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ABSTRACT

In clinical applications, the utility of segmentation models is often based on the
accuracy of derived downstream metrics such as organ size, rather than by the
pixel-level accuracy of the segmentation masks themselves. Thus, uncertainty
quantification for such metrics is crucial for decision-making. Conformal pre-
diction (CP) is a popular framework to derive such principled uncertainty guar-
antees, but applying CP naively to the final scalar metric is inefficient because
it treats the complex, non-linear segmentation-to-metric pipeline as a black box.
We introduce COMPASS, a practical framework that generates efficient, metric-
based CP intervals for image segmentation models by leveraging the inductive
biases of their underlying deep neural networks. COMPASS performs calibra-
tion directly in the model’s representation space by perturbing intermediate fea-
tures along low-dimensional subspaces maximally sensitive to the target metric.
We prove that COMPASS achieves valid marginal coverage under the assump-
tion of exchangeability. Empirically, we demonstrate that COMPASS produces
significantly tighter intervals than traditional CP baselines on four medical image
segmentation tasks for area estimation of skin lesions and anatomical structures.
Furthermore, we show that leveraging learned internal features to estimate impor-
tance weights allows COMPASS to also recover target coverage under covariate
shifts. COMPASS paves the way for practical, metric-based uncertainty quantifi-
cation for medical image segmentation.

1 INTRODUCTION

Uncertainty quantification is of critical need in medical image analysis, a field used for decision
support in high-stakes clinical diagnosis and treatment planning applications (Begoli et al., 2019;
Abdar et al., 2021). A fundamental task in medical image analysis is image segmentation, the task
of separating anatomical structures and lesions from each other within an image. Deep learning
models, particularly U-Net variants (Ronneberger et al., 2015; Isensee et al., 2021), have achieved
state-of-the-art performance in medical image segmentation. In practice, the outputs of these models
(“segmentation maps”) are often treated as an intermediate result that are then used to automatically
derive downstream metrics of interest (known as “radiomics”), such as the areas/volumes or tex-
ture patterns of specific anatomic regions (Figure 1, left). These derived metrics are then used for
decision support to guide clinicians in diagnosis and treatment.

Conformal prediction (CP) has emerged as a popular, statistically principled uncertainty quantifi-
cation framework of choice in machine learning, providing guarantees without restrictive distribu-
tional assumptions (Vovk et al., 2005; Shafer & Vovk, 2008; Fontana et al., 2023; Papadopoulos
et al., 2002; Angelopoulos & Bates, 2021). While well-studied in the context of typical prediction
tasks involving scalar output variables, CP is less explored for tasks such as medical image segmen-
tation, in which the output variables are images. Existing CP methods for segmentation typically
focus on deriving bounds for pixel-level errors (Mossina et al., 2024; Mossina & Friedrich, 2025;
Brunekreef et al., 2024; Angelopoulos et al., 2022), which, while useful for understanding varia-
tions of local segmentation contours, may yield meaningless or misaligned intervals for downstream
derived metrics. On the other hand, a recent study shows that treating the segmentation-to-metric
pipeline as a black box and performing CP directly on the output metric space yields intervals that
are well-aligned to the metrics (by construction), but are also often inefficient (i.e., large) because
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Figure 1: Overview of COMPASS. (Left) A medical image segmentation network predicts a seg-
mentation map” from an input image. We conceptually decompose this network into a function f
which maps the image to latent features ẑ, and a function g that maps ẑ to the output map. The map
may then be used to compute a (differentiable) downstream metric ŷ via the function h. (Center) We
linearly perturb calibration features ẑi in a sample-specific direction ∆i to find the scores Ri. The
scores are used to find the conformal quantile β̂. (Right) At test time for subject n + 1, we perturb
the features ẑn+1 in the direction ∆n+1 with magnitude β̂. By Theorem 1, our interval construction
is guaranteed to be nested. Therefore, under the assumption of exchangeability, the resulting predic-
tion interval achieves marginal coverage (bottom).

the internal biases of the pipeline are not exploited in the vanilla CP formulation (Cheung et al.,
2025).

To achieve more efficient intervals, a promising direction is to leverage the powerful inductive biases
of neural networks by performing CP on their intermediate representations. Feature Conformal
Prediction (FCP) (Teng et al., 2022; Tang et al., 2024; Chen et al., 2024) shows that by working in
a semantic feature space, it is possible to generate provably tighter prediction intervals. However,
the FCP algorithm requires solving a complex optimization to find the closest adversarial feature
vector for each data point, which is computationally prohibitive for high-dimensional feature spaces
of typical CNN and transformer architectures which are the workhorses of modern medical image
segmentation.

To bridge this gap, we introduce Conformal Metric Perturbation Along Sensitive Subspaces
(COMPASS), a framework to perform feature CP in a tractable manner to generate valid and effi-
cient prediction intervals for any (differentiable) metric derived from the output of a neural network.
The core concept behind COMPASS is to linearly perturb the features outputted by the network
at a particular layer along data-specific directions that are highly sensitive to the metric of interest
(Figure 1, center). To make this process tractable for typical neural network layers with a large num-
ber of features, we propose computing a low-dimensional manifold of any given layer by applying
principal component analysis (PCA) on the gradients of the output metric with respect to each of the
layer’s features. This manifold represents the principal directions of sensitivity of the output with
respect to that layer. We prove that linear perturbations in the latent space achieve marginal coverage
in the output metric space under exchangeability, i.e., for a fresh test point, the ground truth will be
contained within the prediction intervals generated by linear feature perturbations. Furthermore, we
show that a simple weighted variant of COMPASS may be used to correct for covariate shifts.

We evaluated COMPASS on public datasets for four medical image segmentation tasks: col-
orectal cancer in histopathology images (EBHI) (Hu et al., 2023), skin lesion segmenta-
tion (HAM10000) (Tschandl et al., 2018), thyroid nodule segmentation in ultrasound images
(TN3K) (Gong et al., 2021), and polyp segmentation in endoscopic images (Kvasir) (Jha et al.,
2019). Results show that while standard CP methods achieve valid coverage, they often produce
unnecessarily wide prediction intervals. On the other hand, COMPASS finds semantically meaning-
ful directions in the latent space that correspond to monotonic metric changes, resulting in efficient
intervals. Furthermore, the weighted extension of COMPASS recovers target coverage under co-
variate shifts and is the most efficient across all weighted baseline methods. COMPASS paves the
way for practical, metric-based uncertainty quantification for medical image segmentation.
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2 METHOD

2.1 THEORETICAL COVERAGE UNDER LINEAR LATENT PERTURBATIONS

To provide rigorous uncertainty quantification for the metric Y , we consider linear perturbations in
latent space along a direction ∆ ∈ Z and define intervals in the metric space. We first formalize
the nestedness condition, which is a fundamental requirement for the validity of any conformal
procedure (Vovk et al., 2005; Shafer & Vovk, 2008).
Definition 1 (Nestedness). Let Sβ(x) be a family of prediction sets for an input x ∈ X , parameter-
ized by β ≥ 0. The family {Sβ(x)}β≥0 is said to be nested for x if β1 ≤ β2 ⇒ Sβ1

(x) ⊆ Sβ2
(x).

This condition guarantees that a larger perturbation magnitude yields a larger (or equal-sized) pre-
diction set, which is necessary for the quantile-based coverage proof. While standard CP methods
satisfy this trivially, it becomes a non-trivial condition for deep feature spaces. We now present our
main theorem. Crucially, we construct our prediction sets Sβ(x) in a way that guarantees nestedness
by definition, thereby ensuring the validity of the conformal procedure.
Theorem 1 (Split-Conformal Coverage under Linear Latent Perturbations). Let (Xi, Yi)i≥1 be ex-
changeable random pairs with Xi ∈ X and Yi ∈ R, and split the data into a training set Dtr and a
calibration set Dcal = {(Xi, Yi)}ni=1. Using Dtr, fit a segmentation model with decoder g : Z → S,
and let ẑ(x) ∈ Z denote the latent vector computed deterministically by the trained encoder for in-
put x. Let h : S → R be a measurable metric, and let ∆ ∈ Z be any measurable direction that
depends only on Dtr.

For x ∈ X and β ≥ 0, define the metric function along this direction as:

mx(b) := (h ◦ g)(ẑ(x) + b∆), for b ∈ R. (1)

We define the prediction set Sβ(x) as the range of the metric function over the perturbation interval
[−β,+β]:

Sβ(x) :=

[
min

b∈[−β,+β]
mx(b), max

b∈[−β,+β]
mx(b)

]
. (2)

By construction, this guarantees that the family {Sβ(x)}β≥0 is nested (Definition 1). For each
calibration pair (Xi, Yi), define the non-conformity score:

Ri := inf{β ≥ 0 : Yi ∈ Sβ(Xi)} ∈ [0,∞], (3)

and let β̂ be the ⌈(1 − α)(n + 1)⌉-th smallest value among {R1, . . . , Rn}, where α ∈ (0, 1) is the
user-specified mis-coverage level.

Then, for a fresh test pair (Xn+1, Yn+1), the prediction set Sβ̂(Xn+1) satisfies

P
(
Yn+1 ∈ Sβ̂(Xn+1)

∣∣ Dtr

)
≥ 1− α. (4)

Proof sketch. Exchangeability of (Xi, Yi) ensures that the rank of the test score Rn+1 among
{R1, . . . , Rn, Rn+1} is uniformly distributed. By the construction of Sβ(x) as the range
[min(·),max(·)], the nestedness condition is satisfied by definition. Therefore, by construction of
β̂, the standard conformal guarantee holds. See Appendix A for full proof.

Intuition. Our prediction set Sβ(x) is defined as the metric range over the perturbation interval,
which satisfies the nestedness condition required for CP. Our construction forms a conservative
envelope that explicitly accounts for any non-monotonic metric behavior within the perturbation
interval. Our non-conformity score Ri is then the minimal perturbation magnitude β required for
this envelope to contain the ground truth metric Yi.

2.2 COMPASS: CONFORMAL METRIC PERTURBATION ALONG SENSITIVE SUBSPACES

The proposed framework COMPASS is built on the insight that we can directly calibrate a down-
stream metric by perturbing a model’s representations along specific, data-dependent directions, ∆.
As our theoretical guarantee in Theorem 1 applies to any measurable perturbation direction, the key
to an efficient method lies in choosing a direction that is highly sensitive to the metric of interest. We
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explore two natural choices for this representation space for segmentation: the model’s final output
logits and a deeper internal feature layer.

The first and simplest approach (COMPASS-L) operates on the model’s final logits. A uniform,
scalar shift applied to this tensor directly modulates the model’s overall confidence before the final
activation function. This is equivalent to defining the sensitive direction, ∆i, as a tensor of ones. A
richer alternative is to perturb an internal feature representation ẑ, as done in FCP (Teng et al., 2022).
However, a naive search for an optimal perturbation in high-dimensional spaces is computationally
intractable. Furthermore, arbitrary perturbation directions may cause the metric to change in an
erratic or non-smooth ways, resulting in unnecessarily wide and inefficient intervals.

To overcome this, we propose a data-driven method (COMPASS-J) to identify a low-dimensional
sensitive subspace that is globally effective1. Given a metric function in Equation 1 that is differen-
tiable, we first compute Jacobians of the metric ŷ with respect to ẑ to provide a local, linear map of
the metric’s sensitivity with respect to the features for each training sample:

Ji :=
d h(g(ẑi))

dẑi
∈ RC×D1×···×D3 ,

where ẑi = f(xi), C is the number of channels, and Di is the i-th spatial dimension. Because the
full spatial Jacobian is often too high-dimensional to be practical, we sum the spatial dimensions
and apply Principal Component Analysis (PCA) to the set of these vectors from the training set,
{Ji}i∈Dtr , and select the matrix of the top L eigenvectors VL ∈ RC×L.

For any given sample, we find its sensitive direction di by projecting its sensitivity vector onto this
learned subspace, and normalization it to produce direction vector ∆i:

di = VLV
T
L Ji, ∆i = di/∥di∥2.

2.3 COMPASS CALIBRATION AND INFERENCE

The goal of COMPASS is to find the smallest symmetric perturbation magnitude β such that the en-
tire interval Sβ(x) contains the ground truth value y. In general, computing Sβ(x) requires finding
the minimum and maximum of the perturbed metric response mxi

(b), b ∈ [−β, β]. When the met-
ric response is non-monotonic, computing the extrema requires a full discretized sweep across the
perturbation range. Performing this sweep at every step during calibration makes the envelope com-
putation expensive because each candidate β requires many forward passes to map out the complete
response curve for each sample.

However, when mxi(b) is monotonic in b, the conservative envelope collapses to evaluations at
the endpoints: Sβ(xi) =

[
mxi(−β), mxi(+β)

]
. Thus, the interval can be computed with only two

forward passes, giving a practical and efficient implementation of COMPASS. A perturbation sweep
is still required, but only once per sample, solely to verify monotonicity rather than to repeatedly
compute the envelope during calibration. As we will see in Figures 2 and 12, this monotonicity
condition holds across all of our experiments.

Once Sβ(xi) can be evaluated, either via the conservative full sweep or the endpoint method, the
non-conformity scores {Ri}ni=1 follow directly from Equation 3. The conformalized quantile is:

β̂ = Q

(
{Ri}ni=1,

⌈(1− α)(n+ 1)⌉
n

)
,

and at test time we return the interval Sβ̂(xn+1).

For a full outline of the algorithms, refer to Appendix C. Furthermore, while symmetric perturbations
are effective when the metric responds similarly to positive and negative perturbations, we often
observe an asymmetric relationship when the metric responds differently in positive and negative
directions. In such cases, an asymmetric calibration, where we find separate non-conformity scores
for the upper and lower bounds, is necessary to construct a more adaptive and efficient interval. We
discuss this asymmetric version of COMPASS and provide an equivalent algorithm in Appendix B.

1Our use of principal directions to restrict the perturbation search space is conceptually related to Belhasin
et al. (2023), where authors employed principal directions to construct prediction sets for inverse problems.
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2.4 WEIGHTED COMPASS FOR DISTRIBUTION SHIFTS

While Theorem 1 provides a robust guarantee of marginal coverage, its validity rests on the critical
assumption that the calibration and test data are exchangeable. In many real-world applications,
such as medical image segmentation, this assumption is frequently violated due to the variations in
how the data is collected, processed, and interpreted. Under such distribution shifts, the unweighted
quantile β̂ is no longer guaranteed to provide the target coverage level on the test set, leading to
systematic undercoverage and unreliable prediction intervals.

To address this limitation, we employ Weighted Conformal Prediction (WCP) (Tibshirani et al.,
2019; Barber et al., 2023) to restore the coverage guarantee by re-weighting the calibration samples.
The weight for a calibration sample Xi is ideally the density ratio w(Xi) = ptest(Xi)/pcal(Xi). In
practice, this ratio is unknown and typically estimated by training an auxiliary classifier A : X →
[0, 1] to distinguish between samples from the calibration and test sets. The predicted probability
p̂(x) = A(x) that a sample x belongs to the test set is then used to compute the weights, effectively
adjusting the calibration procedure to account for the distribution shift. We now extend Theorem 1
to the weighted setting, providing a formal coverage guarantee under distribution shift. The setup
remains identical.
Proposition 1 (Validity of Weighted COMPASS under Covariate Shift). Let Dcal = {(Xi, Yi)}ni=1
be n exchangeable pairs drawn from a distribution Pcal, and let (Xn+1, Yn+1) be a fresh test pair
from a potentially different distribution Ptest. Let the non-conformity scores Ri = R(Xi, Yi) be
computed as described in Theorem 1. Let the weights wi = w(Xi) be the true density ratio
ptest(Xi)/pcal(Xi). Let β̂w be the weighted (1−α)-quantile of the calibration scores {R1, . . . , Rn}
with corresponding weights {w1, . . . , wn}, defined as

β̂w := inf

{
β ≥ 0 :

∑n
i=1 wi1{Ri ≤ β}∑n

j=1 wj
≥ 1− α

}
.

Then, for the fresh test pair (Xn+1, Yn+1) ∼ Ptest, the prediction set Sβ̂w
(Xn+1) satisfies

P
(
Yn+1 ∈ Sβ̂w

(Xn+1)
∣∣ Dtr, Dcal

)
≥ 1− α.

Proof Sketch. This is a direct application of WCP (Tibshirani et al., 2019). The validity of this
framework applies to any valid non-conformity score. Our scores are valid as they are from a
deterministic function of the samples and the pre-trained model. When the weights represent the true
density ratio, the weighted empirical distribution of the calibration scores is an unbiased estimator of
the test score distribution. Thus, the coverage guarantee from the original theorem directly applies.

In practice, the true oracle is not available, and the coverage guarantee holds approximately, with
the quality of the approximation depending on the accuracy of the density ratio estimates. To correct
for the induced distribution shift, we explore three correction strategies: 1) Class: available ground
truth class labels as features and weights are computed directly from the known class prevalences, 2)
Latent: Model’s latent representations summed on the spatial dimension as features (Lambert et al.,
2024), and 3) Jacobian: model’s internal geometric sensitivity (jacobians) summed as features.

3 EXPERIMENTS

We evaluated COMPASS across four medical image segmentation tasks: 1) segmentation on H&E
histopathology images from the EBHI dataset (H&E) (Hu et al., 2023), 2) skin lesion segmenta-
tion on dermoscopic images from the HAM10000 dataset (Skin Lesion) (Tschandl et al., 2018), 3)
thyroid nodule segmentation from the TN3K dataset (Nodule) (Gong et al., 2021), and 4) gastroin-
testinal polyp segmentation (PolyP) (Jha et al., 2019). We trained all models using the standard
U-Net architecture from MONAI (Cardoso et al., 2022; Kerfoot et al., 2018). We focused on seg-
mented object size (area) as the downstream clinical metric of interest. Object size is among the
most widely adopted quantitative biomarkers across diverse clinical applications (Smith et al., 2003;
O’Connor et al., 2008). For COMPASS-J, which requires a differentiable metric function, we com-
pute area by applying a soft thresholding (a sigmoid function) to the output logits and then summing
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the resulting probability map. We repeated each experiment over 100 randomized splits to compute
average coverage and interval sizes. We provide details on architecture, preprocessing, training,
calibration, and testing details in Appendix E. We considered three types of calibration strategies:

1. Output-space calibration: These include split conformal prediction (SCP) (Lei et al., 2018),
Conformalized Quantile Regression (Output-CQR) (Romano et al., 2019), and locally adaptive con-
formal prediction (Local CP) (Lei et al., 2018; Papadopoulos et al., 2008; 2011).

2. End-to-end calibration: We use Conformalized Quantile Regression (E2E-CQR) (Lambert
et al., 2024) on a model trained to directly produce pixel-wise lower and upper bounds using the
Tversky loss (Salehi et al., 2017).

3. Feature-space calibration: These include COMPASS-L, which directly calibrates the model’s
final pre-activation outputs (logits), and COMPASS-J, which constructs prediction intervals by per-
turbing latent features along dominant directions. As the strong monotonicity is empirically vali-
dated in Figures 2 and 12, all our experiments utilize the practical endpoint algorithm. We omitted
the original FCP method (Teng et al., 2022) from our main empirical comparison because we found
its core adversarial search procedure for finding non-conformity scores to be computationally in-
tractable for large feature spaces and to fail to reliably converge, preventing the computation of
defined scores. We instead offer a comparison against a conceptual oracle benchmark for FCP in
Table 3: because FCP prediction set is defined by an Lp ball in the latent space (Teng et al., 2022)
with bounds computed using Linear Relaxation based Perturbation Analysis (LiRPA) (Xu et al.,
2020), we empirically find the minimal radius of the Lp ball, which, when propagated through the
decoding function using LiRPA, achieves the target coverage for the final metric.

3.1 STANDARD CONFORMAL PREDICTION

First, we qualitatively find that COMPASS finds semantically meaningful directions in the latent
space that correspond to monotonic changes in metric (Figure 2) for all applications. Next, we
compare interval size across methods and datasets for α = {0.15, 0.1, 0.15} (Table 1). We find
that output space methods (SCP, CQR, Local) generally achieve valid coverage (Table 2) but yield
longer intervals. End-to-end CQR provides tighter intervals. COMPASS (-J and -L) achieves valid
coverage with a significantly reduced interval size compared to E2E-CQR. Moreover, we observe an
efficiency benefit of using deeper representations (COMPASS-J) compared to logits (COMPASS-L)
for the majority of datasets. COMPASS-J generally achieves the shortest interval lengths overall.
We also find that COMPASS maintains similar calibration stability as baseline methods (Figure 7).
This highlights the efficiency of COMPASS methods.

Table 1: COMPASS achieves more efficient interval sizes compared to baseline methods across
different target coverages. For 4 datasets and 100 random splits, we compare interval lengths at
α = {0.15, 0.1, 0.05}. We show the output space, end-to-end, and feature calibration methods in
red, blue, and green. The shortest mean interval lengths are bolded. For empirical coverages, see
Table 2.

Interval Size (Pixels2, Mean±Standard Deviation)
Dataset α COMPASS-J COMPASS-L E2E-CQR Local Output-CQR SCP

H&E 0.05 4637±630 4408±432 5121±651 6297±722 5646±358 5542±676
H&E 0.10 3160±336 3139±375 3433±293 4223±558 3879±369 3509±333
H&E 0.15 2320±252 2354±146 2679±199 3175±291 2819±207 2550±196

Skin Lesion 0.05 1657±80 1689±83 2569±195 3797±237 10857±65 3273±229
Skin Lesion 0.10 1179±53 1208±58 1351±75 2433±101 4581±36 1813±127
Skin Lesion 0.15 934±30 956±33 943±47 1865±50 2634±44 1124±77

Nodule 0.05 3257±210 3394±280 4150±265 3981±202 7481±46 4589±431
Nodule 0.10 2444±174 2510±180 2788±154 3311±133 5603±57 3076±200
Nodule 0.15 2016±143 2082±142 2150±164 2877±111 4032±64 2408±154

PolyP 0.05 5489±575 6376±769 9162±804 12394±2577 8163±722 8570±766
PolyP 0.10 4056±293 4397±469 6184±616 5965±1011 4981±675 6237±564
PolyP 0.15 3394±290 3686±361 4528±487 4463±481 3913±326 4504±366
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Figure 2: Visual verification of monotonicity to justify Endpoint-COMPASS. As latent features
are shifted along the COMPASS-J direction ∆, the induced segmentation volumes (red contours)
monotonically expand. This is the key justification for using our efficient Endpoint-COMPASS in
our experimental setup, as it demonstrates mathematical equivalence with the rigorous Envelope-
COMPASS. We show a sample from each dataset with perturbation magnitudes β targeted at -20%,
-10%, 0% (original prediction), +10%, and +20% change in area (δA). We provide a plot of all
metric responses on the testing datasets in Figure 12 and more visual examples in Appendix G.

3.2 WEIGHTED CONFORMAL PREDICTION

To empirically validate the effectiveness of WCP under distribution shift, we design an experiment
with a controlled, adversarial label shift for the H&E and Skin Lesion datasets. We adopted a dataset-
specific partitioning strategy based on sample availability. For H&E, we trained on a restricted subset
to prevent data exhaustion, ensuring sufficient minority samples remained. Conversely, for Skin Le-
sion, we utilized the full dataset, inducing shift by systematically reallocating the class distributions.
For H&E, we induced a shift from “easy” to “hard”. We allocated 40% of the Adenocarcinoma
samples to the calibration set and the remaining 60% to the test set. This results in a test distribution
dominated by difficult samples, leading to baseline undercoverage. For Skin Lesion, we induced a
shift from “hard” to “easy”. We allocated 30% of the Melanocytic Nevi (majority/easy) samples to
the calibration set, forcing the calibration set to be composed primarily of diverse, difficult lesions.
The remaining 70% of the Nevi were allocated to the test set. This resulted in a calibration set that
was significantly more difficult than the test set, leading to baseline overcoverage. See Appendix E
for more details.

For output-space calibration methods, we used weights based on the ground truth class labels, which
we consider as approximately “oracle” weights. Note that the theoretically perfect oracle weights
are defined by the density ratio, which precisely corrects for the change in the full, high-dimensional
distribution of features between the calibration and test sets. For end-to-end and feature space cali-
bration, we used the latent features (Lambert et al., 2024; Woodland et al., 2023; Anthony & Kam-
nitsas, 2023) and Jacobians to train auxiliary classifiers using gradient boosting machines (Ke et al.,
2017) to distinguish between calibration and test sets. For end-to-end, we do not use Jacobian
weights consistent with prior work (Lambert et al., 2024).
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Figure 3: COMPASS achieves the most efficient interval sizes under covariate shifts. We show
results for two datasets and compare weighting methods for 100 adversarial splits that maintain the
same covariate shift for α = 0.1. For H&E, we increased the proportion of “hard” samples in the
test set. For Skin Lesion, we decreased the proportion of “hard” samples in the test set. We find
that COMPASS methods achieve valid coverage and the most efficient intervals in each weighting
method. We show the 95% confidence intervals.

Our results (Figure 3) demonstrate that both the choice of weighting information and the choice
of calibration layer are critical for achieving robust coverage under these covariate shifts. Simple
strategies, such as class-weighting, do not universally recover target coverage; unweighted methods
(grey) fail on the H&E dataset, while class-weighted methods (red) fail on Skin Lesion. Further-
more, not all feature-based methods are robust. COMPASS-L and E2E-CQR with feature weighting
still fail to maintain coverage under covariate shift on the H&E dataset. In contrast, the COMPASS-J
variants with both feature-weighting and Jacobian-weighting were the only methods to consistently
maintain the target coverage across both covariate shifts. Among the methods that proved empiri-
cally valid, the COMPASS-J variants were also the most efficient. This suggests that 1) the model’s
deep features or their Jacobians provide a richer, more adaptive signal for difficulty than simpler
class labels or logits, and 2) this deep-layer signal is essential, as methods relying on shallower lay-
ers (like COMPASS-L and E2E-CQR) were not robust even when using the same feature-weighting.
Our results are tabulated in Table 5.

3.3 EMPIRICAL ANALYSIS OF STATISTICAL EFFICIENCY

Unlike the original FCP framework, which provides a formal inequality under mild assumptions
due to its reliance on the simple and convex Lp norm as a score, a similar theorem for COMPASS is
intractable, because the COMPASS score RCOMPASS is defined implicitly through a search process
that depends on a highly non-linear and non-convex segmentation-to-metric pipeline. Instead, we
investigated the reason for efficiency gains of COMPASS compared to output-space methods by
finding the relationship between COMPASS scores and SCP scores RSCP .

The statistical efficiency of COMPASS is a direct consequence of a compressive power-law rela-
tionship between feature-space scores (RCOMPASS) and output-space errors (RSCP ). A log-log
plot of these quantities reveals a linear relationship with a scaling exponent slope< 1 (Figure 4,
top). This sub-linear scaling is the direct mechanism for the tail-end compression of the score dis-
tribution (Figure 4, bottom). Thus, the largest output-space errors are systematically mapped to
disproportionately smaller feature-space scores. A distribution with a compressed tail necessarily
has a smaller quantile, which is the fundamental mechanism that enables COMPASS to produce
tighter, more statistically efficient prediction intervals.
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Figure 4: The statistical efficiency of COMPASS is driven by a compressive power-law rela-
tionship between latent RCOMPASS and output RSCP space scores. As RSCP increases, the
required latent space perturbation magnitude increases, but at a progressively slower rate since the
scaling exponent (slope) is < 1 (Figure 4, top). This concave and sub-linear scaling is the direct
cause of a tail-end compression of the score distribution (bottom). Thus, the long-tail errors are
systematically transformed to much smaller feature-space scores.

4 DISCUSSION

We introduced COMPASS, a unified framework to generate efficient, metric-based prediction inter-
vals by leveraging the inductive biases of neural networks. Under the assumption of exchangeability,
COMPASS creates practical feature-space calibration by perturbing a model’s intermediate repre-
sentations along low-dimensional subspaces maximally sensitive to the target metric. Across four
medical segmentation tasks for area estimation, COMPASS achieves valid coverage while produc-
ing significantly tighter intervals than traditional output-space and end-to-end baselines for both
standard and weighted CP. We discuss several further points below.

COMPASS has several attractive properties. First, it produces instance-adaptive intervals. For
COMPASS-J, the perturbation direction for any new sample is found by projecting its Jacobian
onto the principal component and reconstructing the direction. Although COMPASS-L applies a
uniform scalar shift, it achieves adaptivity because this shift interacts with the spatially varying
logit distribution unique to each input, resulting in instance-specific adjustments to the segmentation
boundary. Second, COMPASS performs better than naive output-space calibration. In tasks
like segmentation, the final metric is a complex non-linear function of the model’s output (the pixel
mask). Simply adding a margin to a final object size prediction is a crude approximation that fails
to capture how the object size is actually derived from the underlying segmentation. In contrast,
COMPASS exploits the model’s internal structure and spatial understanding to directly manipulate
and calibrate the metric. COMPASS has more information and degrees of freedom, which allows it
to achieve more efficient interval sizes. Third, COMPASS performs better than methods trained
using pixel-level losses such as E2E-CQR. Such approaches optimize a proxy (pixel quantiles) for
the downstream metric, that may or may not translate into accurate intervals for the final metric. On
the other hand, COMPASS is directly calibrated to the final metric, and is therefore more applicable
to practical clinical use cases.

Finally, COMPASS is naturally applicable to various segmentation architectures. We also
present the interval lengths and coverage for SegResNet (Myronenko, 2018) in Appendix D.
COMPASS produces the most efficient interval lengths on the majority of datasets across α =
{0.05, 0.1, 0.15} for SegResNet.

9
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Limitations. COMPASS’s performance is fundamentally dependent on the quality of the pre-
trained model’s representations. Our practical algorithm implementation presupposes that the model
has learned an inductive bias where the chosen feature space has a reasonably monotonic and sen-
sitive control over the downstream metric. If the features are poorly aligned with the metric, the
resulting perturbation direction may be inefficient or non-monotonic, leading to wide or invalid in-
tervals. If so, we recommend using the full discretized sweep across the perturbation range to find
the minimum and maximum values. Furthermore, as mentioned in prior work (Lambert et al., 2024),
WCP with feature or jacobian weights, is effective for moderate distribution shifts where the cali-
bration and test distributions have significant overlap in the feature space. However, for large shifts,
the estimated weights may be inaccurate, which can compromise the validity of the final interval.

4.1 PRACTICAL CONSIDERATIONS

Figure 5: Explained variance is a good
indicator of monotonicity. For our
4 datasets, we plot the first principal
component’s explained variance against
the feature layer used for COMPASS-J.
Monotonicity and non-monotonicity is
indicated by • and ×.

While COMPASS-L may be applicable to UNet-style ar-
chitectures and object size, other applications may require
different setups. Careful design of the different compo-
nents of COMPASS, specifically COMPASS-J, will sig-
nificantly enhance its applicability and performance. We
provide a list of practical considerations to keep in mind
when using COMPASS.

Optimal Feature Layer. The choice of the feature
layer is critical. We find that the optimal layer can be se-
lected empirically by measuring the explained variance
of the first principal component (L = 1) of the Jacobians.
High explained variance in the first principal component
indicates that the local gradients of the target metric are
globally aligned across the samples. Consequently, there
is a high chance that a linear traversal along this princi-
pal direction results in a consistent, monotonic shift in
the output metric for the entire dataset, as the projection
scalar maintains a consistent sign. As shown in Figure 5,
layers closer to the logits capture the most variance re-
lated to object size, validating our use of COMPASS-J. We recommend finding layers with high ex-
plained variance of the Jacobians and verify monotonicity with a perturbation sweep (Algorithm 2).

Number of PCA Components. The number of eigenvectors L controls the dimensionality of the
perturbation subspace. We find that for the segmentation area metric, the first principal component
already captures over 90% of the metric’s variance (Figure 5). Adding more components does not
significantly improve interval tightness (Figure 9). Therefore, we recommend L = 1 for this task,
although this may be task-dependent.

Spatial Entanglement vs Global Semantic Alignment. We observe that the explained variance of
the Jacobians is significantly higher when computed on spatially aggregated features compared to
raw flattened features (Figure 10). This results from the translation-variant nature of the flattened
space, where sensitivity is tied to specific pixel coordinates that vary with object position, leading
to orthogonal gradients across samples. In contrast, summing the spatial dimensions isolates the
channel-wise semantic sensitivity, which remains consistent across samples. We recommend sum-
ming the spatial dimensions of the Jacobians before applying dimensionality reduction techniques.

Computationally Efficiency. COMPASS maintains high computational efficiency, particularly
when the metric response is monotonic. The jacobian computation is inexpensive as gradients are
calculated with respect to the scalar metric rather than the high-dimensional output image, leveraging
autograd. We further resolve potential intractability in PCA by spatially summing the Jacobians,
reducing the feature space to a low-dimensional matrix regardless of spatial resolution. While the
jacobian and calibration is fast (Table 8 and Figure 11), we recommend precomputing the jacobians
for all data before calibration and testing.

LLM Disclosure. During the preparation of this manuscript, we used LLMs (Google Gemini) to
polish the initial draft (grammar and style) and improve readability.
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ETHICS STATEMENT

We develop uncertainty quantification methods for medical image segmentation metrics using pub-
licly available and anonymized datasets. The methods are intended as research tools to improve
reliability and interpretability, but are not validated for clinical deployment. Risks include potential
misinterpretation of uncertainty estimates. We therefore release code for research purposes only and
encourage further evaluation with clinical experts before translation to practice.

REPRODUCIBILITY STATEMENT

We describe the algorithms in our paper extensively in Appendix C. We also describe the experi-
mental details in Appendix E. Upon acceptance, we will release a repository containing all the code
used in our experiments, including preprocessing, training, and evaluation scripts to reproduce all
main tables and figures. All packages used in the repository are publicly available. All datasets used
are publicly accessible.
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A PROOF OF THEOREM 1

Lemma 1 (Guaranteed Nestedness and Valid Scores). For any x ∈ X , let mx(b) be defined as in
Theorem 1, and let

Sβ(x) :=

[
min

b∈[−β,+β]
mx(b), max

b∈[−β,+β]
mx(b)

]
.

This family {Sβ(x)}β≥0 is nested. Furthermore, the nonconformity score

R(x, y) := inf{β ≥ 0 : y ∈ Sβ(x)}

is well-defined in [0,∞] and satisfies

y ∈ Sβ(x) ⇐⇒ R(x, y) ≤ β.

Proof. First, we prove nestedness. Let 0 ≤ β1 ≤ β2. By definition, the perturbation interval
[−β1,+β1] is a subset of [−β2,+β2]. Let

Sβ1(x) =

[
min

b∈[−β1,+β1]
mx(b), max

b∈[−β1,+β1]
mx(b)

]
and

Sβ2
(x) =

[
min

b∈[−β2,+β2]
mx(b), max

b∈[−β2,+β2]
mx(b)

]
.

The minimum of a function over a set is always greater than or equal to the minimum over a superset.
Thus,

min
b∈[−β1,+β1]

mx(b) ≥ min
b∈[−β2,+β2]

mx(b).

Conversely, the maximum over a set is less than or equal to the maximum over a superset. Thus,

max
b∈[−β1,+β1]

mx(b) ≤ max
b∈[−β2,+β2]

mx(b).

Therefore, by definition of an interval, Sβ1(x) ⊆ Sβ2(x), and the family is nested.

Second, we prove the equivalence y ∈ Sβ(x)⇐⇒ R(x, y) ≤ β. Since we have just proven that the
sets Sβ(x) are nested, they expand monotonically in β. If y ∈ Sβ′(x) for some β′, then y ∈ Sβ(x)
for all β ≥ β′. The set {β ≥ 0 : y ∈ Sβ(x)} is therefore a closed interval of the form [R0,∞) (or
[0,∞) if y ∈ S0(x)). The infimum R(x, y) is thus well-defined (as R0), and y ∈ Sβ(x) if and only
if β ≥ R(x, y).

Lemma 2 (Exchangeability yields uniform ranks). Let (Xi, Yi)
n+1
i=1 be exchangeable, and let Ri :=

R(Xi, Yi) be derived from Dtr. Then the rank of Rn+1 among {R1, . . . , Rn, Rn+1} is uniformly
distributed on {1, . . . , n+ 1}, conditional on Dtr.

Proof. Since the nonconformity score R(·, ·) is a measurable, deterministic function of (Xi, Yi)
and Dtr, the exchangeability of the pairs (Xi, Yi) implies the exchangeability of the scalar scores
(Ri)

n+1
i=1 . Therefore, by the standard properties of exchangeable random variables, the rank of Rn+1

among all n+ 1 scores is uniformly distributed on {1, . . . , n+ 1}.

Theorem 2 (Split-conformal coverage). Under the assumptions of Theorem 1, for any α ∈ (0, 1),
the prediction set Sβ̂(Xn+1) satisfies

P
(
Yn+1 ∈ Sβ̂(Xn+1)

∣∣∣ Dtr

)
≥ 1− α.

Proof. By Lemma 1, our construction of Sβ(x) guarantees nestedness and also guarantees that
Yn+1 ∈ Sβ(Xn+1) if and only if Rn+1 ≤ β. Applying this to our calibrated quantile β̂, we have

Yn+1 ∈ Sβ̂(Xn+1) ⇐⇒ Rn+1 ≤ β̂.

By Lemma 2, the rank of Rn+1 is uniform on {1, . . . , n+1}. By definition, β̂ is the ⌈(1−α)(n+1)⌉-
th smallest value among the calibration scores {R1, . . . , Rn}. By the standard p-value argument for
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split conformal prediction, the probability that the test score Rn+1 is less than or equal to β̂ is
bounded.

P(Rn+1 ≤ β̂ | Dtr) ≥ 1− α.

Combining these, we have

P
(
Yn+1 ∈ Sβ̂(Xn+1)

∣∣∣ Dtr

)
= P(Rn+1 ≤ β̂ | Dtr) ≥ 1− α,

which proves the theorem.

Connection to Standard CP. Theorem 1 generalizes the standard split conformal method. In the
classical setting for regression, Sβ(x) = [ŷ(x) − β, ŷ(x) + β] corresponds to symmetric absolute-
error balls around a predictor ŷ(x). This family is trivially nested. Here, the sets Sβ(x) are gen-
erated by perturbations of latent features through ∆ and evaluation under the downstream metric
h ◦ g. By rigorously defining Sβ(x) as the [min,max] envelope, we guarantee the nestedness prop-
erty required for the proof. The same rank-uniformity argument from exchangeability then ensures
coverage. Thus, standard split conformal prediction is recovered as a special case of this framework.

B ASYMMETRIC PERTURBATIONS

We extend the symmetric method to provide more flexible and efficient prediction intervals to the
asymmetric case. This approach is particularly valuable when the relationship between latent pertur-
bations and the downstream metric is non-linear or asymmetric. For instance, a positive perturbation
of a certain magnitude might cause a large increase in metric, while a negative perturbation of the
same magnitude results in only a small decrease. It also allows for independent control over the
rate of under- and over-estimation errors, specified by αlo and αhi. To account for this, we calculate
two distinct non-conformity scores (Rlo, Rhi) and two corresponding perturbation magnitudes (β̂lo,
β̂hi). By calibrating the upper and lower bounds independently, Asymmetric COMPASS constructs
an interval that adapts to these skewed error distributions, often resulting in tighter bounds than its
symmetric counterpart in such cases.

Theorem 3 (Asymmetric Split-Conformal Coverage). Let the setup be the same as in Theorem 1,
with metric function mx(b) := (h ◦ g)(ẑ(x) + b∆). We define the one-sided envelope functions:

Lx(β) := min
b∈[−β,0]

mx(b)

Ux(β) := max
b∈[0,+β]

mx(b)

These functions Lx(β) and Ux(β) are guaranteed to be non-increasing and non-decreasing in β,
respectively.

For each calibration pair (Xi, Yi), define two non-conformity scores:

Ri,lo := inf{β ≥ 0 : LXi
(β) ≤ Yi},

Ri,hi := inf{β ≥ 0 : UXi(β) ≥ Yi}.

Let αlo, αhi ∈ (0, 1) be user-specified miscoverage rates. Let β̂lo be the ⌈(1 − αlo)(n + 1)⌉-th
smallest value among {R1,lo, . . . , Rn,lo}, and let β̂hi be the ⌈(1 − αhi)(n + 1)⌉-th smallest value
among {R1,hi, . . . , Rn,hi}.
Then, for a fresh test pair (Xn+1, Yn+1), the prediction set

S(Xn+1) := [LXn+1(β̂lo), UXn+1(β̂hi)]

satisfies the marginal coverage guarantee

P
(
Yn+1 ∈ S(Xn+1)

∣∣ Dtr

)
≥ 1− (αlo + αhi).
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B.1 PROOF OF THEOREM 3

Lemma 3 (Monotonic Bounds and Valid One-Sided Scores). For any x ∈ X , let Lx(β) and Ux(β)
be defined as in Theorem 3. The function Lx(β) is non-increasing in β, and the function Ux(β)
is non-decreasing in β. Furthermore, the nonconformity scores Rlo(x, y) and Rhi(x, y) are well-
defined in [0,∞] and satisfy

Lx(β) ≤ y ⇐⇒ Rlo(x, y) ≤ β,

Ux(β) ≥ y ⇐⇒ Rhi(x, y) ≤ β.

Proof. Let 0 ≤ β1 ≤ β2. By definition, the interval [−β1, 0] is a subset of [−β2, 0]. The minimum
of a function over a set is always greater than or equal to the minimum over a superset. Thus:

Lx(β1) = min
b∈[−β1,0]

mx(b) ≥ min
b∈[−β2,0]

mx(b) = Lx(β2).

This proves Lx(β) is non-increasing. Similarly, [0,+β1] is a subset of [0,+β2]. The maximum of a
function over a set is always less than or equal to the maximum over a superset. Thus:

Ux(β1) = max
b∈[0,+β1]

mx(b) ≤ max
b∈[0,+β2]

mx(b) = Ux(β2).

This proves Ux(β) is non-decreasing.

This one-sided monotonicity ensures that if a bound is satisfied for some β′ (e.g., Lx(β
′) ≤ y), it

remains satisfied for all β ≥ β′. Hence, the infima in the definitions of the scores exist, and the
equivalences hold.

Lemma 4 (Exchangeability yields uniform ranks). Let (Xi, Yi)
n+1
i=1 be exchangeable. Let Ri,lo :=

Rlo(Xi, Yi) and Ri,hi := Rhi(Xi, Yi) be derived from Dtr. Then the ranks of Rn+1,lo among
{R1,lo, . . . , Rn+1,lo} and Rn+1,hi among {R1,hi, . . . , Rn+1,hi} are each uniformly distributed on
{1, . . . , n+ 1}, conditional on Dtr.

Proof. Since the nonconformity scores are measurable, deterministic functions of (Xi, Yi) and
Dtr, the exchangeability of the data pairs implies the exchangeability of each sequence of scores,
(Ri,lo)

n+1
i=1 and (Ri,hi)

n+1
i=1 . Therefore, the rank of the test score within each sequence is uni-

form.

Proof of Theorem 3. The total miscoverage event is the union of two one-sided miscoverage events:

P(Yn+1 /∈ S(Xn+1)) = P(Yn+1 < LXn+1
(β̂lo) or Yn+1 > UXn+1

(β̂hi)).

By the union bound,

P(Yn+1 /∈ S(Xn+1)) ≤ P(Yn+1 < LXn+1
(β̂lo)) + P(Yn+1 > UXn+1

(β̂hi)).

By Lemma 3, these one-sided events are equivalent to events concerning the scores:

P(Yn+1 /∈ S(Xn+1)) ≤ P(Rn+1,lo > β̂lo) + P(Rn+1,hi > β̂hi).

By Lemma 4 and the construction of β̂lo and β̂hi as quantiles, the probabilities of these rank-based
events are bounded by αlo and αhi, respectively. Thus,

P(Yn+1 /∈ S(Xn+1)) ≤ αlo + αhi.

The claim for the coverage probability, P(Yn+1 ∈ S(Xn+1)) ≥ 1− (αlo + αhi), follows.

This theorem provides a rigorous guarantee for asymmetric intervals. The proof relies on the same
core principles of exchangeability, but instead of assuming nestedness, we guarantee the required
one-sided monotonicity by defining the bounds Lx(β) and Ux(β) as the [min,max] over the respec-
tive perturbation ranges.
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C ALGORITHMS

In the COMPASS framework, we decompose the model into an encoder f that maps an input image
x to a representation ẑ, and a decoder g that maps ẑ to the final segmentation. A downstream metric
function h then maps the segmentation to a scalar metric ŷ. For simplicity, we show the algorithm
using the endpoint (and not the conservative envelope that requires a perturbation sweep during the
calibration procedure) – i.e., we define the perturbation and metric evaluation function P (ẑ,∆, β) as
the interval [h(g(ẑ − β∆)), h(g(ẑ + β∆))]. This endpoint construction is computationally efficient
and theoretically valid given the monotonic metric response observed in our experiments (Figures 2
and 12). The conservative envelope variant follows the same approach, but the symmetric binary
search involves a perturbation sweep for each sample during the calibration step to find the minimum
and maximum.

For COMPASS-L, the representation ẑ is the logits; the encoder f is the entire network, and the
decoder g is the identity function. The perturbation direction is simply ∆ = 1.

For COMPASS-J, the representation ẑ is an internal feature map. To find the sensitive direction
∆, we first compute the Jacobian of the metric with respect to the features, J = ∇ẑh(g(ẑ)). We
then project this Jacobian onto the subspace spanned by the top L principal components (VL) of
the training set Jacobians and reconstruct it. The final direction ∆ is the normalized reconstruction:
d = VLV

⊤
L J,∆ = d

∥d∥2
.

In general, the COMPASS framework follows several key steps:

1. Training: Assume an already trained base segmentation model, decomposed into an en-
coder f and decoder g. If using COMPASS-J, compute the Jacobians of the metric with
respect to the latent features ẑ for the training set and perform PCA to identify the dominant
sensitivity subspace VL.

2. Monotonicity Verification: Perform a perturbation sweep on a subset of the data to verify
that the metric response mx(b) is monotonic with respect to the perturbation magnitude
along the computed direction ∆. This empirical check justifies the use of the endpoints
over the computationally expensive envelope construction.

3. Calibration: For each sample in the calibration set, compute the non-conformity score Ri

using a binary search. Ri is the minimal perturbation magnitude β such that the computed
interval covers the ground truth. Finally, compute the calibrated quantile β̂ from these
scores using the standard finite-sample correction.

4. Testing: For a new test sample xn+1, compute its specific perturbation direction ∆n+1

(using the learned subspace VL for COMPASS-J or 1 for COMPASS-L). Construct the
final prediction interval using the calibrated β̂ and the interval endpoints: Sβ̂(xn+1) =

[mn+1(−β̂),mn+1(+β̂)].

C.1 TRAINING

Algorithm 1 COMPASS Training
Require: Training data Dtr, L (number of components for COMPASS-J).
Ensure: Trained model (f, g), and subspace VL (for COMPASS-J).

1: procedure TRAINING(Dtr, L)
2: Train the segmentation model (f, g)← argminf,g Lseg(Dtr).
3: if using COMPASS-J then
4: Compute Jacobians: J ← {

∑
spatial∇ẑjh(g(f(xj)))}j∈Dtr .

5: Compute PCA: VL ← PCA(J , L).
6: return f, g, VL.
7: else ▷ COMPASS-L requires no extra training
8: return f, g.
9: end if

10: end procedure
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C.2 MONOTONICITY VERIFICATION

Algorithm 2 Metric Monotonicity Verification
Require: Model (f, g, VL), Dataset D = {(xi, yi)}ni=1, βmax, Nsteps.
Ensure: Percentage of samples with monotonic metric response.

1: procedure VERIFY-MONOTONICITY(D, model, h, βmax, Nsteps)
2: Initialize count← 0.
3: for i = 1, . . . , n do
4: ẑi ← f(xi)
5: if using COMPASS-J then
6: di ← VLV

⊤
L ∇ẑh(g(ẑi)) ▷ Project Jacobian

7: ∆i ← di/∥di∥2 ▷ Normalize
8: else
9: ∆i ← 1

10: end if
11: B ← LinSpace(−βmax, βmax, Nsteps). ▷ Discretized grid
12: M ← ∅.
13: for b ∈ B do
14: M ←M ∪ {h(g(ẑi + b∆i))}. ▷ Evaluate metric
15: end for
16: if IS-SORTED-ASCENDING(M ) then ▷ Check monotonicity
17: count← count+ 1.
18: end if
19: end for
20: return count/n
21: end procedure

Algorithm 2 is a diagnostic step performed after training. It verifies that perturbing the features along
the computed direction ∆ results in a monotonic change in the metric (area). High monotonicity
validates the use of the efficient endpoint-based interval construction in the subsequent calibration
and inference steps.

C.3 SYMMETRIC COMPASS

Algorithm 3 Symmetric COMPASS (Calibration & Inference)
Require: Calibration Dcal, Test xn+1, α, Model (f, g, VL).
Ensure: Prediction interval Sβ̂(xn+1).

1: procedure CALIBRATION(Dcal, model, h, α)
2: Initialize scoresR ← ∅.
3: for i = 1, . . . , n do
4: Define ẑi and compute ∆i (as in Alg. 2).
5: Ri ← SYMMETRIC-BINARY-SEARCH(ẑi,∆i, yi).
6: R ← R∪ {Ri}.
7: end for
8: β̂ ← Quantile(R, ⌈(1−α)(n+1)⌉

n ).
9: return β̂

10: end procedure

11: procedure INFERENCE(xn+1, model, h, β̂)
12: Define ẑn+1 and compute ∆n+1 (as in Alg. 2).
13: Sβ̂(xn+1)← P (ẑn+1,∆n+1, β̂).
14: return Sβ̂(xn+1)
15: end procedure
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Algorithm 3 describes the symmetric formulation. During calibration, we compute a non-conformity
score Ri for each sample using a binary search (Algorithm 5). Ri represents the minimal perturba-
tion magnitude β such that the interval P (ẑi,∆i, β) covers the true label yi. We then compute the
(1 − α) quantile of these scores, β̂. During inference, we apply this calibrated β̂ to the test sample
to produce the final prediction interval.

C.4 ASYMMETRIC COMPASS

Algorithm 4 Asymmetric COMPASS (Calibration & Inference)
Require: Calibration Dcal, Test xn+1, αlo, αhi, Model (f, g, VL).
Ensure: Prediction interval S(xn+1).

1: procedure CALIBRATION(Dcal, model, h, αlo, αhi)
2: InitializeRlo ← ∅,Rhi ← ∅.
3: for i = 1, . . . , n do
4: Define ẑi and compute ∆i (as in Alg. 2).
5: (Ri,lo, Ri,hi)← ASYMMETRIC-BINARY-SEARCH(ẑi,∆i, yi).
6: Rlo ← Rlo ∪ {Ri,lo}.
7: Rhi ← Rhi ∪ {Ri,hi}.
8: end for
9: β̂lo ← Quantile(Rlo,

⌈(1−αlo)(n+1)⌉
n ).

10: β̂hi ← Quantile(Rhi,
⌈(1−αhi)(n+1)⌉

n ).
11: return β̂lo, β̂hi

12: end procedure

13: procedure INFERENCE(xn+1, model, h, β̂lo, β̂hi)
14: Define ẑn+1 and compute ∆n+1 (as in Alg. 2).
15: S(xn+1)← [h(g(ẑn+1 − β̂lo∆n+1)), h(g(ẑn+1 + β̂hi∆n+1))].
16: return S(xn+1)
17: end procedure

Algorithm 4 extends the framework to the asymmetric case. We independently calibrate a lower
bound (β̂lo) and an upper bound (β̂hi) using separate non-conformity scores. This allows the interval
to expand differently in the positive and negative directions, which is efficient for metrics with
asymmetric sensitivity.

C.5 SCORE-FINDING PROCEDURES

Algorithm 5 Symmetric Binary Search
1: function SYMMETRIC-BINARY-SEARCH(ẑ,∆, y)
2: blow ← 0, bhigh ← βrange.
3: for k = 1, . . . , kmax do
4: bmid ← (blow + bhigh)/2.
5: Smid ← P (ẑ,∆, bmid) ▷ Compute endpoint interval
6: if y ∈ Smid then bhigh ← bmid
7: else blow ← bmid
8: end if
9: end for

10: return bhigh.
11: end function
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Algorithm 6 Asymmetric Binary Search
1: function ASYMMETRIC-BINARY-SEARCH(ẑ,∆, y)
2: mlo(b)← h(g(ẑ − b∆)), mhi(b)← h(g(ẑ + b∆))
3: Find Upper Bound Score (Rhi):
4: blow ← 0, bhigh ← βrange.
5: for k = 1, . . . , kmax do
6: bmid ← (blow + bhigh)/2.
7: if y ≤ mhi(bmid) then bhigh ← bmid
8: else blow ← bmid
9: end if

10: end for
11: Rhi ← bhigh.
12: Find Lower Bound Score (Rlo):
13: blow ← 0, bhigh ← βrange.
14: for k = 1, . . . , kmax do
15: bmid ← (blow + bhigh)/2.
16: if y ≥ mlo(bmid) then bhigh ← bmid
17: else blow ← bmid
18: end if
19: end for
20: Rlo ← bhigh.
21: return (Rlo, Rhi).
22: end function

These are the root-finding functions necessary to determine the non-conformity scores. We use a
binary search for computational efficiency. This requires O(logN) forward passes, as opposed to
O(N) for a linear search, making it highly scalable.
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D ADDITIONAL TABLES

Table 2: Empirical coverage for U-Net. All methods reach (close to) target coverage.
Coverage (Mean±STD)

Dataset α COMPASS-J COMPASS-L E2E-CQR Local Output-CQR SCP
H&E 0.05 0.952±0.023 0.953±0.02 0.955±0.025 0.95±0.021 0.951±0.019 0.956±0.018
H&E 0.10 0.907±0.029 0.907±0.03 0.903±0.028 0.903±0.03 0.903±0.031 0.91±0.03
H&E 0.15 0.856±0.03 0.856±0.031 0.856±0.035 0.848±0.036 0.85±0.032 0.849±0.032

Skin Lesion 0.05 0.951±0.009 0.953±0.008 0.951±0.01 0.95±0.01 0.951±0.009 0.951±0.01
Skin Lesion 0.10 0.9±0.014 0.904±0.013 0.9±0.012 0.899±0.012 0.897±0.013 0.899±0.013
Skin Lesion 0.15 0.853±0.015 0.86±0.016 0.853±0.016 0.852±0.015 0.852±0.015 0.853±0.015

Nodule 0.05 0.949±0.018 0.953±0.018 0.958±0.014 0.948±0.017 0.954±0.016 0.953±0.019
Nodule 0.10 0.901±0.025 0.904±0.026 0.904±0.022 0.906±0.025 0.908±0.024 0.906±0.024
Nodule 0.15 0.852±0.032 0.858±0.031 0.849±0.03 0.85±0.028 0.845±0.026 0.857±0.027

PolyP 0.05 0.955±0.02 0.96±0.018 0.957±0.019 0.951±0.022 0.955±0.018 0.96±0.022
PolyP 0.10 0.899±0.034 0.908±0.032 0.902±0.027 0.897±0.032 0.901±0.029 0.907±0.03
PolyP 0.15 0.849±0.035 0.865±0.03 0.853±0.034 0.854±0.037 0.856±0.033 0.856±0.032

Table 3: Comparison between COMPASS and FCP interval lengths. Because FCP fails to
reliably converge when finding a non-conformity score, we instead provide a comparison, where we
empirically find the minimal radius of an Lp ball that achieves the target coverage across the test set.
COMPASS methods consistently achieve the most efficient interval lengths.

Interval Size (Pixels2, Mean±STD)
Dataset α COMPASS-J COMPASS-L FCP

H&E 0.05 4637±630 4408±432 9702±1535
H&E 0.10 3160±336 3139±375 6463±1193
H&E 0.15 2320±252 2354±146 4979±647

Skin Lesion 0.05 1657±80 1689±83 14838±10
Skin Lesion 0.10 1179±53 1208±58 12445±51
Skin Lesion 0.15 934±30 956±33 8267±79

Nodule 0.05 3257±210 3394±280 16247±2
Nodule 0.10 2444±174 2510±180 16143±3
Nodule 0.15 2016±143 2082±142 16056±4

PolyP 0.05 5489±575 6376±769 15937±9
PolyP 0.10 4056±293 4397±469 15644±10
PolyP 0.15 3394±290 3686±361 15353±14

Table 4: Comparison of layer choice. For α = 0.1, we find that while for some datasets the
efficiency gains are comparable, penultimate features generally achieve shorter interval lengths.

Interval Size (Pixels2,Mean±STD)
Dataset COMPASS-J (Bottleneck) COMPASS-J (Deep) COMPASS-J (Shallow) COMPASS-L
H&E 9394±799 3160±336 3140±386 3139±375

Skin Lesion 4084±154 1179±53 1210±51 1208±58
Nodule 8070±494 2444±174 2500±187 2510±180
PolyP Non-monotonic 4056±293 4222±390 4397±469
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Table 5: Comparison between baseline and COMPASS methods for Weighted CP. For α = 0.1,
weighted COMPASS methods consistently outperform baseline methods in terms of interval length
and restoring coverage under covariate shift.

Dataset Weighting Method Interval Size (Mean±STD, Pixels2) Coverage (Mean±STD)

H&E

Class

COMPASS-J 2055±220 0.911±0.024
COMPASS-L 2065±263 0.903±0.024

E2E-CQR 2444±278 0.900±0.027
Local 3113±201 0.907±0.024

Output-CQR 2890±265 0.901±0.024
SCP 2371±290 0.900±0.026

Feature
COMPASS-J 1916±177 0.909±0.024
COMPASS-L 1944±244 0.896±0.024

E2E-CQR 2197±288 0.884±0.029

Jacobian COMPASS-J 1822±200 0.896±0.031

Unweighted

COMPASS-J 1810±127 0.886±0.025
COMPASS-L 1759±159 0.884±0.024

E2E-CQR 1993±196 0.871±0.026
Local 2833±158 0.88±0.027

Output-CQR 2563±134 0.879±0.024
SCP 2003±169 0.878±0.024

Skin Lesion

Class

COMPASS-J 1318±132 0.896±0.019
COMPASS-L 1373±136 0.895±0.019

E2E-CQR 1335±277 0.887±0.021
Local 2426±354 0.893±0.02

Output-CQR 3380±43 0.888±0.018
SCP 1905±475 0.888±0.024

Feature
COMPASS-J 1573±158 0.919±0.014
COMPASS-L 1669±168 0.919±0.013

E2E-CQR 2030±269 0.919±0.012

Jacobian COMPASS-J 1485±126 0.914±0.013

Unweighted

COMPASS-J 2183±132 0.94±0.005
COMPASS-L 2211±150 0.939±0.007

E2E-CQR 3400±226 0.945±0.006
Local 5446±380 0.947±0.006

Output-CQR 4201±145 0.945±0.008
SCP 4707±323 0.948±0.006

Table 6: COMPASS produces the most efficient interval lengths on the majority of datasets
across target coverages for SegResNet.

Interval Size (Pixels2, Mean±STD)
Dataset α COMPASS-J COMPASS-L E2E-CQR Local Output-CQR SCP

H&E
0.05 6129±1147 4680±595 5115±541 7649±821 6860±571 6021±858
0.10 3283±262 3217±247 3575±344 4800±700 4509±389 3911±371
0.15 2483±226 2400±244 2563±182 3491±333 3358±285 2783±317

Skin Lesion
0.05 1599±97 1829±191 2281±146 4034±256 10942±53 2987±227
0.10 1108±45 1146±45 1236±66 2311±167 3056±45 1685±135
0.15 873±27 927±27 857±52 1710±64 2293±32 1083±49

Nodule
0.05 3675±480 3577±413 4461±337 3513±212 6197±64 4068±388
0.10 2671±251 2645±216 3390±197 2762±129 3942±102 2826±200

0.15 2125±203 2127±203 2646±128 2355±131 2937±95 2188±167

PolyP
0.05 5890±417 6068±435 8495±1012 7992±1324 8296±822 7774±930
0.10 4507±529 4737±486 4941±949 4837±611 5061±599 5169±559
0.15 3188±500 3569±572 2668±255 3594±326 3556±401 3467±389
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Table 7: Empirical coverage for SegResNet. All methods reach (close to) target coverage.
Coverage (Mean±STD)

Dataset α COMPASS-J COMPASS-L E2E-CQR Local Output-CQR SCP

H&E
0.05 0.956±0.019 0.949±0.021 0.954±0.021 0.949±0.022 0.949±0.023 0.953±0.02
0.10 0.905±0.029 0.9±0.027 0.91±0.027 0.901±0.028 0.902±0.028 0.906±0.027
0.15 0.858±0.033 0.852±0.034 0.856±0.031 0.854±0.033 0.854±0.033 0.856±0.035

Skin Lesion
0.05 0.952±0.011 0.95±0.01 0.952±0.01 0.95±0.011 0.951±0.01 0.952±0.01
0.10 0.903±0.014 0.901±0.013 0.9±0.014 0.902±0.016 0.901±0.013 0.902±0.015
0.15 0.854±0.015 0.853±0.016 0.851±0.017 0.852±0.015 0.854±0.014 0.854±0.015

Nodule
0.05 0.958±0.017 0.953±0.017 0.954±0.019 0.951±0.019 0.953±0.017 0.952±0.018
0.10 0.902±0.026 0.901±0.027 0.909±0.025 0.9±0.024 0.901±0.027 0.904±0.026
0.15 0.852±0.026 0.85±0.026 0.856±0.029 0.848±0.032 0.849±0.032 0.851±0.03

PolyP
0.05 0.954±0.022 0.948±0.022 0.954±0.022 0.949±0.023 0.95±0.021 0.952±0.02
0.10 0.905±0.032 0.899±0.033 0.909±0.025 0.904±0.032 0.9±0.032 0.908±0.03
0.15 0.858±0.035 0.85±0.035 0.856±0.031 0.856±0.031 0.855±0.037 0.859±0.033

E EXPERIMENTAL DETAILS

Architectures. We use the standard U-Net, SegResNet, and SwinUNETR architecture available
in the MONAI framework (Cardoso et al., 2022). For the U-Net, we used an encoder with channel
sizes of (32, 64, 128, 256) and a corresponding decoder, using two residual units per block, batch
normalization, and a dropout rate of 0.1. For SegResNet, we used a residual encoder-decoder net-
work that started with 32 initial filters and included varying numbers of blocks in its down-sampling
path (1, 2, 2, 4), batch normalization, and a dropout probability of 0.1. For SwinUNETR, we used a
transformer-based model configured for an image size of (128, 128) pixels, with a feature size of 48
and multi-head attention mechanisms across four depth levels.

Preprocessing. To standardize all experiments, we resize each image and segmentation mask to
a standard resolution of 128x128 pixels. For data augmentation during training, we apply a set of
transformations consisting of a random crop to the specified size, followed by random horizontal
and vertical flips, each with a equal probability.

Training details. For each architecture, we trained both a standard model and an End-to-End
Conformalized Quantile Regression (E2E-CQR) variant (Lambert et al., 2024), with all models be-
ing trained using an AdamW optimizer with a learning rate of 1e-4 and a batch size of 32. The stan-
dard models were configured for binary segmentation tasks, taking a 1 (for grayscale) or 3-channel
(for RGB image) as input and producing a single-channel output mask. Training was optimized
using a Dice score loss function to maximize the overlap between the predicted and ground-truth
segmentations. Following the original E2E-CQR model (Lambert et al., 2024), we modify the num-
ber of output channels to 3 to produce three distinct segmentation masks, corresponding to the lower
quantile, the median prediction, and the upper quantile, which together form the prediction interval.
These models were trained using the Tversky loss (Salehi et al., 2017). Thus, it allows the model to
directly learn the uncertainty bounds end-to-end.

Baseline Calibration Details. We follow the standard frameworks for SCP (Papadopoulos et al.,
2002; Lei et al., 2018), CQR (Romano et al., 2019), and Local CP (Papadopoulos et al., 2008; 2011;
Lei et al., 2018). For CQR, we use two separate Gradient Boosting Regressors to learn the lower and
upper quantiles of the prediction and adjust the resulting We use a learning rate of 0.1, 50 estimators,
a maximum depth of 3, minimum leaf samples of 1, and a minimum samples to split of 9. For Local
CP, we use two separate Random Forest Regressors to learn the mean and mean absolute difference.
We use 1000 estimators and a minimum leaf sample of 100. For E2E-CQR, we follow the same
calibration procedure as CQR. However, in this case, the quantiles are learned by the model.

COMPASS Calibration and Testing Details. For all experiments, we run both the symmetric
and asymmetric versions of COMPASS with 1 component on the logits and each layer in the seg-
mentation head. We report the layer with the minimum mean interval length and its corresponding
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Figure 6: Adversarial shift distribution for H&E and Skin Lesion datasets. For H&E, we place
60% and 40% of the Adenocarcinoma (easy) samples into the calibration and test sets. For Skin
Lesion, we place 70% and 30% of the melanocytic nevi (hard) samples into the calibration and test
sets.

coverage. We perform 100 random calibration-test splits. For weighted CP, we use LightGBM with
the default settings (Ke et al., 2017). We also perform 100 calibration-test splits. However, in this
case, the samples were shuffled to maintain the target proportion of classes. We show the covariate
shift in Figure 6.

F PRACTICAL RECOMMENDATION ADDITIONAL RESULTS

Figure 7: COMPASS results in stable calibration. We use the results from α=0.1, binned the
ground truth values into 5 non-overlapping bins, and computed the mean interval length and mean
coverage (and their 95% confidence intervals). We find that COMPASS methods tend to perform
better for shorter interval lengths (except for H&E), achieving approximately the same coverage.
The count of the bins tends to be a better indicator of calibration stability (See Figure 8). Please
note that our guarantees are only marginal; therefore, coverage may be lower for values that are less
frequently represented during calibration.
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Figure 8: Ground Truth Distribution. We show histogram plots of the distribution of ground truth
segmentation area values in Pixels2 with a KDE overlaid.

Figure 9: One principal component is generally sufficient for COMPASS-J. For 4 datasets,
we run COMPASS-J with 1 to 5 components for 100 iterations. We find that there is no additional
benefits of using more than 1 principal component, as the first principal component already explained
most of the variance (Figure 5).

Figure 10: Explained variance of the Jacobians is significantly lower when computed on raw
flattened features. For our 4 datasets, we plot the first principal component’s explained variance
against the feature layer used for COMPASS-J. We find all layers result in non-monotonicity, indi-
cating the translation-variant nature of the flattened space.
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Table 8: Jacobian computation for COMPASS-J is fast. We present the average computational
time to compute the Jacobians of feature size 64x64x64 across four datasets below using a single
NVIDIA A100 GPU. We compute the Jacobians with respect to the metric, which is extremely fast
with autograd. This is because the downstream metric is one-dimensional. Furthermore, to expedite
the training and calibration step, we precompute and save the Jacobians summed on the spatial
dimension.

H&E Skin Lesion Nodule PolyP
Compute time for full dataset

(Mean±STD in seconds) 73.6±0.6 305.8±1.1 93.3±0.9 73.6±0.6

Figure 11: COMPASS methods do not require substantial computing times. The calibration
step requires multiple forward passes. However, we find that combining forward passes and binary
search enables fast calibration. We show the average computational time required for calibration
(for 100 repeats) across 4 datasets using a single NVIDIA A100 GPU. We compute times for the
symmetric (without A-) and asymmetric (A-), deep (-Deep) and (-Shallow) layers, and COMPASS-L
versus COMPASS-J. The full calibration runtimes are on the order of seconds for the full calibration
dataset. The number of samples used for calibration was 223 (H&E), 1000 (Skin Lesion), 349
(Thyroid), and 200 (PolyP).

Figure 12: Monotonicity verification. We verify the nestedness of linear latent perturbations
(Definition1). For each dataset, we perform a sweep across different βs and compute the change in
volume δA =

Aβ−A0

A0
× 100 where Aβ is the area when the original latent is perturbed by β.
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G SEGMENTATION OVERLAYS FOR COMPASS-J AND COMPASS-L

G.1 SEGMENTATION OVERLAYS FOR DIFFERENT PERCENTAGES OF CHANGE IN
SEGMENTATION AREA (δA) FOR COMPASS-J

Figure 13: Segmentation area increases with β for H&E. Each row is a different sample. δA = 0%
is the original prediction.
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Figure 14: Segmentation area increases with β for Skin Lesion. Each row is a different sample.
δA = 0% is the original prediction.
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Figure 15: Segmentation area increases with β for Thyroid Nodule. Each row is a different sample.
δA = 0% is the original prediction.
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Figure 16: Segmentation area increases with β for PolyP. Each row is a different sample. δA = 0%
is the original prediction.
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G.2 SEGMENTATION OVERLAYS FOR DIFFERENT PERCENTAGES OF CHANGE IN
SEGMENTATION AREA (δA) FOR COMPASS-L

Figure 17: Segmentation area increases with β for H&E. Each row is a different sample. δA = 0%
is the original prediction.
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Figure 18: Segmentation area increases with β for Skin Lesion. Each row is a different sample.
δA = 0% is the original prediction.
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Figure 19: Segmentation area increases with β for Thyroid Nodule. Each row is a different sample.
δA = 0% is the original prediction.
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Figure 20: Segmentation area increases with β for PolyP. Each row is a different sample. δA = 0%
is the original prediction.
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