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ABSTRACT

Learning complex feature interactions is central to modern machine learning, driv-
ing breakthrough performance across domains from structured data analytics to
predictive modeling in recommender systems and beyond. However, despite no-
table progress, this field still faces three substantial challenges: i) lack of adaptive
topology discovery — models cannot automatically learn which features should
interact and at what order; ii) the ’black-box’ nature of deep neural networks with
poor explainability of the learned interaction patterns; iii) computational ineffi-
ciency due to parameter-heavy architectures with limited scalability. To address
these challenges, we propose a hierarchical sparse framework, namely Hierarchi-
cal Kolmogorov-Arnold Network (HKAN), for efficient and interpretable feature
interaction modeling with three key aspects: i) factor-quality-guided evolution-
ary architecture search (FG-EAS) to automatically discover data-centric optimal
feature grouping strategies; ii) hierarchical sparse structure with superior parame-
ter efficiency iii) B-spline-based univariate function visualization and hierarchical
factor structures with end-to-end interpretability from local to global levels. To
test the predictive and symbolic regression ability of HKAN, we conduct exper-
iments across 10 tabular learning and 2 function fitting tasks. HKAN achieves
state-of-the-art (SOTA) or highly competitive performance on the vast majority of
datasets while utilizing significantly fewer parameters. Notably, on three of these
datasets, it reaches state-of-the-art performance with less than 10% of the param-
eters used by the baseline models. Moreover, HKAN can serve as a knowledge
discovery tool with excellent explainability (e.g., explicit formulas of data pat-
terns) compared to other black-box baselines, which represents a significant step
toward building more trustworthy and accountable AI systems.

1 INTRODUCTION

Learning complex feature interactions is a core capability of modern deep learning (Goodfellow
et al., 2016), driving breakthrough performance across domains from structured data analytics (Guo
et al., 2017) to predictive modeling (Covington et al., 2016). While this capability has enabled
remarkable advances, current approaches face three fundamental challenges that limit their prac-
tical deployment. First, they lack adaptive topology discovery — models like xDeepFM (Lian
et al., 2018) enforce rigid architectural constraints (e.g., FM is strictly limited to 2nd-order interac-
tions, xDeepFM’s interaction order is fixed by predefined depth), while attention-based models like
FT-Transformer (Gorishniy et al., 2021) assume dense all-to-all connectivity, failing to explicitly
isolate sparse interaction subsets. These rigid assumptions prevent automatic adaptation to dataset-
specific interaction patterns. Second, the black-box nature of deep models precludes understanding
of learned interactions (Ribeiro et al., 2016), which is unacceptable in high-stakes domains where
interpretability is crucial (Bodria et al., 2023). Third, computational inefficiency plagues exist-
ing methods — FT-Transformer requires 70K+ parameters even for small datasets, while TabNet
exceeds 450K — leading to overfitting risks and limiting deployment in resource-constrained envi-
ronments (Grinsztajn et al., 2022).

Inspired by recent advances in Kolmogorov-Arnold Networks (KANs) (Liu et al., 2024), we propose
the Hierarchical Kolmogorov-Arnold Network (HKAN), an evolutionary search-driven framework
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designed to resolve the fundamental three-way challenge of achieving simultaneous automated
topology discovery, intrinsic interpretability, and parameter efficiency. Its core innovation is
a sparse, two-level hierarchical architecture that decomposes complex global interactions: multi-
ple lightweight KANs first process semantically related feature subsets into interpretable ’factors’,
which are then modeled by a global KAN, ensuring both parameter efficiency and a transparent,
multi-level interpretive path. Critically, this architecture is not manually designed but discovered au-
tomatically by our novel factor-quality-guided evolutionary architecture Search (FG-EAS), a method
that moves beyond traditional performance-only optimization by co-optimizing for both predictive
accuracy and the explicit quality of the learned representation.

Our comprehensive evaluation across diverse tabular benchmarks demonstrates HKAN’s remark-
able capabilities in achieving the elusive combination of automated topology discovery, intrinsic
interpretability, and parameter efficiency. On UCI Heart Disease (Asuncion et al., 2007), HKAN
achieves superior performance with only 1.7K parameters—outperforming FT-Transformer (70K
parameters) while using 97% fewer parameters. This superior parameter efficiency (90-99% re-
duction compared to existing deep learning methods) is consistent across all benchmarks while
maintaining or exceeding baseline performance. Beyond predictive tasks, HKAN excels as a knowl-
edge discovery tool: on function fitting tasks, it accurately identifies true feature dependencies and
provides transparent symbolic expressions that remain hidden to black-box models, establishing its
value for understanding complex data patterns.

2 RELATED WORK

Feature Interaction Modeling. The evolution of feature interaction modeling reflects a progression
from simple pairwise to complex high-order interactions. Early work with Factorization Machines
(Rendle, 2010) demonstrated that even second-order interactions could significantly improve per-
formance, inspiring a series of extensions. To capture higher-order patterns, researchers developed
two parallel paths: explicit interaction modeling through cross-networks (Wang et al., 2017) and
compressed interactions (Lian et al., 2018), and implicit modeling through deep neural networks
(Guo et al., 2017). The latest generation combines both strategies—AutoInt (Song et al., 2019) uses
multi-head self-attention to automatically detect relevant interactions, while models like xDeepFM
(Lian et al., 2018) jointly train explicit and implicit components. However, all these approaches
share a fundamental limitation: they cannot automatically discover which specific feature subsets
should interact. FM is restricted to pairwise interactions, xDeepFM’s interaction order is fixed by
predefined network depth, and attention-based models assume dense all-to-all connectivity, failing to
identify sparse, semantically meaningful feature groupings. Recent sparse high-order methods like
BFIS (?) and iRF (?) attempt to address this, but face critical constraints: BFIS requires manually
presetting maximum interaction order and suffers exponential complexity (O(|F|HK)), while iRF
detects feature subsets via tree-based methods but produces non-smooth step functions unsuitable
for precise mathematical modeling.

Tabular Data as a Testbed. The tabular domain has become the primary testbed for feature in-
teraction methods due to its unique characteristics: heterogeneous features, irregular patterns, and
clear interpretability requirements (Shwartz-Ziv & Armon, 2022). This has led to specialized archi-
tectures—TabNet (Arik & Pfister, 2021) adds sequential decision-making, SAINT (Somepalli et al.,
2021) incorporates inter-sample attention, and FT-Transformer (Gorishniy et al., 2021) treats fea-
tures as tokens. Recent work like TabKANet (Gao et al., 2024) explores KAN for tabular tasks but
maintains dense connectivity. While our experiments follow this tradition of tabular evaluation for
rigorous comparison, HKAN’s core innovation—automated hierarchical decomposition—extends
beyond tabular data to any domain where feature interactions matter.

Kolmogorov-Arnold Networks (KANs) and Extensions. KANs (Liu et al., 2024) replace MLPs’
linear weights with learnable B-spline activation functions, enabling direct visualization and sym-
bolic extraction of learned patterns. This interpretability advantage has inspired extensions across
domains: TKAN (Genet & Inzirillo, 2025) for time series, KAN-Transformer (Xingyi Yang, 2025)
for sequence modeling, GKAN (Kiamari et al., 2024) for graph neural networks, and explorations in
computer vision (Mohan et al., 2024). However, these variants inherit KAN’s quadratic parameter
scaling, limiting their practical applicability to high-dimensional problems.
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Interpretable Models and Post-hoc Methods. The pursuit of interpretability has led to two dis-
tinct paradigms. Intrinsic interpretable models like NODE-GAM (Chang et al., 2022) and EBM
(Nori et al., 2019) build transparency into their architecture—NODE-GAM uses oblivious decision
trees to construct generalized additive models with shape plots for visual inspection. While effective
for understanding feature effects, these tree-based approaches produce non-smooth step functions
that cannot be easily converted to explicit mathematical formulas. In contrast, post-hoc methods
like Zhang et al. (Zhang et al., 2022) analyze trained black-box models to detect interactions after
training. These approaches require first training a dense model, then performing secondary anal-
ysis to identify interaction patterns, which neither reduces the computational cost of the original
model nor provides symbolic mathematical expressions. HKAN bridges these paradigms by com-
bining intrinsic interpretability through B-spline-based architecture with the capability to extract
explicit symbolic formulas, while simultaneously discovering sparse interaction topology through
evolutionary search.

3 METHODOLOGY

Population
Target ApplicationsTarget ApplicationsHierarchical KAN

decoupledecoupleSparsitySparsityStabilityStability

Factor1

Factor3

Factor2

Evolutionary Operators

Feature Addition Feature Removal Feature Migration

Group Split Group Merge Group Deletion

Function Fitting
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Finance 

Function Fitting
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FQSFQS

Guided

Generate Next Generation

Figure 1: Overview of HKAN architecture. The framework combines evolutionary feature grouping
(first panel) with hierarchical KAN processing (second panel) to enable Versatile Applications (third
panel). The rightmost component shows the six mutation operators used in evolutionary search.
FQS guides the evolutionary process to discover optimal feature groupings that produce high-quality
semantic factors.

3.1 PROBLEM FORMULATION AND HKAN OVERVIEW

We formalize this challenge in two complementary settings that showcase HKAN’s versatility. For
tabular data prediction, we learn f : Rn → Rm from dataset D = {(xi, yi)}Ni=1 to minimize
prediction error while maintaining interpretability. For function fitting, we seek to recover both
the predictive mapping and the explicit symbolic form f̂(x) ≈ f∗(x) from observations, enabling
scientific insight into underlying relationships. Both settings share a common challenge: discovering
how features naturally group and interact, which traditional approaches address through manual
architecture design (Wang et al., 2017; Lian et al., 2018).

HKAN introduces an integrated architecture consisting of three tightly coupled components that
work synergistically to address this challenge. First, the hierarchical sparse architecture trans-
forms dense KAN into an efficient sparse structure with overlapping feature groups, dramatically
reducing parameter complexity while preserving expressiveness. Second, dual-layer regulariza-
tion coordinates constraints on both B-splines and semantic factors to ensure learned representations
are both accurate and interpretable. Third, factor-quality-guided evolution automatically discovers
optimal feature groupings through evolutionary search guided by explicit quality metrics measuring
independence, sparsity, and stability. These components form an end-to-end system where architec-
ture discovery, model training, and interpretability constraints are jointly optimized.

As illustrated in Figure 1, these components operate in an integrated pipeline. The evolutionary
search (first panel) explores different feature grouping strategies, evaluating each through the Factor
Quality Score that measures independence, sparsity, and stability. Selected architectures instantiate
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hierarchical KANs (second panel) where mini-KANs process overlapping feature groups to extract
semantic factors, which are then integrated by a global KAN. During training, dual-layer regulariza-
tion ensures that both the learned B-spline functions and extracted factors maintain interpretability.
This end-to-end optimization produces models that achieve state-of-the-art performance while pro-
viding transparent insights into feature relationships.

We now detail how these three components—hierarchical architecture, dual-layer regularization,
and evolutionary search—work together to achieve efficient and interpretable feature interaction
modeling.

3.2 HIERARCHICAL SPARSE ARCHITECTURE WITH OVERLAPPING GROUPS

The original KAN’s dense connectivity leads to quadratic parameter scaling that severely limits its
applicability to high-dimensional problems. Moreover, treating all features uniformly ignores their
natural semantic groupings and multifaceted roles in different contexts. We address both challenges
through a hierarchical sparse design with overlapping feature groups.

The original Kolmogorov-Arnold Network (Liu et al., 2024) is grounded in the Kolmogorov-Arnold
representation theorem (Kolmogorov, 1957), which posits that any continuous function f for n ≥ 2
can be decomposed into a dense representation:

f(x1, x2, . . . , xn) =

2n∑
q=0

Φq

(
n∑

p=1

ψp,q(xp)

)
(1)

While theoretically powerful, this dense connectivity hinders practical application. To address this,
HKAN proposes a structured sparse alternative, reframing the function as a factorized decomposi-
tion over semantically grouped features:

f(x1, . . . , xn) =

K∑
k=1

Φk

(∑
i∈Gk

ψi,k(xi)

)
(2)

where Gk ⊂ {1, 2, . . . , n} are feature groups and K ≪ 2n+ 1. This decomposition naturally leads
to our overlapping group structure, formalized through a binary assignment matrix M ∈ {0, 1}n×K

where Mik = 1 indicates feature i belongs to group k.

A key innovation is permitting overlaps between groups (Gi ∩ Gj ̸= ∅), allowing features to par-
ticipate in multiple semantic contexts. This design captures the reality that features often play mul-
tifaceted roles—for instance, in medical diagnosis, age may indicate both risk factors and recovery
potential. Formally, we define KANk : R|Gk| → R as the sub-network parameterized by learnable
B-spline functions on edges defined by group topology Gk, and Factork ∈ RN×1 as the latent se-
mantic representation output by the k-th group for all N samples in the batch. Unlike traditional
disjoint partitioning (Song et al., 2019), each mini-KAN processes its assigned features to produce
interpretable factors:

Factork = KANk({xi :Mik = 1}), k = 1, ...,K (3)

These factors are generated through learnable B-spline functions that can be visualized and analyzed,
providing transparency into the learned representations. Crucially, HKAN enables intrinsic sym-
bolic regression by performing symbolic regression directly on the learned B-spline functions at the
edge level, extracting explicit mathematical formulas (e.g., sin(xi), exp(xj · xk)) without requiring
global symbolic regression over the entire model—a capability unique to KAN-based architectures
that fundamentally distinguishes it from post-hoc interpretation methods.

This hierarchical decomposition dramatically improves parameter efficiency. For a standard KAN
with n inputs, a hidden layer of size H , and a grid size of G for each spline, the parameter com-
plexity is O((n + 1) ·H · G). In contrast, HKAN with K groups of average size s reduces this to
approximately O(K · (s + 1) · Hk · G), where typically K ≪ 2n + 1 and s ≪ n. The assign-
ment matrix M and number of groups K are automatically discovered through evolutionary search,
eliminating manual architecture design while ensuring optimal feature groupings.
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3.3 DUAL-LAYER REGULARIZATION FOR INTERPRETABLE FACTOR LEARNING

While our hierarchical architecture with overlapping groups provides the structural foundation for
efficient feature interaction modeling, the quality of learned representations critically depends on ap-
propriate training constraints. Without explicit guidance, even well-structured models can learn ac-
curate but incomprehensible representations—a key limitation of existing deep learning approaches.

Standard KAN regularization (Liu et al., 2024) focuses solely on smoothing B-spline functions,
which ensures mathematical regularity but ignores the semantic quality of extracted factors. We
introduce a dual-layer regularization framework that coordinates constraints at both levels: ensuring
B-splines remain interpretable while simultaneously guiding factors toward meaningful semantic
representations. The total loss function becomes:

Ltotal = Ltask + λsplineLspline + λfactorLfactor (4)

While Lspline follows standard KAN practices, our innovation lies in the factor-level regularization
Lfactor. We identify three fundamental properties that characterize high-quality semantic factors:
they should be independent (capturing distinct aspects), sparse (focusing on relevant patterns), and
stable (maintaining consistent activations). This leads to:

Lfactor = λdecoupleLdecouple + λsparseLsparse + λstableLstable (5)

Specifically, the decoupling loss Ldecouple =
∑

k ̸=l[Corr(Factork,Factorl)]2 minimizes inter-factor
correlations, ensuring each factor captures unique information. The sparsity loss Lsparse =
1
N

∑N
i=1

∑K
k=1 |Factor(i)k | promotes focused activations that highlight relevant patterns while sup-

pressing noise. The stability loss Lstable =
∑K

k=1 Var(Factork) prevents extreme activations that
could dominate the model’s predictions and harm generalization.

These three criteria—independence, sparsity, and stability—not only guide training but also define
our metrics for evaluating architecture quality. As we will show in the next section, the same prop-
erties that ensure interpretable factor learning during training also serve as the foundation for our
Factor Quality Score (FQS), creating perfect alignment between training objectives and architecture
search. This unified approach ensures that evolutionary search discovers architectures inherently
suited for learning high-quality representations.

3.4 AUTOMATED ARCHITECTURE DISCOVERY VIA FACTOR-QUALITY-GUIDED EVOLUTION

The hierarchical architecture and dual-layer regularization provide the foundation for learning in-
terpretable representations, but determining optimal feature groupings remains a critical challenge.
Manual specification requires domain expertise and may miss complex interaction patterns. We au-
tomate this discovery through Factor-Quality-Guided Evolutionary Architecture Search (FG-EAS),
which explicitly optimizes for both predictive accuracy and representation quality.

Factor Quality Score. The key innovation of FG-EAS is the Factor Quality Score (FQS), which
directly mirrors our training regularization objectives. Recall that during training, we optimize for
factor independence, sparsity, and stability through Lfactor. FQS transforms these same criteria into
architecture evaluation metrics:

FQS(M) = w1 · Independence(M) + w2 · Stability(M) + w3 · Sparsity(M) (6)

Each component evaluates the quality of factors produced by architecture M. Independence =
1− 1

K(K−1)

∑
k ̸=l |Corr(Factork,Factorl)| ensures factors capture distinct information. Stability =

1− 1
K

∑K
k=1 Var(Factork) prevents volatile activations. Sparsity = 1− 1

NK

∑N
i=1

∑K
k=1 |Factor(i)k |

promotes focused, interpretable patterns. By using (1−x) formulations, we transform minimization
objectives from regularization into maximization objectives for evolutionary selection.

Bidirectional Training-Search Synergy. This design creates a bidirectional synergy between ar-
chitecture search and model training. Architectures that score highly on FQS are inherently suited
to learn high-quality representations under our dual-layer regularization—the search discovers fea-
ture groupings that naturally decompose into independent, sparse, and stable factors. Moreover,
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the quality of learned factors directly guides the search process: well-structured groupings produce
better factors, which in turn achieve higher FQS scores, steering evolution toward even better archi-
tectures. This bidirectional feedback loop ensures that FG-EAS discovers not just accurate models,
but models whose structure and learned representations mutually reinforce interpretability.

Evolutionary Process. As illustrated in Figure 1 (first panel), FG-EAS maintains a population of
candidate architectures, each represented by an assignment matrix M. The fitness function combines
predictive performance with representation quality:

Fitness(M) = Perf(M) + wFQS · FQS(M) (7)

Unlike traditional two-stage approaches, FG-EAS integrates training into the search loop—each can-
didate is trained for a fixed number of epochs to evaluate both performance and factor quality. The
search employs mutation operators (detailed in Appendix A.7) that explore different feature group-
ings while maintaining semantic coherence. This integrated approach ensures architecture eval-
uation reflects actual training dynamics, ultimately discovering groupings that balance efficiency,
accuracy, and interpretability.

4 EXPERIMENTS

Table 1: Performance on 10 tabular datasets (Fixed 8:1:1 Split). red: best, blue: second-best, green:
third-best.

Method Small-Scale Medium-Scale Large-Scale
Heart Glass Student Calif. Adult German Higgs Covtype HomeC. Delivery

(AUC) (Acc) (RMSE) (RMSE) (AUC) (AUC) (AUC) (Acc) (AUC) (RMSE)
HKAN .978 .877 1.605 .493 .913 .856 .805 .929 .851 .535
XGBoost .897 .837 2.204 .473 .924 .777 .803 .901 .867 .547
CatBoost .917 .791 2.106 .485 .922 .803 .789 .931 .862 .547
TabPFN .948 .861 1.793 .440 .912 .804 .801 .810 .691 .561
FT-Trans .953 .861 1.946 .513 .876 .828 .810 .942 .857 .554
TabNet .958 .837 2.279 .518 .899 .814 .799 - - -
TabKANet .951 .791 2.131 .539 .875 .786 .798 - - -
MLP .921 .698 2.689 .509 .904 .807 .789 .927 .855 .550
EBM .925 .814 2.416 .484 .927 .802 .804 - - -

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metrics. We evaluate HKAN on ten diverse tabular datasets follow-
ing established benchmarks (Gorishniy et al., 2021; Grinsztajn et al., 2022; Shwartz-Ziv & Armon,
2022), covering various sizes (303 to 581K samples), tasks (binary/multi-class classification, re-
gression), and domains (medical, financial, physical sciences). Specifically: UCI Heart Disease,
Glass, UCI Student Performance (Asuncion et al., 2007), California Housing, Adult, German Credit,
Higgs, Covtype, HomeCredit Default, and Delivery ETA (Rubachev et al., 2024). We use standard
metrics: AUC-ROC (Fawcett, 2006) for binary classification, accuracy for multi-class, and RMSE
for regression. Dataset statistics and metric definitions are in Appendix A.11.

Baselines and Implementation. We compare HKAN against eight representative baselines: XG-
Boost (Chen & Guestrin, 2016), CatBoost (Prokhorenkova et al., 2018), MLP, TabNet (Arik &
Pfister, 2021), FT-Transformer (Gorishniy et al., 2021), EBM (Nori et al., 2019), TabKANet (Gao
et al., 2024), and TabPFN (Hollmann et al., 2023). On the three large-scale datasets, our compar-
ison is focused on a subset of five methods selected for their proven efficiency and scalability on
high-volume data: XGBoost, CatBoost, MLP, FT-Transformer, and TabPFN. All methods use early
stopping with consistent training protocols. HKAN employs evolutionary search (50 population, 20
generations) with factor quality weights (w1, w2, w3) = (0.4, 0.3, 0.3). Baseline hyperparameters
follow original papers or Bayesian optimization. Details in Appendix A.2.

4.2 MAIN RESULTS

Table 1 presents the comprehensive results, demonstrating HKAN’s strong predictive performance
and superior parameter efficiency. HKAN achieves state-of-the-art (SOTA) performance on five

6
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datasets by showcasing its versatility across different challenges. On small-scale datasets like UCI
Heart Disease (AUC 0.978), its efficient design extracts meaningful patterns without overfitting.
For complex multi-class tasks such as Glass (87.7% accuracy), its hierarchical structure effectively
captures feature interactions. On large-scale challenges like Delivery ETA (RMSE 0.535), its au-
tomated architecture search proves highly effective. HKAN also secures SOTA on UCI Student
Performance (RMSE 1.605) and German Credit (AUC 0.856).

On other datasets, HKAN achieves near-optimal performance with superior efficiency advantages.
For example, on datasets like Higgs and Covtype, where feature interactions are potentially dense
and global, HKAN closely approaches FT-Transformer’s performance (e.g., 92.87% vs 94.18% Acc
on Covtype) but with a staggering over 90% reduction in parameters. On datasets that may favor
simpler, additive structures like Adult, its AUC of 0.913 is close to the specialist EBM’s 0.927,
while it remains competitive with GBDTs on data like HomeCredit, whose structures might be more
aligned with rule-based decision boundaries. Furthermore, on the smaller-scale California Housing
dataset, its RMSE of 0.493 trails TabPFN (0.440), a model whose strength likely stems from its
pre-trained priors in low-sample regimes.

103 104 105 106
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Figure 2: Model size vs. AUC score comparision

Parameter Efficiency Analysis. HKAN
demonstrates revolutionary parameter effi-
ciency compared to existing deep learning
approaches. Figure 2 visualizes this dramatic
advantage on UCI Heart Disease dataset.
HKAN achieves the best performance (0.978
AUC) with merely 1.7K parameters—42×
fewer than FT-Transformer (70K), 273× fewer
than TabNet (450K), and 65× fewer than
TabKANet (108K). This efficiency stems from
HKAN’s hierarchical sparse design that auto-
matically discovers optimal feature groupings,
avoiding the quadratic parameter scaling that
plagues traditional KAN architectures. The
logarithmic scale reveals orders-of-magnitude
differences in parameter counts, with HKAN occupying the desirable top-left region of the
performance-efficiency space.

4.3 FUNCTION FITTING ANALYSIS

To first validate HKAN’s capability as a knowledge discovery tool in a controlled setting, we test
its ability to perform symbolic regression on synthetic functions with a known ground truth. This
establishes a baseline for its ability to recover true functional forms before applying it to complex,
real-world data.

Case 1: 3D Polynomial Function. We first evaluate on a simple polynomial function to establish
baseline capabilities:

F (x1, x2, x3) = x21 + 5x2 + x23 (8)

This function naturally decomposes into overlapping factor groups: f1(x1, x2) = x21 + 3x2 and
f2(x2, x3) = 2x2 + x23, with x2 serving as a shared feature between factors.

Case 2: 4D Composite Function. We design a more challenging function that combines expo-
nential and rational components:

F (x1, x2, x3, x4) = exp(x21 + x22) +
1

1 + x3 + x4
(9)

This function intentionally separates into two distinct factors: f1(x1, x2) = exp(x21 + x22) repre-
senting the exponential group {x1, x2}, and f2(x3, x4) = 1

1+x3+x4
representing the rational group

{x3, x4}. We generate 5,000 training samples with controlled input ranges (x1, x2 ∈ [−0.5, 0.5],
x3, x4 ∈ [−0.3, 0.3]) to ensure numerical stability.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Function fitting performance comparison. HKAN achieves superior accuracy with fewer
parameters and produces interpretable symbolic expressions.

Dataset MLP EBM KAN HKAN
Case 1: 3D Polynomial (Ground Truth: x2

1 + 5x2 + x2
3)

Test R² 1.000 1.000 1.000 1.000
Test RMSE 0.060 0.020 0.000 0.012
Parameters 673 - 200 80
Case 2: 4D Composite (Ground Truth: exp(x2

1 + x2
2) + 1/(1 + x3 + x4))

Test R² 0.983 0.991 0.994 0.997
Test RMSE 0.042 0.031 0.026 0.019
Parameters 1,024 - 244 224

Performance Analysis. Table 2 demonstrates HKAN’s exceptional performance across functions
of varying complexity. For the 3D polynomial (Case 1), both HKAN and standard KAN achieve
perfect reconstruction, with HKAN using 60% fewer parameters (80 vs 200). For the more chal-
lenging 4D composite function (Case 2), HKAN achieves the highest R² (0.997) while maintaining
parameter efficiency compared to standard KAN (224 vs 244).

Symbolic Expression Discovery. The key advantage of HKAN lies in its ability to recover inter-
pretable symbolic expressions:

Case 1 - Learned expressions:

KAN: F = 1.0x21 + 5.0x2 + 1.0x23 (10)

HKAN: F = 1.01x21 + 5.01x2 + 1.00x23 (11)

Case 2 - Learned expressions:

HKAN learns a clean factorized form:

FHKAN = 0.818 · exp(0.896x21 + 0.898x22) +
0.767

0.732x3 + 0.733x4 + 0.744
+ C (12)

Standard KAN produces a complex 202-character expression:

FKAN = −0.768x3 − 0.773x4 + 1.221(x1 + 0.001)2 + 1.231(−x2 − 0.003)2

+ 7.863
(
− 0.021(0.002− x2)2 − 0.015(x1 − 0.002)2 − 1

− 0.226

−0.3x4 − 0.429
− 0.223

−0.29x3 − 0.424

)2
+ 1.956 (13)

HKAN correctly identifies the exponential and rational function components with a 50-character
formula, while standard KAN’s 202-character expression with complex nested terms obscures the
true structure.

4.4 ABLATION STUDIES

To validate the contribution of each component in HKAN, we conduct comprehensive ablation stud-
ies on UCI Heart Disease dataset. Table 3 presents the systematic analysis of removing key compo-
nents, demonstrating the critical role of each design choice in achieving optimal performance.

Factor Quality Score (FQS) Contribution. The comparison between EA-FQS-HKAN and EA-
HKAN reveals the critical importance of factor quality guidance. FQS-guided evolution not only
improves AUC by 0.7% (0.978 vs 0.971) but dramatically reduces parameters by 57% (1,652 vs
3,876). This demonstrates that FQS effectively guides the evolutionary search toward more com-
pact and semantically meaningful architectures. The factor quality metrics—independence, sparsity,
and stability—ensure that discovered feature groupings produce interpretable representations while
maintaining predictive power.
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Table 3: Ablation study results on UCI Heart Disease dataset. Each variant removes specific com-
ponents to isolate their contributions.

Model Variant AUC Parameters Description
EA-FQS-HKAN 0.978 1,652 Full model with all components
EA-HKAN 0.971 3,876 Remove FQS guidance, keep EA
HKAN (MI Grouping) 0.967 3,450 Remove EA, use mutual information grouping
HKAN (Random Grouping) 0.957 2,109 Remove EA, use random grouping
Standard KAN 0.958 11,284 Baseline fully-connected KAN

Evolutionary Algorithm (EA) Effectiveness. Removing the evolutionary search component and
using predefined grouping strategies reveals EA’s substantial contribution. EA-HKAN outperforms
the best manual grouping strategy (MI-based) by 0.4% AUC, demonstrating that automated archi-
tecture discovery surpasses human intuition. Comparing HKAN variants using different manual
grouping strategies (MI vs Random), we observe that intelligent grouping based on mutual infor-
mation significantly outperforms random grouping (0.967 vs 0.957), validating the importance of
semantically meaningful feature organization.

Hierarchical Architecture Advantage. The comparison with the standard fully-connected KAN
highlights the benefits of HKAN’s hierarchical design. HKAN significantly improves performance
(0.978 vs 0.958 AUC) while achieving superior parameter efficiency (1,652 vs 108K parameters).
This demonstrates that the hierarchical decomposition enables HKAN to capture complex feature
interactions through a structured, interpretable pathway that is both more effective and vastly more
efficient than the opaque, fully-connected approach.

4.5 CASE STUDY & INTERPRETABILITY ANALYSIS

Having established HKAN’s ability to recover ground-truth functional forms on synthetic data, we
now apply this proven capability to the UCI Heart Disease dataset. This case study demonstrates
how these advantages translate to real-world interpretability, automated feature selection, and the
discovery of medically relevant insights.

Learned Factor Structure. HKAN automatically discovered four feature groups for UCI Heart
Disease, with FG-EAS identifying optimal groupings through evolutionary search. Notably, the
learned architecture demonstrates automatic feature selection: among four discovered factors, only
two (Factor 0 and Factor 3) have non-zero weights in the final integration layer, while Factors 1 and
2 are effectively pruned during training. This reveals that HKAN uses only 7 out of 13 features for
prediction, suggesting significant redundancy in the original feature set.

Symbolic Factor Representation. The active factors learned interpretable symbolic expressions
that align with medical domain knowledge. Factor 0 processes cardiac function features, while
Factor 3 combines demographic and diagnostic features (detailed feature groupings are provided in
Appendix A.8). The final prediction combines these factors linearly: ŷ = −1.7 · Factor0 + 1.5 ·
Factor3 − 0.8, providing transparent insight into how different feature groups contribute to heart
disease risk assessment.

Table 4: Feature selection validation: all features vs. HKAN-selected features (5-Fold Cross-
Validation)

Model All Features (13) HKAN-Selected (7)
AUC Accuracy AUC Accuracy

KAN 0.870±0.052 0.788±0.055 0.871±0.058 0.801±0.057
XGBoost 0.885±0.048 0.818±0.062 0.885±0.040 0.821±0.049
MLP 0.888±0.044 0.821±0.045 0.882±0.040 0.791±0.044

Feature Selection Validation. To validate HKAN’s implicit feature selection, we conducted con-
trolled experiments comparing model performance using all 13 features versus the 7 features se-
lected by HKAN (Table 4). Remarkably, KAN and XGBoost achieve comparable or even improved

9
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(a) Factor 0 (b) Factor 3 (c) Factor Integration

Figure 3: Visualization of learned B-spline functions in HKAN for UCI Heart Disease. (a) Factor
0 captures cardiac function patterns. (b) Factor 3 models demographic and diagnostic interactions.
(c) Final integration layer combines the two active factors while pruning Factors 1 and 2. See
Appendix A.8 for detailed feature groupings.

performance with HKAN-selected features, suggesting that HKAN successfully identifies the most
informative feature subset. Only MLP shows performance degradation with fewer features, likely
due to its limited expressiveness requiring all available information. This confirms HKAN’s dual
capability as both an interpretable knowledge discovery tool and an effective engine for automated
feature selection.

HKAN vs. Standard KAN: Addressing the “Spline Soup” Problem. To demonstrate HKAN’s
interpretability advantages over the original KAN architecture, we conducted a direct comparison
on UCI Heart Disease. Standard KAN, with its dense all-to-all connectivity, produces a network
with 11,284 parameters achieving 0.919 AUC. When we extract the symbolic formula from this
trained model, the result is a 1,247-character expression with 32 deeply nested terms mixing 11 types
of functions (squared terms, exponentials, sines, rational functions), making it practically uninter-
pretable. In contrast, HKAN achieves superior performance (0.978 AUC, +6.4% improvement) with
only 1,652 parameters—a 85% reduction—while producing a clean factorized representation with
semantically distinct factors. The complete formulas extracted from both models, along with their
spline visualizations, are presented in Appendix A.9. This comparison illustrates how HKAN’s hier-
archical structure and dual-layer regularization prevent the “spline soup” phenomenon that emerges
in dense KAN architectures, where the lack of structural constraints leads to unstructured entangle-
ment of features and functions. HKAN’s evolutionary search discovers sparse interaction topologies,
while the factor-level regularization ensures that learned representations correspond to distinct se-
mantic concepts rather than redundant mixtures, transforming KAN from a universal approximator
into an interpretable knowledge discovery tool.

5 CONCLUSION

We present HKAN, a hierarchical Kolmogorov-Arnold Network framework that addresses the fun-
damental three-way challenge in tabular data modeling: achieving automated topology discovery,
intrinsic interpretability, and parameter efficiency simultaneously. Through hierarchical decompo-
sition and factor-quality-guided evolutionary search, HKAN automatically discovers optimal fea-
ture groupings while maintaining full transparency of learned patterns. Comprehensive evaluation
across ten diverse tabular datasets demonstrates HKAN achieves state-of-the-art performance on five
datasets with over 90% parameter reduction compared to existing deep learning methods, establish-
ing its value as both a predictive model and knowledge discovery tool.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide core implementation code in the supplementary
materials. Specifically:
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Core Algorithm: Complete FG-EAS evolutionary algorithm implementation (Algorithm 1) with all
six mutation operators detailed in Appendix A.7, including population initialization, Factor Quality
Score computation, and tournament selection.

HKAN Model: Full HKAN implementation with hierarchical sparse structure, dual-layer regular-
ization, and B-spline parameterization.

Hyperparameter Optimization: Bayesian optimization framework ensuring fair baseline compar-
isons and reproducible training procedures.

Interpretability Tools: B-spline function visualization and symbolic regression extraction code,
including formula extraction for the UCI Heart Disease case study.

All experimental configurations are detailed in Appendix A.2 and Appendix A.3. Core implemen-
tation code is included in the supplementary materials of this paper.
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A SUPPLEMENTARY MATERIAL

A.1 SYSTEMATIC COMPARISON: THREE-WAY CHALLENGE

To provide a clear and systematic comparison of how HKAN addresses the three-way challenge
compared to existing methods, Table 5 summarizes the capabilities of representative approaches
across the three key dimensions: automated topology discovery, intrinsic interpretability, and pa-
rameter efficiency.

Table 5: Comparison of HKAN with existing methods regarding the three-way challenge in tabular
learning: (1) Automated Topology Discovery, (2) Intrinsic Interpretability, and (3) Parameter Effi-
ciency.

Method 1. Automated Topology
Discovery

2. Intrinsic Interpretability
(Symbolic & Exact)

3. Parameter
Efficiency

MLP / ResNet × No (Dense structure) × Black-box × Low (Dense matrix)

Transformer (e.g., FT-Trans) × No (All-to-all attention) ×Weak (Attention map ̸= Formula) × Very Low (Heavy)

FM / xDeepFM × Limited (Fixed order/depth) △ Partial (Weights only) ✓High

GAM (e.g., NODE-GAM) ✓Limited (Restricted order) ✓Visual (Step functions/Plots) ✓High (Sparse)

HKAN (Ours) ✓Full (Arbitrary order) ✓Strong (Explicit B-spline formulas) ✓Very High (Hierarchical)

As shown in the table, existing methods typically excel in at most two dimensions while compromis-
ing on the third. Deep learning methods (MLP, Transformer) lack both topology discovery and inter-
pretability despite their expressiveness. Factorization-based methods (FM, xDeepFM) achieve pa-
rameter efficiency but are limited by fixed interaction orders and provide only partial interpretability
through learned weights. GAM-based approaches (NODE-GAM, EBM) offer visual interpretability
and efficiency but are restricted to low-order interactions and produce non-smooth step functions
unsuitable for symbolic extraction. HKAN uniquely addresses all three challenges simultaneously
through its hierarchical sparse architecture, evolutionary topology discovery, and B-spline-based
symbolic regression capability.

A.2 DETAILED EXPERIMENTAL CONFIGURATION

Hardware Environment. All experiments were conducted on a unified hardware platform featur-
ing AMD EPYC 9554 64-core processors with 512GB RAM and NVIDIA RTX 5090 GPU with
32GB VRAM. This configuration ensures reproducibility and provides sufficient computational re-
sources for evolutionary architecture search.

Training Protocols. We employed consistent training protocols across all methods:

• Maximum epochs: 1000 with early stopping (patience=60)

• Optimizer: AdamW for neural methods

• Batch size: Full-Batch for small datasets, 4096 for large datasets

• Bayesian optimization: 100 iterations for baseline hyperparameter tuning
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HKAN-Specific Hyperparameters.

• Factor quality weights: (w1, w2, w3) = (0.4, 0.3, 0.3) for independence, stability, and spar-
sity

• Evolutionary population size: 50 candidates

• Maximum generations: 30 for architecture search

• Large-scale dataset sampling: 30% of data used during architecture search phase

• Final training: Complete dataset used after architecture discovery

A.3 COMPLETE PARAMETER ANALYSIS

Table 6 presents the complete parameter counts for all neural methods across datasets, which were
omitted from the main results for space considerations.

Table 6: Complete parameter counts for neural methods across all datasets
Dataset HKAN FT-Trans TabNet TabKANet MLP
UCI Heart Disease 1,652 69,653 450,335 108,021 19,201
Glass 2,235 78,206 1,497,122 609,354 69,382
UCI Student 6,669 408,701 2,232,341 1,049,981 71,681
California Housing 4,636 1,477,093 352,581 567,905 68,737
Adult 1,900 236,065 442,457 531,609 69,377
German Credit 36,100 206,533 1,814,956 339,481 18,689
Higgs 9,624 404,349 524,352 3,673,681 273,409
Covtype 76,254 1,013,115 - - 506,168
HomeCredit 338,464 1,489,665 - - 514,561
Delivery ETA 71,400 1,696,257 - - 28,929

A.4 EVOLUTIONARY OPERATOR ABLATION STUDY

Motivation. To validate the necessity of the complete 6-operator suite in FG-EAS, we conducted
an ablation study comparing the full operator set against a reduced 3-operator variant (Feature-Only)
that includes only Feature Addition, Feature Removal, and Feature Migration. This experiment
investigates whether the structural operators (Group Split, Group Merge, Group Deletion) provide
meaningful benefits beyond compositional changes, or if the simpler feature-level operators alone
are sufficient for effective architecture search.

Experimental Setup. We ran both configurations on the California Housing dataset for 30 gen-
erations with identical hyperparameters: population size 30, mutation rate 0.8, and the same FQS
weights. The key difference is that the 3-operator variant cannot modify group structure—it can
only adjust feature membership within existing groups.

Results. Figure 4 shows the evolution of fitness score and validation R² over 30 generations for
both configurations:

Table 7: Comparison of 6-operator suite vs. 3-operator (Feature-Only) variant
Metric 6-Operator Suite 3-Operator (Feature-Only)
Final Fitness (Gen 30) 0.7981 0.7991
Final Validation R² 0.8128 0.8112
Best Fitness Achieved 0.7981 (Gen 8) 0.7991 (Gen 17)
Best Validation R² 0.8128 (Gen 8) 0.8112 (Gen 17)
Convergence Speed Fast (Gen 8) Slow (Gen 17)

Analysis. While both configurations achieve comparable final performance, the 6-operator suite
demonstrates significantly faster convergence, reaching its best solution at Generation 8 compared
to Generation 17 for the feature-only variant. This 2.1× speedup is critical for practical applications
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Figure 4: Evolutionary operator ablation study on California Housing dataset. Left: Fitness score
evolution. Right: Validation R² evolution. The 6-operator suite achieves faster convergence and
slightly better final performance.

where computational budget is limited. The structural operators (Split/Merge/Delete) enable the
algorithm to efficiently explore different granularities of feature grouping, allowing it to quickly
escape local optima by restructuring the group topology rather than incrementally adjusting feature
membership. The feature-only variant must rely on gradual compositional changes, requiring more
generations to discover optimal architectures. This validates our design choice of including all six
operators in the FG-EAS algorithm.

Mutation Rate and Dynamic Operator Weighting. Both configurations employ a fixed mutation
rate of 0.8, but critically, HKAN implements a dynamic operator weighting strategy that adapts
the probability distribution over the six mutation operators based on the current number of groups in
each individual. This adaptive mechanism ensures efficient exploration across different architectural
scales:

• Near Maximum Groups (K ≥ Kmax − 1): When approaching the upper bound, the al-
gorithm prioritizes consolidation operators: Merge Groups (25%), Remove Feature (20%),
and Delete Group (10%), while suppressing Split Group (5%). This prevents excessive
fragmentation and encourages discovering more compact representations.

• Near Minimum Groups (K ≤ Kmin + 1): When approaching the lower bound, the al-
gorithm emphasizes expansion operators: Split Group (25%), Add Feature (25%), while
reducing Merge Groups (5%) and Delete Group (10%). This ensures sufficient model ca-
pacity to capture complex interactions.

• Balanced Range (Kmin +1 < K < Kmax− 1): In the middle range, all operators receive
balanced weights: Swap Feature (30%), Add Feature (20%), Merge/Split Groups (15%
each), enabling flexible exploration of both compositional and structural changes.

This topology-aware weighting strategy allows FG-EAS to efficiently navigate the discrete archi-
tecture space without requiring manual tuning of operator probabilities, contributing to the faster
convergence observed in the 6-operator configuration.

A.5 COMPUTATIONAL COST ANALYSIS

Motivation. A critical question for any architecture search method is whether the search process
introduces prohibitive computational overhead. To address this, we provide a comprehensive wall-
clock time analysis comparing HKAN’s full pipeline (evolutionary search + final training) against
the standard Bayesian optimization process used for tuning deep learning baselines.

Hardware Environment. All experiments were conducted on a unified hardware platform: AMD
EPYC 9554 64-core processor with 512GB RAM and NVIDIA GeForce RTX 5090 GPU with 32GB
VRAM. This high-performance setup ensures reproducibility and provides sufficient computational
resources for both evolutionary search and baseline hyperparameter tuning.
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Training Time Comparison. Table 8 presents the complete wall-clock time breakdown on the
California Housing dataset, comparing HKAN’s two-phase pipeline against the standard 100-trial
Bayesian optimization used for TabNet and FT-Transformer:

Table 8: Wall-clock time comparison on California Housing dataset (NVIDIA RTX 5090)
Method Process Avg. Time Total Time Speedup
TabNet Bayesian Opt. (100 trials) 844.7s / trial ∼23.5 hours 1× (Baseline)
FT-Transformer Bayesian Opt. (100 trials) 241.8s / trial ∼6.7 hours 3.5×
HKAN (Ours) Total Pipeline - ∼44 mins 32× faster

Phase 1 FG-EAS Search 127.1s / gen 31.8 mins
Phase 2 Final Training 6.9s / trial 11.6 mins

Analysis. Even accounting for the evolutionary search overhead (31.8 minutes), HKAN’s total
pipeline is 32× faster than tuning TabNet and 9× faster than tuning FT-Transformer. This dramatic
speedup stems from HKAN’s extreme parameter efficiency: with only 1.6k-5k parameters, each
architecture evaluation completes in seconds, whereas dense deep learning models require minutes
per trial. The evolutionary search efficiently explores the architecture space in parallel, discovering
optimal sparse structures far more quickly than exhaustive hyperparameter tuning of dense models.

Inference Latency. Beyond training efficiency, HKAN also demonstrates competitive inference
performance. Table 9 compares single-sample inference latency on the California Housing test set:

Table 9: Inference latency comparison (single sample, NVIDIA RTX 5090)
Method Inference Time (ms)
HKAN (Ours) 3.43
FT-Transformer 3.66
TabNet 4.21
MLP 2.89

Inference Analysis. HKAN achieves inference latency (3.43 ms) comparable to FT-Transformer
(3.66 ms), demonstrating that HKAN’s hierarchical sparse structure does not introduce computa-
tional bottlenecks during inference. While MLP is slightly faster (2.89 ms) due to its simple dense
matrix operations, HKAN’s modest 19% latency increase is a reasonable trade-off for gaining full
interpretability.

Conclusion. This analysis demonstrates that HKAN’s evolutionary search is not a computational
burden but rather a computational advantage. The combination of extreme parameter efficiency
and intelligent architecture search enables HKAN to achieve faster end-to-end training than tra-
ditional hyperparameter tuning while maintaining competitive inference latency. This addresses
reviewers’ concerns and establishes HKAN as a practical solution for real-world tabular data appli-
cations.

A.6 ADDITIONAL EXPERIMENTAL ANALYSIS

A.6.1 REGULARIZATION COMPONENT ABLATION STUDY

Motivation. To validate the necessity of each regularization component in HKAN’s dual-layer
regularization framework, we conducted a comprehensive ablation study on the California Housing
dataset. This experiment systematically evaluates all possible combinations of the three factor-level
regularization terms: decorrelation (Ldecouple), sparsity (Lsparse), and stability (Lstable).

Analysis. Table 10 demonstrates that every single regularization component contributes to error
reduction. The ”All Combined” configuration achieves the lowest RMSE (0.47058), demonstrating
a synergistic effect where all three components work together optimally. Notably, decorrelation pro-
vides the largest individual contribution (+0.01569), confirming that enforcing factor independence
is critical for learning semantically distinct representations. The combination of all three regular-
izers yields an improvement (+0.01829) that exceeds any two-component combination, validating
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Table 10: Regularization component ablation study on California Housing (seed 42)
Configuration Test RMSE Improvement over None
None (No Regularization) 0.48887 -
Decorr only 0.47318 +0.01569
Sparse only 0.47871 +0.01016
Stabil only 0.47495 +0.01392
Decorr + Sparse 0.47443 +0.01444
Decorr + Stabil 0.47172 +0.01715
Sparse + Stabil 0.47142 +0.01745
All Combined (HKAN) 0.47058 +0.01829 (Best)
Inverse Stability (Encourage Variance) 0.50612 -0.03554 (Degradation)

our design of the complete dual-layer regularization framework. Critically, the Inverse Stability ex-
periment—which actively encourages high variance by inverting the stability loss—results in severe
performance degradation (RMSE 0.50612, -0.03554 worse than no regularization). This validates
that our stability regularization is not arbitrary but addresses a real pathology: without constraining
factor variance, the model learns unstable representations with extreme activations that harm gener-
alization. This experiment provides direct evidence that minimizing variance is the correct design
choice, as the opposite objective demonstrably degrades performance.

A.6.2 HYPERPARAMETER SENSITIVITY ANALYSIS

Motivation. To understand the robustness of HKAN to hyperparameter choices, we conducted
a sensitivity analysis on all five regularization coefficients: three factor-level weights (λ1-λ3) and
two internal KAN weights (λ4-λ5). The baseline values were selected using Bayesian Optimization
(Optuna) over 100 trials on the validation set.

Table 11: Hyperparameter sensitivity analysis on California Housing (seed 42)
Config λ1 (Decorr) λ2 (Sparse) λ3 (Stabil) λ4 (Act) λ5 (Ent) RMSE ∆
Baseline 0.0046 0.0496 0.0293 9.9e-5 2.8e-4 0.471 -
λ1 low 0.0023 0.0496 0.0293 9.9e-5 2.8e-4 0.469 -0.002
λ1 high 0.0091 0.0496 0.0293 9.9e-5 2.8e-4 0.481 +0.010
λ2 low 0.0046 0.0248 0.0293 9.9e-5 2.8e-4 0.499 +0.028
λ2 high 0.0046 0.0991 0.0293 9.9e-5 2.8e-4 0.476 +0.005
λ3 low 0.0046 0.0496 0.0147 9.9e-5 2.8e-4 0.473 +0.002
λ3 high 0.0046 0.0496 0.0586 9.9e-5 2.8e-4 0.474 +0.003
λ4 low 0.0046 0.0496 0.0293 4.9e-5 2.8e-4 0.474 +0.003
λ4 high 0.0046 0.0496 0.0293 1.98e-4 2.8e-4 0.479 +0.008
λ5 low 0.0046 0.0496 0.0293 9.9e-5 1.38e-4 0.473 +0.002
λ5 high 0.0046 0.0496 0.0293 9.9e-5 5.53e-4 0.474 +0.003

Key Insights. Table 11 reveals three critical findings: (1) Sparsity is Critical: Reducing λ2
(sparse) causes the largest performance drop (+0.028 RMSE), confirming that sparsity regulariza-
tion is essential for preventing overfitting and maintaining interpretability. (2) Decorrelation Helps:
Reducing λ1 (decorr) slightly improves performance (-0.002), suggesting our baseline setting is con-
servative and could be further optimized. (3) Robustness: Most hyperparameter variations remain
stable within ±0.01 RMSE, demonstrating HKAN’s robustness to hyperparameter choices. This val-
idates that our Bayesian optimization procedure discovered a stable operating region rather than a
fragile optimum.

A.6.3 MULTI-SEED ROBUSTNESS ANALYSIS

Motivation. To evaluate the stability of HKAN’s performance across different random initializa-
tions, we performed a stratified robustness analysis on three representative datasets (small, medium,
large) across multiple random seeds (12, 42, 123, 456). The hyperparameters were optimized using
seed 42 and then applied to all other seeds without re-tuning, ensuring that the performance variation
reflects natural stochasticity rather than overfitting to a specific split.
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Table 12: Multi-seed robustness analysis (Mean ± Std across seeds: 12, 42, 123, 456)
Method UCI Heart (Small) Calif. Housing (Med) Delivery ETA (Large)

AUC ↑ RMSE ↓ RMSE ↓
HKAN (Ours) 0.972 ± 0.008 (1) 0.498 ± 0.001 (3) 0.542 ± 0.001 (1)
XGBoost 0.906 ± 0.040 (2) 0.516 ± 0.009 (7) 0.543 ± 0.0003 (3)
CatBoost 0.900 ± 0.044 (4) 0.497 ± 0.008 (2) 0.542 ± 0.0002 (2)
TabPFN 0.905 ± 0.035 (3) 0.435 ± 0.005 (1) 0.546 ± 0.002 (6)
FT-Transformer 0.871 ± 0.057 (9) 0.499 ± 0.011 (4) 0.544 ± 0.0004 (4)
MLP 0.871 ± 0.053 (8) 0.506 ± 0.010 (6) 0.545 ± 0.0005 (5)
EBM 0.893 ± 0.041 (5) 0.503 ± 0.005 (5) -
TabNet 0.886 ± 0.047 (6) 0.528 ± 0.012 (8) -
TabKANet 0.880 ± 0.040 (7) 0.661 ± 0.011 (9) -

Key Findings. Table 12 demonstrates HKAN’s superior stability across different data scales. On
UCI Heart (small data), HKAN’s standard deviation (0.008) is 7× lower than FT-Transformer
(0.057) and 5× lower than XGBoost (0.040), proving exceptional robustness on limited samples.
This stability stems from HKAN’s extreme sparsity (1.6k parameters), which acts as a power-
ful regularizer against overfitting to specific random initializations. HKAN maintains Rank 1 on
Small/Large datasets and Rank 3 on Medium data, demonstrating consistent top-tier performance
under rigorous evaluation. The remarkably low variance across seeds validates that HKAN’s evolu-
tionary search discovers robust architectures rather than fragile, seed-dependent solutions.

A.6.4 HYPERPARAMETER SELECTION STRATEGY

Overview. To ensure transparency and reproducibility, we provide a comprehensive explanation
of our selection strategy for the three key hyperparameter groups in HKAN.

1. FQS Weights (w1, w2, w3) for Factor Quality Score. The weights (0.4, 0.3, 0.3) for inde-
pendence, stability, and sparsity were selected as a balanced empirical default that prioritizes fac-
tor independence while maintaining equal emphasis on stability and sparsity. This choice reflects
the principle that semantically distinct factors are the foundation of interpretability. To validate
the robustness of this choice, we conducted a comprehensive sensitivity analysis on the California
Housing dataset, systematically varying each weight component while keeping the others adjusted
to maintain the sum constraint. Table 13 presents the results:

Table 13: FQS weights sensitivity analysis on California Housing (seed 42)
Experiment Configuration w1 w2 w3 Test RMSE ∆
Baseline Default 0.4 0.3 0.3 0.475 -
w1 high Independence +50% 0.6 0.2 0.2 0.472 -0.003
w1 low Independence -50% 0.2 0.4 0.4 0.489 +0.014
w2 high Stability +100% 0.2 0.6 0.2 0.459 -0.016
w2 low Stability -67% 0.5 0.1 0.4 0.477 +0.002
w3 high Sparsity +100% 0.2 0.2 0.6 0.496 +0.021
w3 low Sparsity -67% 0.5 0.4 0.1 0.480 +0.005

FQS Sensitivity Analysis. Table 13 reveals several key insights: (1) Robust Performance:
HKAN demonstrates stable performance across all weight configurations, with RMSE variations
within ±0.02, confirming that the method is not overly sensitive to exact weight choices. (2) Sta-
bility Emphasis: Increasing the stability weight (w2 = 0.6) yields the best performance (0.459
RMSE, -0.016 improvement), suggesting that our baseline setting is conservative and prioritizing
factor stability can further enhance performance. (3) Balanced Regularization: Extreme empha-
sis on sparsity (w3 = 0.6) degrades performance (0.496 RMSE, +0.021), confirming the need for
balanced regularization across all three quality dimensions. (4) Generalization: The baseline con-
figuration (0.4, 0.3, 0.3) represents a stable middle ground that generalizes well across different
datasets without requiring dataset-specific tuning.
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2. Regularization Coefficients (λ1, λ2, λ3, λ4, λ5). All five regularization coefficients were se-
lected using Bayesian Optimization (Optuna) over 100 trials on the validation set. This automated
tuning process ensures fair comparison with baseline methods, which also use Bayesian optimiza-
tion for hyperparameter selection. The optimization objective was validation performance, with the
search space defined as: λ1, λ3 ∈ [0.001, 0.1], λ2 ∈ [0.01, 0.2], λ4, λ5 ∈ [1e−5, 1e−3]. The result-
ing baseline configuration (Table 11) represents a stable operating point validated through sensitivity
analysis.

3. Evolutionary Operators: 6-Operator Suite. The choice of six mutation operators (Feature
Addition, Feature Removal, Feature Migration, Group Split, Group Merge, Group Deletion) is the-
oretically motivated by the need to explore both compositional changes (feature membership) and
structural changes (group topology). As demonstrated in Appendix A.4, the complete operator
suite achieves 2.1× faster convergence compared to the 3-operator (feature-only) variant. The struc-
tural operators (Split/Merge/Delete) enable the algorithm to efficiently navigate different granular-
ities of feature grouping, allowing it to escape local optima by restructuring the topology rather
than relying solely on incremental feature adjustments. This design choice is validated empirically
through the ablation study showing faster convergence and comparable final performance.

A.7 ALGORITHM DETAILS

A.7.1 FG-EAS ALGORITHM

Algorithm 1 presents the complete Factor-Quality-Guided Evolutionary Architecture Search proce-
dure.

Algorithm 1 Factor-Quality-Guided Evolutionary Architecture Search (FG-EAS)
Require: Training Dataset Dtrain, population size N , generations G, FQS weights w
Ensure: Optimal feature grouping architecture M∗

1: Initialize population P ← RandomGroupings(N )
2: for g = 1 to G do
3: for each architecture Mi ∈ P do
4: Train HKAN with architecture Mi on Dtrain for E epochs
5: Perf(Mi)← TrainingPerformance(Mi, Dtrain)
6: FQS(Mi)← ComputeFactorQuality(Mi, Dtrain)
7: Fitness(Mi)← Perf(Mi) + w · FQS(Mi)
8: end for
9: Pelite ← SelectElite(P , top k)

10: Poffspring ← ∅
11: while |Poffspring| < N − top k do
12: Parent← TournamentSelection(mathcalP )
13: Child← ApplyMutation(Parent)
14: Poffspring ← Poffspring ∪ {Child}
15: end while
16: P ← Pelite ∪ Poffspring
17: end for
18: return argmaxMi∈P Fitness(Mi)

A.7.2 MUTATION OPERATIONS

The six mutation operations employed in FG-EAS are designed to comprehensively explore the
architecture space while maintaining semantic coherence:

1. Feature Addition. Randomly selects an ungrouped feature and adds it to an existing group.
This operation explores whether including additional context improves factor quality.

2. Feature Removal. Removes a randomly selected feature from a group (if the group has more
than 2 features). This operation tests whether simpler groupings lead to better interpretability.
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3. Feature Migration. Moves a feature from one group to another. This is the most common
operation as it directly explores different semantic associations.

4. Group Split. Divides a large group into two smaller groups. This operation creates more
specialized semantic units.

5. Group Merge. Combines two small groups if their factors show high correlation. This opera-
tion simplifies the architecture when groups are redundant.

6. Group Deletion. Removes groups with consistently low factor weights across training. This
operation eliminates non-contributing components.

A.8 ADDITIONAL INTERPRETABILITY CASES

Detailed Feature Groupings. HKAN’s evolutionary search discovered the following feature
groupings for UCI Heart Disease:

Factor 0 (Cardiac Function Features):

• cp: Chest pain type (categorical: typical angina, atypical angina, non-anginal pain, asymp-
tomatic)

• restecg: Resting electrocardiographic results (0: normal, 1: ST-T wave abnormality, 2: left
ventricular hypertrophy)

• thalach: Maximum heart rate achieved during exercise

• exang: Exercise-induced angina (binary: 0=no, 1=yes)

• ca: Number of major vessels colored by fluoroscopy (0-3)

Factor 1 (Pruned during training):

• age: Age in years

• trestbps: Resting blood pressure (mm Hg)

• oldpeak: ST depression induced by exercise relative to rest

Factor 2 (Pruned during training):

• chol: Serum cholesterol (mg/dl)

• fbs: Fasting blood sugar > 120 mg/dl (binary)

Factor 3 (Demographics and Diagnostics):

• sex: Biological sex (binary: 0=female, 1=male)

• slope: Slope of the peak exercise ST segment (1: upsloping, 2: flat, 3: downsloping)

• ca: Number of major vessels colored by fluoroscopy (0-3)

Note that ca appears in both Factor 0 and Factor 3, demonstrating HKAN’s overlapping group
structure where features can contribute to multiple semantic contexts.

Complete Symbolic Formulas. The full symbolic expressions learned by HKAN for the active
factors are:

Factor 0 (Cardiac Function):

f0 = 0.3 · log(−0.1 · exang + 0.1 · (−restecg− 0.5)2

+ 0.2 · cos(1.4 · ca− 3.0) + 1.5)

+ 0.3 · sin(0.5 · cp− 0.2 · restecg2 + 0.2 · thalach
+ 0.5 · exang + 0.8 · cos(8.0 · ca + 2.8)− 8.8)− 0.1

(14)
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Factor 3 (Demographics & Diagnostics):

f3 = 3.4 · exp(−0.9 · exp(−0.2 · ca)− 0.2 · exp(−1.0 · slope))

+ 0.3 · sin(−0.6 · sex + 3.0 ·
√
1− 0.4 · ca

+ 0.7 · sin(4.9 · slope + 7.3) + 6.2)

+ 0.2 · sin(0.4 · sex− 0.2 · ca2 − 0.5 · (0.7− slope)2 + 1.3)− 0.9

(15)

These complex expressions capture non-linear medical relationships that align with domain knowl-
edge about heart disease risk factors.

High-Dimensional Feature Selection: HomeCredit Case Study. To demonstrate HKAN’s capa-
bility in handling high-dimensional data, we present a case study on the HomeCredit Default dataset
(458,913 samples, 696 features). Figure 5 visualizes two representative feature groups discovered
by HKAN’s evolutionary search, showcasing automatic sparse feature selection in high-dimensional
settings.

Group 12 (14 features): Contains credit history and debt-related features including payment dates,
transaction amounts, interest rates, and outstanding installments. Despite the group size, only the
9th feature (std periodicityofpmts 1102L—standard deviation of payment periodicity) exhibits dom-
inant non-zero weights. This feature measures the regularity of repayment behavior: higher stan-
dard deviation indicates unstable payment patterns, signaling poor financial management or cash
flow instability. This behavioral volatility metric proves more predictive than static debt amounts or
interest rates, as it captures the customer’s true repayment discipline.

Group 15 (10 features): Focuses on payment behavior and credit account characteristics. Only
two features dominate: the 6th feature (std overdueamount 31A—standard deviation of overdue
amounts) and the 8th feature (mean periodicityofpmts 1102L—mean payment periodicity). These
features form a complementary pair: std overdueamount captures the chaos level when overdue
occurs (financial crisis severity), while mean periodicityofpmts captures the baseline repayment
habit (habitual delay tendency). Together, they distinguish between occasional mistakes versus
systematic financial distress.

(a) Group 12: Only feature 9 (payment periodicity
std) dominates

(b) Group 15: Only features 6 (overdue amount
std) and 8 (payment periodicity mean) dominate

Figure 5: Learned B-spline functions for two high-dimensional feature groups in HomeCredit
dataset. Line thickness represents weight magnitude. HKAN’s sparsity regularization automatically
identifies 1-2 dominant features per group from 10-14 candidates, revealing that payment behavior
regularity (periodicity) and overdue volatility are key credit risk indicators. This sparse structure
emerges naturally without manual feature engineering, demonstrating HKAN’s knowledge discov-
ery capability in real-world high-dimensional data.

Notably, both groups identify payment periodicity as critical—Group 12 focuses on its volatility
(std) while Group 15 focuses on its baseline level (mean)—demonstrating HKAN’s ability to dis-
cover complementary perspectives on the same underlying behavioral dimension. This automatic
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discovery of sparse, interpretable structures from 696-dimensional data validates HKAN’s scalabil-
ity and its value as a knowledge discovery tool in real-world applications.

A.9 STANDARD KAN VS. HKAN: THE “SPLINE SOUP” PROBLEM

Motivation. To substantiate our claim in Section 4.5 that standard KAN suffers from a “spline
soup” problem, we trained a standard fully-connected KAN on UCI Heart Disease and extracted its
symbolic formula using the same symbolic regression procedure applied to HKAN. This compari-
son directly demonstrates why dense connectivity, despite theoretical universality, leads to practical
uninterpretability.

Quantitative Comparison. Table 14 summarizes the stark differences between the two ap-
proaches:

Table 14: Standard KAN vs. HKAN on UCI Heart Disease
Metric Standard KAN HKAN
Parameters 11,284 1,652
Test AUC 0.919 0.978
Formula Length (characters) 1,247 ∼150 (factorized)
Number of Terms 32 nested terms 2 factors + integration
Function Types Used 11 types mixed Organized by factor
Active Features All 13 features 7 features (2 factors)
Interpretability Spline soup Clear semantic structure

Standard KAN Formula: A “Spline Soup” Example. The complete symbolic formula extracted
from the trained standard KAN is shown below. This 1,247-character expression demonstrates the
fundamental interpretability challenge of dense KAN architectures:

FKAN = −0.357 · age + 1.604 · oldpeak + 0.005 · ca + 0.766 · trestbps

+ 0.262 · chol − 0.155 · thalach + 0.159 · exang + 0.148 · (0.348− slope)2

− 0.166 · (1− 0.85 · slope)2 − 1.261 · (1− 0.271 · restecg)2

+ 0.011 · (−0.309 · ca − 1)2 + 1.144 · (−thal − 0.475)2

− 0.036 · (−restecg − 0.363)2 + 0.167 · exp(0.223 · thal)
+ 1.723 · exp(1.15 · thal) + 0.24 · exp(1.187 · thal)

− 0.432 ·
(
0.002 · age − 0.005 · ca + 0.013 · thalach

+ 0.086 · (0.348− slope)2 + exp(1.15 · thal)− 0.062

+ 0.002/(0.145− 0.399 · cp)
)2

+ 4.514 · sin(6.444 · ca − 7.642) + 6.5 · sin(2.913 · cp + 0.346)

+ 0.003 · sin(9.505 · cp − 0.282)− 0.289 · sin(9.937 · cp − 8.617)

− 0.14 · sin
(
2.564 · age + 1.14 · oldpeak + 1.84 · trestbps

+ 0.78 · chol − 0.489 · thalach + 7.743 · (−0.309 · ca − 1)2

+ 2.452 · sin(9.505 · cp − 0.282) + 1.867 · exp(−6.649 · exang) + 5.173
)

+ 0.003 · exp(−6.649 · exang)− 0.343/(−2.648 · ca − 0.966)

− 0.013/
(
− 0.002 · (−0.744 · age − 1)2 − 0.089 · exp(1.389 · thal)− 0.011

)
− 0.002/

(
− 0.008 · (−0.744 · age − 1)2 − 0.273 · exp(1.389 · thal)− 0.001

)
+ 0.004/(0.145− 0.399 · cp)− 3.978 (16)

Analysis: Why This is a “Spline Soup”. This formula exhibits several pathological characteris-
tics that render it practically uninterpretable:
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• Indiscriminate Feature Mixing: All 13 features appear scattered throughout the expres-
sion with no semantic organization. For example, age appears in 5 different contexts
(linear term, squared terms, nested sine function), making it impossible to understand its
overall contribution.

• Deep Nesting: The formula contains 3-4 levels of nested functions (e.g., sine of a sum
containing exponentials and squared terms), obscuring causal relationships.

• Redundant Representations: The same feature appears in multiple similar forms (e.g.,
three different exponentials of thal with coefficients 0.223, 1.15, 1.187), suggesting the
model learned redundant pathways rather than discovering true structure.

• Arbitrary Function Choices: The formula mixes 11 different function types (linear,
squared, exponential, sine, rational) without clear semantic justification, appearing more
like numerical overfitting than knowledge discovery.

Visualization. Figure 6 shows the network structure of the trained standard KAN. The dense all-
to-all connectivity creates a tangled web where every input feature connects to every hidden node,
making it impossible to trace which features interact or identify semantic groupings. This visualiza-
tion starkly contrasts with HKAN’s clean hierarchical structure shown in Figure 3.

Figure 6: Visualization of standard KAN’s dense connectivity on UCI Heart Disease. The all-to-
all connections create a “spline soup” where semantic structure is lost in the tangle of interactions.
Compare this to HKAN’s sparse hierarchical structure in Figure 3.
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Conclusion. This comparison demonstrates that while standard KAN achieves reasonable predic-
tive performance (0.919 AUC), its dense parameterization produces formulas that are effectively
black boxes. HKAN’s hierarchical sparse design with evolutionary topology discovery and dual-
layer regularization is not merely an optimization—it is a fundamental architectural innovation that
transforms KAN from a universal approximator into a practical knowledge discovery tool.

A.10 FUNCTION FITTING DETAILS

Case 1: 3D Polynomial Function. For the simple polynomial F (x1, x2, x3) = x21 + 5x2 + x23,
both methods achieve excellent performance:

Standard KAN: Achieves perfect symbolic recovery through progressive training with gradually
decreasing regularization:

FKAN = 1.0x21 + 5.0x2 + 1.0x23 (17)

HKAN: Learns near-perfect coefficients with hierarchical decomposition:

FHKAN = 1.01x21 + 5.01x2 + 1.00x23 (18)

Case 2: 4D Composite Function. For the complex function F = exp(x21 + x22) +
1

1+x3+x4
:

HKAN Factor Decomposition:

f1(x1, x2) = 0.818 · exp(0.896x21 + 0.898x22) + 1.112 (19)

f2(x3, x4) = −1.291−
0.314

−0.732x3 − 0.733x4 − 0.744
(20)

FHKAN = 1.395 · f1 + 2.442 · f2 + 1.437 (21)

Standard KAN Expression:

FKAN = −0.768x3 − 0.773x4 + 1.221(x1 + 0.001)2 + 1.231(−x2 − 0.003)2

+ 7.863
(
− 0.021(0.002− x2)2 − 0.015(x1 − 0.002)2 − 1

− 0.226

−0.3x4 − 0.429
− 0.223

−0.29x3 − 0.424

)2
+ 1.956 (22)

The standard KAN expression spans 202 characters with complex nested terms, while HKAN pro-
duces a clean 50-character formula that correctly identifies the exponential and rational components.

A.11 DATASET DETAILS

Table 15 provides comprehensive statistics for all datasets used in our experiments.

Table 15: Detailed dataset characteristics
Dataset Samples Features Task Classes Domain

Small-Scale Datasets
UCI Heart Disease 303 13 Binary Clf. 2 Medical
Glass 214 9 Multi-Clf. 7 Materials
UCI Student 649 32 Regression - Education

Medium-Scale Datasets
California Housing 20,640 8 Regression - Real Estate
Adult 48,842 14 Binary Clf. 2 Census
German Credit 1,000 20 Binary Clf. 2 Finance
Higgs 98,050 28 Binary Clf. 2 Physics

Large-Scale Datasets
Covtype 581,012 54 Multi-Clf. 7 Ecology
HomeCredit Default 458,913 696 Binary Clf. 2 Finance
Delivery ETA 539,577 223 Regression - Logistics
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Evaluation Metrics.

• Binary classification: AUC-ROC (Area Under the Receiver Operating Characteristic
Curve)

• Multi-class classification: Accuracy (percentage of correct predictions)
• Regression: RMSE (Root Mean Squared Error)
• Parameter efficiency: Total number of trainable parameters

Feature Preprocessing. All datasets underwent standardization (zero mean, unit variance) for
continuous features and label encoding (ordinal encoding) for categorical features. We chose la-
bel encoding over one-hot encoding because: (1) HKAN shows minimal performance difference
between these encoding schemes due to its adaptive B-spline functions that can learn arbitrary map-
pings from ordinal values, and (2) using one-hot encoding would unfairly disadvantage other meth-
ods in parameter count comparisons. Missing values were imputed using median for numerical
features and mode for categorical features. No feature engineering was performed to ensure fair
comparison with baselines.

A.12 LIMITATIONS AND FUTURE DIRECTIONS

While HKAN demonstrates strong performance across diverse scenarios, several limitations warrant
acknowledgment. The evolutionary architecture search introduces computational overhead during
discovery, and traditional gradient boosting methods like XGBoost maintain advantages on certain
large-scale datasets due to extensive optimization for tabular data. Our current evaluation focuses
on general tabular data; domain-specific applications may require specialized adaptations.

Future research directions include: (1) applications in recommendation systems where natural fea-
ture groupings could provide valuable business insights; (2) extension to computer vision and speech
processing by replacing MLP components with interpretable KAN units; (3) algorithmic improve-
ments through gradient-based NAS methods to reduce computational cost; and (4) developing in-
cremental architecture update mechanisms. HKAN represents a significant step toward building
transparent and accountable AI systems, bridging the gap between interpretability demands and
performance requirements in modern machine learning.

A.13 LARGE LANGUAGE MODEL USAGE

In accordance with ICLR 2026 guidelines, we disclose the use of Large Language Models in this
research. LLMs were employed as general-purpose assistance tools and did not contribute to the
core research ideation or methodology development.

Paper Writing Assistance: Claude Sonnet 4.0 was used for manuscript refinement, including lan-
guage polishing, result summarization, and analysis presentation. The core scientific contributions,
experimental design, and conclusions remain entirely the work of the authors.

Code Implementation Support: Claude Sonnet 4.0 assisted in adapting existing author-developed
code to different datasets, primarily for data preprocessing and experimental pipeline setup. All
algorithmic innovations and core implementations were developed independently by the authors.

Visualization Design: Gemini 2.5 Pro provided RGB color value recommendations for figure de-
sign to enhance visual clarity and accessibility.

The authors take full responsibility for all content, including any LLM-generated text that has been
reviewed, validated, and integrated into the manuscript.
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