanding and reasoning. By bridging the gap between visual perception and
linguistic expression, these models can interpret and describe complex visual scenes with remark-
able accuracy, opening a path towards intelligent visual assistants or co-pilots that naturally interact
with a human through text or speech.

With these models steadily becoming more capable and available, we set our sights on the north-
star of visual assistants that work with 3D artists in creating and manipulating virtual 3D scenes
for movies, gaming, virtual reality or simulation. Of course, understanding and interacting with 3D
spaces goes beyond this goal and underpins fundamental capabilities of human cognition such as
navigation, object manipulation, and spatial planning. For artificial agents to seamlessly integrate
into either virtual or real 3D environments and assist in domains like 3D artistry, immersive virtual
reality or robotics they must possess sophisticated 3D reasoning capabilities. As a first step towards
virtual assistants for 3D design, we aim to evaluate off-the-shelf 3D reasoning abilities of pre-trained
{vision, text} → {text} VLMs. As our test-bed, we choose indoor scene layout synthesis i.e. the
placement of furniture within a given indoor room geometry, which is one of the many challenges
on the path to a general 3D design visual assistant. This task demands understanding of individual
objects, their spatial relationships, functional alignment and adherence to simple physical constraints
such as collision avoidance through free space reasoning.
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Recent studies, such as Feng et al. (2024); Yang et al. (2024); Çelen et al. (2024); Fu et al. (2024),
have shown encouraging results using agent-based scene layout synthesis pipelines with off-the-
shelf LLMs i.e. large language models without vision. These approaches show promising results,
while their unique design choices lead to a lack of systematic understanding of the key underpinnings
of 3D reasoning across the methods. For instance, Feng et al. (2024) implicitly combines 3D rea-
soning and action and utilize normalized coordinates to communicate 3D locations with the LLM.
Yang et al. (2024); Çelen et al. (2024); Fu et al. (2024) each generate different text-based scene
graph representations with spatial constraints using a language model and utilize a back-tracking
based solver to convert constraints into a valid (if possible) 3D spatial arrangement of furniture in a
room, leading to different facets of 3D reasoning coming from hard-coded solvers vs. the LLM it-
self. Beyond indoor layout synthesis and LLMs, Nasiriany et al. (2024) and Yang et al. (2023) have
shown it is possible to communicate spatial locations with VLMs using text-based references to
drawn markers on an image leading to enhanced open-world robotic planning and visual grounding
when answering fine-grained visual questions respectively.

In this paper, instead of an indoor layout synthesis pipeline, we focus on systematically investi-
gating primitive 3D reasoning i.e. perceiving and reasoning about object layouts, and acting i.e.
placing objects at exact locations, capabilities essential towards creating purely VLM agent-based
scene layout synthesis pipelines. Specifically, we decompose 3D reasoning abilities required in this
context into three key primitives: (1) communication of spatial location/coordinates, (2) reasoning
about free space and object collisions, and (3) joint reasoning about object alignment, orientation,
and functionality. These primitives not only underpin scene layout synthesis, but also take first steps
towards evaluating VLM-based agents as general 3D design assistants.

To evaluate these capabilities within the context of indoor scene layout design, we create a new
evaluation dataset of indoor rooms adapting the 3D-FRONT dataset Fu et al. (2021). Our dataset
comprises a total of 3400 questions across all three tasks and explores five different visual modal-
ities, ranging from textual representations of the scene to simplified sketch based renderings and
photo-realistic scene renderings. Taking inspiration from the literature, we also evaluate four dis-
tinct methods of communicating spatial locations using VLMs: absolute coordinates, normalized
coordinates, visual markers and a combination of visual and textual markers.

We evaluate five state-of-the-art VLMs, including both proprietary and open-source models, and
report several key findings in the context of our task:

• Preference for normalized coordinates: VLMs consistently prefer normalized coordinates
for spatial communication over absolute coordinates or pointing with image markers.

• Effectiveness of simplified representations: Contrary to expectation, VLMs perform best
with simplified sketch-based scene representations or, most strikingly, with no visual input
at all, compared to detailed renderings.

• Challenges in free space reasoning: Free space reasoning remains challenging, with per-
formance only slightly above random guessing. We find that the VLMs we test prefer to
compute free-space mathematically, often leading to mistakes, even if a collision between
objects is apparent in the image. Unsurprisingly, when provided with tools for collision
checking, a frontier model like GPT-4o shows significant improvement.

• Compounded errors in complex reasoning: Visual reasoning about free-space, orientation,
object alignment and functionality together compounds errors, leading to near-chance per-
formance on our final task.

• Over-reliance on language processing: Models like GPT-4o, GPT-4o-mini, LLAVA-Next,
and LLaMA-3.2 perform 10-20% worse when visual inputs are included. This suggests
over-reliance on language understanding and indicates that current VLMs do not effectively
utilize visual information for spatial reasoning tasks.

These findings highlight both the potential and limitations of using VLMs off-the-shelf in 3D rea-
soning tasks in the context of indoor scene layout design. Current VLMs often act blindly in the
face of clear visual context required for the task, but also excel at symbolically breaking down a
task, where computational errors lead to performance degradation. In a scenario where 3D scene
information must only be grokked visually, they fail, even when prompted carefully. We hope this
study helps inform the next generation of data used to train large VLMs to improve their capabilities
towards becoming intelligent 3D design assistants.
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2 RELATED WORK

We evaluate 3D reasoning in the context of indoor scene layout synthesis by testing three primitive
skills necessary to build a VLM-agent based pipeline for the task, instead of proposing a novel
pipeline similar to prior LLM-based pipelines (Feng et al., 2024; Yang et al., 2024; Çelen et al.,
2024; Fu et al., 2024) discussed earlier.

Spatial Understanding and Reasoning in VLMs. Spatial reasoning in VLMs is primarily cate-
gorized into relative and quantitative approaches. Relative spatial reasoning has been extensively
studied and distinguishes relationships between objects in 3D space using concepts such as “next
to” or “in front of”(Agrawal et al., 2015; Johnson et al., 2016; Krishna et al., 2016; Suhr et al., 2018;
Yang et al., 2019; Belz et al., 2018; Goyal et al., 2020; Majumdar et al., 2024), with some stud-
ies enhancing linguistic complexity and mitigating spatial biases (Liu et al., 2023; Kamath et al.,
2023). Quantitative spatial reasoning involves estimating spatial attributes like sizes and distances
from natural images without using external tools (Chen et al., 2024; Cheng et al., 2024; Liao et al.,
2024b). Additionally, Tong et al. (2024a) explores 3D reasoning through multiple-choice questions
focusing on depth order and relative distance. In this paper, we investigate primitive 3D reasoning
about object layouts and actions such as placing objects at exact 3D locations, which are a step
towards visual assistants aiding 3D artists in creating and manipulating virtual environments.

Visual capabilities of VLMs. Recent works have observed textual-bias in VLMs, often pronounc-
ing them visually ”blind.” Tong et al. (2024b) identified ”CLIP-blind pairs”—visually distinct im-
ages that CLIP Radford et al. (2021) perceives as similar—and found visual patterns that GPT-
4V OpenAI (2023) struggles with due to inaccurate visual grounding. Similarly, Zhang et al. (2024)
showed that some models struggle to understand mathematical diagrams, relying heavily on tex-
tual questions. Moreover, Wang et al. (2024a) created synthetic VQA tasks to evaluate models’
abilities to navigate mazes and identify images in grid structures. Additionally, Rahmanzadehgervi
et al. (2024b) demonstrated that VLMs consistently struggle with tasks requiring spatial information,
such as identifying whether two circles overlap or which letter is being circled in a word, particularly
when geometric primitives overlap or are close together. We take a similar focus to a new domain
and study 3D reasoning through three key primitives with increasing levels of complexity, towards a
vision of a capable 3D design assistant. We believe each of these works show new pathways towards
data and tasks required to train the next generation of VLMs. Our evaluation includes novel sub-
tasks and scene views that resemble those used in prior work on indoor synthesis or encountered in
3D modeling software, aimed at shedding light into 3D reasoning abilities and limitations of VLMs
in the context of a valuable use-case of VLMs as 3D design assistants.

VLMs for 3D understanding. Various 3D-VLMs have been proposed that incorporate 3D data
at inference time, adapting VLM architectures to process inputs like point clouds, depth maps, or
multi-view images. These approaches explore model architecture design and require retraining or
fine-tuning (Hong et al., 2023; Zhu et al., 2024; Cheng et al., 2024). Recently, (Deng et al., 2024)
evaluated the sensitivity of 3D-VLMs to stylistic variations in semantically equivalent sentences,
showing that these models struggle with such variations. We set our sights on the north-star of visual
assistants that work with 3D artists in creating and manipulating virtual 3D scenes, and believe our
exploration on the off-the-shelf capabilities of frontier VLMs such as GPT-4o and LLaMA-3.2-90B
could be used to improve both frontier models, as well as fine-tuned 3D-VLMs.

3D Vision Language Action models (VLAs) VLAs are VLMs retrained or finetuned to output low-
level actions (typically in robotics) as text tokens, often combaining large-scale VQA datasets with
task-specific robotic data (Brohan et al., 2023; Kim et al., 2024). While most VLAs are trained on
task-specific robotics data, PiVoT (Nasiriany et al., 2024) reinterprets robotic navigation as itera-
tive visual question answering on off-the-shelf VLMs, demonstrating how VLMs can be prompted
visually to elicit visual reasoning.

3 TASKS AND DATASET

In this section, we describe task and dataset construction for each of the three 3D reasoning prim-
itives/tasks we evaluate VLMs on off-the-shelf. To remind the reader, we choose three primitive
abilities necessary (but not sufficient) for a pure VLM agent-based pipeline for indoor scene layout
synthesis, to serve as our test-bed: (1) communication of spatial locations, (2) reasoning about free
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You are given a rectangular room with dimensions 313 cm by 376 cm.
The provided image represents the top-down view of the rectangular room with markers.
Each marker is associated with a coordinate (x, y) within the room. The markers are placed at 53 cm from each other.

Your task is to determine the marks representing the four corners in the following order: bottom-left, top-left, top-right, and bottom-right.

You are given a rectangular room with dimensions 313 cm by 376 cm.
The provided image represents the top-down view of the rectangular room with markers.
Each marker is associated with a coordinate (x, y) within the room. The markers are placed at 53 cm from each other.

Determine the mark that is exactly to the left of 15.
Ensure that there exists such a mark . If no, please use [-1] to indicate it.

You are given a rectangular room with dimensions 313 cm by 376 cm.
The provided image represents the top-down view of the rectangular room with markers.
Each marker is associated with a coordinate (x, y) within the room. The markers are placed at 53 cm from each other.

Determine the mark that is exactly to the right of 7.
Ensure that there exists such a mark. If no, please use [-1] to indicate it.

[['29' '20' '10' '0' '17']
['12' '6' '24' '4' '8']
['13' '28' '26' '23' '25']
['19' '1' '22' '11' '5']
['15' '9' '16' '7' '3']
['14' '27' '2' '18' '21']]]

Text Matrix:

Corners

Left

Right

Figure 1: Example S1. communicating coordinates question showing 3D1 (top-down) rendering
with markers to represent coordinates. We additionally use a text matrix representation of the marks
when when no visual input is fed to the model or as additional redundant information (making OCR
from the image unnecessary) along with visual markers.

space and object collisions, and (3) joint reasoning about free space, object alignment, orientation,
and functionality. We refer to these three tasks as S1, S2 and S3 respectively in the following text.
We construct our datasets using bedrooms from the 3D-Front dataset (Fu et al., 2021), which gives
us realistic room sizes and object arrangements for various tasks.

We evaluate various state-of-the-art VLMs on these three tasks along two axes. Along the visual
axis, we test across visual representations provided to the VLMs, illustrated in Fig. 3. This ranges
from no visual input, where only textual descriptions represent the scene/room, to simple sketches
consisting of a 2D top-down view of the scene/room, and extends to three types of 3D renderings
created with Blender (Community, 2018): (i) Top-Down View (3D1), a common representation used
in prior work; (ii) Perspective View (3D2), offering a non-axis-aligned perspective often encountered
when working with 3D modeling software; and (iii) Embodied View (3D3), providing close to a
first-person perspective that introduces complexity through occlusion and perspective distortion, but
could potentially be closer to a distribution of natural images captured from a human perspective.

The second axis involves methods to represent spatial coordinates, which is also the focus of our
first task. We explore (a) Absolute Coordinates, where we use realistic metric coordinates of rooms
and objects; (b) Normalized Coordinates, assessing whether scaling positions to a standard range
improves spatial reasoning, following prior work (Feng et al., 2024) and (c) Discretized positions
with spatial markers, inspired by methods such as Pivot (Nasiriany et al. (2024) and Set-of-Marks
Yang et al. (2023), where the model is allowed to refer to predefined discrete visual or textual
markers assigned to specific positions instead of precise coordinates. We refer to this method as
marks in subsequent text. Absolute and normalized coordinates are represented on our visual axes
by rendering the coordinates of corners of the room (see Fig. 3. We use rectangular rooms only,
following Layout-GPT (Feng et al., 2024)). For discretized spatial markers (marks), we use a regular
grid of markers with constant separation rendered on the room floor (see Fig. 1 for an example). In
the case of marks, we also experiment with a fourth approach providing the grid of marks as a 2D
array as additional redundant information, which we refer to as marks + text.

For each task, visual and coordinate representation axis, we design VQA (Antol et al., 2015; Yue
et al., 2024) style questions to evaluate spatial reasoning. These allow simple quantitative evaluation
per data point, over metrics commonly used in indoor scene synthesis that compute distributional
similarities or discriminatory capability of a classification model between a generated set of rooms
and a test set of rooms similar to the training dataset. In the following subsections, we describe each
task and corresponding questions.

3.1 S1. COMMUNICATING SPATIAL COORDINATES WITH A VLM

In the first task, we focus on evaluating the VLMs’ ability to communicate spatial locations effec-
tively. This task requires the models to determine the positions of specific points in a room defined
using relative relationships in text. Specifically, we ask to compute positions of corners of the room
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You are given a rectangular room with dimensions 
416 cm by 327 cm (length x width).
Your task is to determine if a target object can be 
positioned at the room without overlapping with 
any existing object.
The target object has dimensions 56.0 cm by 64.0 
cm and would be centered at [177, 59] cm.
The existing object has dimensions 122.0 cm by 
46.0 cm and is centered at [354, 295] cm.
Can the target object be positioned at the room 
without overlapping with any existing object?

Assume the coordinate system is such that the 
origin (0,0) is at the bottom-left corner of the 
room, with the positive X-axis extending to the 
right and the positive Y-axis extending upward.

Please use the attached image for reference.

Empty Room
(Empty)

Existing Object
(Existing-In)

Existing Object
& Target Object
(All-In)

Figure 2: Example question for S2. free space reasoning with each of the three levels of complexity,
showing 3D1 (top-down) rendering and sketches, with absolute coordinates

and to compute positions at an offset to the left or right to an input position. To remind the reader,
we test VLMs on this task using absolute coordinates, normalized coordinates, references to discrete
markers within the environment (marks) and using marks+text. All tasks are set within a standard-
ized coordinate system pre-defined to the VLM, where the origin is at the bottom-left corner of the
room, the positive X-axis extends to the right, and the positive Y-axis extends upward. By analyz-
ing the models’ performance across various visual inputs and coordinate representations, we aim to
identify effective methods to accurately and efficiently communicate spatial locations with VLMs.
Fig. 1 shows an example using the marks and the marks+text representation. These questions are
intentionally kept simple since we find not all models perform strongly on this straightforward task.
For each visual axis (five: none, sketches, 3D1, 3D2, 3D3), coordinate representation (four: abso-
lute, normalized, marks, marks+text) and question type (three: corner, left, right) we evaluate using
25 questions for a total of 1500 questions per model.

3.2 S2. EVALUATING FREE-SPACE REASONING

An indoor scene design agent must possess the ability to reason about free space and avoid object
collisions when placing objects within a given environment. Our task asks the model to determine
whether (yes/no, binary question) a target object of a given size can be placed at a given location
without colliding with other existing objects in the scene. For simplicity, we test with only one
pre-existing object and one target object. We consider three levels of visual difficulty in this sce-
nario, which also mimics scenarios and model cost restrictions in which such VLM agents might
be deployed. For S2, in all cases, textual description of the location and size of existing and target
objects is also provided, which can allow symbolic computation of the answer along with visual
hints. The three levels are as follows: Empty: The model reasons about the scene using a rendering
of an empty room with only textual descriptions of objects; no visual information about objects is
provided. It must infer potential collisions based solely on text and visual imagination. Existing-
In: The model is given an image showing the existing object already placed in the room, but the
target object is hidden. It must infer potential collisions based on text, the visual arrangement of the
existing objects and visual imagination of the target object. In a scenario where an assistant works
alongside a human creator, this would be the visual available to the model to compute free locations
for a new requested object. All-In: The given image shows both the existing object and the target
object already placed. Here, the solution is visually evident, as any collisions or spatial constraint
violations can be directly observed in the image. This represents a scenario where an agent might
be tasked to identify issues in a scene or an expensive scenario where a scene design agent gets
to render the target object at many candidate locations for visual inspection, before choosing an
appropriate placement location. Fig. 3 shows all rendering views for the All-In case in S2.

To construct this data, we choose random rectangular bedrooms from the 3D-FRONT (Fu et al.,
2021) subset used by LayoutGPT (Feng et al., 2024). We select one random object (from objects
placed on the ground) from the ground truth scene as the existing object. We exhaustively compute
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….
The target object has 
dimensions 0.18 unit(s) by 0.142 
unit(s) and would be centered at 
[0.408, 0.426] unit(s).

The existing object has 
dimensions 0.14 unit(s) by 0.17 
unit(s) and is centered at [0.816, 
0.852] unit(s).
…..

Figure 3: Visualization of the different visual inputs for S2. free space understanding (All-in). From
left to right: None (Text Only), Sketches, 3D1 (top-down), 3D2 (perspective), 3D3 (embodied)

You are given a rectangular room with dimensions 371 cm by 348 cm (length x width).

The coordinate system is defined with the origin (0,0) at the bottom-left corner of the room. The positive X-axis extends to the 
right, and the positive Y-axis extends upward.
The object's orientation can be between -360 and 360 degrees and is described as follows:
1. When the orientation is 0, the front of the object faces the Y-axis (upward).
2. When the orientation is 90, the front of the object faces the X-axis (to the right).
Importantly, the front of the object refers to the side where the object is typically accessed and length is defined along X and 
width along Y axis.

Your task is to determine if placing a dressing chair of canonical size [47, 47] (length, width) centered at position [265, 53] 
with orientation 90 makes sense in this room.

Given the provided image and the convention described above, evaluate whether this placement is reasonable based on the 
room's dimensions, the existing objects in the room, the object category, the object's size, its orientation and functionality of 
the object centered at that position.

Figure 4: Example S3. joint free-space, alignment, orientation and functionality reasoning question
with 3D1 (top-down) rendering and absolute coordinate representation. The model must visually
reason that the requested dressing chair aligns perfectly with the existing dressing table due to its
orientation and does not spatially intersect and functionally block the bed.

locations where another random object from the room would collide or not collide with the existing
object and choose one position each randomly to get two questions per room, one with a collision
and one without. We randomly choose one of the two questions to add to our dataset generating 25
questions per visual axis, coordinate representation and question type for a total of 1500 questions
per model. Fig. 2 and Fig. 3 show examples of S2 questions.

3.3 S3. EVALUATING JOINT FREE-SPACE, ALIGNMENT, ORIENTATION AND FUNCTIONALITY
REASONING

In our final task, we evaluate the ability of VLMs to jointly reason about free-space, object align-
ment, orientation, and functionality when placing a target object within a given room. Specifically,
we test whether a VLM can determine whether it is appropriate (binary, yes/no) to place a target
object of a given category, size, at a given location and orientation (different from S1 and S2, we
also provide an orientation which can affect functionality) in a room that already contains various
other objects. We view this test as one step of an iterative indoor scene layout design agent. The
models are provided with textual information about the room’s dimensions, a standardized coordi-
nate system, and a list of existing objects with their center coordinate or nearest marker in the case
of markers. Differently from S2, we do not provide existing object sizes in text. This makes the task
primarily visual, since pure symbolic computation for free-space checking cannot be performed as
object sizes must be visually inspected and approximated. In S3, we consider well populated rooms
as opposed to S2.

Specifically, we again choose random rectangular bedrooms from 3D-FRONT. We keep all but one
GT object on the floor in the data as the existing objects in the scene. The left-out object is used as
the target object. We use its GT location and orientation in the scene as the appropriate placement
example and manually annotate a new location and orientation in the same scene as an inappropriate
placement. Inappropriate placements in the data can be due to functionality (orientation obstructing
access to object, obstructing access to other furniture etc.) or alignment (dressing table and dressing
chair not placed together as a group, bed floating in the middle of the room instead of being aligned
with the wall and nightstands) or free-space collisions. Fig. 4 shows an example question from S3.

In this experiment, we test with only existing objects rendered in the scene. We skip the embodied
view (3D3) since we find occlusions can make some questions unanswerable. We also skip sketches
(understanding functionality requires more than rendering an object as a 2D box) and no images (no

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

symbolic computation possible without object sizes given in text) along the visual evaluation axes to
focus only on rendered rooms in 3D1 (top-down) and 3D2 (perspective). We utilize 50 questions (25
appropriate, 25 inappropriate) along each visual axis (3D1 and 3D2) and coordinate representation
for a total of 400 questions per model in this experiment.

4 EVALUATION AND ANALYSIS

Models. In this section, we discuss and analyze the performance of five representative
{vision, text} → {text} VLMs on our three tasks (Sec. 3) across the proposed visual and co-
ordinate representation axes. We test GPT-4o (OpenAI, 2024) (gpt-4o-2024-05-13 on the API)
and GPT-4o-mini (gpt-4o-mini-2024-07-18 on the API) as the frontier proprietary models. Along
with the GPT-4o models, we consider three recently released and competitive open (source / weight)
VLMs: Llama-3.2 (90b-vision-instruct) (MetaAI, 2024), LLaVA-NeXT (Qwen-1.5-110B) (Li et al.,
2024) and Qwen2-VL (72B-Instruct) (Wang et al., 2024b). We note that smaller models such as
Cambrian1 (Tong et al., 2024a) (example in supplementary), LLaVA-NeXT (Llama-3-8B) (Li et al.,
2024) performed poorly on our S1 (Sec. 3.1) task, leading to our focus on large models with strong
reasoning capabilities based on public benchmarks.

Next, we analyse quantitative and qualitative results from tasks S1 (Sec. 3.1), S2 (Sec. 3.2) and
S3 (Sec. 3.3) and offer insights. The prompts used are detailed in the supp. material. Since our
qualitative results include showing long reasoning paths followed by models, we move them to the
supp. material to save space and refer to them in the following text.

4.1 S1. COMMUNICATING SPATIAL COORDINATES WITH A VLM

To remind the reader, we investigate ways of communicating co-ordinates with VLMs in S1 (Fig. 1,
Sec. 3.1) by addressing three straightforward questions: identifying the room’s corner locations and
determining left/right offsets from a given location. Table 1 shows results for S1 when averaging
over all visual axes (None, Sketches, 3D1 (top-down), 3D2 (perspective) and 3D3 (embodied)). The
full table of results is provided in the supp. material in Table 6.

Table 1: S1 Communicating coordinates: Accuracy of models by coordinate representation
Model Absolute Marks Marks + Text Normalized
GPT-4o 0.989 0.027 0.923 1.000
GPT-4o-mini 0.987 0.067 0.803 1.000
LLaVA-NeXT-110B 0.504 0.050 0.173 0.901
LLaMA-3.2-90B 0.952 0.340 0.731 1.000
Qwen2-VL-72B 0.456 0.340 0.581 0.981

Average 0.778 0.165 0.642 0.977

We observe that even on this simple task, there is discrepancy in performance across models and
coordinate representation. Across the board, normalized coordinates yield the best performance
with consistent full scores for models like GPT-4o , GPT-4o-mini , and LLaMA-3.2-90B , with
LLaVA-NeXT-110B and Qwen2-VL-72B making few errors in computing left/right offsets. This
is however untrue for absolute coordinates, where we find larger probability of error in models
when performing arithmetic operations. With marks, we observe weak performance across S1, with
models sometimes misunderstanding marks (Fig. 9) and falling back to coordinates. We see that
models most often ignore the regular grid of markers in the visual input (see Figure 17), despite
being prompted, and can fall back to language biases such as assuming sequential order of markers
to add or subtract one for left/right marker questions (Figure 18). LLaMA-3.2-90B and Qwen2-VL-
72B do best with marks, but with low overall success (34%). With marks+text, we test the case
where perfect OCR for markers on the image are provided to the model as text and still find that
models other than GPT-4o (92.3%) perform unreliably. While markers might succeed in improving
object grounding (Yang et al., 2023; Liao et al., 2024a), we find no evidence that they help in
referring to spatial locations in our experiment. We also show an example of Cambrian-34B failing
with marks+text in the supp. material (Fig. 16).

With respect to the visual axis, we notice marginally small effects of change in visual representation
in Table. 6. This is perhaps to be expected since all answers can be computed with text only (other
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than with marks), as evidenced by similar performance when the models are not provided any images
(”None” on the visual axis).

We note here that our results apply to a small bounded scene scenario. In large unbounded scenes,
absolute or normalized coordinates might become too large or lose precision respectively. Instead of
dense markers used in our case, sparse markers could be placed across an unbounded scene for the
model to reference spatial coordinates. Whether our results on communication of coordinates hold
for large scenes is unknown and left for future work.

4.2 S2. EVALUATING FREE-SPACE REASONING

In S2 (Sec. 3.2), we evaluate VLMs’ ability to reason whether adding a target object into a scene
with an existing object would results in a collision (Fig. 2). We once again perform our experiment
across all five visual and four location representations. The experiment tests three different visual
difficulty levels, empty, existing-in and all-in as described in Sec. 3.2. Table. 2 presents results
averaged over visual and location representations, Table. 3 shows results per visual axis and Table. 8
in supplementary presents more complete results, averaged over representations. We note that since
all questions are binary, 0.5 performance is equivalent to random guessing.

Table 2: S2 Free space reasoning: Accuracy of models by question type. Bold shows best perform-
ing question-type per model. Models perform better with less visual information.

Model All-in Empty Existing-in Average
GPT-4o 0.738 0.766 0.718 0.742
GPT-4o-mini 0.618 0.674 0.593 0.631
LLaVA-NeXT-110B 0.533 0.509 0.468 0.504
LLaMA-3.2-90B 0.585 0.606 0.525 0.574
Qwen2-VL-72B 0.553 0.518 0.543 0.536

Table 3: S2 Free space reasoning: Accuracy of models across different visual axes. Bold shows best
performing visual axis per model. Models prefer text-only inputs and fail to reason visually.

Model None Sketches 3D1 3D2 3D3 Visual
(text) Average

GPT-4o 0.853 0.780 0.697 0.703 0.760 0.735
GPT-4o-mini 0.707 0.677 0.603 0.603 0.620 0.626
LLaVA-NeXT-110B 0.613 0.500 0.527 0.483 0.477 0.497
LLaMA-3.2-90B 0.653 0.540 0.573 0.540 0.623 0.569
Qwen2-VL-72B 0.533 0.573 0.550 0.477 0.547 0.537

We immediately notice in Table. 2 that free space reasoning is challenging, with all models having
greater than 20% chance on average of making errors. GPT-4o performs best over all models across
all three difficulty levels, averaging 74.2% accuracy, while LLaVA-NeXT-110B and Qwen2-VL-
72B perform at chance level. On analysis, we find that all models tend to resort to symbolically
compute free space, making arithmetic or logical errors in computing collisions (Fig. 10, show-
ing GPT-4o , the best performing model in our study). The same figure shows how in the All-in case,
the visual input clearly shows no overlap, yet GPT-4o ignores the image and resorts to wrong sym-
bolic computation. This is reflected in the surprising result that having no image (Table. 3) improves
over every form of visual input to the model, for all models except Qwen2-VL-72B , which itself
has close to chance performance on this task. GPT-4o reasons with 85.3% accuracy with no images,
with 78% accuracy with simple sketches and has lower accuracy across all other visual axes with
detailed rendering. Hence, we find that not only do models tend to resort to symbolic computation
in the face of apparent answers in an image, the presence of an image degrades symbolic reasoning
ability, while following the same reasoning path. We remind the reader that the only difference
between these cases is the presence of an image and additional prompting to look at the image, the
objects and the room are exactly the same per data point across visual axes in the evaluation dataset.
Fig. 10 and Fig. 11 demonstrate this on the same example. Finally, with respect to the kind of ren-
dering (3D1, 3D2, 3D3) preferred by the models, we do not observe a clear winner. In fact, we find
the GPT models consistently perform better with simplified sketches of the room as opposed to
any detailed rendering, while reasoning best without any image at all. We note here that we do
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prompt the models to look at the image. Attempts to prompt more aggressively had limited success.
Specifically, we tried multiple phrasings and started from prompts used by Layout-GPT (Feng et al.,
2024) and Holodeck (Yang et al., 2024). We also tried zero-shot CoT prompting (Kojima et al.,
2023; Wei et al., 2023) and tested with Set-of-marks visual prompting (Yang et al., 2023). Notably,
we observed using CoT resulted in no performance change (Tab. 13). We hope this guides the next
generation of visual instruction tuning datasets to improve visual reasoning in such contexts.

Since we find that the VLMs we study do not elicit visual reasoning and instead opt for symbolic rea-
soning in text when possible, we continue with two paths. First, we design our S3 task (Sec. 3.3) to
be unsolvable with text-based symbolic reasoning by removing object details from the text prompt,
forcing the model to grok them from the image. Second, we discuss how today’s VLMs might be
aided by offloading symbolic computation into tools in the form of pre-defined functions, which we
describe next.

Free-space reasoning with tools. We perform a small experiment where the GPT family of mod-
els that support tool usage through their API, are provided with a pre-defined function to compute
intersections as an additional tool. Table. 4 shows that this lets GPT-4o get perfect accuracy with
normalized and absolute representation, while some mistakes in choosing right function parame-
ters(Table. 9 in supplementary shows accuracy of parameters in tool calls) leads to performance
degradation with marks. Note that for marks, we let the model use a tool that also accepts marks
as input parameters and hence the model does not need to convert marks into coordinates, which
we expect to fail from S1 and S2 results. GPT-4o-mini lags behind slightly, but still achieves a per-
fect score with normalized coordinates. While beyond the scope of visual reasoning that we aim to
study in this paper, this experiment shows how practitioners could offload computation from LLMs
into functions for spatial reasoning tasks when possible. In a production scenario, we would look to
combine both visual reasoning and tool calling to offload computation for stronger spatial reasoning.

Table 4: Performance on S2 with Tool Usage
Model Absolute Marks Marks + Text Normalized Average
GPT-4o 1.00 0.93 0.87 1.00 0.95
GPT-4o-mini 0.97 0.74 0.78 1.00 0.87

4.3 S3. EVALUATING JOINT FREE-SPACE, ALIGNMENT, ORIENTATION AND FUNCTIONALITY
REASONING

In our final task, S3 (Sec. 3.3), we challenge VLMs with binary questions regarding the suitability of
placing a piece of furniture in an existing well furnished room. Following our observations in S2 4.2
that VLMs over rely on symbolic reasoning through text even in the face of clear visual clues, we
remove textual information about existing objects in the scene to force visual reasoning. We expect
this task to be extremely challenging, and hence add two prompting techniques to help the model
reason better. In the Explicit Scene Graph case, we take inspiration from Holodeck Yang et al. (2024)
(that generates intermediate scene graphs using an LLM) and Least-to-most prompting Zhou et al.
(2022) to prompt the model to first describe the scene with a scene graph (given an example format),
followed by reasoning. To aid the model further, we provide the models with object categories and
their center location in the room, referred to as Explicit Scene Graph w/ Text Redundancy. In this
case with marks, we also provide the matrix of marks representing the room in text. The base case
where the question is directly posed without additional prompting is referred to as Implicit. The
prompts are shown in the supp. material across qualitative examples.

Table. 11 summarizes the results, where we confirm the challenging nature of this task by observing
chance performance across all models, regardless of prompting. We find various compounding
sources of error in the models through qualitative analysis. First, we find that while LLMs might
generate scene graphs well Yang et al. (2024), VLMs hallucinate while perceiving similar scene
graphs from images(Fig. 15). VLMs seem to understand orientation of objects well, but it can lead
to errors in reasoning about their spatial extent(Fig. 15). Improper reasoning of locations leads to
reasoning errors(Fig. 12). We also find that despite the difficulty of the task with multiple possible
sources of error, GPT-4o can sometimes reason well as shown in 14, with only a slight error in the
perceived scene graph. While all models perform at chance, we find the GPTs and LLaMA-3.2-
90B perform admirably at describing a room as a scene graph. While a variety of multi-agent
VLM based pipelines could be designed for this task –a very welcome contribution– we hope to
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see a VLM that can perform such joint reasoning well off-the-shelf, making it an ideal candidate to
build 3D design assistants with.

Table 5: S3 Joint Reasoning: Accuracy of models by prompting technique. Refer to Sec. 4.3 for a
description of prompting techniques used as headings

Model Implicit Explicit Scene Graph Explicit Scene Graph Average
w/ Text Redundancy

GPT-4o 0.513 0.397 0.500 0.457
GPT-4o-mini 0.470 0.480 0.457 0.469
LLaVA-NeXT-110B 0.483 0.480 0.480 0.481
LLaMA-3.2-90B 0.513 0.503 0.500 0.506
Qwen2-VL-72B 0.467 0.490 0.457 0.471

5 DISCUSSION AND CONCLUSION

Open Sources Vs Proprietary Models We find both open-source and proprietary models exhibit
an over-reliance on language processing, performing better with textual inputs alone. In S1, both
models achieve perfect accuracy using normalized coordinates, confirming the effectiveness of this
representation. Beyond normalized coordinates, GPT-4o performs well with marks + text, while
LLaMA-3.2-90B performs better with Marks alone, suggesting that GPT-4o may rely more on
textual descriptions. GPT-4o outperforms LLaMA-3.2-90B across all question types in S2 in free-
space checking and both perform at chance. We find Qwen2-VL-72B and LLaVA-NeXT-110B lag
behind the GPTs and LLaMA-3.2-90B across our evaluation.

Limitations. While we intend to study 3D reasoning, our tasks could be considered to be reasoning
2D (even though we present 3D renders) since we do not consider reasoning of objects on top of
each other in our data. Since our data is already challenging for state-of-the-art VLMs, we leave
this additional complexity for future work. Our work also applies to an indoor closed room setting,
in rectangular rooms, similar to existing work in LLM-based scene synthesis Feng et al. (2024). In
open and freely shaped scenes, these results might not hold. Yet, we believe our data and findings
could be useful for shaping the next generation of VLMs. Finally, we do not consider VLMs fine-
tuned specifically for 3D, such as Yuan et al. (2024); Cheng et al. (2024); Chen et al. (2024), in our
evaluation. These models may indeed perform better on our tasks. In the pursuit of general purpose
design assistants, and since our tasks are solvable from a single image only, we stick to testing large
pre-trained VLMs off-the-shelf with single image inputs. and focused our evaluation of GPT-4o and
GPT-4o-mini as frontier API-access models and evaluated LLAMA-3.2-90B, LLaVA-Next-110B
and Qwen-VL-72B as frontier open access models. We leave evaluating fine-tuned VLMs to future
work. Constructing fine-tuned VLMs that serve as 3D-design assistants is an exciting avenue for
future research.

In conclusion, we systematically evaluate VLMs on reasoning tasks using indoor scene synthesis
as testbed, revealing insights into their capabilities and limitations. We found that VLMs consis-
tently perform better when using normalized coordinates for spatial communication, as opposed to
absolute coordinates or image markers, indicating that standardized representations could enhance
spatial understanding. Interestingly, VLMs performed best without visual input, outperforming their
results with sketches or detailed renderings (Tab. 10). This suggests an over-reliance on language
and indicates that SoTA VLMs do not effectively utilize visual information for spatial reasoning,
similar to findings in Tong et al. (2024b); Rahmanzadehgervi et al. (2024a). Free space reasoning
is a challenge for VLMs, with models performing only marginally better than random guessing.
The tendency of VLMs to compute free space mathematically—often incorrectly—even when vi-
sual cues indicate collisions underscores their limitations in visual perception. However, integrating
tools like collision checking significantly improved performance, as seen with models like GPT-4o.
Compounded errors in a complex reasoning task involving free space, orientation, object alignment,
and functionality reasoning led to chance performance, highlighting visual reasoning limitations of
today’s VLMs.

We hope these findings help to illustrate both the potential and limitations of using VLMs off-
the-shelf for 3D reasoning tasks and underscore the need for improved training methodologies and
data curation to develop intelligent 3D design assistants that can leverage both visual and linguistic
information.
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A SUPPLEMENTARY MATERIAL

In this supplementary material, we provide additional experimental results, tables, and analysis sup-
porting the main paper. The content is organized into the following sections:

• Section B.1. In this section, we explore how models handle the communication of spatial
coordinates. The additional experiments expands on the ability of the model to reason
about spatial positioning and accurately communicate coordinates.

• Section B.2. Here, we assess the models’ capabilities in reasoning about free space. This in-
volves determining whether objects can be placed in a given position without collision. We
additionally evaluate the accuracy of parameters passing when using tools (e.g. collision
detection), which provides a stricter evaluation of the model’s tool execution capabilities.

• Section B.3. This section expands the main tables of the paper for S3 (e.g. more com-
plex reasoning tasks that require models to jointly evaluate free-space availability, object
alignment, orientation, and functionality).

• Section C. This section details the experimental setup, including the hardware used (such as
GPUs), software libraries (Python, PyTorch), and the specific model checkpoints employed
in the experiments. It also distinguishes between model used via API access.

• Section D. In this final section, we provide qualitative examples from the experiments,
illustrating full prompts and the reasoning paths taken by the models. Both success and
failure cases are presented to highlight the strengths and limitations of the models.

B ADDITIONAL EXPERIMENTAL RESULTS AND COMPLETE TABLES

Here, we expand on the experimental results and analysis illustrated on Section 4, and show the
complete experimental results.

B.1 S1. COMMUNICATING SPATIAL COORDINATES WITH A VLM

Table 7illustrates the performance of the models across different question types, with results aver-
aged over all visual axes and representations. Overall, we observe that ”corners” type of question
tends to be more challenging for the models. Notably, LLaMA-3.2-90B outperforms GPT-4o on
two out of three question categories (e.g., left and right) and shows a slight advantage in the overall
average performance.

Table 6, on the other hand, presents the average accuracy results across different models and repre-
sentations, evaluated on S1 averaged over the three question types. The final column represents the
grand total, which is the aggregate across all representation types. For each model, the highest values
within a given row are highlighted in bold, emphasizing the best performance in each category. For
instance, GPT-4o demonstrates a near-perfect normalized total of 1.000 across all representations.
Open source models such as LLaMA-3.2-90B , Qwen2-VL-72B and LLaVA-NeXT-110B exhibit
more variability in their results, with LLaMA-3.2-90B achieving higher accuracy on sketches.

B.2 S2. EVALUATING FREE-SPACE REASONING

Table 8 presents the average accuracy for each model and question type in S2. The category ”none”
refers to text-only inputs, where no visual information is provided. Notably, the table reveals the
models’ strong reliance on language, particularly in the GPT-4 family. Interestingly, the models’
performance does not show significant improvement even when the answers are primarily derived
from visual information, suggesting that their ability to leverage visual inspection remains limited.

Table 9 presents the accuracy of parameter selection when calling the tool, assessing the model’s
ability to correctly pass the appropriate parameters. This provides a stricter evaluation of the model’s
tool execution capabilities. In our case, we observed that the model sometimes incorrectly swapped
the target and source object coordinates when calling the collision detector. While the results re-
mained correct in these instances—since the function’s output did not change—this could present
issues in more complex scenarios.
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Table 6: S1 Accuracy by model and representation
Model Representation 3D1 3D2 3D3 none sketches Average

GPT-4o

absolute 0.987 0.987 0.987 1.000 0.987 0.989
marks 0.027 0.027 0.027 0.027 0.027
marks + text 0.907 0.907 0.907 0.987 0.907 0.923
normalized 1.000 1.000 1.000 1.000 1.000 1.000
Average 0.730 0.730 0.730 0.996 0.730 0.772

GPT-4o-mini

absolute 0.987 0.987 0.987 0.987 0.987 0.987
marks 0.067 0.067 0.067 0.067 0.067
marks + text 0.747 0.827 0.827 0.813 0.800 0.803
normalized 1.000 1.000 1.000 1.000 1.000 1.000
Average 0.700 0.720 0.720 0.933 0.713 0.748

LLaVA-NeXT-110B

absolute 0.507 0.533 0.507 0.387 0.587 0.504
marks 0.027 0.013 0.040 0.120 0.050
marks + text 0.173 0.120 0.160 0.253 0.160 0.173
normalized 0.960 0.907 0.907 0.907 0.827 0.901

Average 0.417 0.393 0.403 0.516 0.423 0.426

LLaMA-3.2-90B

absolute 0.960 0.960 0.960 0.920 0.960 0.952
marks 0.413 0.080 0.400 0.467 0.340
marks + text 0.813 0.627 0.560 0.747 0.907 0.731
normalized 1.000 1.000 1.000 1.000 1.000 1.000
Average 0.797 0.667 0.730 0.889 0.833 0.778

Qwen2-VL-72B

absolute 0.427 0.453 0.467 0.520 0.413 0.456
marks 0.387 0.027 0.347 0.600 0.340
marks + text 0.680 0.440 0.573 0.533 0.680 0.581
normalized 0.973 0.987 0.987 1.000 0.960 0.981

Average 0.617 0.477 0.593 0.684 0.663 0.603

Average 0.652 0.597 0.635 0.804 0.673 0.665

Table 7: Average accuracy of models across different question categories for S1.
Model Corners Left Right Average
GPT-4o 0.728 0.806 0.781 0.772
GPT-4o-mini 0.636 0.806 0.802 0.748
LLaVA-NeXT-110B 0.442 0.417 0.419 0.426
LLaMA-3.2-90B 0.674 0.836 0.823 0.778
Qwen2-VL-72B 0.625 0.598 0.585 0.603

Average 0.621 0.693 0.682 0.665

From the table, we can see that GPT-4o demonstrates near-perfect accuracy in calling the tool with
the correct parameters. In contrast, GPT-4o-mini struggles, particularly when the representation
is not normalized. This aligns with our previous finding that normalized coordinates lead to better
performance for the model, holding true also for function calling.

B.3 S3. EVALUATING JOINT FREE-SPACE, ALIGNMENT, ORIENTATION AND FUNCTIONALITY
REASONING

Table 12 reports the accuracy of the models across different question types and visual axis categories.
We observe that the models’ performance hovers around random chance for binary yes/no questions.
Neither explicit instructions to construct a scene graph nor the use of different visual axes seem to
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Table 8: S2. Average accuracy by model and question type
Model Visual Axis All in Empty Existing in Average

GPT-4o

3D1 0.680 0.750 0.660 0.697
3D2 0.730 0.710 0.670 0.703
3D3 0.740 0.790 0.750 0.760
none 0.853 0.853
sketches 0.800 0.750 0.790 0.780

Average 0.738 0.766 0.718 0.742

GPT-4o-mini

3D1 0.610 0.660 0.540 0.603
3D2 0.590 0.630 0.590 0.603
3D3 0.600 0.680 0.580 0.620
none 0.707 0.707
sketches 0.670 0.700 0.660 0.677

Average 0.618 0.674 0.593 0.631

LLaVA-NeXT-110B

3D1 0.610 0.490 0.480 0.527
3D2 0.540 0.460 0.450 0.483
3D3 0.470 0.500 0.460 0.477
none 0.613 0.613
sketches 0.510 0.510 0.480 0.500

Average 0.533 0.509 0.468 0.504

LLaMA-3.2-90B

3D1 0.610 0.620 0.490 0.573
3D2 0.580 0.570 0.470 0.540
3D3 0.620 0.680 0.570 0.623
none 0.653 0.653
sketches 0.530 0.520 0.570 0.540

Average 0.585 0.606 0.525 0.574

Qwen2-VL-72B

3D1 0.570 0.510 0.570 0.550
3D2 0.500 0.470 0.460 0.477
3D3 0.590 0.520 0.530 0.547
none 0.533 0.533
sketches 0.550 0.560 0.610 0.573

Average 0.553 0.518 0.543 0.536

Average 0.605 0.615 0.569 0.597

improve the performance beyond random chance. Lower accuracy values are highlighted in red for
emphasis.

We additionally provide example of the prompts used for the S3 questions in figures 5, 6, and 7.

C EXPERIMENTAL DETAILS AND MODEL CHECKPOINTS

For most open-source models, such as Llava and Qwen-2-VL, we utilized the pre-trained check-
points available on Hugging Face. Our experiments were conducted using 8 NVIDIA A100 GPUs,
with implementations based on Python 3.10 and PyTorch 2.4. For commercial models, specifically
GPT-4o and GPT-4o mini, we accessed them via the OpenAI API. For Llama-3.2 Vision, we used
NVIDIA NIMs. All models were tested using their default parameter configurations.
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Table 9: S2. Tool usage average of parameter accuracy
Model Representation 3D1 3D2 3D3 None Sketches Grand Total

GPT-4o

Absolute 1.000 1.000 1.000 1.000 1.000 1.000

Marks 0.880 .853 0.867 - 0.853 0.863

Marks + Text 0.747 0.760 0.760 0.720 0.773 0.757

Normalized 1.000 1.000 1.000 1.000 1.000 1.000

Average 0.907 0.903 0.907 0.907 0.907 0.906

GPT-4o-mini

Absolute 0.720 0.653 0.693 0.920 0.720 0.714

Marks 0.040 0.000 0.027 - 0.013 0.020

Marks + Text 0.040 0.040 0.120 0.000 0.013 0.049

Normalized 0.893 0.907 0.867 0.960 0.920 0.902

Average 0.423 0.400 0.427 0.627 0.417 0.429

Average 0.665 0.652 0.667 0.767 0.662 0.667

Table 10: Model accuracy on tasks S1 and S2 across different visual axes. Strong over-reliance on
Language Processing

Model Task None Sketches 3D1 3D2 3D3 Visual % Diff
(text) Average

GPT-4o S1 0.996 0.730 0.730 0.730 0.730 0.730 -26.7%
S2 0.853 0.780 0.697 0.703 0.760 0.735 -13.9%

GPT-4o-mini S1 0.933 0.713 0.700 0.720 0.720 0.713 -23.6%
S2 0.707 0.677 0.603 0.603 0.620 0.626 -11.4%

LLaVA-NeXT-110B S1 0.516 0.423 0.417 0.393 0.403 0.409 -20.6%
S2 0.613 0.500 0.527 0.483 0.477 0.497 -19.0%

LLaMA-3.2-90B S1 0.889 0.833 0.797 0.667 0.730 0.757 -14.9%
S2 0.653 0.540 0.573 0.540 0.623 0.569 -12.9%

Qwen2-VL-72B S1 0.684 0.663 0.617 0.477 0.593 0.588 -14.2%
S2 0.533 0.573 0.550 0.477 0.547 0.537 +0.6%

D QUALITATIVE EXAMPLES

In Figures 8, 9, 10, 12, and 14, we present qualitative examples for each question type, focusing
on the stronger model, GPT-4o . These figures illustrate the model’s reasoning process for each
question. It is important to note that in all cases, the final response was obtained by continuing the
dialogue and asking the model to format its answer as a Python list in JSON format. For brevity,
this part is not explicitly shown in the examples.

We used the following prompt: ” Please put your answer as a list of coordinates in JSON format.
Start with ‘‘‘json and end with ‘‘‘ (e.g., ‘‘‘json [ [10, 150], [393, 0] ] ‘‘‘)
” (without quotation marks), where the example in the prompt is consistent with the representation
used—in this case, absolute coordinates.
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Table 11: S3 Joint Reasoning: Accuracy of models by representation and prompting technique.
Refer to Sec. 4.3 for a description of prompting techniques

Model Method Implicit Explicit Scene Graph Explicit Scene Graph Average
w/ Text Redundancy

GPT-4o Absolute 0.480 0.390 0.500 0.457
Marks 0.570 0.370 0.460 0.467
Normalized 0.490 0.430 0.480 0.467

GPT-4o Average 0.513 0.397 0.480 0.463

GPT-4o-mini Absolute 0.460 0.420 0.440 0.440
Marks 0.500 0.520 0.470 0.497
Normalized 0.450 0.500 0.460 0.470

GPT-4o-mini Average 0.470 0.480 0.457 0.469

LLAVA-Next Absolute 0.400 0.420 0.450 0.423
Marks 0.540 0.460 0.510 0.503
Normalized 0.510 0.560 0.480 0.517

LLAVA-Next Average 0.483 0.480 0.480 0.481

LLaMA-3.2 Absolute 0.530 0.510 0.510 0.517
Marks 0.500 0.490 0.490 0.493
Normalized 0.510 0.510 0.500 0.507

LLaMA-3.2 Average 0.513 0.503 0.500 0.506

Qwen2-VL-72B Absolute 0.390 0.460 0.430 0.427
Marks 0.500 0.500 0.440 0.480
Normalized 0.510 0.510 0.500 0.507

Qwen2-VL-72B Average 0.467 0.490 0.457 0.471

Table 12: S3 Average accuracy across different models and visual axes
Model Question — Prompt 3D1 3D2 Average

GPT-4o
Implicit Prompt 0.533 0.493 0.513
Explicit Scene Graph Prompt 0.413 0.380 0.397
Text Redundancy + Explicit Scene Graph Prompt 0.467 0.493 0.480

GPT-4o Average 0.471 0.456 0.463

GPT-4o-mini
Implicit Prompt 0.500 0.440 0.470
Explicit Scene Graph Prompt 0.453 0.507 0.480
Text Redundancy + Explicit Scene Graph Prompt 0.440 0.473 0.457

GPT-4o-mini Average 0.464 0.473 0.469

LLaVA-NeXT-110B
Implicit Prompt 0.480 0.487 0.483
Explicit Scene Graph Prompt 0.493 0.467 0.480
Text Redundancy + Explicit Scene Graph Prompt 0.500 0.460 0.480

LLaVA-NeXT-110B Average 0.491 0.471 0.481

LLaMA-3.2-90B
Implicit Prompt 0.527 0.500 0.513
Explicit Scene Graph Prompt 0.513 0.493 0.503
Text Redundancy + Explicit Scene Graph Prompt 0.493 0.507 0.500

LLaMA-3.2-90B Average 0.511 0.500 0.506

Qwen2-VL-72B
Implicit Prompt 0.507 0.427 0.467
Explicit Scene Graph Prompt 0.487 0.493 0.490
Text Redundancy + Explicit Scene Graph Prompt 0.447 0.467 0.457

Qwen2-VL-72B Average 0.480 0.462 0.471

Average 0.484 0.472 0.478
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Table 13: Average accuracy for GPT-4o across question types for S2 w/ and w/o zero-shot CoT (Ko-
jima et al., 2023)

Model all in empty existing in Average
GPT-4o 0.738 0.766 0.718 0.742

GPT-4o w/ Zero-Shot-CoT 0.688 0.724 0.713 0.709

System: You are a helpful visual AI agent. The user will ask you questions, and you will provide the
answers.↪→

Prompt: You are given a rectangular room with dimensions 334 cm by 436 cm (length x width).
The provided image represents the top-down view of room.

The coordinate system is defined with the origin (0,0) at the bottom-left corner of the room. The
positive X-axis extends to the right, and the positive Y-axis extends upward.↪→

The object's orientation can be between -360 and 360 degrees and is described as follows:
1. When the orientation is 0, the front of the object faces the Y-axis (upward).
2. When the orientation is 90, the front of the object faces the X-axis (to the right).

Importantly, the front of the object refers to the side where the object is typically accessed and
length is defined along X and width along Y axis.↪→

Your task is to determine if placing a nightstand of canonical size [48, 48] (length, width) centered
at position [310, 372] with orientation -90 makes sense in this room.↪→

Given the provided image and the convention described above, evaluate whether this placement is
reasonable based on the room's dimensions, the existing objects in the room, the object category,
the object's size, its orientation and functionality of the object centered at that position.

↪→
↪→

Figure 5: Example of the implicit prompt used to evaluate the model on S3. The model is expected
to implicitly determine the best approach to solve the task.
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System: You are a helpful visual AI agent. The user will ask you questions, and you will provide the
answers.↪→

User: You are given a rectangular room with dimensions 276 cm by 413 cm (length x width).
The provided image represents the top-down view of room.

The coordinate system is defined with the origin (0,0) at the bottom-left corner of the room. The
positive X-axis extends to the right, and the positive Y-axis extends upward.↪→

The object's orientation can be between -360 and 360 degrees and is described as follows:
1. When the orientation is 0, the front of the object faces the Y-axis (upward).
2. When the orientation is 90, the front of the object faces the X-axis (to the right).

Importantly, the front of the object refers to the side where the object is typically accessed and
length is defined along X and width along Y axis.↪→

Your task is to determine if placing a double_bed of canonical size [272, 209] (length, width)
centered at position [177, 177] with orientation -90 makes sense in this room.↪→

Given the provided image and the convention described above, evaluate whether this placement is
reasonable based on the room's dimensions, the existing objects in the room, the object category,
the object's size, its orientation and functionality of the object centered at that position.

↪→
↪→

You will break down the task into three steps:
1. Describe the providing image and existing objects in the room. Start by visually analyzing the

image and identifying the key objects and their locations in relation to each other.↪→

<Example>
The image shows a top-down view of bedroom.
A soft gray sofa is positioned at the edge, anchoring the seating area.
In front of it, a wooden coffee table sits centrally in the middle, aligned and facing the sofa, at a

near distance.↪→
A sleek TV stand is placed at the opposite edge, far from the coffee table, and also aligned to face

it.↪→
Additionally, a modern desk is located at the edge, far from the TV stand, creating a clear

separation between the workspace and relaxation area.↪→
</Example>

2. Create a text-based scene graph of the room. Organize the room and objects into a structured
format, capturing their spatial relationships.↪→

<Example>
sofa-0 | edge
coffee table-0 | middle | near, sofa-0 | in front of, sofa-0 | center aligned, sofa-0 | face to,

sofa-0↪→
tv stand-0 | edge | far, coffee table-0 | in front of, coffee table-0 | center aligned, coffee

table-0 | face to, coffee table-0↪→
desk-0 | edge | far, tv stand-0
</Example>

3. Evaluate whether the object placement makes sense in the room (yes/no) and provide a reason for
your answer.↪→

Evaluate whether this placement is reasonable based on the text-based scene graph of the room, the
room's dimensions, the object category, the object's size, its orientation and functionality of
the object centered at that position

↪→
↪→

Figure 6: Example of the explicit scene graph prompt used to evaluate the model on S3. Inspired by
least-to-most prompting and text-based scene graph construction from Holodeck Yang et al. (2024),
the model is instructed to first create a description of the scene, followed by constructing a text-based
scene graph as intermediate steps.
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System: You are a helpful visual AI agent. The user will ask you questions, and you will provide the
answers.↪→

Prompt: You are given a rectangular room with dimensions 334 cm by 436 cm (length x width).
The provided image represents the top-down view of room.

The coordinate system is defined with the origin (0,0) at the bottom-left corner of the room. The
positive X-axis extends to the right, and the positive Y-axis extends upward.↪→

The object's orientation can be between -360 and 360 degrees and is described as follows:
1. When the orientation is 0, the front of the object faces the Y-axis (upward).
2. When the orientation is 90, the front of the object faces the X-axis (to the right).

Importantly, the front of the object refers to the side where the object is typically accessed and
length is defined along X and width along Y axis.↪→

Objects in the room, their exterior polygon coordinates as a [x,y] list.

double_bed. Polygon: [[97.5, 129.0], [97.5, 339.0], [330.5, 339.0], [330.5, 129.0]]
nightstand. Polygon: [[278.0, 81.0], [278.0, 129.0], [326.0, 129.0], [326.0, 81.0]]
wardrobe. Polygon: [[32.0, 0.0], [32.0, 66.0], [328.0, 66.0], [328.0, 0.0]]

Your task is to determine if placing a nightstand of canonical size [48, 48] (length, width) centered
at position [310, 372] with orientation -90 makes sense in this room.↪→

Given the provided image and the convention described above, evaluate whether this placement is
reasonable based on the room's dimensions, the existing objects in the room, the object category,
the object's size, its orientation and functionality of the object centered at that position.

↪→
↪→

You will break down the task into three steps:
1. Describe the providing image and existing objects in the room. Start by visually analyzing the

image and identifying the key objects and their locations in relation to each other.↪→

<Example>
The image shows a top-down view of bedroom. A soft gray sofa is positioned at the edge, anchoring the

seating area. In front of it, a wooden coffee table sits centrally in the middle, aligned and
facing the sofa, at a near distance. A sleek TV stand is placed at the opposite edge, far from
the coffee table, and also aligned to face it. Additionally, a modern desk is located at the
edge, far from the TV stand, creating a clear separation between the workspace and relaxation
area.

↪→
↪→
↪→
↪→
↪→
</Example>

2. Create a text-based scene graph of the room. Organize the room and objects into a structured
format, capturing their spatial relationships.↪→

<Example>
sofa-0 | edge
coffee table-0 | middle | near, sofa-0 | in front of, sofa-0 | center aligned, sofa-0 | face to,

sofa-0↪→
tv stand-0 | edge | far, coffee table-0 | in front of, coffee table-0 | center aligned, coffee

table-0 | face to, coffee table-0↪→
desk-0 | edge | far, tv stand-0
<Example>

3. Evaluate whether the object placement makes sense in the room (yes/no) and provide a reason for
your answer.↪→

Evaluate whether this placement is reasonable based on the text-based scene graph of the room, the
room's dimensions, the object category, the object's size, its orientation and functionality of
the object centered at that position.

↪→
↪→

Figure 7: Example of the text redundancy + explicit scene graph prompt used to evaluate the model
on S3. We begin by describing the existing objects in the room. Then, inspired by least-to-most
prompting and text-based scene graph construction from Holodeck Yang et al. (2024), the model
is instructed to first provide a description of the scene, followed by constructing a text-based scene
graph as intermediate steps.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

System: You are a helpful AI agent. You are helping a user to understand spatial relationships in a
room. The user will ask you questions, and you will provide the answers.↪→

User: You are given a rectangular room with dimensions 313 cm by 376 cm.

Your task is to determine the coordinates of the four corners in the following order: bottom-left,
top-left, top-right, and bottom-right.↪→

Assume the coordinate system is such that the origin (0,0) is at the bottom-left corner of the room,
with the positive X-axis extending to the right and the positive Y-axis extending upward.↪→

Please use the attached image for reference.

VLM Response : Given the dimensions of the rectangular room (313 cm by 376 cm) and the coordinate
system where the origin (0,0) is at the bottom-left corner, the coordinates of the four corners
of the room can be determined as follows:

↪→
↪→

1. **Bottom-left corner**: This is the origin of the coordinate system.
- Coordinates: (0, 0)

2. **Top-left corner**: This is directly above the bottom-left corner, at the height of the room.
- Coordinates: (0, 376)

3. **Top-right corner**: This is at the top of the room, at the width of the room.
- Coordinates: (313, 376)

4. **Bottom-right corner**: This is directly to the right of the bottom-left corner, at the width of
the room.↪→

- Coordinates: (313, 0)

So, the coordinates of the four corners in the specified order are:
- Bottom-left: (0, 0)
- Top-left: (0, 376)
- Top-right: (313, 376)
- Bottom-right: (313, 0)

Figure 8: Qualitative example illustrating the task for S1. Success case with corners question using
the GPT-4o model.
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System: You are a helpful AI agent. You are helping a user to understand spatial relationships in a
room. The user will ask you questions, and you will provide the answers.↪→

User: You are given a rectangular room with dimensions 313 cm by 376 cm.
The provided image represents the top-down view of the rectangular room with markers.
Each marker is associated with a coordinate (x, y) within the room. The markers are placed at a

distance of 53 cm from each other.↪→

Your task is to determine the marks representing the four corners in the following order:
bottom-left, top-left, top-right, and bottom-right.↪→

Please use the attached image for reference.

VLM Response : Given the dimensions of the rectangular room (313 cm by 376 cm) and the coordinate
system where the origin (0,0) is at the bottom-left corner, the coordinates of the four corners
of the room can be determined as follows:

↪→
↪→

1. **Bottom-left corner**: This is the origin of the coordinate system.
- Coordinates: (0, 0)

2. **Top-left corner**: This is directly above the bottom-left corner, at the height of the room.
- Coordinates: (0, 376)

3. **Top-right corner**: This is at the top of the room, at the width of the room.
- Coordinates: (313, 376)

4. **Bottom-right corner**: This is directly to the right of the bottom-left corner, at the width of
the room.↪→

- Coordinates: (313, 0)

So, the coordinates of the four corners in the specified order are:
- Bottom-left: (0, 0)
- Top-left: (0, 376)
- Top-right: (313, 376)
- Bottom-right: (313, 0)

Figure 9: Illustration of a failure case for task S1. The model GPT-4o fails to correctly answer
corner questions involving marks, providing the absolute coordinates of the room instead of the
required corner markers.
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System: You are a helpful AI agent. You are helping a user to understand spatial relationships in a
room. The user will ask you questions, and you will provide the answers.↪→

User: You are given a rectangular room with normalized dimensions 1 unit(s) by 1 unit(s) (length x
width).↪→

Your task is to determine if a target object can be positioned at the room without overlapping with
any existing object.↪→

The target object has dimensions 0.188 unit(s) by 0.165 unit(s) and would be centered at [0.561,
0.808] unit(s).↪→

The existing object has dimensions 0.152 unit(s) by 0.56 unit(s) and is centered at [0.281, 0.485]
unit(s).↪→

Can the target object be positioned at the room without overlapping with any existing object?

Assume the coordinate system is such that the origin (0,0) is at the bottom-left corner of the room,
with the positive X-axis extending to the right and the positive Y-axis extending upward.↪→

Please use the attached image for reference. Both existing and target objects are shown in the image

VLM Response : .... First, let's calculate the bounding boxes for both objects.
### Target Object
- Center: [0.561, 0.808]
- Dimensions: 0.188 × 0.165
The half-dimensions are:
- Half-width: 0.188/2 = 0.094
- Half-height: 0.165/2 = 0.0825
Bounding box coordinates:
- Left: 0.561 − 0.094 = 0.467
- Right: 0.561 + 0.094 = 0.655
- Bottom: 0.808 − 0.0825 = 0.7255
- Top: 0.808 + 0.0825 = 0.8905
### Existing Object
- Center: [0.281, 0.485]
- Dimensions: 0.152 × 0.56
The half-dimensions are:
- Half-width: 0.152/2 = 0.076
- Half-height: 0.56/2 = 0.28
Bounding box coordinates:
- Left: 0.281 − 0.076 = 0.205
- Right: 0.281 + 0.076 = 0.357
- Bottom: 0.485 − 0.28 = 0.205
- Top: 0.485 + 0.28 = 0.765
### Check for Overlap
To check for overlap, we need to see if the bounding boxes intersect. The conditions for no overlap

are:↪→
- The right side of one box is to the left of the left side of the other box.
- The top side of one box is below the bottom side of the other box.
Let's check these conditions:
1. **Horizontal Overlap**:
- The right side of the target object (0.655) is greater than the left side of the existing object

(0.205).↪→
- The left side of the target object (0.467) is less than the right side of the existing object

(0.357).↪→
2. **Vertical Overlap**:
- The top side of the target object (0.8905) is greater than the bottom side of the existing object

(0.205).↪→
- The bottom side of the target object (0.7255) is less than the top side of the existing object

(0.765).↪→
Since both horizontal and vertical overlap conditions are met, the target object will overlap with

the existing object.↪→
### Conclusion
The target object **cannot** be positioned at [0.561, 0.808] without overlapping with the existing

object.↪→

...

Answer: No

Figure 10: Illustration of a failure case for task S2 (All-IN scenario) with the GPT-4o model. The
model fails to provide a correct answer, despite the fact that the problem could be easily solved
through visual inspection. Instead, the model attempts a mathematical approach and fails.
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System: You are a helpful AI agent. You are helping a user to understand spatial relationships in a
room. The user will ask you questions, and you will provide the answers.↪→

User: You are given a rectangular room with normalized dimensions 1 unit(s) by 1 unit(s) (length x
width).↪→

Your task is to determine if a target object can be positioned at the room without overlapping with
any existing object.↪→

The target object has dimensions 0.188 unit(s) by 0.165 unit(s) and would be centered at [0.561,
0.808] unit(s).↪→

The existing object has dimensions 0.152 unit(s) by 0.56 unit(s) and is centered at [0.281, 0.485]
unit(s).↪→

Can the target object be positioned at the room without overlapping with any existing object?

Assume the coordinate system is such that the origin (0,0) is at the bottom-left corner of the room,
with the positive X-axis extending to the right and the positive Y-axis extending upward.↪→

VLM Response : .... First, let's calculate the bounding boxes for both objects.

### Target Object
- Center: [0.561, 0.808]
- Dimensions: 0.188 × 0.165
The half-dimensions are:
- Half-width: 0.188/2 = 0.094
- Half-height: 0.165/2 = 0.0825
Bounding box coordinates:
- Left: 0.561 − 0.094 = 0.467
- Right: 0.561 + 0.094 = 0.655
- Bottom: 0.808 − 0.0825 = 0.7255
- Top: 0.808 + 0.0825 = 0.8905
### Existing Object
- Center: [0.281, 0.485]
- Dimensions: 0.152 × 0.56
The half-dimensions are:
- Half-width: 0.152/2 = 0.076
- Half-height: 0.56/2 = 0.28
Bounding box coordinates:
- Left: 0.281 − 0.076 = 0.205
- Right: 0.281 + 0.076 = 0.357
- Bottom: 0.485 − 0.28 = 0.205
- Top: 0.485 + 0.28 = 0.765
### Checking for Overlap
To check for overlap, we need to see if the bounding boxes intersect. The conditions for no overlap

are:↪→
- One rectangle is to the left of the other.
- One rectangle is above the other.
For no overlap:
- The right side of the target object must be less than the left side of the existing object, or
- The left side of the target object must be greater than the right side of the existing object, or
- The top side of the target object must be less than the bottom side of the existing object, or
- The bottom side of the target object must be greater than the top side of the existing object.
Let's check these conditions:
- Right side of target: 0.655
- Left side of existing: 0.205
- Left side of target: 0.467
- Right side of existing: 0.357
- Top side of target: 0.8905
- Bottom side of existing: 0.205
- Bottom side of target: 0.7255
- Top side of existing: 0.765
Checking the conditions:
- 0.655 < 0.205 (False)
- 0.467 > 0.357 (True)
- 0.8905 < 0.205 (False)
- 0.7255 > 0.765 (False)
Since one of the conditions (left side of target > right side of existing) is true, the target object

can be positioned in the room without overlapping with the existing object.↪→

### Conclusion
Yes, the target object can be positioned at [0.561, 0.808] without overlapping with the existing object

centered at [0.281, 0.485].↪→
...

Answer: Yes

Figure 11: Illustration of a successful case for task S2 with the GPT-4o model on the same data as in
Fig. 10. When provided no images, the model follows a similar reasoning path with more accurate
collision checking, resulting in a correct answer
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User: You are given a rectangular room with dimensions 334 cm by 436 cm (length x width).
The provided image represents the top-down view of room.

The coordinate system is defined with the origin (0,0) at the bottom-left corner of the room. The
positive X-axis extends to the right, and the positive Y-axis extends upward.↪→

The object's orientation can be between -360 and 360 degrees and is described as follows:
1. When the orientation is 0, the front of the object faces the Y-axis (upward).
2. When the orientation is 90, the front of the object faces the X-axis (to the right).

Importantly, the front of the object refers to the side where the object is typically accessed and
length is defined along X and width along Y axis.↪→

Your task is to determine if placing a nightstand of canonical size [48, 48] (length, width) centered
at position [310, 372] with orientation -90 makes sense in this room.↪→

Given the provided image and the convention described above, evaluate whether this placement is
reasonable based on the room's dimensions, the existing objects in the room, the object category,
the object's size, its orientation and functionality of the object centered at that position.

↪→
↪→

VLM Response : To determine if placing a nightstand of size [48 cm, 48 cm] centered at position [310
cm, 372 cm] with an orientation of -90 degrees makes sense in this room, we need to consider the
following:

↪→
↪→

1. **Room Dimensions**: The room is 334 cm by 436 cm.
2. **Nightstand Dimensions**: The nightstand is 48 cm by 48 cm.
3. **Nightstand Position**: The nightstand is centered at [310 cm, 372 cm].
4. **Nightstand Orientation**: The front of the nightstand faces the negative X-axis (to the left)

when oriented at -90 degrees.↪→

### Step-by-Step Analysis:

1. **Position and Centering**:
- The nightstand is centered at [310 cm, 372 cm].
- This means the nightstand extends 24 cm (half of 48 cm) in all directions from its center.

2. **Boundary Check**:
- The nightstand's boundaries will be:
- Left: 310 cm - 24 cm = 286 cm
- Right: 310 cm + 24 cm = 334 cm
- Bottom: 372 cm - 24 cm = 348 cm
- Top: 372 cm + 24 cm = 396 cm

3. **Room Boundaries**:
- The room's dimensions are 334 cm by 436 cm.
- The nightstand's right boundary (334 cm) exactly touches the room's right wall.
- The nightstand's top boundary (396 cm) exceeds the room's top boundary (436 cm).

4. **Existing Objects**:
- The image shows a bed and other furniture in the room.
- The proposed position of the nightstand is very close to the bed, which might interfere with the

bed's functionality and accessibility.↪→

### Conclusion:
- **Boundary Violation**: The nightstand's top boundary (396 cm) exceeds the room's top boundary (436

cm), which means it will not fit within the room's dimensions.↪→
- **Interference with Existing Objects**: The nightstand's position is very close to the bed, which

could interfere with the bed's accessibility and functionality.↪→

Given these points, placing the nightstand at the specified position and orientation does not make
sense in this room. It would be better to find a different position that does not violate the
room's boundaries and does not interfere with existing furniture.

↪→
↪→

....

Answer: No

Figure 12: Illustration of a failure case for task S3 with the GPT-4o model.
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User: You are given a rectangular room with dimensions 334 cm by 436 cm.
The provided image represents the top-down view of room.
Each marker is associated with a coordinate (x, y) within the room.
The markers are placed at a distance of 62 cm from each other.

The coordinate system is defined with the origin (0,0) at the bottom-left corner of the room. The
positive X-axis extends to the right, and the positive Y-axis extends upward.↪→

The object's orientation can be between -360 and 360 degrees and is described as follows:
1. When the orientation is 0, the front of the object faces the Y-axis (upward).
2. When the orientation is 90, the front of the object faces the X-axis (to the right).

Importantly, the front of the object refers to the side where the object is typically accessed and
length is defined along X and width along Y axis.↪→

Your task is to determine if placing a nightstand of canonical size [48, 48] (length, width) centered
at marker '1' with orientation -90 makes sense in this room.↪→

Given the provided image and the convention described above, evaluate whether this placement is
reasonable based on the room's dimensions, the existing objects in the room, the object category,
the object's size, its orientation and functionality of the object centered at that position.

↪→
↪→

VLM Response : To determine if placing a nightstand of size [48 cm, 48 cm] centered at marker '1'
with an orientation of -90 degrees makes sense, we need to consider the following:↪→

1. **Marker Coordinates**: Marker '1' is located at the bottom-left corner of the room. Given the
markers are placed 62 cm apart, the coordinates of marker '1' are (62 cm, 62 cm).↪→

2. **Nightstand Dimensions and Orientation**:
- The nightstand has dimensions of 48 cm by 48 cm.
- With an orientation of -90 degrees, the front of the nightstand faces the negative X-axis (to the

left).↪→

3. **Placement and Room Boundaries**:
- Centering the nightstand at marker '1' means its center is at (62 cm, 62 cm).
- The nightstand extends 24 cm in all directions from its center (since 48 cm / 2 = 24 cm).

4. **Boundary Check**:
- The left edge of the nightstand will be at 62 cm - 24 cm = 38 cm.
- The right edge of the nightstand will be at 62 cm + 24 cm = 86 cm.
- The bottom edge of the nightstand will be at 62 cm - 24 cm = 38 cm.
- The top edge of the nightstand will be at 62 cm + 24 cm = 86 cm.

5. **Existing Objects**:
- The image shows a bed and other furniture in the room.
- Marker '1' is near the bottom-left corner, and there appears to be a bed nearby.

6. **Functionality and Accessibility**:
- A nightstand is typically placed next to a bed for accessibility.
- Placing the nightstand at marker '1' would make it accessible from the bed.

Given these considerations, placing the nightstand at marker '1' with the specified orientation is
reasonable. The nightstand will fit within the room's boundaries and will be accessible from the
bed, fulfilling its intended functionality.

↪→
↪→

....

Answer: Yes

Figure 13: Illustration of an incorrect case for task S3, where the model’s reasoning path is com-
pletely off. However, GPT-4o hallucinates and still guesses the correct binary ”yes” answer. While
the model’s accuracy would be considered acceptable in this case, it repeatedly hallucinates and
deviates from the correct reasoning process.
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User: ... {See above for complete prompt examples}...
....

Your task is to determine if placing a dressing_chair of canonical size [47, 47] (length, width)
centered at position [265, 53] with orientation 90 makes sense in this room.↪→

Given the provided image and the convention described above, evaluate whether this placement is
reasonable based on the room's dimensions, the existing objects in the room, the object category,
the object's size, its orientation and functionality of the object centered at that position.

↪→
↪→

You will break down the task into three steps:
... {See above for complete prompt}

VLM Response : ### Step 1: Describe the provided image and existing objects in the room

The image shows a top-down view of a bedroom.
- A large bed is positioned centrally in the room, with its headboard against the top wall.
- To the left of the bed, there is a nightstand.
- At the top wall, above the bed, there is a wardrobe spanning the width of the room.
- To the right of the bed, there is a dressing table with a mirror above it.
- The floor appears to be wooden, and the walls are a neutral color.
### Step 2: Create a text-based scene graph of the room
```
bed-0 | center | headboard against, top wall
nightstand-0 | left, bed-0
wardrobe-0 | top wall | above, bed-0 | spanning width
dressing table-0 | right, bed-0 | below, mirror-0
mirror-0 | above, dressing table-0
```
### Step 3: Evaluate whether the object placement makes sense in the room

**Object to be placed: Dressing chair**
- Size: 47 cm (length) x 47 cm (width)
- Centered at position: [265, 53]
- Orientation: 90 degrees (front facing the X-axis, to the right)

**Evaluation:**
- The room dimensions are 371 cm (length) x 348 cm (width).
- The dressing chair will be centered at [265, 53], meaning its edges will extend from [241.5, 29.5]

to [288.5, 76.5].↪→
- The dressing table is located to the right of the bed, and the chair is intended to be placed in

front of it.↪→
**Reasoning:**
- The placement of the dressing chair at [265, 53] with an orientation of 90 degrees means it will

face the dressing table, which is logical for functionality.↪→
- The chair's position does not interfere with the bed or the nightstand.
- The chair's dimensions fit within the room's dimensions and do not obstruct any pathways or other

furniture.↪→
**Conclusion:**
Yes, the placement of the dressing chair centered at position [265, 53] with orientation 90 makes

sense in this room. The chair is appropriately positioned in front of the dressing table,
allowing for functional use without obstructing other furniture or pathways.

↪→
↪→

....

Answer: Yes

Figure 14: Illustration of a correct case for task S3, in the explicit scene graph case, where the
GPT-4o is able to reason well about alignment, orientation and functionality, while only slightly
hallucinating in the scene graph about the bed’s headboard position
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User:... {See above for complete prompt examples}...
....
Your task is to determine if placing a chair of canonical size [0.135, 0.091] (length, width)

centered at position [0.648, 0.283] with orientation 65 makes sense in this room.↪→
Given the provided image and the convention described above, evaluate whether this placement is

reasonable based on the room's dimensions, the existing objects in the room, the object category,
the object's size, its orientation and functionality of the object centered at that position.

↪→
↪→

You will break down the task into three steps:
1. Describe the providing image and existing objects in the room. Start by visually analyzing the

image and identifying the key objects and their locations in relation to each other.↪→

<Example>
The image shows a top-down view of bedroom. A soft gray sofa is positioned at the edge, anchoring the

seating area. In front of it, a wooden coffee table sits centrally in the middle, aligned and
facing the sofa, at a near distance. A sleek TV stand is placed at the opposite edge, far from
the coffee table, and also aligned to face it.

↪→
↪→
↪→
Additionally, a modern desk is located at the edge, far from the TV stand, creating a clear

separation between the workspace and relaxation area.↪→
</Example>

2. Create a text-based scene graph of the room. Organize the room and objects into a structured
format, capturing their spatial relationships.↪→

<Example>
sofa-0 | edge
coffee table-0 | middle | near, sofa-0 | in front of, sofa-0 | center aligned, sofa-0 | face to,

sofa-0↪→
tv stand-0 | edge | far, coffee table-0 | in front of, coffee table-0 | center aligned, coffee

table-0 | face to, coffee table-0↪→
desk-0 | edge | far, tv stand-0
</Example>

3. Evaluate whether the object placement makes sense in the room (yes/no) and provide a reason for
your answer.↪→

Evaluate whether this placement is reasonable based on the text-based scene graph of the room, the
room's dimensions, the object category, the object's size, its orientation and functionality of
the object centered at that position.

↪→
↪→

VLM Response : **Step 1: Describe the providing image and existing objects in the room.**

The image shows a top-down view of a bedroom. A bed is positioned at the center, with a nightstand on
each side. The bed is aligned with the longer side of the room, leaving space on either end. A
dresser is placed at the edge, far from the bed, creating a clear separation between the sleeping
area and the storage space. Additionally, a closet is located at the edge, far from the dresser,
providing additional storage.

↪→
↪→
↪→
↪→

**Step 2: Create a text-based scene graph of the room.**

bed-0 | center
nightstand-0 | near, bed-0 | left of, bed-0
nightstand-1 | near, bed-0 | right of, bed-0
dresser-0 | edge | far, bed-0
closet-0 | edge | far, dresser-0

**Step 3: Evaluate whether the object placement makes sense in the room (yes/no) and provide a reason
for your answer.**↪→

No, the placement of the chair does not make sense in this room. The chair is centered at position
[0.648, 0.283] with an orientation of 65 degrees, which means it is facing diagonally towards the
top-right corner of the room. However, this placement would result in the chair being partially
outside the room, as the room's dimensions are 1 unit(s) by 1 unit(s) and the chair's position is
beyond the room's boundaries. Additionally, the chair's orientation does not align with any of
the existing objects in the room, making it difficult to determine its intended purpose or
functionality in this context.

↪→
↪→
↪→
↪→
↪→
↪→

....

Answer: NO

Figure 15: Illustration of an incorrect case for task S3 using the explicit scene graph prompt. Model:
LLaMA-3.2-90B . Visual Axis: 3D2
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User: You are given a rectangular room with dimensions 366 cm by 357 cm.
The provided image represents the top-down view of the rectangular room with markers.
Each marker is associated with a coordinate (x, y) within the room. The markers are placed at a

distance of 52 cm from each other.↪→

Determine the mark that is exactly to the left of 14.
Ensure that the there exists indeed mark on. If no, please use [-1] to indicate it.

You are given a rectangular room with dimensions 366 cm by 357 cm.
The provided image represents the top-down view of the rectangular room with markers.
Each marker is associated with a coordinate (x, y) within the room. The markers are placed at a

distance of 52 cm from each other.↪→
---
Text Matrix:
[['7' '17' '25' '29' '30' '8']
['26' '22' '4' '3' '14' '31']
['13' '11' '16' '2' '10' '6']
['34' '24' '20' '12' '5' '0']
['27' '33' '9' '23' '1' '18']
['32' '28' '19' '21' '35' '15']]]

---

VLM Response : To determine the marker that is exactly to the left of 14, we need to identify the
position of marker 14 in the matrix. Marker 14 is located in the second row and the fifth column.
To find the marker to the left of 14, we move one column to the left, which corresponds to the
fourth column. Looking at the second row, the marker in the fourth column is 16. Therefore, the
marker that is exactly to the left of 14 is 16.

↪→
↪→
↪→
↪→

....

Answer: ["X"]

Figure 16: Illustration of a failure case for task S1 (Left, Sketches) with the Cambrian-34b model us-
ing marks + text representation. We experimented with models with a smaller number of parameters,
but they failed to provide the correct answer and to format it in the required JSON structure. Conse-
quently, we focused our study on larger models with stronger reasoning capabilities, as demonstrated
by public benchmarks.
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User: You are given a rectangular room with dimensions 227 cm by 278 cm.
The provided image represents the top-down view of the rectangular room with markers.
Each marker is associated with a coordinate (x, y) within the room. The markers are placed at a

distance of 39 cm from each other.↪→

Determine the mark that is exactly to the left of 29.
Ensure that the there exists indeed mark on. If no, please use [-1] to indicate it.

---

VLM Response : To determine the mark that is exactly to the left of mark 29, we need to understand
the layout of the markers in the room.↪→

Given:
- The room dimensions are 227 cm by 278 cm.
- Markers are placed 39 cm apart.
- The markers are arranged in a grid pattern.

First, let's calculate the number of markers along the width (227 cm) and the length (278 cm) of the
room:↪→

Number of markers along the width:

Width markers =

⌊
227

39

⌋
+ 1 = ⌊5.82⌋ + 1 = 5 + 1 = 6

Number of markers along the length:

Length markers =

⌊
278

39

⌋
+ 1 = ⌊7.13⌋ + 1 = 7 + 1 = 8

So, the grid is 6 markers wide and 8 markers long.

The markers are numbered sequentially from left to right, top to bottom. Therefore, the numbering
would look like this:↪→

```
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36
37 38 39 40 41 42
43 44 45 46 47 48
```

To find the mark to the left of 29, we need to check if 29 is not in the first column. Since 29 is in
the 5th row and 5th column, the mark to the left of 29 is 28.↪→

Therefore, the mark that is exactly to the left of 29 is 28.

....

Answer: ["28"]

Figure 17: Illustration of a failure case for task S1 (Left) with the GPT-4o model using marks as the
coordinate representation. We observed that the model’s output was identical for both visual inputs
(3D1) and sketches. Interestingly, in both scenarios, the model ignored the image and relied on the
textual prior, incorrectly answering that the marker to the left of ’29’ is ’28’.
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User: You are given a rectangular room with dimensions 313 cm by 376 cm.
The provided image represents the top-down view of the rectangular room with markers.
Each marker is associated with a coordinate (x, y) within the room. The markers are placed at a

distance of 53 cm from each other.↪→

Determine the mark that is exactly to the right of 7.
Ensure that the there exists indeed mark on. If no, please use [-1] to indicate it.

---

VLM Response : To determine the mark that is exactly to the right of mark 7, we need to understand
the layout of the markers in the room. Given that the markers are placed 53 cm apart, we can
calculate the number of markers along the width (x-direction) and the length (y-direction) of the
room.

↪→
↪→
↪→

1. **Calculate the number of markers along the width (x-direction):**

Number of markers along width =
⌊
376
53

⌋
+ 1 = 7 + 1 = 8

2. **Calculate the number of markers along the length (y-direction):**

Number of markers along length =
⌊
313
53

⌋
+ 1 = 5 + 1 = 6

So, there are 8 markers along the width and 6 markers along the length, forming a grid of 8 columns
and 6 rows.↪→

3. **Determine the position of mark 7:**
Assuming the markers are numbered row-wise starting from the top-left corner (0,0), the numbering

would be as follows:↪→
- Row 1: 1, 2, 3, 4, 5, 6, 7, 8
- Row 2: 9, 10, 11, 12, 13, 14, 15, 16
- and so on...

Mark 7 is in the first row, 7th column.

4. **Find the mark to the right of mark 7:**
The mark to the right of mark 7 would be in the same row, 8th column, which is mark 8.

Therefore, the mark that is exactly to the right of mark 7 is mark 8.

....

Answer: ["8"]

Figure 18: Illustration of a failure case for task S1 (Right) with the GPT-4o model using marks as the
coordinate representation. The model ignored the image and relied on the textual prior, incorrectly
answering that the marker to the right of ’7’ is ’8’.
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