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Abstract

Multi-step reasoning through Chain-of-001
Thought (CoT) prompting has been extensively002
explored, highlighting the abilities of Large003
Language Models (LLMs) to generate answers004
derived from step-by-step reasoning. These005
studies focus the attention on LLMs’ forward006
reasoning abilities manifested in a series of007
general premises leading to a final solution.008

In this paper, by taking the reverse perspective,009
we study the backward reasoning abilities of010
LLMs, namely the inference that leads to the011
causal hypothesis. Hence, behind formalizing012
the backward problems, we analyze whether013
the LLMs are able to reason about the conclu-014
sion and reconstruct the original question that015
led to the delivery of the final answer. Oper-016
ating with question-answering tasks involving017
symbolic reasoning, understanding, and com-018
monsense abilities, we observe that the pro-019
posed models reveal robust comprehension ca-020
pabilities managing different kinds of input;021
however, they are not always able to reason in022
the backward direction. Finally, to challenge023
this limitation, we show that urging LLMs to024
generate the answer by reconsidering the struc-025
ture of the problem allows for improved back-026
ward reasoning direction.027

1 Introduction028

Several techniques for in-context learning through029

prompting approaches (Brown et al., 2020; Min030

et al., 2022) enable pre-trained Large Language031

Models (LLMs) (Chowdhery et al., 2022; OpenAI,032

2023) to generalize on out-domain tasks, demon-033

strating versatility in a variety of tasks such as sen-034

tence completion, multiple choices text compre-035

hension, and mathematical reasoning, by providing036

multi-step forward responses. Earlier works have037

extensively studied these problems, adopting pre-038

vious (Cobbe et al., 2021; Patel et al., 2022) and039

new (Gao et al., 2023) datasets to observe the per-040

formance of powerful LLMs comparatively.041

Recently, Wei et al. (2022) have proposed the 042

Chain-of-Thought (CoT) prompt for LLMs, which 043

generates necessary explicit intermediate steps to 044

reach the final answer. Specifically, each in-context 045

demonstration is complemented by several steps 046

described in natural language. In inference, the 047

verification question is added to the prompt and 048

fed to an LLM, mimicking the provided demonstra- 049

tions and delivering reasoning steps before the final 050

result. Many works have recently been proposed 051

to improve its effectiveness (Yu et al., 2023; Wang 052

et al., 2023) and efficiency (Wu et al., 2023). Later, 053

Qiao et al. (2023); Zhou et al. (2023) proposed an 054

advancement through Self-Verification techniques. 055

Different outputs delivered to CoT are sampled 056

using temperature sampling (Ficler and Goldberg, 057

2017). Through this passage, the one that receives 058

the most votes is selected as the final response. 059

While these techniques demonstrate the reasoning 060

capabilities of LLMs by generating forward from 061

observations, they do not explore the potential to 062

deduce rules based on given consequences. 063

This leads to the target research questions, which 064

are the focus of this paper: 065

RQ1 Can the well-known question-answering 066

tasks be employed to observe the reasoning abili- 067

ties of LLMs to study the effect in the backward 068

direction? 069

RQ2 Do the different complexities of forward 070

and backward reasoning observed in human minds 071

also reflected in LLMs?? 072

RQ3 Could LLMs’ reasoning abilities be em- 073

powered using the structure of the inputs and the 074

generated answers? 075

In this paper, we investigate whether LLMs are 076

able to deliver answers by performing backward 077

reasoning steps, which consist of developing hy- 078

potheses from a set of facts and deducing the most 079

probable cause or the most plausible explanation. 080

Complementing the foundation work of (Kazemi 081

et al., 2023; Deb et al., 2024; Jiang et al., 2024), 082
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Tf

Context:Henry made two stops during 
his 60-mile bike trip. He first 
stopped after 20 miles. His second 
stop was 15 miles before the end of 
the trip. 
Question: How many miles did he 
travel between his first and second 
stops?
Answer:

Henry traveled 25 miles

Henry traveled 25 miles

Q A

TbH

Fill in the blank value given the following problem.
Context: Henry made two stops during his 60-mile bike 
trip. He first stopped after X miles. His second stop was 
15 miles before the end of the trip. 
Question: How many miles did he travel between his first 
and second stops?

Answer: 25

QH AH

The value is 20.

The value is 18.

TCoT

Context:Henry made two stops during 
his 60-mile bike trip. He first 
stopped after 20 miles. His second 
stop was 15 miles before the end of 
the trip. 
Question: How many miles did he 
travel between his first and second 
stops?
Answer: Let's think step-by-step.

To solve this we need 
[...]
Henry traveled 25 miles

[...]
Henry traveled 25 miles

QCoT ACoT

TbB

Fill in the blank value given the following problem.
Context: Henry made two stops during his 60-mile bike trip. 
He first stopped after X miles. His second stop was 15 
miles before the end of the trip. 
Question: X
Answer: 25

QB AB
The question is:
How many miles did Henry 
travel between his first 
and second stops?

Question: What is the 
distance between 
Henry's first and 
second stops on his 
60-mile bike trip?

Henry made two stops during his-..
........................

He traveled 25 miles between his first and second stops

To find the distance between the Henry's 
........................

Therefore, the distance is 25 miles.

Figure 1: Overview of our proposed approaches.

we introduce question-answering tasks with Mul-083

tiple Choice Questions (MCQ) structures and ex-084

tend the evaluation to further Math Word Problem085

(MPW) task. Hence, we propose two different086

approaches (i.e., Blanking and Hiding) that re-087

visit the masking approach proposed by Deb et al.088

(2024); Jiang et al. (2024) whose applicability was089

restricted to MWP. The study of the backward pro-090

cess, i.e., reconstructing the questions from the091

outcomes, delivers evidence of the ability to under-092

stand the process and profitability of LLMs that093

are systematically posed to different elicitation ap-094

proaches. Thus, to have a comprehensive overview,095

we operate on different versions of the best-known096

LLMs exemplified by GPT (OpenAI, 2023), Llama-097

2 (Touvron et al., 2023), Mistral (Jiang et al., 2023)098

and Orca2 (Mitra et al., 2023)).099

Following extensive analysis, we show a discrep-100

ancy regarding the performances obtained from101

forward and backward prompting. Therefore, we102

propose a series of approaches to stimulate the mod-103

els to rephrase the problem by considering differ-104

ent shapes and achieving noticeable improvements.105

Our contributions can be summarized as follows:106

• Formalization of the backward reasoning107

problem and proposal of two intervention ap-108

proaches in nine benchmarks commonly used109

to test forward generative abilities of LLMs110

(Yuan et al., 2023; Ling et al., 2023).111

• Study about divergences between forward112

reasoning obtained through standard prompt-113

ing and backward way via our Hiding and114

Blanking approaches on different models.115

• Demonstration of performance improvement116

via prompt operation approaches that elicit117

LLMs to reason about the input structures for 118

the given problems. 119

2 Problem Formulation 120

A reasoning-based question-answering (QA) task 121

is defined as a tuple Tf = (Q,O,A), where Q is 122

the question, that could contain context C, such as 123

the necessary background for answering a ques- 124

tion; O = (o1, o2, .., cn) are answer choices if 125

Q is a multiple choice (n) problem (C and O 126

could be optional depending on the task); and A 127

is the target answer. Given Q as input, Large Lan- 128

guage Models (LLMs) generate the answer (output) 129

that is a sequence of tokens Tout = (t1, t2, ..., tn). 130

The generated answer is correct if and only if the 131

(ti, .., tm) ⊆ T matches the ground truth A. Re- 132

cent works like Chain-of-Thought (CoT) (Wei et al., 133

2023) leverage prompt engineering in the context 134

C to elicit LLMs to generate the intermediate rea- 135

soning process in Tout, which benefits their perfor- 136

mance across diverse reasoning tasks. In this case, 137

Tout consists of a set of m intermediate reasoning 138

steps, which we denote as S = (s1, s2, ..., sm) . 139

Each step si can be represented by a subsequence 140

of the generated tokens si = (t1, t2, ...tn) ⊆ Tout. 141

The generated solution is correct if the predicted fi- 142

nal answer in si matches the ground truth A. Given 143

the forward generative nature, the premise of C and 144

Q, and the conclusion generated in the sequence T , 145

it is possible to describe this as a deductive process 146

(Huang and Chang, 2023; Ling et al., 2023). 147

In our work, we introduce Tb that is the opposite 148

of Tf . Starting from a QA task, given the answer 149

A as evidence, we want to infer the rule (or, in 150

our case, the question Q) that generated A. As 151

described in §3, we propose two different versions 152
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Prompt: Multiple Choices Question Tf
Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer A or ACoT

Prompt: Math Word Problem Tf
Question: <Question>
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer A or ACoT

Table 1: Example of prompt for MCQs (left) and MWPs (right) Question Answering tasks.

Prompt: Hiding Approach TbH
Fill in the blank value given the
following problem.
Context: t1, t2, . . . , x, . . . , tn−1, tn
Question: <final question>
Answer: A

+ Let’s think step by step (CoT Prompt)

Prompt: Blanking Approach TbB
Fill in the blank given the following
answer. Find the question that
generates it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A or ACoT

+ Let’s think step by step (CoT Prompt)

Table 2: Example of prompt for Hiding Approach TbH and Blanking Approach TbH .

of Tb: in TbH = (QH , O,AH), the relaxed ver-153

sion, we contextualize the generation of Q using154

QH , that is Q with a strategic hide part with a place-155

holder x and in a strict version TbB = (QB, O,AB)156

we do not use Q or its derivates. Hence, in the first157

version, the final goal is to find out the x omitted158

from the prompt, and in the second, the goal is to159

generate QB , as in the backward reasoning process160

(Huang and Chang, 2023; Qiao et al., 2023).161

In this scenario, we prompt the LLMs, as shown162

in Figure 1, to elicit them to reconstruct or generate163

the rule using the final evidence that is exemplified164

respectively by the question Q and answer A.165

3 Method166

To observe LLMs’ backward abilities, we propose a167

prompting intervention based on deducing the orig-168

inal Q using the target answer A and the context169

provided by task C. Hence, we define the general170

problem Tb in §2, and the applications TbB (§3.2)171

and TbH (§3.1).172

3.1 Hiding Approach173

To elicit LLMs to retrieve the original Q by rea-174

soning in a backward way, we propose TbH =175

(QH , O,AH). We contextualize the generation of176

Q using QH , i.e., Q with an hide part with a place-177

holder x. Hence, we replace the target AH with x.178

However, the hiding approach differs according to179

the nature of the question-answering task.180

Math Word Problem The MWP tasks are char- 181

acterized by a tuple (Q,A) where numerical values 182

represent the strategic information. Following the 183

approaches from the previous work (Deb et al., 184

2024), we mask the numerical value in the prompt 185

with x (placeholder value). Hence, we produce 186

the prompts using QH and A. Where QH is very 187

close to Q, with the numerical value replaced by 188

an x (detailed in Appendix B.1). Then, we evalu- 189

ate the accuracy by performing a string matching 190

between the generated answer and x (x used as a 191

placeholder in the prompt). 192

Multiple Choices Question In the MCQ setting, 193

it is more challenging to determine which strategic 194

part to blank. The datasets introduced in §4.1 are 195

characterized by tuples (Q,O,A). In each Q, a 196

strategic concept S is presented that is generally 197

provided in the dataset but is not used for the eval- 198

uation. We replace S ∈ Q with x deriving Qx 199

(detailed in Appendix B.1). We evaluate the accu- 200

racy by performing a string matching between the 201

generated answer and x. 202

3.2 Blanking Approach 203

Furthermore, we propose a stricter version of 204

the tasks. Starting from Tb we propose TbH = 205

(QB, O,AB). We do not alter Q using the hiding 206

approach but blank the entire Q, i.e., QB , and reply 207

with x. Consequently, the final target A, in our 208

formulation AB , is the original Q blanked with x. 209
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Figure 2: Accuracies (%) on Math Word Problem and Multiple Choices Questions proposed in §4.1 using Standard
prompting approach (as shown in Table 9) and Hiding approach (§3.1).

Then, we construct the input prompt, as shown in210

Figure 1 and in Table 2.211

However, it is not possible to apply the Blank-212

ing approach directly to all tasks, for example, on213

MWPs that have only a numerical A target, and it214

is impossible to generate Q (or AB) without hav-215

ing context. To solve this problem, we introduce216

A described in §3.3 for the Math Word Problem217

and the Multiple Choices Question tasks. Finally,218

we estimate the correctness of generated answers219

using BERTScore (Zhang et al., 2020) between the220

blanked question Q and the generated answer Tout.221

3.3 Backward Answer222

Behind proposing the TbH approach for construct-223

ing altered prompts to evaluate the abilities of224

LLMs, we introduce a Blanking approach, TbB .225

However, LLMs need more context that targets A226

alone cannot supply. Therefore, we introduce A227

by constructing it by prompting the LLMs with228

prompts (as in Figure 1, Table 1, and Table 2).229

Moreover, we use the multi-step reasoning abilities230

by also proposing ACoT that is based on the Chain-231

of-Thought prompt technique (Wei et al., 2023).232

Then, we use the generated answers, A and ACoT ,233

as a component to produce TbB as shown in Figure234

1 (all passages are detailed in Appendix B.2).235

4 Experiments 236

To analyze the different types of reasoning abili- 237

ties of Large Language Models (LLMs), we pro- 238

pose two backward approaches in Math Word Prob- 239

lem (MWP) and Multiple Choices Question (MCQ) 240

tasks introduced in §4.1. Then, we systematically 241

prompt different LLMs as described in §4.2 by 242

evaluating the answers generated using §4.3’s eval- 243

uation methods. 244

4.1 Data 245

We propose our experimental setup by adapting 246

the method proposed in §3 to two typologies of 247

Question-answering (QA) tasks: 248

QA Math Word Problem MPW tasks are char- 249

acterized by a question (a mathematical problem) 250

in natural language and a target answer, which in 251

most cases is a number. We select five different 252

datasets with this type of structure. Following Deb 253

et al. (2024) we use GSM8K (Cobbe et al., 2021), 254

SVAMP (Patel et al., 2021), MultiArith (Roy and 255

Roth, 2015); and Jiang et al. (2024) we use AddSub 256

(Hosseini et al., 2014) AQuA (Ling et al., 2017), 257

GAIA (Mialon et al., 2023). 258

QA Multiple Choices Question In contrast to 259

the previous works, we have introduced additional 260
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Strategy Model GSM8KH SVAMPH MultiArithH AQua-RATH AddSubH GAIAH

Hiding (0-shot) GPT-3.5 33.8±.4 36.3±.2 18.4±.1 69.4±.3 20.3±.1 16.5±.2

Hiding (5-shot) GPT-3.5 35.4±.3 38.4±.4 20.5±.3 70.6±.4 22.1±.3 18.6±.3

CoT (5-shot) GPT-3.5 34.5±.4 35.3±.4 19.5±.1 70.2±.3 19.4±.5 15.9±.1

Complex-CoT (0-shot) GPT-3.5 40.5±.1 39.9±.1 21.7±.2 73.7±.3 24.5±.6 21.2±.4

Complex-CoT (5-shot) GPT-3.5 43.5±.2 41.3±.2 26.4±.2 76.6±.3 24.8±.2 26.3±.4

Paraphrasing (2-shot)
GPT-3.5 50.2±.3 45.8±.4 36.8±.3 79.2±.4 26.7±.2 29.8±.2

Llama-2-70 29.3±.2 37.2±.3 25.6±.2 76.3±.1 29.2±.2 29.2±.1

Mixtral 28.9±.2 31.5±.1 30.1±.2 69.9±.1 29.0±.0 30.0±.1

Paraphrasing (5-shot)
GPT-3.5 56.7±.1 50.3±.1 41.9±.4 83.8±.2 32.1±.1 33.9±.4

Llama-2-70 34.1±.1 44.1±.2 31.7±.3 80.1±.1 33.1±.3 35.0±.3

Mixtral 33.9±.1 38.9±.2 33.3±.1 73.8±.4 33.7±.1 36.2±.5

Self-Refine (2-shot)
GPT-3.5 53.8±.2 49.1±.3 40.1±.4 80.1±.3 30.4±.2 30.1±.4

Llama-2-70 34.1±.4 40.1±.1 31.7±.3 78.2±.3 30.1±.3 33.2±.3

Mixtral 32.1±.2 36.1±.1 30.1±.5 72.5±.2 33.1±.6 32.1±.3

GPT-3.5 66.2±.3 58.8±.1 45.9±.3 82.6±.4 39.3±.1 32.9±.2

Paraphrasing Llama-2-70 33.9±.1 42.3±.1 35.9±.3 78.7±.1 36.5±.5 36.1±.1

+Self-Refine (2-shot) Mixtral 39.1±.5 44.3±.1 31.6±.4 75.1±.2 35.1±.5 31.3±.2

Table 3: Improvements in accuracy with various prompting strategies in the Hiding approach. In Table 10, the
results of other models are reported.

tasks. These are exemplified by MCQ tasks that,261

unlike MWPs, have different structures. This type262

of task consists of a question, a context that is op-263

tional, and multiple choices. In our work, we select264

four resources: CommonSenseQA (Talmor et al.,265

2019) (CSQA) and OpenBookQA (Mihaylov et al.,266

2018) (OBQA) regarding commonsense reason-267

ing, Physical Interaction Question Answering (Seo268

et al., 2018) (PIQA) regarding physical reasoning.269

Finally, we systematically construct TbH and TbB270

(see Table 2), as described in §3 and detailed in271

Appendix B.272

4.2 Models273

To produce a complete analysis, we test different274

LLMs. We select different models by attempting275

to get at least two models from the same families276

but with differing parameters. In particular, we277

select: two GPT models (OpenAI, 2023) (GPT-4278

and GPT-3.5-turbo), two Llama-2 models (Touvron279

et al., 2023) (Llama-2-70 and -13), two Mistral280

models (Jiang et al., 2023) (Mixtral and Mistral-281

7b) and finally two Orca2 models (Mitra et al.,282

2023) (Orca2-7b and -13b). For more details on283

the parameters, see Appendix A.284

4.3 Evaluation285

We evaluate the performance of the LLMs intro-286

duced in §4.1 on the tasks defined in §4.2. The287

evaluation is conducted using the accuracy for the288

Hiding approach TbH and (F1-score) of BERTScore289

(Zhang et al., 2020) for the Blanking approach TbB .290

We use BERTScore because the entire question can291

be generated correctly, even if it is delivered using292

different terminology. In addition, in Appendix K, 293

we discuss an additional analysis performed with 294

an LLM (GPT-4) as a judge. 295

5 Results 296

Large Language Models (LLMs) are able to seek 297

hypotheses that best approximate the explanation 298

of a set of observations; indeed, they deliver an- 299

swers when elicited to consider the fact that caused 300

the final evidence as observed in the Blanking ex- 301

periments in Figure 3. On the other side of the 302

coin, the same behaviour does not emerge when 303

the nature of the task is related to a more in-depth 304

understanding of the context in the prompt, as oc- 305

curs in the Hiding experiments in Figure 2. The 306

nature of the differences between the final results 307

of the Blanking and Hiding (§6.1) approaches 308

can be traced back to the structure of the prompt. 309

Therefore, in §6, we analyze the role of in-context 310

examples and how they impact the answers deliv- 311

ered by the models. Therefore, we show that input 312

paraphrasing techniques might benefit, aid compre- 313

hension, and have a positive impact on the tasks 314

analyzed (§6.2). Finally, we observe that these 315

findings also emerge when the nature of in-context 316

demonstrations varies (Cross-Blanking in §6.3). 317

6 Analysis & Discussion 318

The results obtained downstream of the proposed 319

approaches (i.e., Blanking and Hiding) reveal that 320

LLMs are able to understand the given task and 321

deliver reasoned answers by solving the input prob- 322

lem. However, an in-depth analysis of the results 323

highlights divergences as discussed in §6.1. How- 324
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Figure 3: Performances (BERTScore F1) on Math Word Problem and Multiple Choices Questions proposed in §4.1
using Standard prompting approach (as shown in Table 1) and Blanking approach proposed in §3.2

ever, the discrepancies seem to be related to the325

understanding of the task. In fact, through manip-326

ulation of the prompt in specific paraphrasing of327

the input, different scenarios emerge, as shown in328

§6.2. Finally, in §6.3, we reconsider the Blanking329

approach by proposing the Cross-Blanking Test330

that stresses the LLMs’ understanding abilities.331

6.1 Blanking & Hiding Results332

Blanking LLMs are able to reason about the evi-333

dence delivered in a multi-step way by reconstruct-334

ing initial assumptions. As shown in Figure 3,335

the correctness of the Blanking approach (§3.2)336

is, on average, high when the prompts are formed337

with ACoT , i.e., answers generated via CoT (Wei338

et al., 2023). To have a term of comparison, we339

have reported the same evaluations, F1 BERTScore340

(Zhang et al., 2020), as well as the forward prompt-341

ing approaches (described in Figure 1 and Table 2).342

On the other hand, the Blanking approach version343

constructed using the answer A as evidence does344

not have the same results. Indeed, A alone is too345

context-poor to allow LLMs to reason about the346

prior blanked questions. Although the scores are,347

on average, high, motivation could lie in the pres-348

ence of critical parts of the question in the evidence349

we provide in the inputs.350

Although this result could be expected or mis-351

taken as a data contamination problem, we in-352

troduce a cross-evaluation to better study the 353

in-context comprehension abilities displayed by 354

LLMs. To observe whether LLMs can reason in the 355

opposite direction, we introduce Cross-Blanking 356

experiment in §6.3. Specifically, we deliver as 357

ACoT the responses generated by other LLMs to 358

perform the Cross-Blank evaluation as in Table 7. 359

Hiding LLMs fail to retrieve the hidden infor- 360

mation in prompts. Table 9 shows the accuracies 361

of different LLMs presented in §4.2. A difference 362

emerges between the standard prompts, where mod- 363

els are prompted with a problem to generate an 364

answer, and the Hiding approach, where the mod- 365

els are asked to reconstruct the hidden part of the 366

question. A significant difference emerges because 367

there is a smaller gap in the MCQ tasks than in 368

MWP (Table 9). This phenomenon leads to the 369

study of the input composition, as we hypothesize 370

that these average differences can be traced back 371

to the present content. In the MCQ tasks, there 372

is more context (e.g., the choices) than in MWP, 373

where the answer is coincident. 374

Backward beyond standard benchmarks The 375

performances in the tasks proposed in §4.1 can 376

also be similarly observed on lesser-known tasks, 377

such as reasoning in medical question-answering, 378

as discussed in Appendix G. 1 379

1Appendix G possible applications of our analysis
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Generator Task Evaluator

GPT-4 GPT-3.5 Llama-2-70 Llama-2-13b Mixtral Mistral-7b

GPT-4 GSM8K 94.3±.1 92.5±.3 84.4±.6 83.3±.3 78.2±.2 76.3±.2

CSQA 88.6±.5 87.4±.4 75.6±.1 74.5±.2 67.9±.3 66.3±.2

GPT-3.5 GSM8K 90.9±.2 85.4±.5 72.3±.2 69.4±.4 67.3±.3 65.2±.2

CSQA 81.9±.3 82.5±.3 71.9±.1 68.5±.3 64.7±.2 63.6±.3

Llama-2-70 GSM8K 76.1±.3 75.6±.5 78.6±.3 78.5±.2 62.9±.4 60.9±.1

CSQA 65.3±.3 65.8±.5 75.4±.3 74.3±.2 61.9±.2 59.4±.2

Llama-2-13 GSM8K 81.4±.3 80.6±.2 75.3±.4 73.4±.2 60.9±.1 59.2±.4

CSQA 82.2±.3 81.9±.3 70.9±.3 67.7±.1 59.1±.5 58.2±.2

Mixtral GSM8K 83.8±.3 81.6±.5 68.3±.2 65.8±.3 79.8±.1 77.9±.3

CSQA 74.8±.2 72.3±.3 65.3±.4 63.2±.3 82.2±.3 81.3±.2

Mistral-7b GSM8K 78.7±.3 77.9±.3 67.5±.3 66.6±.1 73.9±.4 72.1±.1

CSQA 69.4±.4 67.8±.1 62.3±.2 61.8±.4 76.4±.4 72.7±.3

Table 4: Performances Cross-Blanking test. In this test, we elicit the models to generate the Blanked question (§3.2)
using the A delivered from other LLMs. "Generator" refers to the model that generates the A. "Evaluator" refers to
the model that is prompted to generate the initial question (example shown in Appendix H).

6.2 Prompting Approaches380

Manipulation of the prompt structure leads LLMs381

to better reasoning in a backward direction. Ta-382

ble 3 shows the performance of the different tech-383

niques, in zero-shot and few-shot (In-context Learn-384

ing (ICL) (Brown et al., 2020)), that made final385

improvements over those discussed in §6.1. We386

discuss the different approaches tested using GPT-387

3.5 and Llama-2-70 as base models.388

CoT vs Complex-CoT CoT approaches in both389

zero-shot and few-shot scenarios do not contribute390

to substantially increasing baseline performances391

by highlighting the limitation of the input structure392

(Tables 3, 10). Moreover, we observe the same393

tendency for Complex-CoT (Fu et al., 2023). We394

hypothesize that these are the consequences of the395

LLMs’ difficulty processing the prompt proposed396

in the Hiding approach (§3.1).397

Paraphrasing Rephrasing the prompt helps398

LLMs understand the problem to be addressed. We399

detected an increase in downstream performances400

of the Paraphrasing technique as in Table 3 (method401

described in Appendix C).402

Self-Refine Although paraphrasing prompts sup-403

port LLMs in understanding the problem, itera-404

tively reconsidering the feedback until a predeter-405

mined condition is reached (Self-Refine) has over-406

powered all approaches. We notice improvements407

by adapting the original Self-Refine to our Hiding408

approach (Tables 3 and 10). 409

6.3 Cross-Blanking Test 410

LLMs are able to reconstruct the initial problem 411

and perform the reasoning in a backward direction 412

by understanding the answers delivered by other 413

LLMs. This is shown in Table 4. We have revisited 414

the Blanking Approach from a Cross-perspective. 415

Hence, we construct the prompts as described in 416

§3.2, but instead of providing ACoT generated by 417

the evaluating LLM, we cross-reference the demon- 418

strations (see Table 7 in Appendix H). We repro- 419

duce the experiments using one mathematical and 420

one multiple-choice question task. From the results 421

in Table 4 it emerges an in-family phenomenon. 422

The models of the same family seem to achieve 423

similar performances, which is not observable in 424

the out-family models. However, the models obtain 425

sustainable performances. 426

6.4 Metrics Error Analysis & Limitations 427

The results in §6.1 demonstrate LLMs’ ability 428

to provide answers while considering backward- 429

facing problems. Following the various techniques 430

used to elicit generation in different scenarios, we 431

qualitatively analyze the results obtained and the 432

metrics behind them, highlighting limitations and 433

strengths. 434

BERTScore vs LLMs-judge In the Blanking 435

Task (§3.2), we employ BERTScore. However, 436

this metric may have limitations, as there could be 437

7



multiple valid questions for a given context and438

response, and it is not clear if BERTScore can dis-439

tinguish between two semantically different ques-440

tions with the same answer. In Table 13, we discuss441

using GPT-4 as an evaluator judge, revealing that442

the results do not differ.443

Numerical Limitation On the side of the Hiding444

approach, we consider the responses generated by445

different LLMs in the MWP tasks. A potential lim-446

itation is associated with evaluating the generated447

placeholders. The placeholders generated could be448

numerical values but not in numeric format, rather449

nominal. To avoid this phenomenon, we (i) include450

the keyword [num] in the input prompts and (ii)451

implement a secondary check using a conversion452

function described in Appendix B.453

Error Analysis Paraphrasing the prompt has its454

benefits. As shown in Table 3 and Appendix C,455

the approach proposed in §3.1 appears to work in456

the case of a few-shot scenario reinforced with a457

self-refined approach. At the same time, it seems458

to lead to misleading and incorrect responses when459

the approaches are employed alone.460

7 Related Work461

Question Answering Problem QA tasks are gen-462

erally defined by a natural language description463

that can be a question in the case of Multiple464

Choice Questions (MCQ) or a mathematical prob-465

lem (MWP) tasks (Lu et al., 2023). The descrip-466

tion expresses the relations between various entities467

or quantities followed by a query. To respond to468

the query, one must represent the relationship be-469

tween entities and quantities. The resolution of the470

problem requires a semantic understanding of the471

natural language description. Koncel-Kedziorski472

et al. (2015); Roy and Roth (2018) parse the de-473

scription using statistical learning techniques to474

identify suitable models for generating answers.475

Behind the advent of sequence-to-sequence models476

(Sutskever et al., 2014), for automatic translation477

the approaches for solving these tasks diverge. For478

MWP, Wang et al. (2017); Jie et al. (2022) propose479

encoder-decoder frameworks that translate the nat-480

ural language description of MWPs into equations.481

In MCQ, Banerjee et al. (2019); Abujabal et al.482

(2018) propose methods for retrieving or generat-483

ing answers from knowledge bases.484

Large Language Models (LLMs) Recently485

LLMs (OpenAI, 2023; Touvron et al., 2023)486

achieved outstanding performance in both MWPs 487

and MCQs tasks without using external knowledge 488

bases or additional methods. They employ the 489

ability to create context-based instances via a few- 490

shot iteration and prompting methods.Welleck et al. 491

(2022); Madaan et al. (2023) use LLMs involve 492

verifying the response provided by the LM, either 493

using the model itself or external verifiers like com- 494

pilers or proof checkers (Zheng et al., 2023; Weng 495

et al., 2023). 496

Reasoning Direction We focus on a precise case 497

of backward reasoning with a single answer (Qin 498

et al., 2020; Thayaparan et al., 2021; Zhao et al., 499

2023) consists of inferring which of explanations 500

is the most plausible. Previous works have mainly 501

focused on textual reasoning under constraints. In 502

arithmetic tasks, Weng et al. (2023) used abductive 503

reasoning to improve the accuracy of forward rea- 504

soning by involving the backward. Our work, on 505

the other hand, addresses backward reasoning as 506

an independent problem. Following foundational 507

work, we extend the study to tasks beyond math 508

problems and scale the tests (summary Table 11). 509

Our interest is analyzing the inherent complexities 510

of reasoning and creating effective solutions to deal 511

with them. 512

8 Conclusion 513

This paper explores Large Language Models 514

(LLMs) behaviour in forward and backward gen- 515

erative ways. By operating via two approaches 516

(Hiding and Blanking), we challenge LLMs to in- 517

fer the original question from the answers. The 518

experiments reveal insights into the LLMs’ abili- 519

ties; while they show proficiency in forward rea- 520

soning, their performances in backward ways vary 521

significantly. The Hiding approach, which partially 522

obscures the original question, demonstrates that 523

LLMs could reconstruct missing elements. Instead, 524

the Blanking approach, which presents a challeng- 525

ing scenario by completely removing the original 526

question, highlights the practical abilities. Our re- 527

search delves into various prompting techniques 528

to empower the LLMs’ performance by eliciting 529

the LLM to understand and challenge the problems 530

better. Our study opens new avenues for under- 531

standing and improving the reasoning abilities of 532

LLMs. It also raises important questions about 533

the future directions of LLM development, particu- 534

larly in areas requiring complex, multi-directional 535

reasoning abilities. 536
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Limitations537

In our work, we analyzed the abilities of Large Lan-538

guage Models (LLMs) in solving reverse question-539

answering and math word problems. Specifically,540

starting from the original settings where a question541

is provided and the LLM is required to generate542

an answer, we examined the reverse task. This543

analysis reveals the strengths and weaknesses of544

LLMs in generating reverse reasoning. Potentially,545

reverse reasoning could be useful when faced with546

evidence and one wishes to trace back to the phe-547

nomenon that caused them by reasoning backward.548

In this work, we used the BERTScore and the549

judgment-based assessment of GPT-4 as judgment550

metrics. In future work, we will study the effect of551

additional metrics in order to improve the evalua-552

tive aspect.553

Ethics Statement554

In our work, ethical topics were not addressed.555

The data comes from open-source benchmarks,556

and statistics on language differences in commonly557

used pre-training data were obtained from official558

sources without touching on gender, sex, or race559

differences.560
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A Model and Hyperparameters913

As introduced in §4.2, we used:914

• two models from the GPT family (OpenAI,915

2023): GPT-4 and GPT-3.5-turbo (GPT-3.5)916

used via API.917

• two models from the Llama-2 family (Tou-918

vron et al., 2023): Llama-2-70b and Llama-919

2-13b using versions of the quantized to 4-bit920

models using GPTQ (TheBloke, a,b).921

• two models of the Orca2 family (Mitra et al.,922

2023): Orca2-7b (TheBloke, e) and Orca2-923

13b (TheBloke, d).924

• two models of the MistralAI family: Mistral-925

7b and Mixtral using official version on huff-926

ingface (MistralAI) versions of the quantized927

to 4-bit models using GPTQ (TheBloke, c).928

For all experiments performed only in infer-929

ence, we use a closed-source API or the 4-bit930

GPTQ quantized version of the model on two 48GB931

NVIDIA RTX A6000 GPUs. All experiments use932

a generation temperature of [0, 0.5] for (mostly) de-933

terministic outputs, with a maximum token length934

of 256. The other parameters are left unchanged935

as recommended by the official resources. We will936

release the code and the dataset upon acceptance937

of the paper.938

B Dataset Construction939

We use six different Math Word Problem datasets:940

GSM8K (Cobbe et al., 2021), SVAMP (Patel et al.,941

2021), MultiArith (Roy and Roth, 2015), AddSub942

(Hosseini et al., 2014), AQuA (Ling et al., 2017),943

MathQA (Amini et al., 2019). We describe the944

generation methodology of the final composition945

of TbH in §B.1 and TbB in §B.2. Downstream of the946

generation methodologies, we filtered the original947

datasets by removing the examples we could not948

parse optimally (see Table 12).949

B.1 Generation for Hiding Approach950

Math Word Problems As introduced in §3.1,951

in TbH = (QH , AH) (in MWP there are not O),952

we construct QH from Q. For each question of953

Dataset:954

{(Qi, Ai)}ni=1|Qi ∈ Σ∗, Ai ∈ R}955

We propose a method to create Dataset′k:956

{(Q′
i, Ai, (H

0
i , . . . ,H

k
i ))}ni=1|Q′

i ∈ Σ∗, Hj
i ∈ R}957

To convert Q in QH and extract the numerical 958

subparts H0
i , . . . , B

k
i , we split QH into its con- 959

stituent tokens. Hence, we consider all numeric 960

tokens as tokens that encode a number. Numeric 961

tokens may be alphanumeric, such as 150 or 2.23, 962

or alphabetic, such as three, twice, or half. Us- 963

ing this heuristic for numeric tokens, we ignore 964

the first numeric token and extract the following 965

k tokens sequentially. We skip that question-and- 966

answer pair if we cannot extract k tokens. It is 967

worth noting that for the datasets we use, k = 1, 968

we only consider the problem of backwardly infer- 969

ring one missing number in the question, given the 970

answer. To simplify the process and better adapt it 971

to the subsequent Blanking approach as well, when 972

possible, we differentiate the main question of the 973

problem (structurally defined by the "?" character 974

that ends the sentence or sub-sentence) by splitting 975

the Question and the Concept as shown in Figure 976

1. 977

Multiple Choice Question As introduced in 978

§3.1, MCQ tasks do not always have easily mask- 979

able symbols, such as numerical values. Here, our 980

contribution is different. Given TbH = (QH , AH), 981

we construct QH from Q. For each question of 982

Dataset: 983

{(Qi, Ai)}ni=1|Qi ∈ Σ∗, Ai ∈ C} 984

where C represents the set of choice options in 985

MCQs. We propose a method to create Dataset′k: 986

{(Q′
i, Ai, (P

0
i , . . . , P

k
i ))}ni=1|Q′

i ∈ Σ∗, P j
i ∈ Σ∗} 987

To convert Q in QH and extract the noun sub- 988

parts P 0
i , . . . , P

k
i , we split QH into its constituent 989

tokens and perform part-of-speech (POS) tagging. 990

We specifically identify nouns, which may be sub- 991

jects or objects, as our primary tokens of interest. 992

These tokens are processed and tagged using a POS 993

tagging algorithm. We sequentially extract the first 994

k identified noun tokens for each question. We skip 995

that question-and-answer pair if we cannot extract 996

k noun tokens. Again, we use k = 1, meaning we 997

focus on the challenge of inferring a single missing 998

noun in the question, given the answer. 999

B.2 Generation for Blanking Approach 1000

As introduced in the §3.1, in TbB = (AB, O,QB), 1001

we replicate Q with x as shown in Table 2. How- 1002

ever, to contextualize the generation, we substitute 1003

the A with A or ACoT for the target generated via 1004

the CoT prompt. We propose this approach for 1005

both task types. 1006
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C Paraphrasing Prompting1007

To test if prompting approaches could infer the final1008

answer, our initial strategy concerns transforming1009

the problem through paraphrasing, as also proposed1010

by (Deb et al., 2023). This method simplifies the1011

complex reasoning challenge into a more suitable1012

forward reasoning task. As a result, we apply the1013

LLM to this more manageable, rephrased forward1014

reasoning problem rather than grappling with the1015

more arduous backward reasoning task.1016

In the case of a TbH = (AH , O,QH), we prompt1017

the language model to generate a different prompt1018

P . This rephrased prompt integrates the forward1019

answer AH into the original question QH , altering1020

the goal from discovering the answer AH to deter-1021

mining the value of the blank. We then direct the1022

language model to address this rephrased problem1023

P , bypassing the initial problem.1024

The results, as illustrated in Table 3 and Table 10,1025

reveal that changing the problem and changing the1026

problem by posing the value of x and instructing1027

the LLM to ascertain the value of x, as illustrated in1028

Table 8, yields better results than classic prompting1029

strategies.1030

D Self-Refine1031

Moreover, we utilize the Self-Refine framework1032

proposed by Madaan et al. (2023). This approach1033

is also employed in Self-Verification prompting by1034

(Weng et al., 2023). This iterative prompting tech-1035

nique alternates between refinement and feedback1036

until a predefined condition is met. We have modi-1037

fied the technique to perform backward reasoning1038

on our tasks as done in (Deb et al., 2023).1039

E Paraphrased Self-Refine Prompting1040

To test whether prompting approaches can infer1041

the final answer, our initial strategy involves trans-1042

forming the problem through paraphrasing. This1043

method simplifies the complex challenge of abduc-1044

tive reasoning into a simpler deductive reasoning1045

task. Consequently, we apply the LLM to this more1046

manageable and reformulated reasoning problem1047

instead of tackling the more arduous abductive rea-1048

soning task. Hence, we propose a further experi-1049

ment by including paraphrase and self-consistency1050

to obtain higher accuracy (Table 3 and Table 10).1051

F GPT-4 as a Judge1052

In §6.3, we discuss the results obtained using1053

BERTScore to evaluate the performances achieved1054

by different models in the Blanking task introduced 1055

in §3.2. In this additional experiment, we replicate 1056

the Cross-Blanking test using GPT-4 as the judge. 1057

Given the original question and the question gener- 1058

ated by the LLM under test, GPT -4 will produce a 1059

positive or negative judgment that we will define 1060

as accuracy. 1061

Table 13 reports the accuracies obtained. Hence, 1062

we can observe no sensible differences compared 1063

to Table 4. Therefore, even though the two metrics 1064

are not directly comparable, BERTScore approx- 1065

imates the accuracy of a GPT-4 evaluator well in 1066

this scenario. 1067
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G Application and Future Work

Our contribution was to analyze the reasoning abil-
ities of different LLMs. In particular, by propos-
ing variants of the original tasks, we aimed to test
the LLMs’ understanding and generative abilities.
The tests in the main contribution were conducted
on nine benchmarks widely used to assess various
types of LLM capabilities (mathematical, symbolic,
and commonsense reasoning abilities).

Application However, the application of our find-
ings goes beyond just benchmarking tests. Table
5 shows the application of our tests to tasks con-
cerning medical-reasoning QA (Jin et al., 2020),
where backward comprehension abilities support
the choice of the final diagnosis.

Model fo
rw

ar
d

Hi
di

ng

Bl
an

ki
ng

GPT-4

- 93.5 67.9 62.8
CoT 96.2 75.3 90.2
Paraphrasing - 79.5 -
Para+Self - 82.6 -

GPT-3.5

82.3 61.8 56.6
CoT 86.4 65.4 74.9
Paraphrasing - 76.1 -
Para+Self - 79.7 -

Llama-2-70

- 58.2 43.2 24.2
CoT 62.4 46.8 47.8
Paraphrasing - 50.2 -
Para+Self - 55.8 -

Llama-2-13
- 48.2 24.6 19.6
CoT 47.8 32.3 36.8

Mixtral8x7
- 51.8 36.7 20.6
CoT 52.6 38.2 43.2
Paraphrasing - 44.3 -
Para+Self - 49.8 -

Mistral-7
- 50.2 18.6 16.8
CoT 49.4 22.3 46.3

Orca2-13
- 51.8 23.8 17.1
CoT 52.6 27.2 44.8

Orca2-7
- 50.2 16.8 13.4
CoT 49.4 23.4 42.3

Table 5: Performances on MedQA (Jin et al., 2020)
accuracies for Hiding and BertScoreF1 for Blanking
approaches. Moreover, we evaluate additional strategies
as in Table 3. (* we called (Para+Self) the approach
(Paraphrasing+Self-Refine).
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H Prompting Approaches

Prompt: MCQ Tf to M1

Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer M1 (A′ or A′

CoT )

Prompt: MCQ Tf to M2

Question: <Question>
Choices:
a) <Option1>
b)...
Answer:
+ Let’s think step by step (CoT Prompt)
generated answer M2 (A′′ or A′′

CoT )

Table 6: Example of input-prompt for Cross-Blanking Task.

Prompt: Cross-Blanking Approach on M1

Fill in the blank given the following
answer find the question that generates
it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A′′ or A′′

CoT

Prompt: Cross-Blanking Approach on M2

Fill in the blank given the following
answer find the question that generates
it.
Context: t1, t2, . . . , tn−1, tn
Question: x
Answer: A′ or A′

CoT

Table 7: Example of Cross-Blanking Task where we provide to M1 the A′′
CoT generated from M2 , and vice versa.

Paraphrase Prompting

Question: A grove has 15 trees. Today, grove workers will add x trees. What will be
the total number of trees after this addition? Answer: 21
Paraphrased: A grove has 15 trees. Grove workers added x trees today. The total
becomes 21 trees. Calculate the value of x.
Answer: Originally, there are 15 trees. After planting, the total is 21 trees.
Therefore, x = 21 - 15 = 6 trees. The solution is 6.
Question: he parking lot currently holds 3 cars. If x additional cars arrive, what
is the total number of cars in the parking lot? Answer: 5
Paraphrased: There are 3 cars in the parking lot initially, and x additional cars
arrive, making a total of 5 cars. Determine x.
Answer: Initially, there are 3 cars. After x cars arrive, 3 + x = 5, hence x = 5 - 3
= 2. The solution is 2.
Question: <Question>
Answer: <Answer>
Paraphrasis:

Table 8: Paraphrasis prompting.
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I Detailed Results
Dataset Approach GPT-4 GPT-3.5 Llama-2-70 Llama-2-13 Mixtral Minstral-7 Orca2-13 Orca2-7

Math Word Problem

GSM8k Standard 92.8 ±.2 62.4 ±.1 56.8 ±.3 39.5 ±.2 60.8 ±.4 54.2 ±.2 53.4 ±.4 50.2 ±.1

Hiding 51.6 ±.2 33.8±.4 16.8±.3 5.5±.3 21.4±.3 7.4±.3 6.3±.4 5.8±.1

SVAMP Standard 92.5±.4 79.1±.3 70.3±.2 67.2±.2 71.5±.2 68.7±.1 69.9±.2 64.7±.4

Hiding 44.2±.3 36.3±.2 23.7±.3 20.8±.2 24.2±.2 22.1±.1 20.4±.2 18.1±.3

MultiArith Standard 96.3±.4 93.0±.4 89.2±.2 87.3±.1 90.2±.2 88.2±.3 85.8±.2 83.1±.2

Hiding 55.6±.3 18.4±.1 17.3±.3 15.7±.4 19.3±.2 15.9±.1 12.8±.2 10.6±.3

AddSub Standard 92.8±.3 89.5±.2 82.5±.2 75.6±.4 83.6±.2 78.5±.1 77.3±.2 74.5±.3

Hiding 70.3±.3 69.4±.3 68.2±.2 59.2±.2 65.6±.2 62.1±.1 60.7±.2 59.8±.4

AQuA-RAT Standard 62.2±.3 56.5±.2 49.8±.4 47.1±.4 54.4±.2 47.7±.1 43.2±.2 41.6±.2

Hiding 26.7±.2 20.3±.1 19.5±.2 15.2±.3 20.3±.2 18.2±.4 12.4±.2 9.2±.3

GAIA Standard 23.4±.2 21.3±.2 18.8±.4 16.1±.2 19.3±.3 15.5±.2 14.6±.1 9.2±.1

Hiding 17.6±.4 16.5±.2 14.8±.3 11.3±.2 14.3±.4 12.2±.1 10.4±.2 8.2±.4

Multiple Choices Question

CSQA Standard 86.6±.1 80.2±.2 73.8±.4 65.5±.2 81.3±.3 69.2±.2 70.6±.3 69.4±.2

Hiding 61.6±.2 58.5±.1 56.4±.4 52.6±.4 59.6±.2 55.9±.3 45.6±.2 42.3±.2

OBQA Standard 86.4±.2 82.3±.2 65.6±.2 60.4±.1 83.5±.2 62.7±.4 65.8±.2 61.4±.3

Hiding 58.6±.3 54.9±.1 54.6±.4 51.3±.2 55.3±.2 53.2±.4 42.1±.2 40.5±.3

PIQA Standard 88.4±.2 84.3±.1 82.6±.2 66.4±.4 83.5±.3 67.3±.2 68.8±.3 61.6±.2

Hiding 57.3±.4 55.6±.4 53.9±.3 47.7±.2 54.3±.1 52.2±.1 50.1±.2 48.5±.4

Table 9: Accuracies (%) on dataset proposed in §4.1 using Standard and Hiding approaches.

Strategy Model GSM8KH SVAMPH MultiArithH AQua-RATH AddSubH GAIAH

Hiding (0-shot)
GPT-3.5 33.8±.4 36.3±.2 18.4±.1 69.4±.3 20.3±.1 16.5±.2

Llama-2-70 16.8±.3 23.7±.3 17.3±.2 68.2±.2 19.5±.3 14.8±.2

Mixtral 21.4±.3 24.2±.2 19.3±.3 65.6±.2 20.3±.1 14.3±.4

Hiding (5-shot)
GPT-3.5 35.4±.3 38.4±.4 20.5±.3 70.6±.4 22.1±.3 18.6±.3

Llama-2-70 20.3±.4 24.3±.3 18.9±.2 70.3±.3 20.6±.3 16.5±.2

Mixtral 22.5±.2 25.6±.2 20.5±.2 66.6±.4 23.0±.1 16.3±.3

CoT (5-shot)
GPT-3.5 34.5±.4 35.3±.4 19.5±.1 70.2±.3 19.4±.5 15.9±.1

Llama-2-70 15.9±.1 24.2±.3 14.6±.3 68.4±.2 18.2±.1 15.1±.3

Mixtral 20.8±.3 22.1±.3 20.2±.3 64.9±.1 21.4±.3 15.1±.3

Complex-CoT (0-shot)
GPT-3.5 40.5±.1 39.9±.1 21.7±.2 73.7±.3 24.5±.6 21.2±.4

Llama-2-70 20.9±.2 28.4±.1 16.9±.3 69.8±.4 22.3±.2 20.1±.4

Mixtral 21.2±.3 23.1±.3 20.6±.1 65.0±.2 24.1±.1 18.2±.1

Complex-CoT (5-shot)
GPT-3.5 43.5±.2 41.3±.2 26.4±.2 76.6±.3 24.8±.2 26.3±.4

Llama-2-70 22.4±.3 30.5±.1 17.2±.2 70.2±.1 22.3±.2 23.0±.2

Mixtral 22.3±.1 24.5±.4 22.6±.1 65.8±.3 24.6±.1 20.2±.2

Paraphrasing (2-shot)
GPT-3.5 50.2±.3 45.8±.4 36.8±.3 79.2±.4 26.7±.2 29.8±.2

Llama-2-70 29.3±.2 37.2±.3 25.6±.2 76.3±.1 29.2±.2 29.2±.1

Mixtral 28.9±.2 31.5±.1 30.1±.2 69.9±.1 29.0±.0 30.0±.1

Paraphrasing (5-shot)
GPT-3.5 56.7±.1 50.3±.1 41.9±.4 83.8±.2 32.1±.1 33.9±.4

Llama-2-70 34.1±.1 44.1±.2 31.7±.3 80.1±.1 33.1±.3 35.0±.3

Mixtral 33.9±.1 38.9±.2 33.3±.1 73.8±.4 33.7±.1 36.2±.5

Self-Refine (2-shot)
GPT-3.5 53.8±.2 49.1±.3 40.1±.4 80.1±.3 30.4±.2 30.1±.4

Llama-2-70 34.1±.4 40.1±.1 31.7±.3 78.2±.3 30.1±.3 33.2±.3

Mixtral 32.1±.2 36.1±.1 30.1±.5 72.5±.2 33.1±.6 32.1±.3

GPT-3.5 66.2±.3 58.8±.1 45.9±.3 82.6±.4 39.3±.1 32.9±.2

Paraphrasing Llama-2-70 33.9±.1 42.3±.1 35.9±.3 78.7±.1 36.5±.5 36.1±.1

+Self-Refine (2-shot) Mixtral 39.1±.5 44.3±.1 31.6±.4 75.1±.2 35.1±.5 31.3±.2

(Deb et al., 2023)
custom Prompt "CW" GPT-3.5 41.8 49.7 51.1 - - -
Ensemble GPT-3.5 65.3 66.7 92.6 - - -

Table 10: Improvements in accuracy with various prompting strategies in the Hiding approach.
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J Related Works

work methods models tasks Main Goal
(Deb et al., 2024) CoT(∗derivates), PAL-based GPT-3.5/4, PaLM GSM8K, SVAMP, backward analysis

Llama2-70 MaltiArith
(Jiang et al., 2024) CoT (∗ derivates), GPT-3.5/4, text-davinci-003 AddSub, MultiArith, improve accuracy,

Complex-CoT (∗derivates) SingleEQ, SVAMP, performances verification
GSM8K, AQuA

OUR CoT (∗derivates), GPT-3.5/4, Llama-2-70/13 AddSub, MultiArith, backward analysis,
Complex-CoT (∗derivates) Mixtral8x7, Mistral-7 SingleEQ, SVAMP, understanding analysis,

Orca-13, Orca-7 GSM8K, AQuA, GAIA
OBQA, CSQA, PIQA

Table 11: Summary related works that propose backward reasoning approaches. ∗ we mean derivatives of the
original methods proposed in (Wei et al., 2022; Qiao et al., 2023; Zhou et al., 2023). These include Self-Verification
(Weng et al., 2023), Self-Refine (Madaan et al., 2023). In bold, we report the differences between the other works.

Name URL total examples used examples
GSM8k https://huggingface.co/datasets/gsm8k 1320 1270
AddSub https://huggingface.co/datasets/allenai/lila/viewer/addsub 109 105
MultiArith https://huggingface.co/datasets/ChilleD/MultiArith 420 350
AQuA-RAT https://huggingface.co/datasets/aqua_rat 360 316
SVAMP https://huggingface.co/datasets/MU-NLPC/Calc-svamp 1000 1000
GAIA https://huggingface.co/datasets/gaia-benchmark/GAIA 466 195
CSQA https://huggingface.co/datasets/commonsense_qa 1100 1100
OBQA https://huggingface.co/datasets/openbookqa 500 500
PIQA https://huggingface.co/datasets/piqa 3000 2000

Table 12: We report the sources where we download the datasets used in our work. For each dataset containing
many instances, we randomly composed a subset.

K Cross-Blanking test using LLM as a judge

Generator Task Evaluator

GPT-4 GPT-3.5 Llama-2-70 Llama-2-13b Mixtral Mistral-7b

GPT-4 GSM8K 95.3 94.3 87.2 84.5 81.6 79.8
CSQA 92.3 89.5 79.7 78.9 71.3 69.6

GPT-3.5 GSM8K 92.1 89.2 75.6 72.3 70.6 69.8
CSQA 82.3 84.1 73.3 70.2 69.7 69.3

Llama-2-70 GSM8K 77.6 78.7 81.3 80.5 66.7 62.1
CSQA 66.4 67.2 78.4 76.3 62.9 62.3

Llama-2-13 GSM8K 83.2 81.7 76.8 76.4 63.1 61.3
CSQA 83.4 82.6 72.3 69.1 61.3 60.4

Mixtral GSM8K 84.3 85.6 71.4 67.9 82.3 79.3
CSQA 76.3 74.5 66.2 66.9 83.4 85.3

Mistral-7b GSM8K 79.4 80.1 69.5 68.6 75.5 73.5
CSQA 71.3 69.6 66.4 64.3 77.9 76.8

Table 13: Performances Cross-Blanking test using GPT-4 as a judge. In this test, we elicit the models to generate the
Blanked question (§3.2) using the A delivered from other LLMs. "Generator" refers to the model that generates the
A. "Evaluator" refers to the model that is prompted to generate the initial question (example shown in Appendix H).
Unlike Table 4, we use GPT-4 as the judge (accuracy) instead of the previously used BERTScore in this experiment.
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