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ABSTRACT

While recent two-stage many-to-one deep learning models have demonstrated
great success in 3D human pose estimation, such models are inefficient in 3D key
point detection and also tend to pass on first stage errors onto the second stage.
In this paper, we introduce SoloPose, a novel one-stage, many-to-many spatio-
temporal transformer model for kinematic 3D human pose estimation of video.
SoloPose is further fortified by HeatPose, a 3D heatmap based on Gaussian Mix-
ture Model distributions that factors target key points as well as kinematically
adjacent key points. Finally, we address data diversity constraints with the 3D
AugMotion Toolkit, a methodology to augment existing 3D human pose datasets,
specifically by projecting four top public 3D human pose datasets (Human3.6M,
MADS, AIST Dance++, MPI INF 3DHP) into a novel dataset (Human7.1M) with
a universal coordinate system. Extensive experiments are conducted on both Hu-
man3.6M and the augmented Human7.1M dataset, and SoloPose demonstrates
superior results relative to the state-of-the-art approaches.

1 INTRODUCTION

Pose estimation have applications in action recognition, sports analysis, medical rehabilitation, and
collaborative robotics (Rong et al., 2021; Remelli et al., 2020; Jeong et al., 2023). Among its differ-
ent forms, monocular pose estimation (Tang et al., 2023; Shan et al., 2022) involves taking single-
perspective 2D images or videos of either single (Tang et al., 2023; Shan et al., 2022; Li et al., 2022)
or multi-person (Wang & Zhang, 2022; Fang et al., 2022; Maji et al., 2022) inputs and generating
2D or 3D coordinates of skeletal key points. There have been significant recent advancements in
pose estimation models that specialize in unique approaches, namely the use of human mesh (Cai
et al., 2024; Chun et al., 2023) as opposed to human joints (Tang et al., 2023; Shan et al., 2022), the
pose estimation of multi-person data (Wang & Zhang, 2022; Fang et al., 2022; Maji et al., 2022) as
opposed to single-person data (Tang et al., 2023; Shan et al., 2022; Li et al., 2022).While models
to generate 2D skeleton key points have been greatly improved in recent years (Zeng et al., 2021;
Newell et al., 2016; Chen et al., 2018; Zheng et al., 2021; Li et al., 2022; Shan et al., 2022), 3D
human pose estimators are constrained by the following:

First, most 3D human pose estimators are two-stage models (Zeng et al., 2021; Newell et al., 2016;
Chen et al., 2018; Zheng et al., 2021; Li et al., 2022; Shan et al., 2022) that are a) highly dependent on
the accuracy of 2D estimators, and b) solely take 2D skeletal keypoints as input, thus omitting con-
textual information needed for computational efficiency during 3D human pose estimation. Second,
while there are many datasets to train pose estimation models, namely the Human3.6M (Ionescu
et al., 2014), MADS (Zhang et al., 2017), AIST Dance++ (Tsuchida et al., 2019) and MPI INF
3DHP (Mehta et al., 2017), these all suffer from data diversity and image resolution issues.

Finally, recent pose estimators utilize transformers as the deep learning network (Newell et al., 2016;
Chen et al., 2018; Zheng et al., 2021; Li et al., 2022; Shan et al., 2022) to process video frames in
a many-to-one approach (Zheng et al., 2021; Li et al., 2022; Shan et al., 2022), which take multiple
frames as input but select solely the middle frame to estimate coordinates, neglecting frames at
the beginning and end of videos. In contrast, a many-to-many approach offers the advantage of
outputting results for multiple frames simultaneously.
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Table 1: Complexity Hierarchy in 3D Human Pose Estimation
video input one stage many-to-many data augment heatmap

STCFormer (Tang et al., 2023) ✓ × × × ×
P-STMO (Shan et al., 2022) ✓ × × × ×
MHFormer (Li et al., 2022) ✓ × × × ×

PoseFormer (Zheng et al., 2021) ✓ × × × ×
Coarse-to-fine (Pavlakos et al., 2017) × ✓ × × ✓

Geometry-Aware (Sárándi et al., 2023) × ✓ × ✓ ×
MeTRAbs (Sárándi et al., 2020) × ✓ × × ×

HEMlets (Zhou et al., 2019) × ✓ × × ✓
KTPFormer (Peng et al., 2024) ✓ × ✓ × ✓

FinePOSE (Xu et al., 2024) ✓ × × × ✓
Our SoloPose ✓ ✓ ✓ ✓ ✓

In sum, current 3D human pose estimators face three primary challenges: 1) a scarcity of high-
quality 3D human pose datasets, 2) high-reliance on two-stage models, and 3) time-intensive many-
to-one processing approaches.

To address the above, we propose the following contributions:

1. We introduce SoloPose1, a cost-efficient one-stage, many-to-many spatio-temporal trans-
former model for 3D human pose estimation that takes frame sequences of monocular 2D
video as input to directly estimate 3D key point coordinates.

2. We propose the 3D AugMotion Toolkit to augment existing datasets (e.g., Human3.6M,
MADS, AIST Dance++, MPI INF 3DHP) for increasing diversity and reducing noise,
yielding an augmented dataset that we refer to as Human7.1M.

3. Finally, we evaluate our model on two testing datasets: Human 3.6M and Human 7.1M.
Experimental results demonstrate that our proposed method showcases state-of-the-art ac-
curacy performance across both the datasets.

We structure the current work as follows. First, we discuss related work of the current state-of-the-art
in monocular 3D human pose estimation as well as prevailing 3D human pose video datasets. Sec-
ond, we introduce the 3D Augmotion Toolkit, a methodology to augment 3D human pose datasets
using universal coordinate systems, which we leverage to generate our Human7.1M dataset. Third,
we introduce SoloPose, a one-stage, many-to-many spatio-temporal transformer for 3D human pose
estimation, which is fortified by our 3D GMM-based heatmap (HeatPose). Next, we demonstrate
SoloPose’s performance by comparing SOTA methods, as well as comparing existing Human3.6M
and our Human7.1M datasets. Finally, we conduct ablation studies to test our contributions, namely
HeatPose (i.e., 3D Gaussian heatmap) and AugMotion (i.e., 3D human pose data augmentation).

2 RELATED WORK

In the following, we present the constraints and limitations in the existing a) 3D human pose estima-
tion model methodologies, namely an observed prevalence of many-to-one video frame approach,
based on two-stage architecture, and key point regression methodologies, and b) 3D human pose
datasets improving on the diversity across cameras, lighting, human shapes and actions.

2.1 3D HUMAN POSE ESTIMATION OF VIDEOS

2.1.1 MANY-TO-ONE MODELS

While single-image pose estimation performance is well-established (Pavlakos et al., 2017; Sun
et al., 2018; Jin et al., 2022), pose estimation of sequences of multiple frames (i.e., videos) is the
focus of recent research (Zeng et al., 2021; Newell et al., 2016; Chen et al., 2018; Zheng et al.,
2021; Li et al., 2022; Shan et al., 2022). Pose estimation of sequential frames leverages temporal

1All relevant code and documentation will be released on GitHub.
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information to address occlusion issues. That being said, most video-based pose estimation models
take a many-to-one approach (Zeng et al., 2021; Newell et al., 2016; Chen et al., 2018; Zheng et al.,
2021; Li et al., 2022; Shan et al., 2022; Xu et al., 2024), which estimates key points for a solitary
middle frame among the input frames within a fixed sequence of frames, thus impacting model
complexity and learning efficiency.

2.1.2 TWO-STAGE 3D HUMAN POSE ESTIMATION METHODS

While previous work (Pavlakos et al., 2017; Sun et al., 2018; Jin et al., 2022) propose one-stage
methodologies to boost efficiency and accuracy, these models have thus far solely utilized is a single
image inputs, preventing effective detection of temporal information. Alternatively, video-based 3D
human pose estimation largely utilize two-stage methods of lifting 3D coordinates after generat-
ing 2D coordinates with off-the-shelf 2D pose estimators, offering compatibility with any 2D pose
estimation method. For instance, Skeletal graph neural networks (SGNN) (Zeng et al., 2021) use
off-the-shelf 2D key point detectors (Newell et al., 2016; Chen et al., 2018) to obtain the 2D poses
needed to derive 3D human poses. Despite improved performance over previous models, SGNN
yet lacks spatial depth perception of objects in a scene, which is addressed by PoseFormer (Zheng
et al., 2021) using a spatial-temporal transformer structure. That said, PoseFormer is constrained in
learning 2D-to-3D spatial and temporal correlations, and requires more training data than CNNs.

MHFormer (Li et al., 2022) addresses the optimization constraints of PoseFormer by synthesizing
an ultimate pose from learning spatio-temporal representations multiple plausible pose hypotheses.
However, MHFormer requires a large high-quality data to maintain high performance, which P-
STMO (Shan et al., 2022) addresses with a self-supervised pre-training method, but is ultimately
constrained by the quadratic growth of its computational cost as the number of video sequences
increases, given its many-to-one methodology. Most recently, STCFormer (Tang et al., 2023),KTP-
Former (Peng et al., 2024) and FinePOSE (Xu et al., 2024) presents a spatio-temporal criss-cross
attention block by decomposing correlation learning across space and time to increase performance
of pose estimation. KTPFormer (Peng et al., 2024) introduces a Kinematics and Trajectory Prior
Knowledge-Enhanced Transformer that utilizes Kinematics Prior Attention (KPA) and Trajectory
Prior Attention (TPA) to improve 3D human pose estimation by effectively modeling spatial and
temporal correlations through informed Q, K, and V vectors. Its lightweight design allows for inte-
gration into various transformer architectures with minimal computational overhead. FinePOSE (Xu
et al., 2024) presents a Fine-Grained Prompt-Driven Denoiser that enhances 3D human pose esti-
mation by coupling anatomical knowledge with prompts to improve denoising quality across three
core blocks. This approach not only excels in single-human pose estimation but is also extendable to
multi-human scenarios, demonstrating significant performance improvements. Nonetheless, STC-
Former (Tang et al., 2023), KTPFormer (Peng et al., 2024) and FinePOSE (Xu et al., 2024) is limited
by the quality of 2D pose estimators, as it is a two-stage method.

2.2 DATASET CONSTRAINTS

2.2.1 3D HUMAN POSE ESTIMATION DATASETS

3D datasets for pose estimation are difficult to generate, as motion capture systems must be used to
generate accurate 3D coordinates as ground truth. However, mocap-generated datasets ultimately
cannot contain data in the wild. Recent developments have seen novel approaches to estimate ground
truth data using algorithms, which made 3D human pose datasets easier to make, but ground truth
of such datasets tend to be less accurate, posing new problems for training.

Human3.6M (Ionescu et al., 2014) is the first ever large-scale dataset that uses motion capture equip-
ment to track accurate 3D coordinates while a number of actors performing different daily life
movements. MADS (Zhang et al., 2017), developed by City University of Hong Kong, uses the
same approach as Human3.6M in a smaller scale and includes movements in martial arts, dancing
and sports. AIST Dance++ (Tsuchida et al., 2019) is a recent dataset with high-definition recording
of dancing of multiple genres. It differs from the earlier two datasets by being marker-free, meaning
algorithms are used for ground truth. MPI INF 3DHP (Mehta et al., 2017) is also a 3D marker-based
dataset as an extension of the classic 2D dataset MPII.
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2.2.2 EXISTING DATASET LIMITATIONS

Existing 3D human pose datasets lack in scale and diversity. Firstly, the performance of the vi-
sion transformers is constrained by the limited number of frames in the datasets. For instance,
AIST Dance ++ (Tsuchida et al., 2019)) is 2.4 times larger than Human3.6M (Ionescu et al., 2014),
but it still only has 12,760 videos. Apart from data size limitations, existing 3D human pose
datasets are lacking in diversity across camera parameters, lighting conditions, human shapes and
actions, negatively impacting in-the-wild applications. Most existing 3D human pose datasets are
staged in a studio with fixed lighting, background, and the same set of actors. For instance, AIST
Dance++ (Tsuchida et al., 2019) has 10 dance genres and 30 dancers.

2.2.3 DATA AUGMENTATION METHODOLOGIES

Recent work (Sárándi et al., 2023; Tsuchida et al., 2019) has developed novel data augmentation
methodologies to address data diversity limitations of existing 3D human pose estimation datasets,
namely by scaling dataset size by standardizing different datasets to feed into one training pro-
cess. (Sárándi et al., 2023; Rapczyński et al., 2021). Three such data augmentation precedents
are observed. The first involves using handcrafted rules in skeletal joints to manually harmonize
differences between datasets (HumanEva-I, Human3.6M, and Panoptic Studio) into one combined
dataset (Rapczyński et al., 2021). However, handcrafted rules are susceptible to errors and similar
manual configurations are required to apply such a methodology onto other datasets. A second ap-
proach (Wang et al., 2020) is to standardize reference systems based on the relative rotation between
camera viewing direction and the orientation of the torso. However, this approach is vulnerable
to errors during conversion from camera to global coordinate systems. A third method of dataset
augmentation merges dozens of datasets into one training process with a latent key point set serving
as ground truth (Sárándi et al., 2023). Such a learned latent key point set, however, leads to data
imbalance and is further constrained in performance by the complexity of a given task.

3 3D AUGMOTION TOOLKIT: DATASET AUGMENTATION METHODOLOGY

Acknowledging the lack of diversity and in-the-wild data in existing 3D human pose datasets, we
introduce the 3D AugMotion Toolkit, a data augmentation methodology to merge existing 3D human
pose datasets into a single dataset with the highest number of frames and diversity to date. The
current work applies the augmentation methodology on four frequently utilized datasets, namely
Human3.6M (Ionescu et al., 2014), MADS (Zhang et al., 2017), AIST Dance++ (Tsuchida et al.,
2019) and MPI INF 3DHP (Mehta et al., 2017). That said, the 3D AugMotion Toolkit is applicable
to any 3D human pose estimation dataset.

It is essential for all datasets to be projected onto a universal coordinate system to be properly used
by models as ground truth data. Naturally, the model would be unable to minimize loss if a single
key point could have multiple coordinates. Therefore, the first challenge is to address discrepancies
between datasets’ reference systems as each dataset maintains its own coordinate system. That
is, ground truth data of each dataset comes with unique camera-configured coordinates and global
coordinates, respectively.

As 3D human pose datasets are typically captured with multi-camera studio set-ups, the perspective
and configurations of each camera dictate its coordinate system. Naturally, each camera maintains
its own unique camera-specific coordinate system. Most datasets (Ionescu et al., 2014; Zhang et al.,
2017; Tsuchida et al., 2019; Mehta et al., 2017) compute translation and rotation matrix to standard-
ize the coordinates of each camera within the multi-camera setup onto a global coordinate system.
However, global coordinate systems of 3D human pose datasets are not consistent with each other,
meaning they require standardization to locate the same key point with the same coordinates.

Global reference systems within the same dataset, however, are also susceptible to errors. For in-
stance, coordinates for the same frame of movement within the Human3.6M dataset are taken from
different camera perspectives that yield misaligned and non-overlapping key point representations of
a subject when converted to global coordinates. The four key point skeletons in Fig. 1 represent the
same pose from the same subject taken from multiple perspectives, but each are clearly misaligned
when converted to global 3D coordinate systems.The lack of overlapping alignment suggests a need
for a standard to universalize all camera reference systems with key frames.
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Figure 1: This example from the Human3.6M dataset (A) shows how the conversions to global
coordinate systems from unique camera parameters are susceptible to errors. The four key point
skeletons (B) represent the same pose from the same subject taken from multiple perspectives, but
each are misaligned when converted to global 3D coordinate systems.

To address the coordinate system problems above, the proposed methodology is to 1) select key
frames serving as benchmark, 2) use key frames and the proposed approach to establish a universal
coordinate system, and 3) utilize the Kabsch Algorithm to project all other frames onto the estab-
lished universal coordinate system.

3.1 KEY FRAMES

The proposed universal coordinate system defines the upward direction perpendicular to the ground
as the positive direction of the z-axis. We select as key frames where the upper body of the pose
is perpendicular to the ground. We utilize k-means clustering to find qualified key frames with 3
clusters and use the cluster center frame of the largest cluster as the key frame for each video.

3.2 METHODOLOGY FOR DEFINING A UNIVERSAL COORDINATE SYSTEM

Unique coordinate systems are defined by origin, as well as positive orientation of the x, y, and z axis.
In the proposed methodology, we further define the origin as the midpoint between left shoulders and
right shoulders, the y-axis positive orientation as left-shoulder-to-right-shoulder vectors, the z-axis
positive orientation as origin-to-pubis vectors, and the x-axis positive orientation as face directions.

We further select left shoulders, right shoulders, and pubises as reference key points. Based on the
definitions above, the left shoulder key point and the right should key point would be on the y-z plane
symmetric to each other while the pubis key point is on the z axis. Before determining coordinates
of the reference key points to define unit length and used for the Kabsch algorithm, we compute the
ratio of the shoulder to shoulder distance (i.e., width) to the distance from the shoulder to shoulder
midpoint to the pubis to properly represent poses in the coordinate system. See Equation (1).

After taking the average of all datasets to compute the ratio of the distance d
(
pisl, p

i
sr

)
to the distance

d
(
pims, p

i
p

)
, we then define the left shoulder at (-1,0,3), the right shoulder at (1,0,3), and the pubis

at (0,0,0.5) to establish the universal coordinate system.

Ms =
1

N

N∑
i=1

d
(
pisl, p

i
sr

)
Msp =

1

N

N∑
i=1

d
(
pims, p

i
p

) (1)

Where Ms is the average distance from left shoulder to right shoulder; Msp is the average distance
from the middle of two shoulders to pubis; d() is the distance function; N is the number of frames in
all datasets; psl is the left shoulder key point; psr is the left shoulder key point; pms is the midpoint
between two shoulders; pp is the pubis key point.
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3.3 KABSCH ALGORITHM

The last step of our dataset augmentation methodology is to use the Kabsch Algorithm (KA)
(Agostinho et al., 2021) to compute the rotation matrix and translation matrix for projection. KA
finds the optimal rotation and translation of two sets of points in N-dimensional space with lin-
ear and vector algebra to minimize root-mean-square deviation (RMSD) between them. KA does
translation, computation of a covariance matrix, and computation of the optimal rotation matrix se-
quentially. The translation matrix T is computed by subtracting point coordinates from the point
coordinates of the respective centroid. The second step consists of calculating a cross-covariance
matrix H when P and Q are seen as data matrices using the following summation notation:

Hij =

N∑
k=1

PkiQkj , (2)

The last step is to calculate the optimal rotation R by using singular value decomposition (SVD):

H = UΣV ⊤

d = sign
(
det
(
V U⊤))

R = V

(
1 0 0
0 1 0
0 0 d

)
U⊤

(3)

Now that we have the translation matrix T and the optimal rotation R to project the key frame into
the global standard:

R×A+ t = B (4)
Where A represents the original coordinates of the key frame’s key points; B represents the projected
coordinates of the key frame’s key points.

4 SOLOPOSE: ONE-STAGE 3D HUMAN POSE ESTIMATION NETWORK

4.1 SPATIO-TEMPORAL TRANSFORMER

We propose a one-stage many-to-many transformer-based method to extract feature maps from spa-
tial and temporal data, as shown in Fig. 2. Spatial information is represented by intra-frame content
within respective frames, whereas temporal information is represented by inter-frame content be-
tween multiple frames along a time-series. We first utilize the spatial transformer for each input
frame to extract the spatial feature maps of each input frame. Then we utilize the temporal trans-
former with the spatial feature maps as the input to extract the temporal feature maps. Finally,
we propose a heatmap task head (i.e., layer extraction) to convert temporal feature maps into our
proposed 3D heatmap, which we discuss later.

Figure 2: The framework of our proposed network, SoloPose spatio-temporal transformer.

For the spatial transformer, we apply the pre-trained model, CLIP (Radford et al., 2021), which has
been pre-trained on an extensive dataset containing images and their corresponding text descriptions.

6
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Each frame goes through the spatial transformer to obtain spatial feature maps, whose size is 1 ×
200× 192. Then, we concatenate all the spatial feature maps along the channel dimension resulting
in an output size that is N × 200× 192, where N is the number of frames in one clip. In this paper,
we choose the 30 as the number of frames based on the experiments.

For the temporal transformer, we apply a linear embedding layer to flatten the spatial feature maps
into 2D tokens. Our temporal transformer is mostly based on Swin transformer blocks (Liu et al.,
2021) with an update to 3D relative position embedding. We calculate 3D relative distances between
any two input tokens, as the position index to obtain the value of B from the 3D bias matrix B̂, which
contains relative weights that will be updated during the training process:

A(Q,K,V) = Softmax
(
QKT /

√
d+B

)
×V, (5)

where Q,K,V are the query, key and value matrices.

In the last layer, we apply a heatmap task head by 3 convolutional neural networks to reshape the
temporal feature maps into our proposed 3D heatmap, which we discuss in the following.

4.2 HEATPOSE: 3D GAUSSIAN HEATMAP

We propose a HeatPose, a 3D heatmap based on Gaussian mixture model (GMM) (McLachlan &
Rathnayake, 2014). Although conventional GMMs do not factor weights into its various Gaussian
distributions, we adapted GMM in HeatPose to represent varying degrees of probabilistic proximity
to the ground truth of a given target key point across different weights of Gaussian distributions. That
is, we generated Gaussian distributions for each key point, each of which are evaluated for closeness
to the ground truth. The maximum value of a given Gaussian distribution would be the actual ground
truth positioning of its corresponding target key point. We refer to this target-based distribution
as the main 3D Gaussian Distribution, and it is the primary mechanism of HeatPose. However,
HeatPose is also supplemented by factoring information regarding key points that are kinematically
adjacent from a given target key point (e.g., direction, distance), which we represent with a finite
number of target-adjacent distributions that we refer to as the side 3D Gaussian Distributions.

Side 3D Gaussian distribution may be understood by considering the neck key point as a given
target key point, as seen in 4 (A). In this example, the neck key point is kinematically adjacent to
the key points of the shoulder, head, and pubis Fig. 4 (A). The application of kinematically adjacent
key points in HeatPose serves to reflect closer-to-reality distributions as the probability of a key
point is affected by key points nearby. As seen in Fig. 3, we present a comparison of conventional
3D heatmaps without kinematic information (left) and HeatPose with application of kinematically
adjacent keypoints (right). Fig. 3 illustrates the distinction between the application of kinematically
adjacent key points and conventional 3D heatmaps without such kinematic information.

Figure 3: The left figure (A) is the 3D heatmap of human key points (Pavlakos et al., 2017). The
right figure (B) is our proposed heatmap, HeatPose. Each sphere in the right figure represents a key
point with discrete points with unique probability distributions represented with different colors,
with red signifying close to 1 probability as a key point, and purple signifying close to 0 probability.

For each target key point’s main 3D Gaussian distribution, we set coordinates of the target key
point as µmain, and a specified covariance matrix as σmain to represent the ground truth of a given
target key point. To decide each target key point’s side 3D Gaussian distribution, we compute

7
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the number Nside of side Gaussian distributions in advance to represent the distance D (Pt, Pa)
between a given target key point and a kinematically adjacent key point following the Equation 6,
where c is a constant. Thus, the longer the distance between two adjacent key points, the more side
Gaussian distributions there will be to represent kinematic information, so that each key point is
unique represented by a different distribution:

Ns =
D (Pt, Pa)

c
(6)

Once we determine a finite number Nside of side 3D Gaussian distributions for each adjacent key
point, we compute coordinates of Np transitional points located between the target key point and an
adjacent key point. As shown in Fig. 4, the first transitional point in Ns number of transitional points
is c euclidean distance away from a given target key point. Each subsequent transitional point is c
distance away from the previous transitional point. For the ith side 3D Gaussian distributions, we
set the coordinates of ith middle points as µi

side and set σi
side by Equation 7, where i = 1, 2, . . . , Ns.

δiside = i2 · δmain (7)

A larger i value represents greater distance from the target key point, thus representing a less influ-
ence of the side Gaussian distribution on the target key point.

Figure 4: HeatPose visual summary. The upper figure (A) demonstrates the kinematically adjacent
key points if we hypothetically considered the neck key point as the target key point. Adjacent key
points are green and transitional points are gray. The lower figure (B) is an example of key points
with two adjacent points, with the final results of the Gaussian Mixture Model distribution (GMM)
of target points represented by the green line. The red line is the main 3D Gaussian distribution in
GMM. And the 3 black lines are the side 3D Gaussian distributions in GMM.

Once we build a Gaussian mixture model (GMM), we generate volumetric size w× h× d, which is
discretized uniformly across each dimension. While conventional 3D heatmaps build a volume for
each key point, HeatPose computes the probability of voxels of all key points into one volumetric
representation, as seen in Equation 8:

P (x) =
N
(
x | µmain , δ

2
main

)
+
∑Ns

i=1 N
(
x | µi

side, δ
i
side

2
)

MAX
(8)

where N is Gaussian distribution, MAX represents the maximum voxel probability in the volume.

Based on Equation 8, we compute the cross-entropy between the output of our SoloPose and Heat-
Pose, converted from the ground truth as our model’s loss function. Departing from existing 3D
heatmaps that use MSE loss functions, using a cross-entropy loss function methodology avoids non-
convex problems. That is, such cross-entropy models can easily converge because targeting the
distribution of each key point affords the handling of noise in ground truth. HeatPose’s application
of GMM as opposed to the single Gaussian distribution used conventional 3D heatmaps leads to
more accurate representations and coordinate estimates. As we set up increasingly larger σ for the
side Gaussian distributions with regard to the corresponding main Gaussian distribution, we can
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Table 2: Results on different testing datasets
Method Human7.1M testing Human3.6M testing

MPJPE P-MPJPE MPJPE P–MPJPE

P-STMO w/ CPN(N=243) (Shan et al., 2022) 53.1 46.9 42.1 34.4
STCFormer w/ CPN(N=243) (Tang et al., 2023) 48.3 40.3 40.5 31.8
KTPFormer w/ CPN(N=243) (Peng et al., 2024) 40.9 31.7 33.0 26.2

FinePOSE w/ CPN(N=243) (Xu et al., 2024) 40.3 31.3 31.9 25.0
P-STMO w/ GT(N=243) (Shan et al., 2022) 36.1 28.8 29.3 23.9

STCFormer w/ GT(N=243) (Tang et al., 2023) 30.5 24.1 21.3 15.8
KTPFormer w/ GT(N=243) (Peng et al., 2024) 26.3 21.0 18.1 13.6

FinePOSE w/ GT(N=243) (Xu et al., 2024) 26.1 20.6 16.7 12.7
Our SoloPose (N = 30) 22.7 16.9 26.0 20.5

Our SoloPose w/o HeatPose 25.1 19.0 30.7 24.2
Our SoloPose only trained

on Human3.6M 47.9 38.6 38.9 29.9

easily find the maximum of voxels’ probability shown in Fig. 4 (B) to convert our HeatPose back to
the 3D keypoints’ original coordinates.

5 EXPERIMENTS AND RESULTS

5.1 DATASETS

With the AugMotion dataset augmentation method, we merge four datasets: Human3.6M (Ionescu
et al., 2014), MADS (Zhang et al., 2017), AIST Dance++ (Tsuchida et al., 2019) and MPI INF
3DHP (Mehta et al., 2017) as shown in Fig 5. Notably, we set the Human3.6M Testing Dataset as
one of the independent testing datasets for a fair evaluation with SOTA models, which is not merged
into our Human7.1M dataset. The number of Human3.6M, MADS, AIST Dance++ and MPI INF
3DHP shown in Fig 5, is the number of final clips as input data of our SoloPose for training in each
dataset, which is pre-processed by a sliding window with a step size of 16. From the rest of the four
datasets collectively, we randomly choose 331,875 clips as the training dataset, 94,821 clips as the
validation dataset, and 47,412 clips as our Human7.1M testing dataset.

Figure 5: 3D human pose Dataset and our training, validation, and testing dataset with number of
unique video clips. 7.1M is the number of frames in our augmented dataset.

5.2 EVALUATION METRICS

We use the mean per joint position error (MPJPE) and Procrustes MPJPE (P-MPJPE) to evaluate
two SOTA models and our SoloPose. Our model, along with two ablation studies, was trained using
a consistent hardware setup to ensure fair comparison and accurate evaluation of our contributions.
The training was conducted on an Intel Core i9-14900K CPU and an NVIDIA RTX 4090 24GB
GPU, providing a uniform configuration across all experiments.
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5.3 COMPARISON WITH THE STATE-OF-THE-ART

We compare the proposed model with the best-performing SOTA methods, P-STMO (Shan et al.,
2022), STCFormer (Tang et al., 2023), KTPFormer (Peng et al., 2024) and FinePOSE (Xu et al.,
2024), which are pre-trained on the Human3.6M training dataset. We test all methods on our
Human7.1M testing dataset as well as on the Human3.6M Testing dataset, which do not overlap.
P-STMO, STCFormer, KTPFormer and FinePOSE are two-stage methods that choose CPN (Cas-
caded Pyramid Network) (Chen et al., 2018) to generate 2D coordinates as second-stage input, and
2D ground truth as input to test model’s performance. We evaluate these two models with CPN-
generated 2D estimates or 2D ground truth as input, respectively. 2D ground truth as input gives the
comparative models an unfair advantage because it provides additional information unavailable to
the proposed one-stage method. Further, it is impossible for any pose estimation model to obtain 2D
ground truth when applied on real-world in-the-wild data. As such, we mainly compare our model
against performance with CPN estimates as input, but we include GT performance for reference.

As shown in Table 2, our SoloPose achieves the highest performance of MPJPE and P-MPJPE on the
Human7.1M testing dataset. Even when compared to SOTA methods with ground truth, our results
of MPJPE and P-MPJPE are still 14.9% and 21.8% lower than the best-performing FinePOSE.
When evaluated on the Human3.6M testing dataset, our results of MPJPE and P-MPJPE are 22.7%
and 21.9% lower than FinePOSE with CPN as input.

5.4 ABLATION STUDY

We designed two ablation studies to test the contributions of the proposed 3D kinematically adjacent
heatmap (HeatPose) and data augmentation methodology (AugMotion) against SoloPose.

5.4.1 ANALYSIS WITHOUT 3D GAUSSIAN HEATMAP

The first ablation study removes HeatPose and utilizes the traditional MSE loss function to train our
proposed model. As shown in the second section of Table 2, the results of MPJPE and P-MPJPE on
Human3.6M testing dataset are 15.3% and 27.2% higher than that of our SoloPose with HeatPose
respectively, but it is 3.9% and 3.3% lower than FinePOSE with CPN, which means our data quality
improvement makes the biggest contribution for the results and good training data can improve the
performance higher than SOTA models.

5.4.2 ANALYSIS WITHOUT DATA AUGMENTATION

The second ablation study trains the model only on Human3.6M, in the mold of P-STMO (Shan
et al., 2022) and STCFormer (Tang et al., 2023). Our results of MPJPE and P-MPJPE are still 3.9%
and 5.9% lower than the two SOTA methods on the Human3.6M testing dataset, which demon-
strates that our SoloPose model is more effective than current SOTA methods. When tested on the
Human3.6M testing dataset, the second ablation study’s MPJPE result increases by 12.9 as opposed
to the increase of 4.7 observed with the first ablation study, thus demonstrating that our proposed
data augmentation methodology (AugMotion) improves 3D human pose estimation performance by
efficiently enhancing data quality and diversity.

6 CONCLUSION

In this paper, we introduced SoloPose, a one-stage, many-to-many spatio-temporal transformer net-
work for video-based 3D human pose estimation. To address limitations of high-quality 3D human
pose estimation datasets, we proposed the 3D AugMotion ToolKit, a novel dataset augmentation
methodology by projecting existing datasets onto a universal coordinate system. Further, we pro-
posed HeatPose, a 3D kinematically adjacent heatmap that provide greater probabilistic key point
information compared with conventional 3D heatmaps. As a result, we demonstrate our SoloPose
model’s improved performance over existing SOTA models for 3D human pose estimation in both
experimental evaluation and ablation. In future work, we intend to extend the model onto 3D multi-
person pose estimation and add more dataset to improve the performance.
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