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Abstract
Adversarial training (AT) is a fundamental method to enhance the

robustness of Deep Neural Networks (DNNs) against adversarial

examples. While AT achieves improved robustness on adversarial

examples, it often leads to reduced accuracy on clean examples.

Considerable effort has been devoted to handling the trade-off from

the perspective of input space. However, we demonstrate that the

trade-off can also be illustrated from the perspective of the gra-
dient space. In this paper, we propose Adversarial Training with

Adaptive Gradient Reconstruction (AGR), a novel approach that

balances generalization (accuracy on clean examples) and robust-

ness (accuracy on adversarial examples) in adversarial training

via steering through clean and adversarial gradient directions. We

first introduce an ingenious technique named Gradient Orthog-

onal Projection in the case of negative correlation gradients to

adjust the adversarial gradient direction to reduce the degrada-

tion of generalization. Then we present a gradient interpolation

scheme in the case of positive correlation gradients for efficiently

increasing the generalization without compromising the robust-

ness of the final obtained. Rigorous theoretical analysis proves that

our AGR has lower generalization error upper bounds indicating its

effectiveness. Comprehensive experiments empirically demonstrate

that AGR achieves excellent capability of balancing generalization

and robustness, and is compatible with various adversarial training
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methods to achieve superior performance. Our codes are available

at: https://github.com/RUIYUN-ML/AGR.
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1 Introduction
Deep neural networks (DNNs) have gained widespread adoption in

myriad multimedia processing fields thanks to their exceptional per-

formance, such as image recognition [16, 20], text generation [1, 2],

speech recognition [34, 61] and object detection [19, 50]. However,

due to widely recognized vulnerabilities caused by various attacks,

the security concerns and privacy protection issues for AI-backed

multimedia systems are increasingly aggravating [12, 31, 32, 60].

Currently, a wide range of real-world applications have been shown

to be vulnerable to adversarial examples (AEs) [13, 18, 21, 40], which

adds tiny perturbations to clean examples that are imperceptible to

human perception and give a false prediction. There exist consider-

able well-established methods for adversarial example generation

such as FGSM [13], PGD [35], C&W [6], AutoAttack [9], etc. The
introduction of adversarial examples has spurred the development

of numerous techniques to ensure the trustworthiness of multi-

media processing [14, 58, 59], research on the adversarial attack

defense mechanisms has been a trending topic in the multimedia
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field [15, 46], among which adversarial training [35, 45, 48, 55] has

been widely accepted as an effective defense.

Although AT and its variants have notably improved model ro-

bustness, they inevitably compromise generalization performance

compared to standard training methodologies and vice versa. Re-

cently, there has been a host of research dedicated to the trade-off

between generalization and robustness [30, 37–39, 42, 44], such

as leveraging the redundant capacity [63], instance reweighting

[56, 57], adding a regularisation term for the loss function [41, 49],

or leveragingmixed data [62]. However, most of the aforementioned

works utilize only the information brought by the input space to
improve the model generalization or robustness, paying little atten-

tion to the information in the gradient space and even less attention

to the dynamics of the gradient space, which is also very important

in influencing the model performance. In order to thoroughly inves-

tigate the trade-off issue from the perspective of gradient space, we
conducted an experiment with the results depicted in Figure 1. We

observe that there exist various levels of correlation between the

gradient direction of the clean and adversarial robust loss during

the adversarial training process, and even a negative correlation

between their directions in some cases, which exactly explains that

the adversarial training updating process leads to the gradual rise

of the robustness and the degradation of the generalization. We

perceive this finding as an indication of the existence of the trade-

off problem, which can be explained from the perspective of the

difference in gradient directions between clean loss and adversarial

robust loss. In light of this phenomenon of trade-off observed from

the gradient direction, we ask the intuitive question: “Can we exploit
these gradient directions to control or improve the trade-off in the
training process dynamically?” As an answer to the question, we are

tackling the trade-off problem from a novel perspective by dividing

the clean and adversarial directions of the gradient into two cases

during adversarial training.

• In the negative correlation case, since the reduction in gener-

alization comes from this situation, it is possible to adjust the

direction of the adversarial gradient to remove that negative

effect and maintain a positive correlation with the original

gradient direction.

• In the positive correlation case, correlation-based gradient

interpolation can be employed to enhance generalization,

paying high attention to increasing generalization and low

attention to maintaining robustness in high correlation and

vice versa.

Based on the above inspiration, we propose a novel adversarial

training method based on adjusting the direction of the gradients

called Adversarial Training with Adaptive Gradient Reconstruction

(AGR) that aims to improve the generalization without compromis-

ing the robustness of the final obtained. Our framework divides

the parameter update process into two cases based on the cosine

similarity between gradient pairs (see Figure 2). 1) Negative corre-
lation case, we propose the Gradient Orthogonal Projection (GOP)

to decompose the adversarial gradient orthogonality into two parts,

one aligned with the negative direction of the clean gradient and

the other orthogonal to it. This achieves the desired effect that the

new gradient direction causes no degradation of generalization;

2) Positive correlation case, we propose an adaptive gradient

interpolation scheme named Gradient Interpolation Based on Co-

sine Similarity (GICS), which makes use of the similarity of the

gradients as the weights of the interpolation. With this interpo-

lation scheme, the adversarial training process can dynamically

pay more (or less) attention to robustness and less (or more) atten-

tion to generalization in the presence of low (or high) correlation,

achieved by assigning interpolation weights corresponding to the

gradient. This ensures efficient and dynamic improvement of gener-

alization without compromising the robustness of the final obtained

in adversarial training. The main contributions of our work can be

summarized as follows:

• We analyze the trade-off problem that exists during adver-

sarial training from a novel perspective, i.e., gradient space,
utilizing this perspective as a breakthrough point to further

control or improve the trade-off.

• Wepropose an innovative adversarial trainingmethod named

AGR to increase the generalization without compromising

the robustness of the final obtained. Additionally, this ap-

proach is compatible with most of the existing adversarial

training methods to achieve outstanding performance.

• We theoretically prove that ourAGR has lower generalization

error bounds compared to other AT methods. We also con-

ducted extensive experiments to evaluate the AGR against

five state-of-the-art adversarial attacks, demonstrating supe-

rior performance in handling the trade-off.

2 Related Work
Adversarial Attacks. Adversarial examples [40] have become a

prevalent attack method imposing tiny perturbations to the model

inputs that drive the target model mispredicts outputs. There has

been a considerable amount of literature on the methods of their

generation since their discovery. One of the earliest and most well-

known methods is the Fast Gradient Sign Method (FGSM) [13].

Most subsequent adversarial attacks have been proposed based on

this approach. Iterative FGSM (I-FGSM) [23] acts as an extended

variant of the FGSM, which adds small perturbations by iteratively

using the FGSM. PGD [35] is to randomly initialize a point on

the input neighborhood as the starting point and then apply I-

FGSM. Unlike FGSM [13], C&W [6] is an optimization-based attack

that transforms the attack problem into a minimization problem

with constraints, instead of making use of the model’s gradient

information to generate perturbations.

Adversarial Defense. In order to address and mitigate the poten-

tial threat of adversarial example attacks, manifold defense methods

have been introduced and proposed. These include adversarial train-

ing [35, 45, 48, 55], adversarial detection [7, 51], certified adversarial

robustness [8, 24, 26] and adversarial purification [3, 36, 52]. Among

these techniques, adversarial training has emerged as a particularly

effective defense method that involves training a model to improve

its robustness by utilizing adversarial examples as training data.

There are numerous approaches to adversarial training, each with

its own unique strengths. Among them, PGD-AT [35] is the ear-

liest and most widely accepted method, which improves model

robustness by using maximization with PGD attack. TRADES [55]

proposes a surrogate loss by analyzing the upper bound of the

robust error, which pushes the decision boundary away from the

examples. AWP [48] reveals a clear correlation between weight
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landscape and robust generalization gap. By smoothing the weight

loss landscape, the generalization gap can be effectively reduced to

improve robustness. CFA [47] investigates the effects of adversarial

perturbations on different classes, and improves the robustness by

customizing the perturbation configurations of different classes

during adversarial training.

3 Methodology
3.1 Preliminaries
Consider a𝐾-class classification task on a datasetD = {(𝒙𝑖 , 𝑦𝑖 )}𝑛𝑖=1 ⊆
X × Y, where 𝒙𝑖 ∈ R𝑑 represents examples drawn from a defined

unknown distribution, and Y represents all possible labels corre-

sponding to the examples in X. The prediction of input data 𝒙 on

model 𝑓 is denoted as 𝑓 (𝒘 ; 𝒙), where𝒘 ∈ R𝑝 represents the weight

of the model. For an adversarial example classification problem, we

use 𝒙′ to denote the adversarial example of 𝒙 .
The complete clean loss function in standard training is defined

as:

L𝑠𝑡𝑑 (𝒘) =
1

𝑛

𝑛∑︁
𝑖=1

ℓ (𝑓 (𝒘 ; 𝒙𝑖 ), 𝑦𝑖 ), (1)

where 𝑛 is the number of the training data, 𝑓 (𝒘 ; ·) is the model

(neural network), ℓ (·) is the loss function (e.g., the cross-entropy
(CE) loss).

For adversarial training, we denote the adversarial (or robust)

loss as:

L𝑎𝑑𝑣 (𝒘) =
1

𝑛

𝑛∑︁
𝑖=1

max

∥𝒙′
𝑖
−𝒙𝑖 ∥𝑝<𝜖

ℓ (𝑓 (𝒘 ; 𝒙′𝑖 ), 𝑦𝑖 ), (2)

where 𝒙′ is considered an adversarial example that falls within the

𝜖-ball, bounded by 𝐿𝑝 -norm and centered at the clean example 𝒙 .

3.2 Overview
Adversarial training has been demonstrated to be an effective tech-

nique for enhancing a model’s robustness against adversarial ex-

amples. However, one potential drawback of this approach is that

it may decline the model classification accuracy on clean examples.

This is because the model may become overly focused on defending

against adversarial attacks, which can negatively impact its ability

to correctly classify clean examples.

To address this issue, we propose a novel adversarial training ap-

proach with Adaptive Gradient Reconstruction (AGR). Specifically,
AGR introduces orthogonal projection and gradient interpolation

in adversarial training, which modifies the gradient of robust loss

during the adversarial training process. As a result, AGR improves

standard accuracy without compromising the robustness of the

final obtained. Essentially, AGR allows the model to better balance

its attention between defending against adversarial attacks and

correctly classifying clean examples.

We first explore the application of orthogonal projection meth-

ods in adversarial training. This exploration provides a metric for

distinguishing between positive and negative correlation gradi-

ent pairs. For convenience, we denote the gradient of the latter

concerning L𝑠𝑡𝑑 (𝒘) and L𝑎𝑑𝑣 (𝒘) as L𝑛 and L𝑎𝑑𝑣 , respectively.

Definition 3.1. The cosine similarity between the gradients

∇L𝑛 and ∇L𝑎𝑑𝑣 is Ψ(∇L𝑛,∇L𝑎𝑑𝑣) = ∇L𝑛 ·∇L𝑎𝑑𝑣

∥∇L𝑛 ∥2 ∥∇L𝑎𝑑𝑣 ∥2 .

Figure 1: The cosine similarity of ∇L𝑛 and ∇L𝑎𝑑𝑣 of weights
of convolutional layers of PreActResNet-18 trained on CI-
FAR10 by TRADES. Below each scatter plot is the value of
cosine similarity in the corresponding iteration rounds.

When the Ψ(·) < 0, it indicates that the gradient is in the oppo-

site direction for standard and adversarial training. We refer to this

gradient pair as a negative correlation gradient pair. Whereas, when

Ψ(·) > 0, we call the gradient pair a positive correlation gradient

pair. We also conduct a simple experiment in Figure 1 to show that

there are many cases where the Ψ(·) < 0 during the model training

process.

In the adversarial training process, updating the model in the di-

rection of ∇L𝑎𝑑𝑣 will significantly affect its predictive performance

at point 𝒙′, but will result in a smaller change to the prediction of

𝒙′ along the orthogonal to ∇L𝑎𝑑𝑣 . We consider the effect of both

directions ∇L𝑎𝑑𝑣 and ∇L𝑛 on the performance of the model simul-

taneously. Let us use cosine similarity as a measure between gra-

dient pairs (i.e., Ψ(∇L𝑛,∇L𝑎𝑑𝑣)), then we can divide the gradient

pairs into two types, positive correlation gradient pairs or negative

correlation gradient pairs, corresponding to Ψ(∇L𝑛,∇L𝑎𝑑𝑣) ≥ 0

or Ψ(∇L𝑛,∇L𝑎𝑑𝑣) < 0, respectively. Subsequently, we propose the

gradient orthogonal projection and gradient interpolation meth-

ods to improve the generalization for the two cases (See Figure 2).

To consider the orthogonalization process in more detail, we will

orthogonalize the gradient for each parameter, we have:

∇L𝑎𝑑𝑣 = [∇L (1)
𝑎𝑑𝑣

,∇L (2)
𝑎𝑑𝑣

, ...,∇L (𝑐 )
𝑎𝑑𝑣

], (3)

∇L𝑛 = [∇L (1)
𝑛 ,∇L (2)

𝑛 , ...,∇L (𝑐 )
𝑛 ], (4)

where 𝑐 is the number of the parameters.

3.3 Gradient Orthogonal Projection
As depicted in Figure 1, we demonstrate that there exists a few

instances where the Ψ(∇L (𝑖 )
𝑛 ,∇L (𝑖 )

𝑎𝑑𝑣
) < 0 during adversarial train-

ing. It suggests that this update moving will increase the robustness

but decrease the generalization. To reduce the loss of generalization,

we propose to use “orthogonalize” to refine the gradient ∇L (𝑖 )
𝑎𝑑𝑣

.

We now introduce the Gradient Orthogonal Projection (GOP)

clearly and concisely, using a formulaic approach. We first orthog-

onally project ∇L (𝑖 )
𝑎𝑑𝑣

along ∇L (𝑖 )
𝑛 to obtain the new direction 𝒈𝑖

1
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Figure 2: Overview of the proposed AGR.
as follows:

𝒈𝑖
1
=

⟨∇L (𝑖 )
𝑎𝑑𝑣

,∇L (𝑖 )
𝑛 ⟩

⟨∇L (𝑖 )
𝑛 ,∇L (𝑖 )

𝑛 ⟩
∇L (𝑖 )

𝑛 . (5)

In this scenario, the vectors of 𝒈𝑖
1
and ∇L (𝑖 )

𝑛 are exactly opposite

in direction, leading to reduced predictive accuracy on the model’s

clean examples. So we discard the component 𝒈𝑖
1
and choose the

component ∇L (𝑖 )
𝑎𝑑𝑣

that orthogonal to ∇L (𝑖 )
𝑛 as the moving direc-

tion, we denote 𝑃𝑟𝑜 𝑗 (·) as follows:

𝒈𝑖
2
= ∇L (𝑖 )

𝑎𝑑𝑣
− 𝒈𝑖

1
. (6)

It is worth noting that we take 𝒈𝑖
2
as the gradient of the i-th

parameter update for this model does not cause much decrease in ro-

bustness as it is positively correlatedwith∇L (𝑖 )
𝑎𝑑𝑣

(i.e.,Ψ(𝒈𝑖
2
,∇L𝑎𝑑𝑣) >

0).

In the case where Ψ(∇L (𝑖 )
𝑛 ,∇L (𝑖 )

𝑎𝑑𝑣
) > 0, let’s reconsider us-

ing orthogonal decomposition for ∇L (𝑖 )
𝑎𝑑𝑣

with respect to ∇L (𝑖 )
𝑛 .

The direction of 𝒈𝑖
1
aligns with ∇L (𝑖 )

𝑛 , indicating it doesn’t hinder

the model’s prediction on clean examples. Since 𝒈𝑖
2
is orthogo-

nal to ∇L (𝑖 )
𝑛 , it has minimal impact on clean prediction perfor-

mance but positively correlates with ∇L (𝑖 )
𝑎𝑑𝑣

, enhancing robustness.

Thus, discarding any component via gradient orthogonal projection

negatively affects generalization or robustness (e.g., discarding 𝒈𝑖
1

reduces generalization). Therefore, applying gradient orthogonal

projection when Ψ(∇L (𝑖 )
𝑛 ,∇L (𝑖 )

𝑎𝑑𝑣
) > 0 is inappropriate, and we

next consider a gradient interpolation method for this scenario.

While there exists a series of works that have used the GOP

to solve a variety of problems. For example, Bryniarski et al. [5]
explores a new attack technique aimed at constructing adversarial

examples that satisfy multiple constraints simultaneously through

GOP. Farajtabar et al. [11] proposes to use it to solve the catastrophic
forgetting in continual learning. Li et al. [27] introduces subspace
learning to federated unlearning via the orthogonal projection.

To the best of our knowledge, we are the first work to pursue

the improvement of generalization through gradient orthogonal

projection.

3.4 Gradient Interpolation
Let’s focus on improving generalization during training. After per-

forming gradient orthogonal projection in adversarial training, the

model achieves higher standard accuracy and consistent robustness

compared to AT. However, it is worth noting that the increase in

standard accuracy is often not very significant. Figure 1 shows that

during the training process, only a small fraction of iterations have

Ψ(·) values less than 0.

Overall, there are still a large number of positive correlations in

the direction of the gradient here, and we will make reasonable uti-

lization of this gradient information to further handle the trade-off.

Our main idea is to consider gradient interpolation based on cosine

similarity between ∇L (𝑖 )
𝑎𝑑𝑣

and ∇L (𝑖 )
𝑛 . Through interpolation, we

can obtain a gradient that is very correlated with both gradient

vectors, which can effectively balance the robustness and gener-

alization. Thus, we propose the Gradient Interpolation Based on

Cosine Similarity (GICS), the interpolation of the formula can be

written as,

𝑮 = 𝑐𝑠 · ∇L (𝑖 )
𝑛 + (1 − 𝑐𝑠) · ∇L (𝑖 )

𝑎𝑑𝑣
, (7)

where 𝑐𝑠 is the cosine similarity between ∇L (𝑖 )
𝑎𝑑𝑣

and ∇L (𝑖 )
𝑛 .

The above interpolationmethod is able to dynamically handle the

balance between generalization and robustness by using the cosine

similarity between ∇L (𝑖 )
𝑎𝑑𝑣

and ∇L (𝑖 )
𝑛 as interpolation weighting

factors. When the cosine similarity between gradients is larger, due

to the larger 𝑐𝑠 this interpolation method will consider ∇L (𝑖 )
𝑛 more

and efficiently gain generalization without loss of robustness. When

the cosine similarity between gradients becomes small, the interpo-

lation method will give priority to ∇L (𝑖 )
𝑎𝑑𝑣

to prevent the decrease in

robustness. Thus, it achieves the effect of improving generalization

without loss of robustness. And when Ψ(∇L (𝑖 )
𝑛 ,∇L (𝑖 )

𝑎𝑑𝑣
) is less than

0, we do not opt for using gradient interpolation. We reason that

the gradient pairs are negatively correlated at this moment, and

the interpolated gradient will retain a small similarity to the clean

gradients or adversarial robust gradients. This similarity makes it

challenging to improve the generalization and robustness of the

model.

No matter which interpolation method, it will lead to a certain

difference between the new gradient direction and the original

∇L (𝑖 )
𝑎𝑑𝑣

, which will cause the model to fail to obtain the robust-

ness in time, so we choose to take GICS after the model obtains

the maximum robustness (e.g., in the subsequent experiments we

start using GICS at 150 epochs) and in order to finally maintain

higher robustness, we choose to perform a gradient clipping on

the interpolated gradient in 𝑙2 norm, i.e., the 𝐶𝑙𝑖𝑝 operation is for-

mulated as 𝑮/𝑚𝑎𝑥 (1, ∥𝑮 ∥2
𝐶

), for a clipping threshold 𝐶 . It is well

documented that catastrophic overfitting of AT is related to the

magnitude of the gradient paradigm, and reducing the magnitude
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of the gradient paradigm can effectively suppress catastrophic for-

getting [29]. To better facilitate understanding, the pseudo-code for

AGR is presented in Supplementary.

4 Theoretical Analysis
In this section, we provide a general result (Theorem 4.1) to demon-

strate the effectiveness of AGR in improving generalization while

maintaining robustness during each iteration. Then, we use Rademacher

complexity to bound the generalization error of AGR. Now, we con-
sider generalization in terms of two parts of AGR to obtain the

following results:

Theorem 4.1. Let ∇L𝑛,∇L𝑎𝑑𝑣 denote the clean and adversarial
gradients, respectively. For arbitrary cases of−1 ≤ Ψ(∇L (𝑖 )

𝑛 ,∇L (𝑖 )
𝑎𝑑𝑣

) <
0 and 0 ≤ Ψ(∇L (𝑖 )

𝑛 ,∇L (𝑖 )
𝑎𝑑𝑣

) ≤ 1, AGR with gradient 𝑮 for one iter-
ation, it holds that 𝑮 induces a descent in both L𝑛 and L𝑎𝑑𝑣 .

Theorem 4.1 shows that both in gradient orthogonal projection

and cosine similarity interpolation operations, it is at least guaran-

teed that the direction of the gradient update causes no increase in

clean loss and adversarial robust loss. Detailed notations and proof

can be found in Supplementary. Next, we consider the following

setting of Rademacher complexity.

There has an unknown distribution D over the input space

Z, from which we drawn 𝑁 examples i.i.d from D to form the

standard training dataset 𝑆 = {𝑧1, 𝑧2, ..., 𝑧𝑁 } where 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 ).
Similarly, we denote the adversarial training dataset 𝑆 ′ drawn from

the distribution T . We formulate the population risk and empirical

risk as:

𝑅D (𝑓 ) = 𝐸 (𝑥,𝑦)∼D [ℓ (𝑓 (𝜽 , 𝑥), 𝑦)], (8)

𝑅𝑆 (𝑓 ) =
1

𝑛

𝑁∑︁
𝑖=1

ℓ (𝑓 (𝜽 , 𝑥𝑖 ), 𝑦𝑖 ), (9)

where ℓ (·, ·) represents the loss function.
In our setting, AGR utilizes the standard training dataset and

adversarial training dataset during adversarial training denoted as

𝑆 and 𝑆 ′, respectively. Further, AGR maintains the value of L𝑠𝑡𝑑

without decreasing during the optimization of L𝑎𝑑𝑣 , thus we could

view 𝑓𝐴𝐺𝑅 as learned from 𝑆 and 𝑆 ′,

𝑓𝐴𝐺𝑅 = argmin

𝑓 ∈F
𝑅𝑆+𝑆 ′ (𝑓 ) = argmin

𝑓 ∈F
𝜆𝑅𝑆 (𝑓 ) + (1 − 𝜆)𝑅𝑆 ′ (𝑓 ), (10)

where F represents the function space and 𝜆 denotes the propor-

tion between the standard training dataset and the adversarial

training dataset. Following this, we give the definition of empirical

Rademacher complexity and derive the generalization error of AGR
based on Rademacher complexity.

Definition 4.2. Given a unknown distribution D and a function

space F , let 𝑆 = {𝑧𝑖 }𝑁𝑖=1 denotes the training dataset drawn i.i.d

fromD and {𝜎𝑖 }𝑁𝑖=1 be the independent random variables set drawn

uniformly from {−1, 1}. Then, the empirical Rademacher complex-

ity of F on the set 𝑆 is defined to be:

ˆℜ𝑆 (F ) = E𝜎 sup

𝑓 ∈F

[
1

𝑁

𝑁∑︁
𝑖=1

𝜎𝑖 𝑓 (𝑧𝑖 )
]
. (11)

Theorem 4.3. Assume that F is a function space with the range
[0,1], let 𝑫𝑁𝑠 =

{
𝒛𝑠𝑛

}𝑁𝑠

𝑛=1
and 𝑫𝑁𝑎 =

{
𝒛𝑎𝑛

}𝑁𝑎

𝑛=1
be two datasets of i.i.d

sampled from the standard example distribution D and adversarial
example distribution T . Then, given 𝜆 ∈ [0, 1) and for any 𝜖 > 0,
with probability at least 1 − 𝜖 ,

𝑅D (𝑓𝐴𝐺𝑅) − 𝑅𝑆+𝑆 ′ (𝑓𝐴𝐺𝑅) ≤ 2𝜆 ˆℜ𝑆 (F ) + 3𝜆

√︄
ln(2/𝜖)
2𝑁𝑠

+ (1 − 𝜆)𝐷F (D,T) + 2(1 − 𝜆) ˆℜ𝑆 ′ (F )

+ 3(1 − 𝜆)

√︄
ln(2/𝜖)
2𝑁𝑎

+

√︄
ln(1/𝜖)

2

( 𝜆2
𝑁𝑠

+ (1 − 𝜆)2
𝑁𝑎

)
≤ 2𝑐𝜆𝐵

(
√︁
2𝑑 log 2 + 1)∏𝑑

𝑗=1𝑀𝐹 ( 𝑗)
√
𝑁𝑠

+ 3𝜆

√︄
ln(2/𝜖)
2𝑁𝑠

+ (1 − 𝜆)𝐷F (D,T) + 3(1 − 𝜆)

√︄
ln(2/𝜖)
2𝑁𝑎

+ 2𝑐 (1 − 𝜆)𝐵
(
√︁
2𝑑 log 2 + 1)∏𝑑

𝑗=1𝑀𝐹 ( 𝑗)
√
𝑁𝑎

(12)

+

√︄
ln(1/𝜖)

2

( 𝜆2
𝑁𝑠

+ (1 − 𝜆)2
𝑁𝑎

)
.

where 𝐷F (·, ·) represents the integral probability metric proposed

by [54],𝑀𝐹 ( 𝑗) denotes the maximum value of the Frobenius norm

for each parameter matrix 𝑊𝑗 , and 𝑑 is the depth of networks.

Similarly, we bound the generalization error in standard adversarial

training as:

𝑅D (𝑓𝑆𝐴) − 𝑅𝑆 ′ (𝑓𝑆𝐴) ≤ 2
ˆℜ𝑆 ′ + 𝐷F (D,T) + 3

√︄
ln(2/𝜖)
2𝑁𝑎

+

√︄
ln(1/𝜖)
2𝑁𝑎

≤ 𝐷F (D,T) + 3

√︄
ln(2/𝜖)
2𝑁𝑎

+

√︄
ln(1/𝜖)
2𝑁𝑎

+ 2𝑐𝐵
(
√︁
2𝑑 log 2 + 1)∏𝑑

𝑗=1𝑀𝐹 ( 𝑗)
√
𝑁𝑎

.

(13)

In our setting, the ratio of clean to adversarial examples for AGR
was kept at 1:1 (i.e., 𝜆 = 0.5 and 𝑁𝑆 = 𝑁𝑎). For conventional adver-

sarial training methods, which usually utilize only the adversarial

training dataset, its generalization error can be viewed as Eq. 13,

while the error of AGR is shown in Eq. 12. It is worth noting that the

TRADESmethod also utilizes the clean examples, and in subsequent

experiments, we point out that AGR with TRADES as a special case

of TRADES is dynamically adjusting the hyperparameters of the

loss function of TRADES. Overall, the generalization error of 𝑓𝐴𝐺𝑅

and 𝑓𝑆𝐴 are bounded by the empirical training risk, distributed error,

and estimation error. The empirical training risk can be optimized

to be infinitely small. The distribution error of 𝑓𝑆𝐴 is two times

that of 𝑓𝐴𝐺𝑅 . The remaining term in the inequality with respect to

𝑁𝑎 and 𝑁𝑠 is denoted the estimation error, which tends to 0 when

the training dataset size is infinitely large. Therefore, our AGR can

achieve a much smaller generalization error. The proof of Theorem

4.3 can be found in Supplementary.

5 Experiments
In this section, to verify the effectiveness, efficiency, and feasibility

of our proposed AGR, we conduct extensive comparative exper-

iments. Firstly, we show that our approach combined with cur-

rently available adversarial training methods (i.e., AT [35], TRADES
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Table 1: The standard accuracy (SA) and robust accuracy of PreAct-ResNet-18 andWideResNet-34 trained on CIFAR10, CIFAR100,
and Tiny Imagenet datasets under 𝑙∞ = 8/255 against white-box attacks across different defense mechanisms, i.e., AT [35],
TRADES [55], MART [45], and AGR (%).

Model Methods SA FGSM PGD-20 PGD-100 𝐶𝑊∞ AutoAttack

(Architecture)

CIFAR10

AT
84.86±0.014 56.17±0.011 46.30±0.021 45.89±0.008 46.03±0.024 44.01±0.010

(PreAct-ResNet-18)

With AGR 86.22±0.004 55.72±0.015 46.85±0.026 46.36±0.022 46.43±0.013 44.91±0.009

TRADES
82.26±0.165 57.29±0.036 51.12±0.051 50.69±0.042 50.93±0.029 47.06±0.033

With AGR 83.30±0.012 58.31±0.027 52.80±0.031 52.54±0.033 52.64±0.024 48.78±0.011

MART
82.33±0.032 58.23±0.005 51.29±0.014 50.82±0.010 51.18±0.021 46.28±0.011

With AGR 83.29±0.010 58.26±0.039 51.64±0.060 51.21±0.057 51.46±0.042 47.34±0.034

CIFAR10

AT
87.03±0.012 58.64±0.076 49.06±0.118 48.53±0.063 48.44±0.049 47.71±0.075

(WideResNet-34)

With AGR 87.53±0.007 58.42±0.007 49.51±0.009 49.14±0.014 49.19±0.266 48.36±0.018

TRADES
85.73±0.012 58.38±0.014 50.39±0.022 49.88±0.020 50.24±0.004 48.41±0.007

With AGR 86.50±0.023 60.31±0.034 52.56±0.013 52.04±0.011 52.32±0.026 50.44±0.020

MART
85.14±0.018 59.17±0.058 50.50±0.160 49.96±0.142 50.17±0.074 47.27±0.061

With AGR 86.30±0.036 60.83±0.125 51.37±0.350 50.87±0.316 51.19±0.232 48.74±0.117

CIFAR100

AT
58.18±0.048 27.69±0.018 22.04±0.029 21.75±0.024 21.93±0.013 20.19±0.009

(PreAct-ResNet-18)

With AGR 59.18±0.016 27.82±0.012 22.18±0.005 21.78±0.008 22.06±0.014 20.33±0.011

TRADES
53.82±0.012 29.84±0.014 27.02±0.011 26.91±0.024 27.13±0.021 23.29±0.010

With AGR 54.53±0.009 29.39±0.012 26.85±0.006 26.79±0.014 26.82±0.004 23.27±0.006

MART
53.68±0.015 29.32±0.132 25.35±0.166 25.14±0.154 25.23±0.116 21.67±0.096

With AGR 54.21±0.105 29.48±0.009 26.21±0.005 25.95±0.032 26.11±0.016 22.91±0.022

CIFAR100

AT
60.93±0.079 31.61±0.0033 26.05±0.008 25.65±0.014 25.88±0.031 24.33±0.023

(WideResNet-34)

With AGR 61.98±0.026 31.68±0.027 26.41±0.013 25.96±0.016 25.99±0.007 24.37±0.009

TRADES
57.10±0.020 31.23±0.029 26.96±0.060 26.75±0.053 26.93±0.046 24.55±0.044

With AGR 58.17±0.003 32.30±0.014 28.34±0.012 28.12±0.011 28.21±0.004 25.84±0.016

MART
57.29±0.151 30.33±0.029 26.03±0.062 25.88±0.047 25.96±0.051 23.92±0.044

With AGR 58.10±0.224 30.52±0.019 27.61±0.033 27.12±0.036 27.24±0.025 25.04±0.011

Tiny Imagenet

AT
31.90±0.023 11.09±0.016 8.36±0.012 8.28±0.011 8.12±0.008 6.47±0.014

(PreAct-ResNet-18)

With AGR 35.56±0.004 10.60±0.014 7.75±0.018 7.76±0.007 7.88±0.008 6.48±0.006

TRADES
31.06±0.067 12.04±0.017 9.99±0.011 10.08±0.013 9.74±0.024 7.20±0.019

With AGR 33.62±0.059 11.47±0.011 9.73±0.009 9.62±0.012 9.65±0.018 6.48±0.010

MART
29.19±0.120 12.65±0.044 11.25±0.012 10.80±0.021 11.03±0.013 7.75±0.018

With AGR 31.10±0.082 12.94±0.012 11.29±0.006 11.20±0.009 11.06±0.015 8.01±0.014

Tiny Imagenet

AT
33.92±0.032 10.66±0.019 7.57±0.022 7.55±0.023 7.23±0.018 6.54±0.009

(WideResNet-34)

With AGR 37.30±0.032 11.30±0.017 8.42±0.004 8.30±0.007 8.18±0.005 6.98±0.013

TRADES
32.60±0.043 12.22±0.021 9.65±0.034 9.85±0.029 9.47±0.026 7.63±0.013

With AGR 33.57±0.016 12.89±0.008 11.55±0.011 11.44±0.020 11.25±0.015 8.27±0.006

MART
30.79±0.136 13.42±0.019 11.82±0.013 11.53±0.025 11.02±0.020 7.37±0.014

With AGR 32.96±0.093 13.55±0.012 11.89±0.007 11.65±0.023 11.47±0.008 7.72±0.011

(𝜆 = 1/6) [55], MART [45], AWP [48], Avmixup [25] can sig-

nificantly improve standard accuracy while ensuring robustness

against various attacks. Furthermore, we conducted many ablation

studies to confirm the effectiveness of individual components of

our methodology. We use the standard accuracy and robustness

accuracy as metrics to measure model performance.

5.1 Experimental Setup
Datasets. For all experiments, we evaluate the standard accuracy

and robustness of the proposed AGR on CIFAR10 [22], CIFAR-100

[22], and Tiny Imagenet [10], which are three well-known datasets

of natural images used in computer vision research. These datasets

were divided into two parts, the training set, and the validation set,

with a ratio of 5:1. For the data augmentations, we apply 32 × 32

random crops with 4-pixel zero padding, random horizontal flip,

and cutout.

Training. For CIFAR10/100 and Tiny Imagenet, we utilize PreAct-

ResNet-18 [17] andWideResNet-34 [53] architecture as the primary

model for evaluation. For the setting of hyperparameters for adver-

sarial training, we train the PreAct-ResNet-18 and WideResNet-34

for 200 epochs by SGD with momentum 0.9, and weight decay of

5×10−4. The learning rate is initially 0.1, divided by 10 at the 100-th
and 150-th calendar times. Regarding the generation of adversarial

examples, we use PGD-10 [35] with the value of 𝜖 to 8/255, the
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Figure 3: The standard accuracy (SA) and three robust accu-
racy of PreAct-ResNet-18 on CIFAR10 across AWP, Avmixup,
and AGR.

step size to 2/255, and applied a limit of 𝑙∞ constraint over 10 steps.

More detailed settings can be found in the Supplementary.

Attacks. For white-box attacks, we consider the four typical attacks
below: FGSM [13], PGD-20 [35], PGD-100 [35], and 𝐶𝑊∞ [6]. For

black-box attacks, we choose SPSA attack [43] and AutoAttack

[9], which contains a black box attack called square attack [4] and

three white-box attacks. To ensure consistency in the experimental

results, the mean of three experiment repetitions was employed for

all results.
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Figure 4: The decision boundary of AGR.

Table 2: The robust accuracy of PreAct-ResNet-18 on CIFAR-
10/100 andTinyImagenet datasets under under 𝑙2 and 𝑙1 threat
models (%).

CIFAR10 CIFAR100 Tiny Imagenet

Method
𝑙2 𝑙1 𝑙2 𝑙1 𝑙2 𝑙1

(128/255) (2000/255) (128/255) (2000/255) (128/255) (2000/255)

AT 59.73±0.018 47.96±0.013 32.80±0.009 30.26±0.012 14.40±0.015 26.31±0.014
Ours 60.76±0.013 48.84±0.011 33.81±0.016 31.09±0.012 14.31±0.008 26.52±0.010

TRADES 61.89±0.042 45.82±0.036 34.88±0.013 32.68±0.017 16.32±0.020 28.35±0.031
Ours 63.14±0.035 47.54±0.037 35.20±0.028 33.94±0.013 17.38±0.017 29.55±0.025
MART 61.65±0.011 48.01±0.017 34.37±0.015 31.43±0.013 16.17±0.009 27.42±0.010
Ours 61.94±0.049 48.11±0.035 34.50±0.013 31.97±0.007 17.55±0.009 27.87±0.011

5.2 Main Results
Impact on standard accuracy. Table 1 shows that our proposed
AGR method, when combined with diverse adversarial training

methods, can significantly enhance the standard accuracy of the

model on CIFAR10, CIFAR100, and Tiny Imagenet. Specifically,

when applied in conjunction with adaptive gradients reconstruc-

tion, AGR achieves an impressive standard accuracy of 86.22% on

CIFAR10 with PreAct-ResNet-18. This is a significant improvement

compared to the baseline AT, which only manages to achieve 84.86%

accuracy on clean images, resulting in a gap of 1.36%. Despite the

gap in standard accuracy, the robustness accuracy of both methods

is quite comparable, with only a marginal difference of 0.49%. The

identical experimental results can also be observed on the Tiny

Imagenet dataset.

Robustness against white-box attacks. To verify the reliabil-

ity of our approach, we conducted a thorough evaluation of its

robustness against a range of white-box attacks. Specifically, we

considered various attacks with the same norm constraints (e.g.,

𝑙∞ = 8/255). The results, as presented in Table 1, demonstrate that

our proposed method, which incorporates adaptive gradient recon-

struction, consistently maintains exceptional robustness across all

evaluated attacks. Even in the worst-case scenario, where the model

was trained with TRADES on CIFAR100, there was only a 0.45%

reduction in robustness. Over the Tiny Imagenet dataset, we also

demonstrate the effectiveness of our method, which performs well

in improving generalization. In addition to this, we further con-

sider other adversarial training methods in conjunction with AGR,
such as AWP [48], Avmixup [25]. The results are shown in Figure 3,

where the proposed method is effective in improving generalization

while maintaining robustness.

To demonstrate the robustness of our method against differ-

ent white-box adversarial attacks, we evaluate our method against

FGSM, PGD-100, and C&W. As shown in Table 1, our method is

efficient in maintaining robustness against diverse adversarial at-

tacks. We can observe that the combination of our AGR method

also maintains reasonable robustness against unseen perturbations.
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and TRADES-AGR of PreAct-ResNet-18 trained on CIFAR10
and CIFAR100.

Robustness against black-box attacks. We also conducted two

black-box attack tests on our approach, i.e., query-based attack

SPSA and AutoAttack, assessing robustness by a black-box attack

(Square Attack) and three white-box attacks. Table 1 and Figure 3

illustrate our approach’s effectiveness in defending against black-

box attacks.

Visualization results. To visualize that our method improves gen-

eralization, we show the decision boundary of AGR in Figure 4

and the weight loss landscape of the model trained with vanilla AT

and AGR in Figure 5. For decision boundary, we randomly select an

image and generate 1K random directions, applying continuously

perturbations with a fixed step size (𝛼 = 1/255) along each direction
until the model’s prediction for the image changes. We record the

number of steps required to change the prediction result of the ex-

ample in 1K directions in Figure 4 in ascending order. The decision

boundary of our method is further away from the example than

the baseline. Weight loss landscape is a commonly used measure

to describe the generalization gap in standard training [28, 33]. We

can observe that our approach has a much flatter loss compared to
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Table 3: Comparison of DNNs model trained with/without
proposed GOP in different adversarial training methods
trained on CIFAR10 (%).
Method Standard acc Robust acc GOP frequency

Vanilla AT 86.14±0.011 46.42±0.018 -

+ GOP 86.22±0.004 46.85±0.026 2.03

TRADES 82.98±0.014 52.60±0.024 -

+ GOP 83.30±0.012 52.80±0.031 14.93

MART 82.94±0.008 51.43±0.032 -

+ GOP 83.29±0.010 51.64±0.060 6.09

Table 4: Comparison of the effects of three interpolation
methods on the generalization and robustness of vanilla AT
trained on CIFAR10. Case 1 is to average the gradients of
standard and robust loss, Case 2 is to mix the two gradients
in a certain proportion(i.e., 𝜏 = 0.9), while Case 3 is to apply
GICS (%).

Method
AT TRADES MART

Clean PGD Clean PGD Clean PGD

+ Case 1 86.04±0.005 46.70±0.013 83.32±0.011 52.64±0.017 83.28±0.008 51.55±0.015
+ Case 2 85.10±0.010 48.42±0.019 82.48±0.012 52.84±0.017 82.54±0.011 52.55±0.022
+ Case 3 (Ours) 86.22±0.004 46.85±0.026 83.30±0.012 52.80±0.031 83.29±0.010 51.64±0.060

vanilla AT, which indicates better generalization. As depicted in Fig-

ure 6, we show that our method achieves a remarkably smooth loss

trained by vanilla AT and TRADES on CIFAR-10/100 datasets. The

loss change result on Tiny Imagenet can be found in Supplementary.

Robustness against unseen attacks. We have conducted eval-

uations for other threat models. Table 2 reports the adversarial

robustness using PRN-18 under 𝑙2 and 𝑙1 threat models, which in-

dicates that the proposed method is also effective for other threat

models.

5.3 Ablation Study
We aim to provide a thorough analysis of the proposed AGRmethod

by conducting substantial ablation studies on each individual com-

ponent. Our primary objective is to evaluate the effectiveness of the

Gradient Orthogonal Projection (GOP) and Gradient Interpolation

Based on Cosine Similarity (GICS) of AGR for standard accuracy

enhancement, respectively.

Evaluation on gradient orthogonal projection. To evaluate

GOP’s ability to improve standard accuracy, we tested models

trained with and without GOP, comparing it to vanilla AT, TRADES,

and MART under consistent experimental settings. The results, as

shown in Table 3, indicate that GOP significantly enhances standard

accuracy in all adversarial training. Notably, TRADES and MART

with GOP show greater improvement than vanilla AT, likely due to

the frequency of orthogonal projection during training. In AT-GOP,

GOP frequency is 2.03%, while in TRADES and MART, it reaches

14.93% and 6.09%, respectively.

Evaluation on gradient interpolation. We conducted a com-

parative experiment with three gradient interpolation methods:

average gradients, fixed scale interpolation, and our GICS (Section

3.4). Table 4 shows that our method significantly improves stan-

dard accuracy, but in some cases, it results in decreased robustness

compared to Case 2.

In particular, we point out that the interpolation method in

TRADES is actually changing the hyperparameters 𝜆 of the loss

function of TRADES, whereas our method (i.e., Case 3) dynamically
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adjusts 𝜆 so that when robustness is lost too much, interpolation

yields a larger 𝜆 to ensure that robustness is not lost. In this way,

we can get a better balance between standard accuracy and ro-

bustness accuracy compared to fixed interpolation weights. The

results of Case 2 with different 𝜏 values are shown in Figure 7.

As 𝜏 increases, robust accuracy increases while standard accuracy

decreases, indicating a static trade-off where the gradient focuses

more on robustness over generalization. In Case 3, this trade-off is

dynamically managed by adjusting the interpolation weight based

on the gradient directions of clean and adversarial losses. As shown

by the dotted line in Figure 7, Case 3 achieves a better balance

between robustness and generalization compared to Case 2, often

providing higher generalization with comparable robustness.

Evaluation on time andmemory consumption.Herewe demon-

strated the time and GPU memory consumption of our proposed

method compared to the vanilla AT method in Figure 8. Time loss

and memory usage are still increased compared to the original

method.

6 Conclusion
In this paper, we perform a comprehensive study on how to bal-

ance generalization and robustness in adversarial training. From a

novel perspective, we proposed Adversarial Training with Adaptive

Gradients Reconstruction (AGR) to implement the gradient infor-

mation of clean and adversarial examples to dynamically handle

the trade-off between generalization and robustness in order to

improve standard accuracy. Extensive experiments show that our

method has an excellent performance in improving generalization

while maintaining robustness.
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