

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMPASS: ROBUST FEATURE CONFORMAL PREDICTION FOR MEDICAL SEGMENTATION METRICS

Anonymous authors

Paper under double-blind review

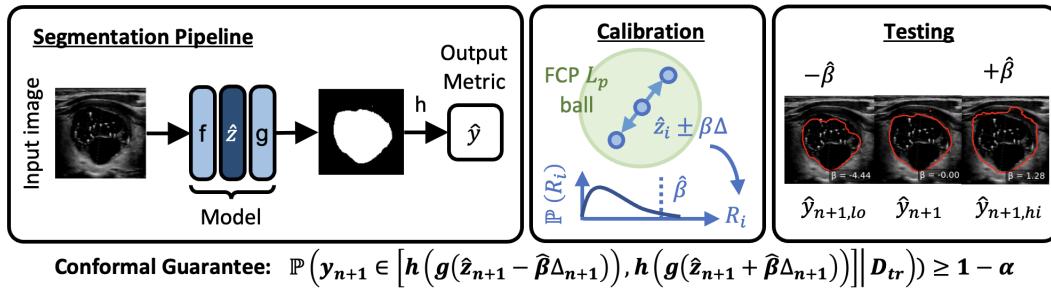
ABSTRACT

In clinical applications, the utility of segmentation models is often based on the accuracy of derived downstream metrics such as organ size, rather than by the pixel-level accuracy of the segmentation masks themselves. Thus, uncertainty quantification for such metrics is crucial for decision-making. Conformal prediction (CP) is a popular framework to derive such principled uncertainty guarantees, but applying CP naively to the final scalar metric is inefficient because it treats the complex, non-linear segmentation-to-metric pipeline as a black box. We introduce COMPASS, a practical framework that generates efficient, metric-based CP intervals for image segmentation models by leveraging the inductive biases of their underlying deep neural networks. COMPASS performs calibration directly in the model’s representation space by perturbing intermediate features along low-dimensional subspaces maximally sensitive to the target metric. We prove that COMPASS achieves valid marginal coverage under the assumption of exchangeability. Empirically, we demonstrate that COMPASS produces significantly tighter intervals than traditional CP baselines on four medical image segmentation tasks for area estimation of skin lesions and anatomical structures. Furthermore, we show that leveraging learned internal features to estimate importance weights allows COMPASS to also recover target coverage under covariate shifts. COMPASS paves the way for practical, metric-based uncertainty quantification for medical image segmentation.

1 INTRODUCTION

Uncertainty quantification is of critical need in medical image analysis, a field used for decision support in high-stakes clinical diagnosis and treatment planning applications (Begoli et al., 2019; Abdar et al., 2021). A fundamental task in medical image analysis is image segmentation, the task of separating anatomical structures and lesions from each other within an image. Deep learning models, particularly U-Net variants (Ronneberger et al., 2015; Isensee et al., 2021), have achieved state-of-the-art performance in medical image segmentation. In practice, the outputs of these models (“segmentation maps”) are often treated as an intermediate result that are then used to automatically derive downstream metrics of interest (known as “radiomics”), such as the areas/volumes or texture patterns of specific anatomic regions (Figure 1, left). These derived metrics are then used for decision support to guide clinicians in diagnosis and treatment.

Conformal prediction (CP) has emerged as a popular, statistically principled uncertainty quantification framework of choice in machine learning, providing guarantees without restrictive distributional assumptions (Vovk et al., 2005; Shafer & Vovk, 2008; Fontana et al., 2023; Papadopoulos et al., 2002; Angelopoulos & Bates, 2021). While well-studied in the context of typical prediction tasks involving scalar output variables, CP is less explored for tasks such as medical image segmentation, in which the output variables are images. Existing CP methods for segmentation typically focus on deriving bounds for *pixel-level errors* (Mossina et al., 2024; Mossina & Friedrich, 2025; Brunekreef et al., 2024; Angelopoulos et al., 2022), which, while useful for understanding variations of local segmentation contours, may yield meaningless or misaligned intervals for downstream derived metrics. On the other hand, a recent study shows that treating the segmentation-to-metric pipeline as a black box and performing CP directly on the output metric space yields intervals that are well-aligned to the metrics (by construction), but are also often inefficient (i.e., large) because



065
066
067
068
069
070
071
072
073

Figure 1: **Overview of COMPASS.** (Left) A medical image segmentation network predicts a segmentation map “from an input image. We conceptually decompose this network into a function f which maps the image to latent features \hat{z} , and a function g that maps \hat{z} to the output map. The map may then be used to compute a (differentiable) downstream metric \hat{y} via the function h . (Center) We linearly perturb calibration features \hat{z}_i in a sample-specific direction Δ_i to find the scores R_i . The scores are used to find the conformal quantile $\hat{\beta}$. (Right) At test time for subject $n + 1$, we perturb the features \hat{z}_{n+1} in the direction Δ_{n+1} with magnitude $\hat{\beta}$. By Theorem 1, our interval construction is guaranteed to be nested. Therefore, under the assumption of exchangeability, the resulting prediction interval achieves marginal coverage (bottom).

074
075
076
077
078

the internal biases of the pipeline are not exploited in the vanilla CP formulation (Cheung et al., 2025).

079
080
081
082
083
084
085
086

To achieve more efficient intervals, a promising direction is to leverage the powerful inductive biases of neural networks by performing CP on their intermediate representations. Feature Conformal Prediction (FCP) (Teng et al., 2022; Tang et al., 2024; Chen et al., 2024) shows that by working in a semantic feature space, it is possible to generate provably tighter prediction intervals. However, the FCP algorithm requires solving a complex optimization to find the closest adversarial feature vector for each data point, which is computationally prohibitive for high-dimensional feature spaces of typical CNN and transformer architectures which are the workhorses of modern medical image segmentation.

087
088
089
090
091
092
093
094
095
096
097
098

To bridge this gap, we introduce **Conformal Metric Perturbation Along Sensitive Subspaces (COMPASS)**, a framework to perform feature CP in a tractable manner to generate valid and efficient prediction intervals for any (differentiable) metric derived from the output of a neural network. The core concept behind COMPASS is to linearly perturb the features outputted by the network at a particular layer along data-specific directions that are highly sensitive to the metric of interest (Figure 1, center). To make this process tractable for typical neural network layers with a large number of features, we propose computing a low-dimensional manifold of any given layer by applying principal component analysis (PCA) on the gradients of the output metric with respect to each of the layer’s features. This manifold represents the principal directions of sensitivity of the output with respect to that layer. We prove that linear perturbations in the latent space achieve marginal coverage in the output metric space under exchangeability, i.e., for a fresh test point, the ground truth will be contained within the prediction intervals generated by linear feature perturbations. Furthermore, we show that a simple weighted variant of COMPASS may be used to correct for covariate shifts.

099
100
101
102
103
104
105
106
107

We evaluated COMPASS on public datasets for four medical image segmentation tasks: colorectal cancer in histopathology images (EBHI) (Hu et al., 2023), skin lesion segmentation (HAM10000) (Tschandl et al., 2018), thyroid nodule segmentation in ultrasound images (TN3K) (Gong et al., 2021), and polyp segmentation in endoscopic images (Kvasir) (Jha et al., 2019). Results show that while standard CP methods achieve valid coverage, they often produce unnecessarily wide prediction intervals. On the other hand, COMPASS finds semantically meaningful directions in the latent space that correspond to monotonic metric changes, resulting in efficient intervals. Furthermore, the weighted extension of COMPASS recovers target coverage under covariate shifts and is the most efficient across all weighted baseline methods. COMPASS paves the way for practical, metric-based uncertainty quantification for medical image segmentation.

108

2 METHOD

110

2.1 THEORETICAL COVERAGE UNDER LINEAR LATENT PERTURBATIONS

112 To provide rigorous uncertainty quantification for the metric Y , we consider *linear perturbations in*
 113 *latent space* along a direction $\Delta \in \mathcal{Z}$ and define intervals in the metric space. We first formalize
 114 the nestedness condition, which is a fundamental requirement for the validity of any conformal
 115 procedure (Vovk et al., 2005; Shafer & Vovk, 2008).

116 **Definition 1** (Nestedness). *Let $S_\beta(x)$ be a family of prediction sets for an input $x \in \mathcal{X}$, parameterized by $\beta \geq 0$. The family $\{S_\beta(x)\}_{\beta \geq 0}$ is said to be nested for x if $\beta_1 \leq \beta_2 \Rightarrow S_{\beta_1}(x) \subseteq S_{\beta_2}(x)$.*

119 This condition guarantees that a larger perturbation magnitude yields a larger (or equal-sized) pre-
 120 diction set, which is necessary for the quantile-based coverage proof. While standard CP methods
 121 satisfy this trivially, it becomes a non-trivial condition for deep feature spaces. We now present our
 122 main theorem. Crucially, we construct our prediction sets $S_\beta(x)$ in a way that *guarantees nestedness*
 123 by *definition*, thereby ensuring the validity of the conformal procedure.

124 **Theorem 1** (Split-Conformal Coverage under Linear Latent Perturbations). *Let $(X_i, Y_i)_{i \geq 1}$ be ex-
 125 changeable random pairs with $X_i \in \mathcal{X}$ and $Y_i \in \mathbb{R}$, and split the data into a training set D_{tr} and a
 126 calibration set $D_{\text{cal}} = \{(X_i, Y_i)\}_{i=1}^n$. Using D_{tr} , fit a segmentation model with decoder $g: \mathcal{Z} \rightarrow \mathcal{S}$,
 127 and let $\hat{z}(x) \in \mathcal{Z}$ denote the latent vector computed deterministically by the trained encoder for in-
 128 put x . Let $h: \mathcal{S} \rightarrow \mathbb{R}$ be a measurable metric, and let $\Delta \in \mathcal{Z}$ be any measurable direction that
 129 depends only on D_{tr} .*

130 For $x \in \mathcal{X}$ and $\beta \geq 0$, define the metric function along this direction as:

$$131 \quad m_x(b) := (h \circ g)(\hat{z}(x) + b\Delta), \quad \text{for } b \in \mathbb{R}. \quad (1)$$

132 We define the prediction set $S_\beta(x)$ as the range of the metric function over the perturbation interval
 133 $[-\beta, +\beta]$:

$$135 \quad S_\beta(x) := \left[\min_{b \in [-\beta, +\beta]} m_x(b), \max_{b \in [-\beta, +\beta]} m_x(b) \right]. \quad (2)$$

137 By construction, this guarantees that the family $\{S_\beta(x)\}_{\beta \geq 0}$ is nested (Definition 1). For each
 138 calibration pair (X_i, Y_i) , define the non-conformity score:

$$139 \quad R_i := \inf\{\beta \geq 0 : Y_i \in S_\beta(X_i)\} \in [0, \infty], \quad (3)$$

141 and let $\hat{\beta}$ be the $\lceil (1 - \alpha)(n + 1) \rceil$ -th smallest value among $\{R_1, \dots, R_n\}$, where $\alpha \in (0, 1)$ is the
 142 user-specified mis-coverage level.

143 Then, for a fresh test pair (X_{n+1}, Y_{n+1}) , the prediction set $S_{\hat{\beta}}(X_{n+1})$ satisfies

$$145 \quad \mathbb{P}(Y_{n+1} \in S_{\hat{\beta}}(X_{n+1}) \mid D_{\text{tr}}) \geq 1 - \alpha. \quad (4)$$

146 *Proof sketch.* Exchangeability of (X_i, Y_i) ensures that the rank of the test score R_{n+1} among
 147 $\{R_1, \dots, R_n, R_{n+1}\}$ is uniformly distributed. By the construction of $S_\beta(x)$ as the range
 148 $[\min(\cdot), \max(\cdot)]$, the nestedness condition is satisfied by definition. Therefore, by construction of
 149 $\hat{\beta}$, the standard conformal guarantee holds. See Appendix A for full proof.

151 **Intuition.** Our prediction set $S_\beta(x)$ is defined as the metric *range* over the perturbation interval,
 152 which satisfies the nestedness condition required for CP. Our construction forms a *conservative*
 153 *envelope* that explicitly accounts for any non-monotonic metric behavior within the perturbation
 154 interval. Our non-conformity score R_i is then the minimal perturbation magnitude β required for
 155 this envelope to contain the ground truth metric Y_i .

157

2.2 COMPASS: CONFORMAL METRIC PERTURBATION ALONG SENSITIVE SUBSPACES

159 The proposed framework COMPASS is built on the insight that we can directly calibrate a down-
 160 stream metric by perturbing a model’s representations along specific, data-dependent directions, Δ .
 161 As our theoretical guarantee in Theorem 1 applies to any measurable perturbation direction, the key
 to an efficient method lies in choosing a direction that is highly sensitive to the metric of interest. We

162 explore two natural choices for this representation space for segmentation: the model’s final output
 163 logits and a deeper internal feature layer.

164 The first and simplest approach (**COMPASS-L**) operates on the model’s final logits. A uniform,
 165 scalar shift applied to this tensor directly modulates the model’s overall confidence before the final
 166 activation function. This is equivalent to defining the sensitive direction, Δ_i , as a tensor of ones. A
 167 richer alternative is to perturb an internal feature representation \hat{z} , as done in FCP (Teng et al., 2022).
 168 However, a naive search for an optimal perturbation in high-dimensional spaces is computationally
 169 intractable. Furthermore, arbitrary perturbation directions may cause the metric to change in an
 170 erratic or non-smooth ways, resulting in unnecessarily wide and inefficient intervals.

171 To overcome this, we propose a data-driven method (**COMPASS-J**) to identify a low-dimensional
 172 sensitive subspace that is globally effective¹. Given a metric function in Equation 1 that is differentiable,
 173 we first compute Jacobians of the metric \hat{y} with respect to \hat{z} to provide a local, linear map of
 174 the metric’s sensitivity with respect to the features for each training sample:

$$J_i := \frac{d h(g(\hat{z}_i))}{d \hat{z}_i} \in \mathbb{R}^{C \times D_1 \times \dots \times D_3},$$

175 where $\hat{z}_i = f(x_i)$, C is the number of channels, and D_i is the i -th spatial dimension. Because the
 176 full spatial Jacobian is often too high-dimensional to be practical, we *sum* the spatial dimensions
 177 and apply Principal Component Analysis (PCA) to the set of these vectors from the training set,
 178 $\{\mathcal{J}_i\}_{i \in D_{\text{tr}}}$, and select the matrix of the top L eigenvectors $V_L \in \mathbb{R}^{C \times L}$.

179 For any given sample, we find its sensitive direction \mathbf{d}_i by projecting its sensitivity vector onto this
 180 learned subspace, and normalization it to produce direction vector Δ_i :

$$\mathbf{d}_i = V_L V_L^T \mathcal{J}_i, \quad \Delta_i = \mathbf{d}_i / \|\mathbf{d}_i\|_2.$$

187 2.3 COMPASS CALIBRATION AND INFERENCE

188 The goal of COMPASS is to find the smallest symmetric perturbation magnitude β such that the entire
 189 interval $S_\beta(x)$ contains the ground truth value y . In general, computing $S_\beta(x)$ requires finding
 190 the minimum and maximum of the perturbed metric response $m_{x_i}(b)$, $b \in [-\beta, \beta]$. When the metric
 191 response is *non-monotonic*, computing the extrema requires a full discretized sweep across the
 192 perturbation range. Performing this sweep at every step during calibration makes the envelope com-
 193 putation expensive because each candidate β requires many forward passes to map out the complete
 194 response curve for each sample.

195 However, when $m_{x_i}(b)$ is *monotonic* in b , the conservative envelope collapses to evaluations at
 196 the *endpoints*: $S_\beta(x_i) = [m_{x_i}(-\beta), m_{x_i}(+\beta)]$. Thus, the interval can be computed with only two
 197 forward passes, giving a practical and efficient implementation of COMPASS. A perturbation sweep
 198 is still required, but only once per sample, solely to verify monotonicity rather than to repeatedly
 199 compute the envelope during calibration. As we will see in Figures 2 and 12, this monotonicity
 200 condition holds across all of our experiments.

201 Once $S_\beta(x_i)$ can be evaluated, either via the conservative full sweep or the endpoint method, the
 202 non-conformity scores $\{R_i\}_{i=1}^n$ follow directly from Equation 3. The conformalized quantile is:

$$\hat{\beta} = Q\left(\{R_i\}_{i=1}^n, \frac{[(1-\alpha)(n+1)]}{n}\right),$$

203 and at test time we return the interval $S_{\hat{\beta}}(x_{n+1})$.

204 For a full outline of the algorithms, refer to Appendix C. Furthermore, while symmetric perturbations
 205 are effective when the metric responds similarly to positive and negative perturbations, we often
 206 observe an asymmetric relationship when the metric responds differently in positive and negative
 207 directions. In such cases, an asymmetric calibration, where we find separate non-conformity scores
 208 for the upper and lower bounds, is necessary to construct a more adaptive and efficient interval. We
 209 discuss this asymmetric version of COMPASS and provide an equivalent algorithm in Appendix B.

210
 211
 212
 213
 214
 215 ¹Our use of principal directions to restrict the perturbation search space is conceptually related to Belhasin
 et al. (2023), where authors employed principal directions to construct prediction sets for inverse problems.

216 2.4 WEIGHTED COMPASS FOR DISTRIBUTION SHIFTS
217

218 While Theorem 1 provides a robust guarantee of marginal coverage, its validity rests on the critical
219 assumption that the calibration and test data are exchangeable. In many real-world applications,
220 such as medical image segmentation, this assumption is frequently violated due to the variations in
221 how the data is collected, processed, and interpreted. Under such distribution shifts, the unweighted
222 quantile $\hat{\beta}$ is no longer guaranteed to provide the target coverage level on the test set, leading to
223 systematic undercoverage and unreliable prediction intervals.

224 To address this limitation, we employ Weighted Conformal Prediction (WCP) (Tibshirani et al.,
225 2019; Barber et al., 2023) to restore the coverage guarantee by re-weighting the calibration samples.
226 The weight for a calibration sample X_i is ideally the density ratio $w(X_i) = p_{\text{test}}(X_i)/p_{\text{cal}}(X_i)$. In
227 practice, this ratio is unknown and typically estimated by training an auxiliary classifier $\mathcal{A} : \mathcal{X} \rightarrow$
228 $[0, 1]$ to distinguish between samples from the calibration and test sets. The predicted probability
229 $\hat{p}(x) = \mathcal{A}(x)$ that a sample x belongs to the test set is then used to compute the weights, effectively
230 adjusting the calibration procedure to account for the distribution shift. We now extend Theorem 1
231 to the weighted setting, providing a formal coverage guarantee under distribution shift. The setup
232 remains identical.

233 **Proposition 1** (Validity of Weighted COMPASS under Covariate Shift). *Let $D_{\text{cal}} = \{(X_i, Y_i)\}_{i=1}^n$
234 be n exchangeable pairs drawn from a distribution P_{cal} , and let (X_{n+1}, Y_{n+1}) be a fresh test pair
235 from a potentially different distribution P_{test} . Let the non-conformity scores $R_i = R(X_i, Y_i)$ be
236 computed as described in Theorem 1. Let the weights $w_i = w(X_i)$ be the true density ratio
237 $p_{\text{test}}(X_i)/p_{\text{cal}}(X_i)$. Let $\hat{\beta}_w$ be the weighted $(1-\alpha)$ -quantile of the calibration scores $\{R_1, \dots, R_n\}$
238 with corresponding weights $\{w_1, \dots, w_n\}$, defined as*

$$239 \hat{\beta}_w := \inf \left\{ \beta \geq 0 : \frac{\sum_{i=1}^n w_i \mathbf{1}\{R_i \leq \beta\}}{\sum_{j=1}^n w_j} \geq 1 - \alpha \right\}.$$

242 Then, for the fresh test pair $(X_{n+1}, Y_{n+1}) \sim P_{\text{test}}$, the prediction set $S_{\hat{\beta}_w}(X_{n+1})$ satisfies

$$244 \mathbb{P}(Y_{n+1} \in S_{\hat{\beta}_w}(X_{n+1}) \mid D_{\text{tr}}, D_{\text{cal}}) \geq 1 - \alpha.$$

246 *Proof Sketch.* This is a direct application of WCP (Tibshirani et al., 2019). The validity of this
247 framework applies to any valid non-conformity score. Our scores are valid as they are from a
248 deterministic function of the samples and the pre-trained model. When the weights represent the true
249 density ratio, the weighted empirical distribution of the calibration scores is an unbiased estimator of
250 the test score distribution. Thus, the coverage guarantee from the original theorem directly applies. \square

252 In practice, the true oracle is not available, and the coverage guarantee holds *approximately*, with
253 the quality of the approximation depending on the accuracy of the density ratio estimates. To correct
254 for the induced distribution shift, we explore three correction strategies: 1) Class: available ground
255 truth class labels as features and weights are computed directly from the known class prevalences, 2)
256 Latent: Model’s latent representations summed on the spatial dimension as features (Lambert et al.,
257 2024), and 3) Jacobian: model’s internal geometric sensitivity (jacobiens) summed as features.

258
259 3 EXPERIMENTS
260

261 We evaluated COMPASS across four medical image segmentation tasks: 1) segmentation on H&E
262 histopathology images from the EBHI dataset (H&E) (Hu et al., 2023), 2) skin lesion segmentation
263 on dermoscopic images from the HAM10000 dataset (Skin Lesion) (Tschandl et al., 2018), 3)
264 thyroid nodule segmentation from the TN3K dataset (Nodule) (Gong et al., 2021), and 4) gastroin-
265 testinal polyp segmentation (PolyP) (Jha et al., 2019). We trained all models using the standard
266 U-Net architecture from MONAI (Cardoso et al., 2022; Kerfoot et al., 2018). We focused on seg-
267 mented object size (area) as the downstream clinical metric of interest. Object size is among the
268 most widely adopted quantitative biomarkers across diverse clinical applications (Smith et al., 2003;
269 O’Connor et al., 2008). For COMPASS-J, which requires a differentiable metric function, we com-
270 pute area by applying a soft thresholding (a sigmoid function) to the output logits and then summing

270 the resulting probability map. We repeated each experiment over 100 randomized splits to compute
 271 average coverage and interval sizes. We provide details on architecture, preprocessing, training,
 272 calibration, and testing details in Appendix E. We considered three types of calibration strategies:
 273

274 **1. Output-space calibration:** These include split conformal prediction (SCP) (Lei et al., 2018),
 275 Conformalized Quantile Regression (Output-CQR) (Romano et al., 2019), and locally adaptive con-
 276 formal prediction (Local CP) (Lei et al., 2018; Papadopoulos et al., 2008; 2011).

277 **2. End-to-end calibration:** We use Conformalized Quantile Regression (E2E-CQR) (Lambert
 278 et al., 2024) on a model trained to directly produce pixel-wise lower and upper bounds using the
 279 Tversky loss (Salehi et al., 2017).

280 **3. Feature-space calibration:** These include COMPASS-L, which directly calibrates the model’s
 281 final pre-activation outputs (logits), and COMPASS-J, which constructs prediction intervals by per-
 282 turbing latent features along dominant directions. As the strong monotonicity is empirically vali-
 283 dated in Figures 2 and 12, all our experiments utilize the practical endpoint algorithm. We omitted
 284 the original FCP method (Teng et al., 2022) from our main empirical comparison because we found
 285 its core adversarial search procedure for finding non-conformity scores to be computationally in-
 286 tractable for large feature spaces and to fail to reliably converge, preventing the computation of
 287 defined scores. We instead offer a comparison against a conceptual oracle benchmark for FCP in
 288 Table 3: because FCP prediction set is defined by an L_p ball in the latent space (Teng et al., 2022)
 289 with bounds computed using Linear Relaxation based Perturbation Analysis (LiRPA) (Xu et al.,
 290 2020), we empirically find the minimal radius of the L_p ball, which, when propagated through the
 291 decoding function using LiRPA, achieves the target coverage for the final metric.

292 3.1 STANDARD CONFORMAL PREDICTION

294 First, we qualitatively find that COMPASS finds semantically meaningful directions in the latent
 295 space that correspond to monotonic changes in metric (Figure 2) for all applications. Next, we
 296 compare interval size across methods and datasets for $\alpha = \{0.15, 0.1, 0.05\}$ (Table 1). We find
 297 that output space methods (SCP, CQR, Local) generally achieve valid coverage (Table 2) but yield
 298 longer intervals. End-to-end CQR provides tighter intervals. COMPASS (-J and -L) achieves valid
 299 coverage with a significantly reduced interval size compared to E2E-CQR. Moreover, we observe an
 300 efficiency benefit of using deeper representations (COMPASS-J) compared to logits (COMPASS-L)
 301 for the majority of datasets. COMPASS-J generally achieves the shortest interval lengths overall.
 302 We also find that COMPASS maintains similar calibration stability as baseline methods (Figure 7).
 303 This highlights the efficiency of COMPASS methods.

306 **Table 1: COMPASS achieves more efficient interval sizes compared to baseline methods across**
 307 **different target coverages.** For 4 datasets and 100 random splits, we compare interval lengths at
 308 $\alpha = \{0.15, 0.1, 0.05\}$. We show the output space, end-to-end, and feature calibration methods in
 309 red, blue, and green. The shortest mean interval lengths are bolded. For empirical coverages, see
 310 Table 2.

311 Dataset	α	312 Interval Size (Pixels ² , Mean \pm Standard Deviation)					
		313 COMPASS-J	314 COMPASS-L	315 E2E-CQR	316 Local	317 Output-CQR	318 SCP
313 H&E	0.05	4637 \pm 630	4408\pm432	5121 \pm 651	6297 \pm 722	5646 \pm 358	5542 \pm 676
	0.10	3160 \pm 336	3139\pm375	3433 \pm 293	4223 \pm 558	3879 \pm 369	3509 \pm 333
	0.15	2320\pm252	2354 \pm 146	2679 \pm 199	3175 \pm 291	2819 \pm 207	2550 \pm 196
316 Skin Lesion	0.05	1657\pm80	1689 \pm 83	2569 \pm 195	3797 \pm 237	10857 \pm 65	3273 \pm 229
	0.10	1179\pm53	1208 \pm 58	1351 \pm 75	2433 \pm 101	4581 \pm 36	1813 \pm 127
	0.15	934\pm30	956 \pm 33	943 \pm 47	1865 \pm 50	2634 \pm 44	1124 \pm 77
319 Nodule	0.05	3257\pm210	3394 \pm 280	4150 \pm 265	3981 \pm 202	7481 \pm 46	4589 \pm 431
	0.10	2444\pm174	2510 \pm 180	2788 \pm 154	3311 \pm 133	5603 \pm 57	3076 \pm 200
	0.15	2016\pm143	2082 \pm 142	2150 \pm 164	2877 \pm 111	4032 \pm 64	2408 \pm 154
322 PolyP	0.05	5489\pm575	6376 \pm 769	9162 \pm 804	12394 \pm 2577	8163 \pm 722	8570 \pm 766
	0.10	4056\pm293	4397 \pm 469	6184 \pm 616	5965 \pm 1011	4981 \pm 675	6237 \pm 564
	0.15	3394\pm290	3686 \pm 361	4528 \pm 487	4463 \pm 481	3913 \pm 326	4504 \pm 366

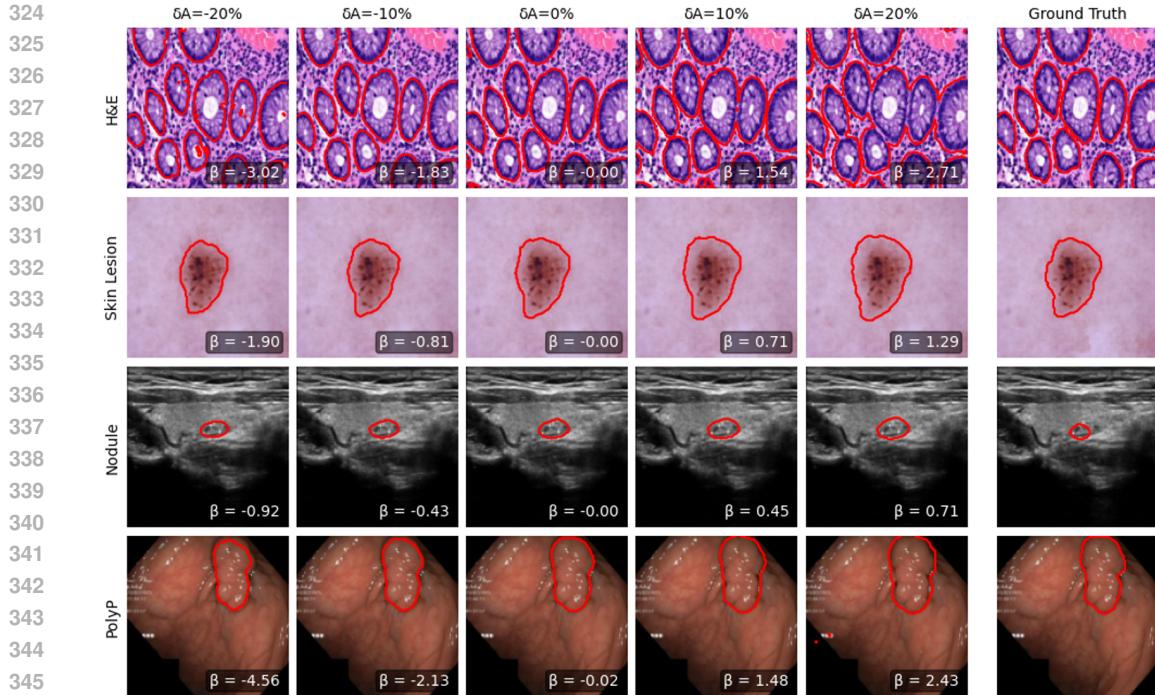


Figure 2: **Visual verification of monotonicity to justify Endpoint-COMPASS.** As latent features are shifted along the COMPASS-J direction Δ , the induced segmentation volumes (red contours) monotonically expand. This is the key justification for using our efficient Endpoint-COMPASS in our experimental setup, as it demonstrates mathematical equivalence with the rigorous Envelope-COMPASS. We show a sample from each dataset with perturbation magnitudes β targeted at -20%, -10%, 0% (original prediction), +10%, and +20% change in area (δA). We provide a plot of all metric responses on the testing datasets in Figure 12 and more visual examples in Appendix G.

3.2 WEIGHTED CONFORMAL PREDICTION

To empirically validate the effectiveness of WCP under distribution shift, we design an experiment with a controlled, adversarial label shift for the H&E and Skin Lesion datasets. We adopted a dataset-specific partitioning strategy based on sample availability. For H&E, we trained on a restricted subset to prevent data exhaustion, ensuring sufficient minority samples remained. Conversely, for Skin Lesion, we utilized the full dataset, inducing shift by systematically reallocating the class distributions. For H&E, we induced a shift from “easy” to “hard”. We allocated 40% of the Adenocarcinoma samples to the calibration set and the remaining 60% to the test set. This results in a test distribution dominated by difficult samples, leading to baseline undercoverage. For Skin Lesion, we induced a shift from “hard” to “easy”. We allocated 30% of the Melanocytic Nevi (majority/easy) samples to the calibration set, forcing the calibration set to be composed primarily of diverse, difficult lesions. The remaining 70% of the Nevi were allocated to the test set. This resulted in a calibration set that was significantly more difficult than the test set, leading to baseline overcoverage. See Appendix E for more details.

For output-space calibration methods, we used weights based on the ground truth class labels, which we consider as approximately “oracle” weights. Note that the theoretically perfect oracle weights are defined by the density ratio, which precisely corrects for the change in the full, high-dimensional distribution of features between the calibration and test sets. For end-to-end and feature space calibration, we used the latent features (Lambert et al., 2024; Woodland et al., 2023; Anthony & Kamnitsas, 2023) and Jacobians to train auxiliary classifiers using gradient boosting machines (Ke et al., 2017) to distinguish between calibration and test sets. For end-to-end, we do not use Jacobian weights consistent with prior work (Lambert et al., 2024).

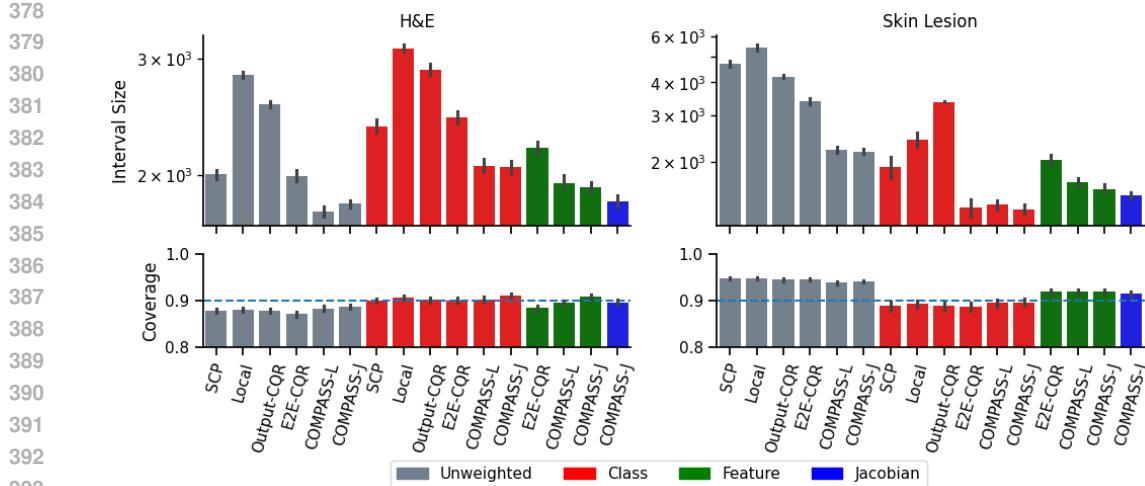


Figure 3: **COMPASS achieves the most efficient interval sizes under covariate shifts.** We show results for two datasets and compare weighting methods for 100 adversarial splits that maintain the same covariate shift for $\alpha = 0.1$. For H&E, we increased the proportion of “hard” samples in the test set. For Skin Lesion, we decreased the proportion of “hard” samples in the test set. We find that COMPASS methods achieve valid coverage and the most efficient intervals in each weighting method. We show the 95% confidence intervals.

Our results (Figure 3) demonstrate that both the choice of weighting information and the *choice of calibration layer* are critical for achieving robust coverage under these covariate shifts. Simple strategies, such as class-weighting, do not universally recover target coverage; unweighted methods (grey) fail on the H&E dataset, while class-weighted methods (red) fail on Skin Lesion. Furthermore, not all feature-based methods are robust. COMPASS-L and E2E-CQR with feature weighting still fail to maintain coverage under covariate shift on the H&E dataset. In contrast, the COMPASS-J variants with both feature-weighting and Jacobian-weighting were the only methods to consistently maintain the target coverage across both covariate shifts. Among the methods that proved empirically valid, the COMPASS-J variants were also the most efficient. This suggests that 1) the model’s deep features or their Jacobians provide a richer, more adaptive signal for difficulty than simpler class labels or logits, and 2) this deep-layer signal is essential, as methods relying on shallower layers (like COMPASS-L and E2E-CQR) were not robust even when using the same feature-weighting. Our results are tabulated in Table 5.

3.3 EMPIRICAL ANALYSIS OF STATISTICAL EFFICIENCY

Unlike the original FCP framework, which provides a formal inequality under mild assumptions due to its reliance on the simple and convex \mathcal{L}_p norm as a score, a similar theorem for COMPASS is intractable, because the COMPASS score $R_{COMPASS}$ is defined implicitly through a search process that depends on a highly non-linear and non-convex segmentation-to-metric pipeline. Instead, we investigated the reason for efficiency gains of COMPASS compared to output-space methods by finding the relationship between COMPASS scores and SCP scores R_{SCP} .

The statistical efficiency of COMPASS is a direct consequence of a compressive power-law relationship between feature-space scores ($R_{COMPASS}$) and output-space errors (R_{SCP}). A log-log plot of these quantities reveals a linear relationship with a scaling exponent slope < 1 (Figure 4, top). This sub-linear scaling is the direct mechanism for the tail-end compression of the score distribution (Figure 4, bottom). Thus, the largest output-space errors are systematically mapped to disproportionately smaller feature-space scores. A distribution with a compressed tail necessarily has a smaller quantile, which is the fundamental mechanism that enables COMPASS to produce tighter, more statistically efficient prediction intervals.

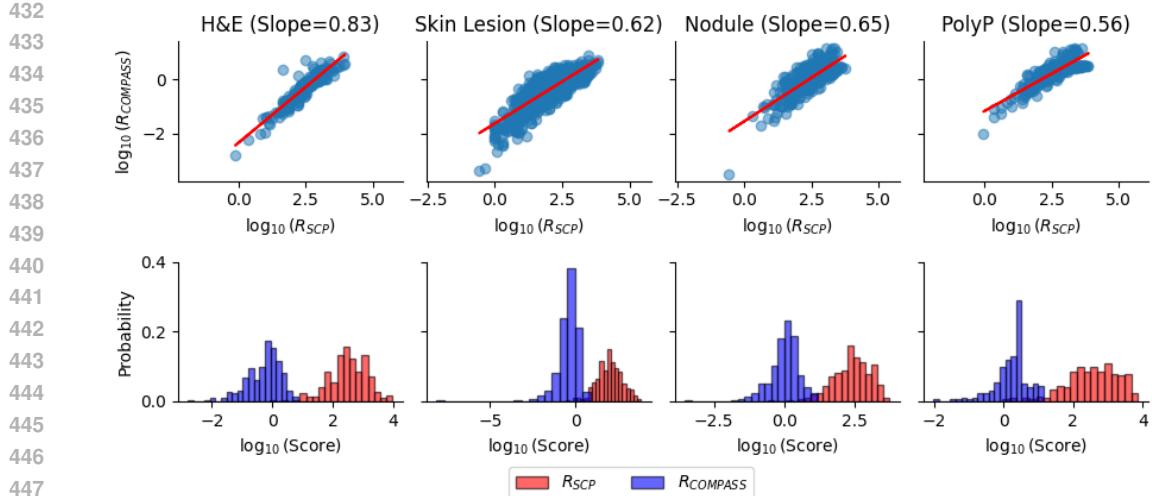


Figure 4: **The statistical efficiency of COMPASS is driven by a compressive power-law relationship between latent $R_{COMPASS}$ and output R_{SCP} space scores.** As R_{SCP} increases, the required latent space perturbation magnitude increases, but at a progressively slower rate since the scaling exponent (slope) is < 1 (Figure 4, top). This concave and sub-linear scaling is the direct cause of a tail-end compression of the score distribution (bottom). Thus, the long-tail errors are systematically transformed to much smaller feature-space scores.

4 DISCUSSION

We introduced COMPASS, a unified framework to generate efficient, metric-based prediction intervals by leveraging the inductive biases of neural networks. Under the assumption of exchangeability, COMPASS creates practical feature-space calibration by perturbing a model’s intermediate representations along low-dimensional subspaces maximally sensitive to the target metric. Across four medical segmentation tasks for area estimation, COMPASS achieves valid coverage while producing significantly tighter intervals than traditional output-space and end-to-end baselines for both standard and weighted CP. We discuss several further points below.

COMPASS has several attractive properties. First, **it produces instance-adaptive intervals.** For COMPASS-J, the perturbation direction for any new sample is found by projecting its Jacobian onto the principal component and reconstructing the direction. Although COMPASS-L applies a uniform scalar shift, it achieves adaptivity because this shift interacts with the spatially varying logit distribution unique to each input, resulting in instance-specific adjustments to the segmentation boundary. Second, **COMPASS performs better than naive output-space calibration.** In tasks like segmentation, the final metric is a complex non-linear function of the model’s output (the pixel mask). Simply adding a margin to a final object size prediction is a crude approximation that fails to capture how the object size is actually derived from the underlying segmentation. In contrast, COMPASS exploits the model’s internal structure and spatial understanding to directly manipulate and calibrate the metric. COMPASS has more information and degrees of freedom, which allows it to achieve more efficient interval sizes. Third, **COMPASS performs better than methods trained using pixel-level losses** such as E2E-CQR. Such approaches optimize a *proxy* (pixel quantiles) for the downstream metric, that may or may not translate into accurate intervals for the final metric. On the other hand, COMPASS is directly calibrated to the final metric, and is therefore more applicable to practical clinical use cases.

Finally, **COMPASS is naturally applicable to various segmentation architectures.** We also present the interval lengths and coverage for SegResNet (Myronenko, 2018) in Appendix D. COMPASS produces the most efficient interval lengths on the majority of datasets across $\alpha = \{0.05, 0.1, 0.15\}$ for SegResNet.

486
 487 **Limitations.** COMPASS’s performance is fundamentally dependent on the quality of the pre-
 488 trained model’s representations. Our practical algorithm implementation presupposes that the model
 489 has learned an inductive bias where the chosen feature space has a reasonably monotonic and sen-
 490 sitive control over the downstream metric. If the features are poorly aligned with the metric, the
 491 resulting perturbation direction may be inefficient or non-monotonic, leading to wide or invalid in-
 492 tervals. If so, we recommend using the full discretized sweep across the perturbation range to find
 493 the minimum and maximum values. Furthermore, as mentioned in prior work (Lambert et al., 2024),
 494 WCP with feature or jacobian weights, is effective for moderate distribution shifts where the cali-
 495 bration and test distributions have significant overlap in the feature space. However, for large shifts,
 496 the estimated weights may be inaccurate, which can compromise the validity of the final interval.
 497

498 4.1 PRACTICAL CONSIDERATIONS

499 While COMPASS-L may be applicable to UNet-style ar-
 500 chitectures and object size, other applications may require
 501 different setups. Careful design of the different compo-
 502 nents of COMPASS, specifically COMPASS-J, will sig-
 503 nificantly enhance its applicability and performance. We
 504 provide a list of practical considerations to keep in mind
 505 when using COMPASS.

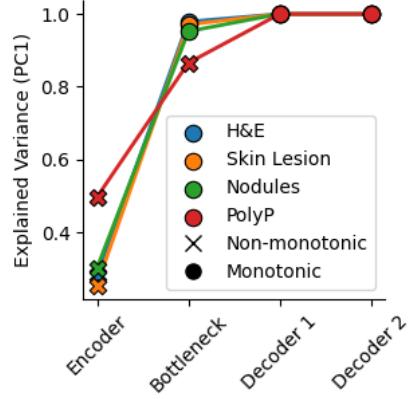
506 **Optimal Feature Layer.** The choice of the feature
 507 layer is critical. We find that the optimal layer can be se-
 508 lected empirically by measuring the *explained variance*
 509 of the first principal component ($L = 1$) of the Jacobians.
 510 High explained variance in the first principal component
 511 indicates that the local gradients of the target metric are
 512 globally aligned across the samples. Consequently, there
 513 is a high chance that a linear traversal along this prin-
 514 cipal direction results in a consistent, monotonic shift in
 515 the output metric for the entire dataset, as the projection
 516 scalar maintains a consistent sign. As shown in Figure 5,
 517 layers closer to the logits capture the most variance re-
 518 lated to object size, validating our use of COMPASS-J. We recommend finding layers with high ex-
 519 plained variance of the Jacobians and verify monotonicity with a perturbation sweep (Algorithm 2).

520 **Number of PCA Components.** The number of eigenvectors L controls the dimensionality of the
 521 perturbation subspace. We find that for the segmentation area metric, the first principal component
 522 already captures over 90% of the metric’s variance (Figure 5). Adding more components does not
 523 significantly improve interval tightness (Figure 9). Therefore, we recommend $L = 1$ for this task,
 524 although this may be task-dependent.

525 **Spatial Entanglement vs Global Semantic Alignment.** We observe that the explained variance of
 526 the Jacobians is significantly higher when computed on spatially aggregated features compared to
 527 raw flattened features (Figure 10). This results from the translation-variant nature of the flattened
 528 space, where sensitivity is tied to specific pixel coordinates that vary with object position, leading
 529 to orthogonal gradients across samples. In contrast, summing the spatial dimensions isolates the
 530 channel-wise semantic sensitivity, which remains consistent across samples. We recommend sum-
 531 ming the spatial dimensions of the Jacobians before applying dimensionality reduction techniques.

532 **Computationally Efficiency.** COMPASS maintains high computational efficiency, particularly
 533 when the metric response is monotonic. The jacobian computation is inexpensive as gradients are
 534 calculated with respect to the scalar metric rather than the high-dimensional output image, leveraging
 535 autograd. We further resolve potential intractability in PCA by spatially summing the Jacobians,
 536 reducing the feature space to a low-dimensional matrix regardless of spatial resolution. While the
 537 jacobian and calibration is fast (Table 8 and Figure 11), we recommend precomputing the jacobians
 538 for all data before calibration and testing.

539 **LLM Disclosure.** During the preparation of this manuscript, we used LLMs (Google Gemini) to
 540 polish the initial draft (grammar and style) and improve readability.



541 **Figure 5: Explained variance is a good**
 542 **indicator of monotonicity.** For our
 543 4 datasets, we plot the first principal
 544 component’s explained variance against
 545 the feature layer used for COMPASS-J.
 546 Monotonicity and non-monotonicity is
 547 indicated by ● and ×.

540 ETHICS STATEMENT

541

542 We develop uncertainty quantification methods for medical image segmentation metrics using pub-
 543 licly available and anonymized datasets. The methods are intended as research tools to improve
 544 reliability and interpretability, but are not validated for clinical deployment. Risks include potential
 545 misinterpretation of uncertainty estimates. We therefore release code for research purposes only and
 546 encourage further evaluation with clinical experts before translation to practice.

547

548 REPRODUCIBILITY STATEMENT

549

550 We describe the algorithms in our paper extensively in Appendix C. We also describe the experi-
 551 mental details in Appendix E. Upon acceptance, we will release a repository containing all the code
 552 used in our experiments, including preprocessing, training, and evaluation scripts to reproduce all
 553 main tables and figures. All packages used in the repository are publicly available. All datasets used
 554 are publicly accessible.

555

556 REFERENCES

557

558 Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
 559 Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
 560 review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information fusion, 76:243–297, 2021.

561

562 Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
 563 distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*, 2021.

564

565 Anastasios N Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal
 566 risk control. *arXiv preprint arXiv:2208.02814*, 2022.

567

568 Harry Anthony and Konstantinos Kamnitsas. On the use of mahalanobis distance for out-of-
 569 distribution detection with neural networks for medical imaging. In *International workshop on
 570 uncertainty for safe utilization of machine learning in medical imaging*, pp. 136–146. Springer,
 2023.

571

572 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
 573 prediction beyond exchangeability. *The Annals of Statistics*, 51(2):816–845, 2023.

574

575 Edmon Begoli, Tanmoy Bhattacharya, and Dimitri Kusnezov. The need for uncertainty quantifi-
 576 cation in machine-assisted medical decision making. *Nature Machine Intelligence*, 1(1):20–23,
 2019.

577

578 Omer Belhasin, Yaniv Romano, Daniel Freedman, Ehud Rivlin, and Michael Elad. Principal uncer-
 579 tainty quantification with spatial correlation for image restoration problems. *IEEE Transactions
 580 on Pattern Analysis and Machine Intelligence*, 46(5):3321–3333, 2023.

581

582 Joren Brunekreef, Eric Marcus, Ray Sheombarsing, Jan-Jakob Sonke, and Jonas Teuwen. Kandinsky
 583 conformal prediction: efficient calibration of image segmentation algorithms. In *Proceedings of
 584 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4135–4143, 2024.

585

586 M Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey,
 587 Andriy Myronenko, Can Zhao, Dong Yang, et al. Monai: An open-source framework for deep
 588 learning in healthcare. *arXiv preprint arXiv:2211.02701*, 2022.

589

590 Baiting Chen, Zhimei Ren, and Lu Cheng. Conformalized time series with semantic features. *Ad-
 591 vances in Neural Information Processing Systems*, 37:121449–121474, 2024.

592

593 Matt Y Cheung, Tucker J Netherton, Laurence E Court, Ashok Veeraraghavan, and Guha Balakrish-
 594 nan. Metric-guided conformal bounds for probabilistic image reconstruction. *ArXiv*, pp. arXiv–
 595 2404, 2025.

596 Matteo Fontana, Gianluca Zeni, and Simone Vantini. Conformal prediction: a unified review of
 597 theory and new challenges. *Bernoulli*, 29(1):1–23, 2023.

594 Haifan Gong, Guanqi Chen, Ranran Wang, Xiang Xie, Mingzhi Mao, Yizhou Yu, Fei Chen, and
 595 Guanbin Li. Multi-task learning for thyroid nodule segmentation with thyroid region prior. In
 596 *2021 IEEE 18th international symposium on biomedical imaging (ISBI)*, pp. 257–261. IEEE,
 597 2021.

598 Weiming Hu, Chen Li, Md Mamunur Rahaman, Haoyuan Chen, Wanli Liu, Yudong Yao, Hongzan
 599 Sun, Marcin Grzegorzek, and Xiaoyan Li. Ebhi: A new enteroscope biopsy histopathological
 600 h&e image dataset for image classification evaluation. *Physica Medica*, 107:102534, 2023.

602 Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnu-
 603 net: a self-configuring method for deep learning-based biomedical image segmentation. *Nature
 604 methods*, 18(2):203–211, 2021.

606 Debesh Jha, Pia H Smedsrød, Michael A Riegler, Pål Halvorsen, Thomas De Lange, Dag Johansen,
 607 and Håvard D Johansen. Kvasir-seg: A segmented polyp dataset. In *International conference on
 608 multimedia modeling*, pp. 451–462. Springer, 2019.

609 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
 610 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural
 611 information processing systems*, 30, 2017.

613 Eric Kerfoot, James Clough, Ilkay Oksuz, Jack Lee, Andrew P King, and Julia A Schnabel. Left-
 614 ventricle quantification using residual u-net. In *International workshop on statistical atlases and
 615 computational models of the heart*, pp. 371–380. Springer, 2018.

616 Benjamin Lambert, Florence Forbes, Senan Doyle, and Michel Dojat. Robust conformal volume
 617 estimation in 3d medical images. In *International Conference on Medical Image Computing and
 618 Computer-Assisted Intervention*, pp. 633–643. Springer, 2024.

620 Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
 621 free predictive inference for regression. *Journal of the American Statistical Association*, 113
 622 (523):1094–1111, 2018.

623 Luca Mossina and Corentin Friedrich. Conformal prediction for image segmentation using morpho-
 624 logical prediction sets. In *International Conference on Medical Image Computing and Computer-
 625 Assisted Intervention*, pp. 78–88. Springer, 2025.

627 Luca Mossina, Joseba Dalmau, and Léo Andéol. Conformal semantic image segmentation: Post-
 628 hoc quantification of predictive uncertainty. In *Proceedings of the IEEE/CVF Conference on
 629 Computer Vision and Pattern Recognition*, pp. 3574–3584, 2024.

631 Andriy Myronenko. 3d mri brain tumor segmentation using autoencoder regularization. In *Interna-
 632 tional MICCAI brainlesion workshop*, pp. 311–320. Springer, 2018.

633 James PB O’Connor, Alan Jackson, Marie-Claude Asselin, David L Buckley, Geoff JM Parker,
 634 and Gordon C Jayson. Quantitative imaging biomarkers in the clinical development of targeted
 635 therapeutics: current and future perspectives. *The lancet oncology*, 9(8):766–776, 2008.

637 Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
 638 machines for regression. In *European conference on machine learning*, pp. 345–356. Springer,
 639 2002.

640 Harris Papadopoulos, Alex Gammerman, and Volodya Vovk. Normalized nonconformity measures
 641 for regression conformal prediction. In *Proceedings of the IASTED International Conference on
 642 Artificial Intelligence and Applications (AIA 2008)*, pp. 64–69, 2008.

644 Harris Papadopoulos, Vladimir Vovk, and Alex Gammerman. Regression conformal prediction with
 645 nearest neighbours. *Journal of Artificial Intelligence Research*, 40:815–840, 2011.

646 Yaniv Romano, Evan Patterson, and Emmanuel Candès. Conformalized quantile regression. *Ad-
 647 vances in neural information processing systems*, 32, 2019.

648 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
649 cal image segmentation. In *International Conference on Medical image computing and computer-
650 assisted intervention*, pp. 234–241. Springer, 2015.

651

652 Seyed Sadegh Mohseni Salehi, Deniz Erdogmus, and Ali Gholipour. Tversky loss function for
653 image segmentation using 3d fully convolutional deep networks. In *International workshop on
654 machine learning in medical imaging*, pp. 379–387. Springer, 2017.

655 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning
656 Research*, 9(3), 2008.

657

658 John J Smith, A Gregory Sorensen, and James H Thrall. Biomarkers in imaging: realizing radiol-
659 ogy’s future. *Radiology*, 227(3):633–638, 2003.

660

661 Zihao Tang, Boyuan Wang, Chuan Wen, and Jiaye Teng. Predictive inference with fast feature
662 conformal prediction. *arXiv preprint arXiv:2412.00653*, 2024.

663

664 Jiaye Teng, Chuan Wen, Dinghuai Zhang, Yoshua Bengio, Yang Gao, and Yang Yuan. Predictive
665 inference with feature conformal prediction. *arXiv preprint arXiv:2210.00173*, 2022.

666

667 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal pre-
668 diction under covariate shift. *Advances in neural information processing systems*, 32, 2019.

669

670 Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection of
671 multi-source dermatoscopic images of common pigmented skin lesions. *Scientific data*, 5(1):1–9,
672 2018.

673

674 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*.
675 Springer, 2005.

676

677 McKell Woodland, Nihil Patel, Mais Al Taie, Joshua P. Yung, Tucker J. Netherton, Ankit B. Patel,
678 and Kristy K. Brock. Dimensionality reduction for improving out-of-distribution detection in
679 medical image segmentation. In *International workshop on uncertainty for safe utilization of
680 machine learning in medical imaging*, pp. 147–156. Springer, 2023.

681

682 Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
683 Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
684 robustness and beyond. *Advances in Neural Information Processing Systems*, 33:1129–1141,
685 2020.

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A PROOF OF THEOREM 1**
 703

704 **Lemma 1** (Guaranteed Nestedness and Valid Scores). *For any $x \in \mathcal{X}$, let $m_x(b)$ be defined as in
 705 Theorem 1, and let*

$$706 \quad 707 \quad S_\beta(x) := \left[\min_{b \in [-\beta, +\beta]} m_x(b), \max_{b \in [-\beta, +\beta]} m_x(b) \right].$$

708 *This family $\{S_\beta(x)\}_{\beta \geq 0}$ is nested. Furthermore, the nonconformity score*

$$710 \quad R(x, y) := \inf\{\beta \geq 0 : y \in S_\beta(x)\}$$

711 *is well-defined in $[0, \infty]$ and satisfies*

$$713 \quad y \in S_\beta(x) \iff R(x, y) \leq \beta.$$

714 *Proof.* First, we prove nestedness. Let $0 \leq \beta_1 \leq \beta_2$. By definition, the perturbation interval
 715 $[-\beta_1, +\beta_1]$ is a subset of $[-\beta_2, +\beta_2]$. Let

$$717 \quad 718 \quad S_{\beta_1}(x) = \left[\min_{b \in [-\beta_1, +\beta_1]} m_x(b), \max_{b \in [-\beta_1, +\beta_1]} m_x(b) \right]$$

719 and

$$721 \quad 722 \quad S_{\beta_2}(x) = \left[\min_{b \in [-\beta_2, +\beta_2]} m_x(b), \max_{b \in [-\beta_2, +\beta_2]} m_x(b) \right].$$

723 The minimum of a function over a set is always greater than or equal to the minimum over a superset.
 724 Thus,

$$725 \quad \min_{b \in [-\beta_1, +\beta_1]} m_x(b) \geq \min_{b \in [-\beta_2, +\beta_2]} m_x(b).$$

726 Conversely, the maximum over a set is less than or equal to the maximum over a superset. Thus,

$$728 \quad \max_{b \in [-\beta_1, +\beta_1]} m_x(b) \leq \max_{b \in [-\beta_2, +\beta_2]} m_x(b).$$

730 Therefore, by definition of an interval, $S_{\beta_1}(x) \subseteq S_{\beta_2}(x)$, and the family is nested.

731 Second, we prove the equivalence $y \in S_\beta(x) \iff R(x, y) \leq \beta$. Since we have just proven that the
 732 sets $S_\beta(x)$ are nested, they expand monotonically in β . If $y \in S_{\beta'}(x)$ for some β' , then $y \in S_\beta(x)$
 733 for all $\beta \geq \beta'$. The set $\{\beta \geq 0 : y \in S_\beta(x)\}$ is therefore a closed interval of the form $[R_0, \infty)$ (or
 734 $[0, \infty)$ if $y \in S_0(x)$). The infimum $R(x, y)$ is thus well-defined (as R_0), and $y \in S_\beta(x)$ if and only
 735 if $\beta \geq R(x, y)$. \square

736 **Lemma 2** (Exchangeability yields uniform ranks). *Let $(X_i, Y_i)_{i=1}^{n+1}$ be exchangeable, and let $R_i :=$
 737 $R(X_i, Y_i)$ be derived from D_{tr} . Then the rank of R_{n+1} among $\{R_1, \dots, R_n, R_{n+1}\}$ is uniformly
 738 distributed on $\{1, \dots, n+1\}$, conditional on D_{tr} .*

740 *Proof.* Since the nonconformity score $R(\cdot, \cdot)$ is a measurable, deterministic function of (X_i, Y_i)
 741 and D_{tr} , the exchangeability of the pairs (X_i, Y_i) implies the exchangeability of the scalar scores
 742 $(R_i)_{i=1}^{n+1}$. Therefore, by the standard properties of exchangeable random variables, the rank of R_{n+1}
 743 among all $n+1$ scores is uniformly distributed on $\{1, \dots, n+1\}$. \square

745 **Theorem 2** (Split-conformal coverage). *Under the assumptions of Theorem 1, for any $\alpha \in (0, 1)$,
 746 the prediction set $S_{\hat{\beta}}(X_{n+1})$ satisfies*

$$748 \quad \mathbb{P}\left(Y_{n+1} \in S_{\hat{\beta}}(X_{n+1}) \mid D_{\text{tr}}\right) \geq 1 - \alpha.$$

750 *Proof.* By Lemma 1, our construction of $S_\beta(x)$ guarantees nestedness and also guarantees that
 751 $Y_{n+1} \in S_\beta(X_{n+1})$ if and only if $R_{n+1} \leq \beta$. Applying this to our calibrated quantile $\hat{\beta}$, we have

$$753 \quad Y_{n+1} \in S_{\hat{\beta}}(X_{n+1}) \iff R_{n+1} \leq \hat{\beta}.$$

755 By Lemma 2, the rank of R_{n+1} is uniform on $\{1, \dots, n+1\}$. By definition, $\hat{\beta}$ is the $\lceil (1-\alpha)(n+1) \rceil$ -th
 756 smallest value among the calibration scores $\{R_1, \dots, R_n\}$. By the standard p-value argument for

756 split conformal prediction, the probability that the test score R_{n+1} is less than or equal to $\hat{\beta}$ is
 757 bounded.

$$758 \quad 759 \quad \mathbb{P}(R_{n+1} \leq \hat{\beta} \mid D_{\text{tr}}) \geq 1 - \alpha.$$

760 Combining these, we have

$$761 \quad 762 \quad \mathbb{P}(Y_{n+1} \in S_{\hat{\beta}}(X_{n+1}) \mid D_{\text{tr}}) = \mathbb{P}(R_{n+1} \leq \hat{\beta} \mid D_{\text{tr}}) \geq 1 - \alpha,$$

764 which proves the theorem. \square

766
 767 **Connection to Standard CP.** Theorem 1 generalizes the standard split conformal method. In the
 768 classical setting for regression, $S_{\beta}(x) = [\hat{y}(x) - \beta, \hat{y}(x) + \beta]$ corresponds to symmetric absolute-
 769 error balls around a predictor $\hat{y}(x)$. This family is trivially nested. Here, the sets $S_{\beta}(x)$ are gen-
 770 erated by perturbations of latent features through Δ and evaluation under the downstream metric
 771 $h \circ g$. By rigorously defining $S_{\beta}(x)$ as the [min, max] envelope, we guarantee the nestedness prop-
 772 erty required for the proof. The same rank-uniformity argument from exchangeability then ensures
 773 coverage. Thus, standard split conformal prediction is recovered as a special case of this framework.

774 B ASYMMETRIC PERTURBATIONS

775 We extend the symmetric method to provide more flexible and efficient prediction intervals to the
 776 asymmetric case. This approach is particularly valuable when the relationship between latent pertur-
 777 bations and the downstream metric is non-linear or asymmetric. For instance, a positive perturbation
 778 of a certain magnitude might cause a large increase in metric, while a negative perturbation of the
 779 same magnitude results in only a small decrease. It also allows for independent control over the
 780 rate of under- and over-estimation errors, specified by α_{lo} and α_{hi} . To account for this, we calculate
 781 two distinct non-conformity scores (R_{lo} , R_{hi}) and two corresponding perturbation magnitudes ($\hat{\beta}_{\text{lo}}$,
 782 $\hat{\beta}_{\text{hi}}$). By calibrating the upper and lower bounds independently, Asymmetric COMPASS constructs
 783 an interval that adapts to these skewed error distributions, often resulting in tighter bounds than its
 784 symmetric counterpart in such cases.

785 **Theorem 3** (Asymmetric Split-Conformal Coverage). *Let the setup be the same as in Theorem 1,
 786 with metric function $m_x(b) := (h \circ g)(\hat{z}(x) + b\Delta)$. We define the one-sided envelope functions:*

$$787 \quad 788 \quad L_x(\beta) := \min_{b \in [-\beta, 0]} m_x(b)$$

$$789 \quad 790 \quad U_x(\beta) := \max_{b \in [0, +\beta]} m_x(b)$$

791 These functions $L_x(\beta)$ and $U_x(\beta)$ are guaranteed to be non-increasing and non-decreasing in β ,
 792 respectively.

793 For each calibration pair (X_i, Y_i) , define two non-conformity scores:

$$794 \quad 795 \quad R_{i,\text{lo}} := \inf\{\beta \geq 0 : L_{X_i}(\beta) \leq Y_i\},$$

$$796 \quad 797 \quad R_{i,\text{hi}} := \inf\{\beta \geq 0 : U_{X_i}(\beta) \geq Y_i\}.$$

800 Let $\alpha_{\text{lo}}, \alpha_{\text{hi}} \in (0, 1)$ be user-specified miscoverage rates. Let $\hat{\beta}_{\text{lo}}$ be the $\lceil (1 - \alpha_{\text{lo}})(n + 1) \rceil$ -th
 801 smallest value among $\{R_{1,\text{lo}}, \dots, R_{n,\text{lo}}\}$, and let $\hat{\beta}_{\text{hi}}$ be the $\lceil (1 - \alpha_{\text{hi}})(n + 1) \rceil$ -th smallest value
 802 among $\{R_{1,\text{hi}}, \dots, R_{n,\text{hi}}\}$.

803 Then, for a fresh test pair (X_{n+1}, Y_{n+1}) , the prediction set

$$804 \quad 805 \quad S(X_{n+1}) := [L_{X_{n+1}}(\hat{\beta}_{\text{lo}}), U_{X_{n+1}}(\hat{\beta}_{\text{hi}})]$$

806 satisfies the marginal coverage guarantee

$$807 \quad 808 \quad \mathbb{P}(Y_{n+1} \in S(X_{n+1}) \mid D_{\text{tr}}) \geq 1 - (\alpha_{\text{lo}} + \alpha_{\text{hi}}).$$

810 B.1 PROOF OF THEOREM 3
811

812 **Lemma 3** (Monotonic Bounds and Valid One-Sided Scores). *For any $x \in \mathcal{X}$, let $L_x(\beta)$ and $U_x(\beta)$
813 be defined as in Theorem 3. The function $L_x(\beta)$ is non-increasing in β , and the function $U_x(\beta)$
814 is non-decreasing in β . Furthermore, the nonconformity scores $R_{\text{lo}}(x, y)$ and $R_{\text{hi}}(x, y)$ are well-
815 defined in $[0, \infty]$ and satisfy*

$$816 \quad L_x(\beta) \leq y \iff R_{\text{lo}}(x, y) \leq \beta, \\ 817 \quad U_x(\beta) \geq y \iff R_{\text{hi}}(x, y) \leq \beta.$$

819 *Proof.* Let $0 \leq \beta_1 \leq \beta_2$. By definition, the interval $[-\beta_1, 0]$ is a subset of $[-\beta_2, 0]$. The minimum
820 of a function over a set is always greater than or equal to the minimum over a superset. Thus:
821

$$822 \quad L_x(\beta_1) = \min_{b \in [-\beta_1, 0]} m_x(b) \geq \min_{b \in [-\beta_2, 0]} m_x(b) = L_x(\beta_2).$$

824 This proves $L_x(\beta)$ is non-increasing. Similarly, $[0, +\beta_1]$ is a subset of $[0, +\beta_2]$. The maximum of a
825 function over a set is always less than or equal to the maximum over a superset. Thus:

$$826 \quad U_x(\beta_1) = \max_{b \in [0, +\beta_1]} m_x(b) \leq \max_{b \in [0, +\beta_2]} m_x(b) = U_x(\beta_2).$$

828 This proves $U_x(\beta)$ is non-decreasing.
829

830 This one-sided monotonicity ensures that if a bound is satisfied for some β' (e.g., $L_x(\beta') \leq y$), it
831 remains satisfied for all $\beta \geq \beta'$. Hence, the infima in the definitions of the scores exist, and the
832 equivalences hold. \square

833 **Lemma 4** (Exchangeability yields uniform ranks). *Let $(X_i, Y_i)_{i=1}^{n+1}$ be exchangeable. Let $R_{i,\text{lo}} :=$
834 $R_{\text{lo}}(X_i, Y_i)$ and $R_{i,\text{hi}} := R_{\text{hi}}(X_i, Y_i)$ be derived from D_{tr} . Then the ranks of $R_{n+1,\text{lo}}$ among
835 $\{R_{1,\text{lo}}, \dots, R_{n+1,\text{lo}}\}$ and $R_{n+1,\text{hi}}$ among $\{R_{1,\text{hi}}, \dots, R_{n+1,\text{hi}}\}$ are each uniformly distributed on
836 $\{1, \dots, n+1\}$, conditional on D_{tr} .*

837 *Proof.* Since the nonconformity scores are measurable, deterministic functions of (X_i, Y_i) and
838 D_{tr} , the exchangeability of the data pairs implies the exchangeability of each sequence of scores,
839 $(R_{i,\text{lo}})_{i=1}^{n+1}$ and $(R_{i,\text{hi}})_{i=1}^{n+1}$. Therefore, the rank of the test score within each sequence is uni-
840 form. \square

842 *Proof of Theorem 3.* The total miscoverage event is the union of two one-sided miscoverage events:
843

$$844 \quad \mathbb{P}(Y_{n+1} \notin S(X_{n+1})) = \mathbb{P}(Y_{n+1} < L_{X_{n+1}}(\hat{\beta}_{\text{lo}}) \text{ or } Y_{n+1} > U_{X_{n+1}}(\hat{\beta}_{\text{hi}})).$$

846 By the union bound,

$$847 \quad \mathbb{P}(Y_{n+1} \notin S(X_{n+1})) \leq \mathbb{P}(Y_{n+1} < L_{X_{n+1}}(\hat{\beta}_{\text{lo}})) + \mathbb{P}(Y_{n+1} > U_{X_{n+1}}(\hat{\beta}_{\text{hi}})).$$

849 By Lemma 3, these one-sided events are equivalent to events concerning the scores:

$$850 \quad \mathbb{P}(Y_{n+1} \notin S(X_{n+1})) \leq \mathbb{P}(R_{n+1,\text{lo}} > \hat{\beta}_{\text{lo}}) + \mathbb{P}(R_{n+1,\text{hi}} > \hat{\beta}_{\text{hi}}).$$

852 By Lemma 4 and the construction of $\hat{\beta}_{\text{lo}}$ and $\hat{\beta}_{\text{hi}}$ as quantiles, the probabilities of these rank-based
853 events are bounded by α_{lo} and α_{hi} , respectively. Thus,

$$855 \quad \mathbb{P}(Y_{n+1} \notin S(X_{n+1})) \leq \alpha_{\text{lo}} + \alpha_{\text{hi}}.$$

856 The claim for the coverage probability, $\mathbb{P}(Y_{n+1} \in S(X_{n+1})) \geq 1 - (\alpha_{\text{lo}} + \alpha_{\text{hi}})$, follows. \square
857

858 This theorem provides a rigorous guarantee for asymmetric intervals. The proof relies on the same
859 core principles of exchangeability, but instead of assuming nestedness, we guarantee the required
860 one-sided monotonicity by defining the bounds $L_x(\beta)$ and $U_x(\beta)$ as the $[\min, \max]$ over the respec-
861 tive perturbation ranges.

862
863

C ALGORITHMS

In the COMPASS framework, we decompose the model into an encoder f that maps an input image x to a representation \hat{z} , and a decoder g that maps \hat{z} to the final segmentation. A downstream metric function h then maps the segmentation to a scalar metric \hat{y} . For simplicity, we show the algorithm using the endpoint (and not the conservative envelope that requires a perturbation sweep during the calibration procedure) – i.e., we define the perturbation and metric evaluation function $\hat{P}(\hat{z}, \Delta, \beta)$ as the interval $[h(g(\hat{z} - \beta\Delta)), h(g(\hat{z} + \beta\Delta))]$. This endpoint construction is computationally efficient and theoretically valid given the monotonic metric response observed in our experiments (Figures 2 and 12). The conservative envelope variant follows the same approach, but the symmetric binary search involves a perturbation sweep for each sample during the calibration step to find the minimum and maximum.

For **COMPASS-L**, the representation \hat{z} is the logits; the encoder f is the entire network, and the decoder g is the identity function. The perturbation direction is simply $\Delta = 1$.

For **COMPASS-J**, the representation \hat{z} is an internal feature map. To find the sensitive direction Δ , we first compute the Jacobian of the metric with respect to the features, $J = \nabla_{\hat{z}} h(g(\hat{z}))$. We then project this Jacobian onto the subspace spanned by the top L principal components (V_L) of the training set Jacobians and reconstruct it. The final direction Δ is the normalized reconstruction: $\mathbf{d} = V_L V_L^T J, \Delta = \frac{\mathbf{d}}{\|\mathbf{d}\|_2}$.

In general, the COMPASS framework follows several key steps:

1. **Training:** Assume an already trained base segmentation model, decomposed into an encoder f and decoder g . If using **COMPASS-J**, compute the Jacobians of the metric with respect to the latent features \hat{z} for the training set and perform PCA to identify the dominant sensitivity subspace V_L .
2. **Monotonicity Verification:** Perform a perturbation sweep on a subset of the data to verify that the metric response $m_x(b)$ is monotonic with respect to the perturbation magnitude along the computed direction Δ . This empirical check justifies the use of the endpoints over the computationally expensive envelope construction.
3. **Calibration:** For each sample in the calibration set, compute the non-conformity score R_i using a binary search. R_i is the minimal perturbation magnitude β such that the computed interval covers the ground truth. Finally, compute the calibrated quantile $\hat{\beta}$ from these scores using the standard finite-sample correction.
4. **Testing:** For a new test sample x_{n+1} , compute its specific perturbation direction Δ_{n+1} (using the learned subspace V_L for COMPASS-J or $\mathbf{1}$ for COMPASS-L). Construct the final prediction interval using the calibrated $\hat{\beta}$ and the interval endpoints: $S_{\hat{\beta}}(x_{n+1}) = [m_{n+1}(-\hat{\beta}), m_{n+1}(+\hat{\beta})]$.

C.1 TRAINING

Algorithm 1 COMPASS Training

Require: Training data D_{tr} , L (number of components for COMPASS-J).

Ensure: Trained model (f, g) , and subspace V_L (for COMPASS-J).

```

1: procedure TRAINING( $D_{\text{tr}}, L$ )
2:   Train the segmentation model  $(f, g) \leftarrow \arg \min_{f, g} \mathcal{L}_{\text{seg}}(D_{\text{tr}})$ .
3:   if using COMPASS-J then
4:     Compute Jacobians:  $\mathcal{J} \leftarrow \{\sum_{\text{spatial}} \nabla_{\hat{z}_j} h(g(f(x_j)))\}_{j \in D_{\text{tr}}}$ .
5:     Compute PCA:  $V_L \leftarrow \text{PCA}(\mathcal{J}, L)$ .
6:     return  $f, g, V_L$ .
7:   else ▷ COMPASS-L requires no extra training
8:     return  $f, g$ .
9:   end if
10: end procedure

```

918 C.2 MONOTONICITY VERIFICATION
919920 **Algorithm 2** Metric Monotonicity Verification921 **Require:** Model (f, g, V_L) , Dataset $D = \{(x_i, y_i)\}_{i=1}^n, \beta_{\max}, N_{\text{steps}}$.
922 **Ensure:** Percentage of samples with monotonic metric response.

```

924 1: procedure VERIFY-MONOTONICITY( $D$ , model,  $h, \beta_{\max}, N_{\text{steps}}$ )
925 2:   Initialize  $count \leftarrow 0$ .
926 3:   for  $i = 1, \dots, n$  do
927 4:      $\hat{z}_i \leftarrow f(x_i)$ 
928 5:     if using COMPASS-J then
929 6:        $\mathbf{d}_i \leftarrow V_L V_L^\top \nabla_{\hat{z}} h(g(\hat{z}_i))$  ▷ Project Jacobian
930 7:        $\Delta_i \leftarrow \mathbf{d}_i / \|\mathbf{d}_i\|_2$  ▷ Normalize
931 8:     else
932 9:        $\Delta_i \leftarrow 1$ 
933 10:    end if
934 11:     $B \leftarrow \text{LinSpace}(-\beta_{\max}, \beta_{\max}, N_{\text{steps}})$ . ▷ Discretized grid
935 12:     $M \leftarrow \emptyset$ .
936 13:    for  $b \in B$  do
937 14:       $M \leftarrow M \cup \{h(g(\hat{z}_i + b\Delta_i))\}$ . ▷ Evaluate metric
938 15:    end for
939 16:    if IS-SORTED-ASCENDING( $M$ ) then ▷ Check monotonicity
940 17:       $count \leftarrow count + 1$ .
941 18:    end if
942 19:  end for
943 20:  return  $count/n$ 
944 21: end procedure

```

945
946 Algorithm 2 is a diagnostic step performed after training. It verifies that perturbing the features along
947 the computed direction Δ results in a monotonic change in the metric (area). High monotonicity
948 validates the use of the efficient endpoint-based interval construction in the subsequent calibration
949 and inference steps.950 C.3 SYMMETRIC COMPASS
951952 **Algorithm 3** Symmetric COMPASS (Calibration & Inference)953 **Require:** Calibration D_{cal} , Test x_{n+1}, α , Model (f, g, V_L) .
954 **Ensure:** Prediction interval $S_{\hat{\beta}}(x_{n+1})$.

```

955 1: procedure CALIBRATION( $D_{\text{cal}}$ , model,  $h, \alpha$ )
956 2:   Initialize scores  $\mathcal{R} \leftarrow \emptyset$ .
957 3:   for  $i = 1, \dots, n$  do
958 4:     Define  $\hat{z}_i$  and compute  $\Delta_i$  (as in Alg. 2).
959 5:      $R_i \leftarrow \text{SYMMETRIC-BINARY-SEARCH}(\hat{z}_i, \Delta_i, y_i)$ .
960 6:      $\mathcal{R} \leftarrow \mathcal{R} \cup \{R_i\}$ .
961 7:   end for
962 8:    $\hat{\beta} \leftarrow \text{Quantile}(\mathcal{R}, \frac{[(1-\alpha)(n+1)]}{n})$ .
963 9:   return  $\hat{\beta}$ 
964 10: end procedure
965
966 11: procedure INFERENCE( $x_{n+1}$ , model,  $h, \hat{\beta}$ )
967 12:   Define  $\hat{z}_{n+1}$  and compute  $\Delta_{n+1}$  (as in Alg. 2).
968 13:    $S_{\hat{\beta}}(x_{n+1}) \leftarrow P(\hat{z}_{n+1}, \Delta_{n+1}, \hat{\beta})$ .
969 14:   return  $S_{\hat{\beta}}(x_{n+1})$ 
970 15: end procedure

```

972 Algorithm 3 describes the symmetric formulation. During calibration, we compute a non-conformity
 973 score R_i for each sample using a binary search (Algorithm 5). R_i represents the minimal perturba-
 974 tion magnitude β such that the interval $P(\hat{z}_i, \Delta_i, \beta)$ covers the true label y_i . We then compute the
 975 $(1 - \alpha)$ quantile of these scores, $\hat{\beta}$. During inference, we apply this calibrated $\hat{\beta}$ to the test sample
 976 to produce the final prediction interval.
 977
 978

979 C.4 ASYMMETRIC COMPASS

982 **Algorithm 4** Asymmetric COMPASS (Calibration & Inference)

983 **Require:** Calibration D_{cal} , Test x_{n+1} , α_{lo} , α_{hi} , Model (f, g, V_L) .

984 **Ensure:** Prediction interval $S(x_{n+1})$.

```

986 1: procedure CALIBRATION( $D_{\text{cal}}$ , model,  $h$ ,  $\alpha_{\text{lo}}$ ,  $\alpha_{\text{hi}}$ )
987 2:   Initialize  $\mathcal{R}_{\text{lo}} \leftarrow \emptyset$ ,  $\mathcal{R}_{\text{hi}} \leftarrow \emptyset$ .
988 3:   for  $i = 1, \dots, n$  do
989 4:     Define  $\hat{z}_i$  and compute  $\Delta_i$  (as in Alg. 2).
990 5:      $(R_{i,\text{lo}}, R_{i,\text{hi}}) \leftarrow \text{ASYMMETRIC-BINARY-SEARCH}(\hat{z}_i, \Delta_i, y_i)$ .
991 6:      $\mathcal{R}_{\text{lo}} \leftarrow \mathcal{R}_{\text{lo}} \cup \{R_{i,\text{lo}}\}$ .
992 7:      $\mathcal{R}_{\text{hi}} \leftarrow \mathcal{R}_{\text{hi}} \cup \{R_{i,\text{hi}}\}$ .
993 8:   end for
994 9:    $\hat{\beta}_{\text{lo}} \leftarrow \text{Quantile}(\mathcal{R}_{\text{lo}}, \frac{\lceil(1-\alpha_{\text{lo}})(n+1)\rceil}{n})$ .
995 10:    $\hat{\beta}_{\text{hi}} \leftarrow \text{Quantile}(\mathcal{R}_{\text{hi}}, \frac{\lceil(1-\alpha_{\text{hi}})(n+1)\rceil}{n})$ .
996 11:   return  $\hat{\beta}_{\text{lo}}, \hat{\beta}_{\text{hi}}$ 
997 12: end procedure

998 13: procedure INFERENCE( $x_{n+1}$ , model,  $h$ ,  $\hat{\beta}_{\text{lo}}$ ,  $\hat{\beta}_{\text{hi}}$ )
999 14:   Define  $\hat{z}_{n+1}$  and compute  $\Delta_{n+1}$  (as in Alg. 2).
1000 15:    $S(x_{n+1}) \leftarrow [h(g(\hat{z}_{n+1} - \hat{\beta}_{\text{lo}}\Delta_{n+1})), h(g(\hat{z}_{n+1} + \hat{\beta}_{\text{hi}}\Delta_{n+1}))]$ .
1001 16:   return  $S(x_{n+1})$ 
1002 17: end procedure
1003
```

1004
 1005
 1006 Algorithm 4 extends the framework to the asymmetric case. We independently calibrate a lower
 1007 bound ($\hat{\beta}_{\text{lo}}$) and an upper bound ($\hat{\beta}_{\text{hi}}$) using separate non-conformity scores. This allows the interval
 1008 to expand differently in the positive and negative directions, which is efficient for metrics with
 1009 asymmetric sensitivity.

1012 C.5 SCORE-FINDING PROCEDURES

1015 **Algorithm 5** Symmetric Binary Search

```

1016 1: function SYMMETRIC-BINARY-SEARCH( $\hat{z}, \Delta, y$ )
1017 2:    $b_{\text{low}} \leftarrow 0$ ,  $b_{\text{high}} \leftarrow \beta_{\text{range}}$ .
1018 3:   for  $k = 1, \dots, k_{\text{max}}$  do
1019 4:      $b_{\text{mid}} \leftarrow (b_{\text{low}} + b_{\text{high}})/2$ .
1020 5:      $S_{\text{mid}} \leftarrow P(\hat{z}, \Delta, b_{\text{mid}})$  ▷ Compute endpoint interval
1021 6:     if  $y \in S_{\text{mid}}$  then  $b_{\text{high}} \leftarrow b_{\text{mid}}$ 
1022 7:     else  $b_{\text{low}} \leftarrow b_{\text{mid}}$ 
1023 8:     end if
1024 9:   end for
1025 10:   return  $b_{\text{high}}$ .
11: end function
```

1026 **Algorithm 6** Asymmetric Binary Search

1027 1: **function** ASYMMETRIC-BINARY-SEARCH(\hat{z}, Δ, y)
1028 2: $m_{\text{lo}}(b) \leftarrow h(g(\hat{z} - b\Delta))$, $m_{\text{hi}}(b) \leftarrow h(g(\hat{z} + b\Delta))$
1029 3: *Find Upper Bound Score (R_{hi}):*
1030 4: $b_{\text{low}} \leftarrow 0$, $b_{\text{high}} \leftarrow \beta_{\text{range}}$.
1031 5: **for** $k = 1, \dots, k_{\text{max}}$ **do**
1032 6: $b_{\text{mid}} \leftarrow (b_{\text{low}} + b_{\text{high}})/2$.
1033 7: **if** $y \leq m_{\text{hi}}(b_{\text{mid}})$ **then** $b_{\text{high}} \leftarrow b_{\text{mid}}$
1034 8: **else** $b_{\text{low}} \leftarrow b_{\text{mid}}$
1035 9: **end if**
1036 10: **end for**
1037 11: $R_{\text{hi}} \leftarrow b_{\text{high}}$.
1038 12: *Find Lower Bound Score (R_{lo}):*
1039 13: $b_{\text{low}} \leftarrow 0$, $b_{\text{high}} \leftarrow \beta_{\text{range}}$.
1040 14: **for** $k = 1, \dots, k_{\text{max}}$ **do**
1041 15: $b_{\text{mid}} \leftarrow (b_{\text{low}} + b_{\text{high}})/2$.
1042 16: **if** $y \geq m_{\text{lo}}(b_{\text{mid}})$ **then** $b_{\text{high}} \leftarrow b_{\text{mid}}$
1043 17: **else** $b_{\text{low}} \leftarrow b_{\text{mid}}$
1044 18: **end if**
1045 19: **end for**
1046 20: $R_{\text{lo}} \leftarrow b_{\text{high}}$.
1047 21: **return** $(R_{\text{lo}}, R_{\text{hi}})$.
1048 22: **end function**

1049
1050 These are the root-finding functions necessary to determine the non-conformity scores. We use a
1051 binary search for computational efficiency. This requires $\mathcal{O}(\log N)$ forward passes, as opposed to
1052 $\mathcal{O}(N)$ for a linear search, making it highly scalable.

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

D ADDITIONAL TABLES

Table 2: **Empirical coverage for U-Net.** All methods reach (close to) target coverage.

Dataset	α	Coverage (Mean \pm STD)					
		COMPASS-J	COMPASS-L	E2E-CQR	Local	Output-CQR	SCP
H&E	0.05	0.952 \pm 0.023	0.953 \pm 0.02	0.955 \pm 0.025	0.95 \pm 0.021	0.951 \pm 0.019	0.956 \pm 0.018
H&E	0.10	0.907 \pm 0.029	0.907 \pm 0.03	0.903 \pm 0.028	0.903 \pm 0.03	0.903 \pm 0.031	0.91 \pm 0.03
H&E	0.15	0.856 \pm 0.03	0.856 \pm 0.031	0.856 \pm 0.035	0.848 \pm 0.036	0.85 \pm 0.032	0.849 \pm 0.032
Skin Lesion	0.05	0.951 \pm 0.009	0.953 \pm 0.008	0.951 \pm 0.01	0.95 \pm 0.01	0.951 \pm 0.009	0.951 \pm 0.01
Skin Lesion	0.10	0.9 \pm 0.014	0.904 \pm 0.013	0.9 \pm 0.012	0.899 \pm 0.012	0.897 \pm 0.013	0.899 \pm 0.013
Skin Lesion	0.15	0.853 \pm 0.015	0.86 \pm 0.016	0.853 \pm 0.016	0.852 \pm 0.015	0.852 \pm 0.015	0.853 \pm 0.015
Nodule	0.05	0.949 \pm 0.018	0.953 \pm 0.018	0.958 \pm 0.014	0.948 \pm 0.017	0.954 \pm 0.016	0.953 \pm 0.019
Nodule	0.10	0.901 \pm 0.025	0.904 \pm 0.026	0.904 \pm 0.022	0.906 \pm 0.025	0.908 \pm 0.024	0.906 \pm 0.024
Nodule	0.15	0.852 \pm 0.032	0.858 \pm 0.031	0.849 \pm 0.03	0.85 \pm 0.028	0.845 \pm 0.026	0.857 \pm 0.027
PolyP	0.05	0.955 \pm 0.02	0.96 \pm 0.018	0.957 \pm 0.019	0.951 \pm 0.022	0.955 \pm 0.018	0.96 \pm 0.022
PolyP	0.10	0.899 \pm 0.034	0.908 \pm 0.032	0.902 \pm 0.027	0.897 \pm 0.032	0.901 \pm 0.029	0.907 \pm 0.03
PolyP	0.15	0.849 \pm 0.035	0.865 \pm 0.03	0.853 \pm 0.034	0.854 \pm 0.037	0.856 \pm 0.033	0.856 \pm 0.032

Table 3: **Comparison between COMPASS and FCP interval lengths.** Because FCP fails to reliably converge when finding a non-conformity score, we instead provide a comparison, where we empirically find the minimal radius of an \mathcal{L}_p ball that achieves the target coverage across the test set. COMPASS methods consistently achieve the most efficient interval lengths.

Dataset	α	Interval Size (Pixels 2 , Mean \pm STD)		
		COMPASS-J	COMPASS-L	FCP
H&E	0.05	4637 \pm 630	4408\pm432	9702 \pm 1535
H&E	0.10	3160 \pm 336	3139\pm375	6463 \pm 1193
H&E	0.15	2320\pm252	2354 \pm 146	4979 \pm 647
Skin Lesion	0.05	1657\pm80	1689 \pm 83	14838 \pm 10
Skin Lesion	0.10	1179\pm53	1208 \pm 58	12445 \pm 51
Skin Lesion	0.15	934\pm30	956 \pm 33	8267 \pm 79
Nodule	0.05	3257\pm210	3394 \pm 280	16247 \pm 2
Nodule	0.10	2444\pm174	2510 \pm 180	16143 \pm 3
Nodule	0.15	2016\pm143	2082 \pm 142	16056 \pm 4
PolyP	0.05	5489\pm575	6376 \pm 769	15937 \pm 9
PolyP	0.10	4056\pm293	4397 \pm 469	15644 \pm 10
PolyP	0.15	3394\pm290	3686 \pm 361	15353 \pm 14

Table 4: **Comparison of layer choice.** For $\alpha = 0.1$, we find that while for some datasets the efficiency gains are comparable, penultimate features generally achieve shorter interval lengths.

Dataset	Interval Size (Pixels 2 , Mean \pm STD)			
	COMPASS-J (Bottleneck)	COMPASS-J (Deep)	COMPASS-J (Shallow)	COMPASS-L
H&E	9394 \pm 799	3160 \pm 336	3140 \pm 386	3139\pm375
Skin Lesion	4084 \pm 154	1179\pm53	1210 \pm 51	1208 \pm 58
Nodule	8070 \pm 494	2444\pm174	2500 \pm 187	2510 \pm 180
PolyP	Non-monotonic	4056\pm293	4222 \pm 390	4397 \pm 469

1134
 1135 **Table 5: Comparison between baseline and COMPASS methods for Weighted CP.** For $\alpha = 0.1$,
 1136 weighted COMPASS methods consistently outperform baseline methods in terms of interval length
 1137 and restoring coverage under covariate shift.

1138 Dataset	1139 Weighting	1140 Method	1141 Interval Size (Mean±STD, Pixels²)	1142 Coverage (Mean±STD)
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152	1141 1142 1143 1144 1145	1140 1141 1142 1143 1144	COMPASS-J COMPASS-L E2E-CQR Local Output-CQR SCP	2055±220 2065±263 2444±278 3113±201 2890±265 2371±290
			COMPASS-J	1916±177
			COMPASS-L	1944±244
			E2E-CQR	2197±288
			COMPASS-J	1822±200
	1146 1147 1148 1149 1150	1145 1146 1147 1148 1149	COMPASS-J COMPASS-L E2E-CQR Local Output-CQR	1810±127 1759±159 1993±196 2833±158 2563±134
			SCP	2003±169
			COMPASS-J	1318±132
			COMPASS-L	1373±136
			E2E-CQR Local Output-CQR SCP	1335±277 2426±354 3380±43 1905±475
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162	1154 1155 1156 1157 1158	1153 1154 1155 1156 1157	COMPASS-J COMPASS-L E2E-CQR Local Output-CQR	1573±158 1669±168 2030±269
			SCP	1485±126
			COMPASS-J	2183±132
			COMPASS-L	2211±150
			E2E-CQR Local Output-CQR	3400±226 5446±380 4201±145
	1159 1160 1161 1162 1163	1158 1159 1160 1161 1162	SCP	4707±323
			COMPASS-J	0.896±0.019
			COMPASS-L	0.895±0.019
			E2E-CQR	0.887±0.021
			Local	0.893±0.02
	1164 1165 1166 1167	1163 1164 1165 1166	Output-CQR SCP	0.888±0.018 0.888±0.024
			COMPASS-J	0.919±0.014
			COMPASS-L	0.919±0.013
			E2E-CQR	0.919±0.012
			Local	0.914±0.013
	1168 1169 1170 1171 1172	1167 1168 1169 1170 1171	Output-CQR SCP	0.94±0.005 0.939±0.007
			COMPASS-J	0.945±0.006
			COMPASS-L	0.947±0.006
			E2E-CQR	0.945±0.008
			Local	0.948±0.006

1172 **Table 6: COMPASS produces the most efficient interval lengths on the majority of datasets**
 1173 **across target coverages for SegResNet.**

1174 Dataset	1175 α	1176 Interval Size (Pixels², Mean±STD)					
		COMPASS-J	COMPASS-L	E2E-CQR	Local	Output-CQR	SCP
1177 1178 1179	0.05	6129±1147	4680±595	5115±541	7649±821	6860±571	6021±858
	0.10	3283±262	3217±247	3575±344	4800±700	4509±389	3911±371
	0.15	2483±226	2400±244	2563±182	3491±333	3358±285	2783±317
1180 1181 1182	0.05	1599±97	1829±191	2281±146	4034±256	10942±53	2987±227
	0.10	1108±45	1146±45	1236±66	2311±167	3056±45	1685±135
	0.15	873±27	927±27	857±52	1710±64	2293±32	1083±49
1183 1184 1185	0.05	3675±480	3577±413	4461±337	3513±212	6197±64	4068±388
	0.10	2671±251	2645±216	3390±197	2762±129	3942±102	2826±200
	0.15	2125±203	2127±203	2646±128	2355±131	2937±95	2188±167
1186 1187	0.05	5890±417	6068±435	8495±1012	7992±1324	8296±822	7774±930
	0.10	4507±529	4737±486	4941±949	4837±611	5061±599	5169±559
	0.15	3188±500	3569±572	2668±255	3594±326	3556±401	3467±389

1188

1189

Table 7: **Empirical coverage for SegResNet.** All methods reach (close to) target coverage.

1190

1191

Dataset	α	Coverage (Mean \pm STD)					
		COMPASS-J	COMPASS-L	E2E-CQR	Local	Output-CQR	SCP
H&E	0.05	0.956 \pm 0.019	0.949 \pm 0.021	0.954 \pm 0.021	0.949 \pm 0.022	0.949 \pm 0.023	0.953 \pm 0.02
	0.10	0.905 \pm 0.029	0.9 \pm 0.027	0.91 \pm 0.027	0.901 \pm 0.028	0.902 \pm 0.028	0.906 \pm 0.027
	0.15	0.858 \pm 0.033	0.852 \pm 0.034	0.856 \pm 0.031	0.854 \pm 0.033	0.854 \pm 0.033	0.856 \pm 0.035
Skin Lesion	0.05	0.952 \pm 0.011	0.95 \pm 0.01	0.952 \pm 0.01	0.95 \pm 0.011	0.951 \pm 0.01	0.952 \pm 0.01
	0.10	0.903 \pm 0.014	0.901 \pm 0.013	0.9 \pm 0.014	0.902 \pm 0.016	0.901 \pm 0.013	0.902 \pm 0.015
	0.15	0.854 \pm 0.015	0.853 \pm 0.016	0.851 \pm 0.017	0.852 \pm 0.015	0.854 \pm 0.014	0.854 \pm 0.015
Nodule	0.05	0.958 \pm 0.017	0.953 \pm 0.017	0.954 \pm 0.019	0.951 \pm 0.019	0.953 \pm 0.017	0.952 \pm 0.018
	0.10	0.902 \pm 0.026	0.901 \pm 0.027	0.909 \pm 0.025	0.9 \pm 0.024	0.901 \pm 0.027	0.904 \pm 0.026
	0.15	0.852 \pm 0.026	0.85 \pm 0.026	0.856 \pm 0.029	0.848 \pm 0.032	0.849 \pm 0.032	0.851 \pm 0.03
PolyP	0.05	0.954 \pm 0.022	0.948 \pm 0.022	0.954 \pm 0.022	0.949 \pm 0.023	0.95 \pm 0.021	0.952 \pm 0.02
	0.10	0.905 \pm 0.032	0.899 \pm 0.033	0.909 \pm 0.025	0.904 \pm 0.032	0.9 \pm 0.032	0.908 \pm 0.03
	0.15	0.858 \pm 0.035	0.85 \pm 0.035	0.856 \pm 0.031	0.856 \pm 0.031	0.855 \pm 0.037	0.859 \pm 0.033

1203

1204

E EXPERIMENTAL DETAILS

1205

1206

Architectures. We use the standard U-Net, SegResNet, and SwinUNETR architecture available in the MONAI framework (Cardoso et al., 2022). For the U-Net, we used an encoder with channel sizes of (32, 64, 128, 256) and a corresponding decoder, using two residual units per block, batch normalization, and a dropout rate of 0.1. For SegResNet, we used a residual encoder-decoder network that started with 32 initial filters and included varying numbers of blocks in its down-sampling path (1, 2, 2, 4), batch normalization, and a dropout probability of 0.1. For SwinUNETR, we used a transformer-based model configured for an image size of (128, 128) pixels, with a feature size of 48 and multi-head attention mechanisms across four depth levels.

1215

1216

Preprocessing. To standardize all experiments, we resize each image and segmentation mask to a standard resolution of 128x128 pixels. For data augmentation during training, we apply a set of transformations consisting of a random crop to the specified size, followed by random horizontal and vertical flips, each with a equal probability.

1219

1220

Training details. For each architecture, we trained both a standard model and an End-to-End Conformalized Quantile Regression (E2E-CQR) variant (Lambert et al., 2024), with all models being trained using an AdamW optimizer with a learning rate of 1e-4 and a batch size of 32. The standard models were configured for binary segmentation tasks, taking a 1 (for grayscale) or 3-channel (for RGB image) as input and producing a single-channel output mask. Training was optimized using a Dice score loss function to maximize the overlap between the predicted and ground-truth segmentations. Following the original E2E-CQR model (Lambert et al., 2024), we modify the number of output channels to 3 to produce three distinct segmentation masks, corresponding to the lower quantile, the median prediction, and the upper quantile, which together form the prediction interval. These models were trained using the Tversky loss (Salehi et al., 2017). Thus, it allows the model to directly learn the uncertainty bounds end-to-end.

1230

1231

Baseline Calibration Details. We follow the standard frameworks for SCP (Papadopoulos et al., 2002; Lei et al., 2018), CQR (Romano et al., 2019), and Local CP (Papadopoulos et al., 2008; 2011; Lei et al., 2018). For CQR, we use two separate Gradient Boosting Regressors to learn the lower and upper quantiles of the prediction and adjust the resulting We use a learning rate of 0.1, 50 estimators, a maximum depth of 3, minimum leaf samples of 1, and a minimum samples to split of 9. For Local CP, we use two separate Random Forest Regressors to learn the mean and mean absolute difference. We use 1000 estimators and a minimum leaf sample of 100. For E2E-CQR, we follow the same calibration procedure as CQR. However, in this case, the quantiles are learned by the model.

1239

1240

1241

COMPASS Calibration and Testing Details. For all experiments, we run both the symmetric and asymmetric versions of COMPASS with 1 component on the logits and each layer in the segmentation head. We report the layer with the minimum mean interval length and its corresponding

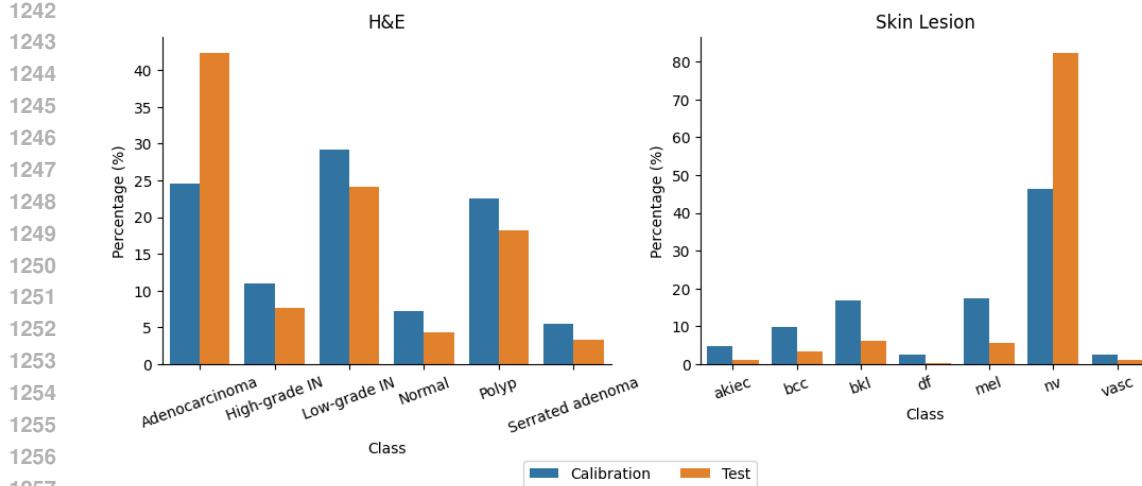


Figure 6: **Adversarial shift distribution for H&E and Skin Lesion datasets.** For H&E, we place 60% and 40% of the Adenocarcinoma (easy) samples into the calibration and test sets. For Skin Lesion, we place 70% and 30% of the melanocytic nevi (hard) samples into the calibration and test sets.

coverage. We perform 100 random calibration-test splits. For weighted CP, we use LightGBM with the default settings (Ke et al., 2017). We also perform 100 calibration-test splits. However, in this case, the samples were shuffled to maintain the target proportion of classes. We show the covariate shift in Figure 6.

F PRACTICAL RECOMMENDATION ADDITIONAL RESULTS

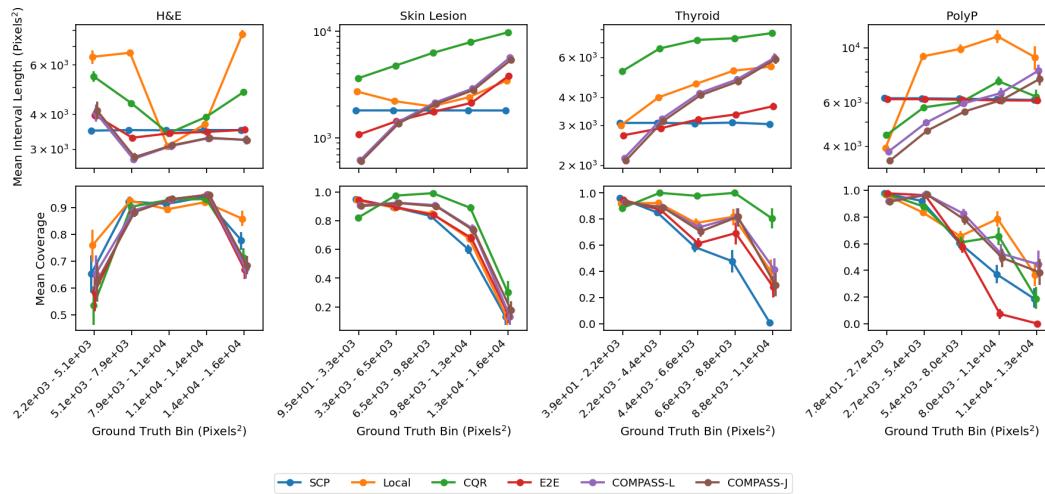


Figure 7: **COMPASS results in stable calibration.** We use the results from $\alpha=0.1$, binned the ground truth values into 5 non-overlapping bins, and computed the mean interval length and mean coverage (and their 95% confidence intervals). We find that COMPASS methods tend to perform better for shorter interval lengths (except for H&E), achieving approximately the same coverage. The count of the bins tends to be a better indicator of calibration stability (See Figure 8). Please note that our guarantees are only marginal; therefore, coverage may be lower for values that are less frequently represented during calibration.

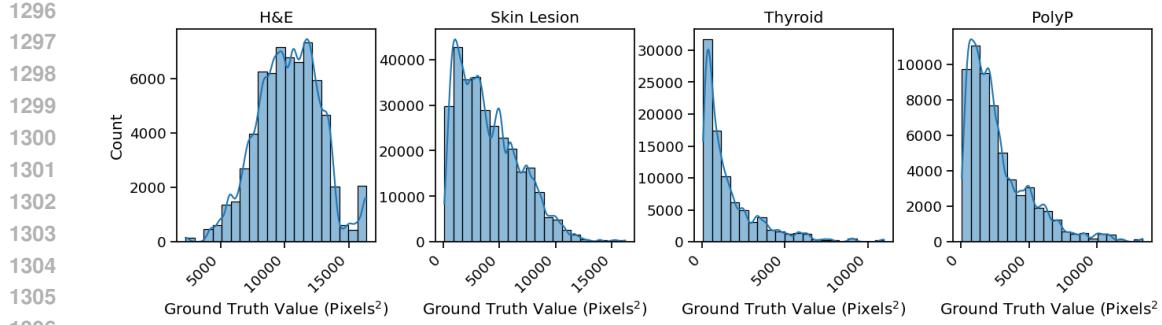


Figure 8: **Ground Truth Distribution.** We show histogram plots of the distribution of ground truth segmentation area values in Pixels^2 with a KDE overlaid.

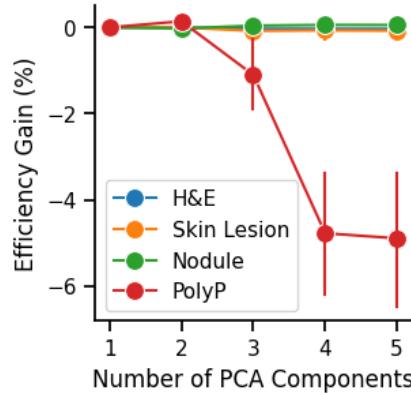


Figure 9: **One principal component is generally sufficient for COMPASS-J.** For 4 datasets, we run COMPASS-J with 1 to 5 components for 100 iterations. We find that there is no additional benefits of using more than 1 principal component, as the first principal component already explained most of the variance (Figure 5).

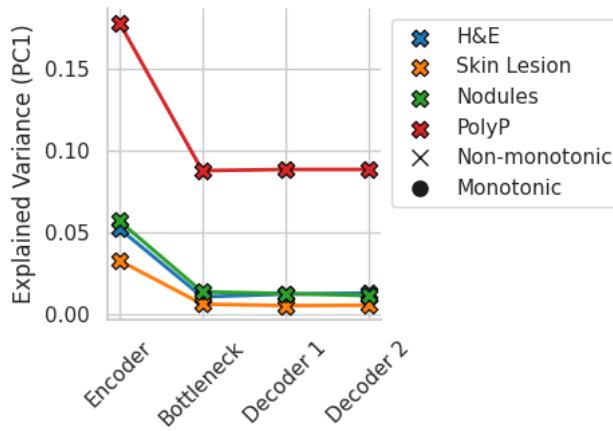
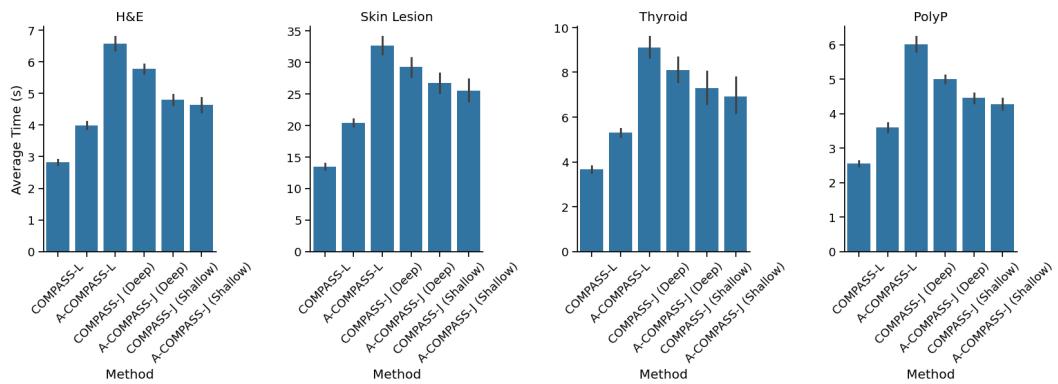


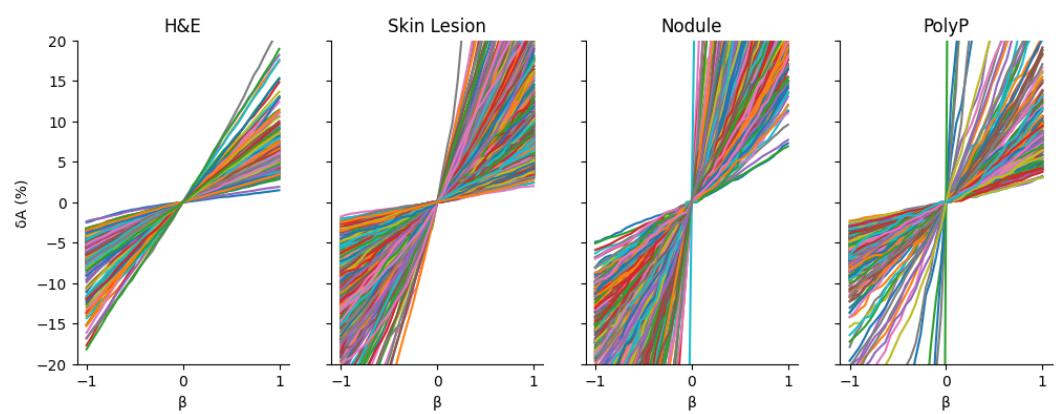
Figure 10: **Explained variance of the Jacobians is significantly lower when computed on raw flattened features.** For our 4 datasets, we plot the first principal component's explained variance against the feature layer used for COMPASS-J. We find all layers result in non-monotonicity, indicating the translation-variant nature of the flattened space.

1350
 1351 **Table 8: Jacobian computation for COMPASS-J is fast.** We present the average computational
 1352 time to compute the Jacobians of feature size 64x64x64 across four datasets below using a single
 1353 NVIDIA A100 GPU. We compute the Jacobians with respect to the metric, which is extremely fast
 1354 with autograd. This is because the downstream metric is one-dimensional. Furthermore, to expedite
 1355 the training and calibration step, we precompute and save the Jacobians summed on the spatial
 1356 dimension.

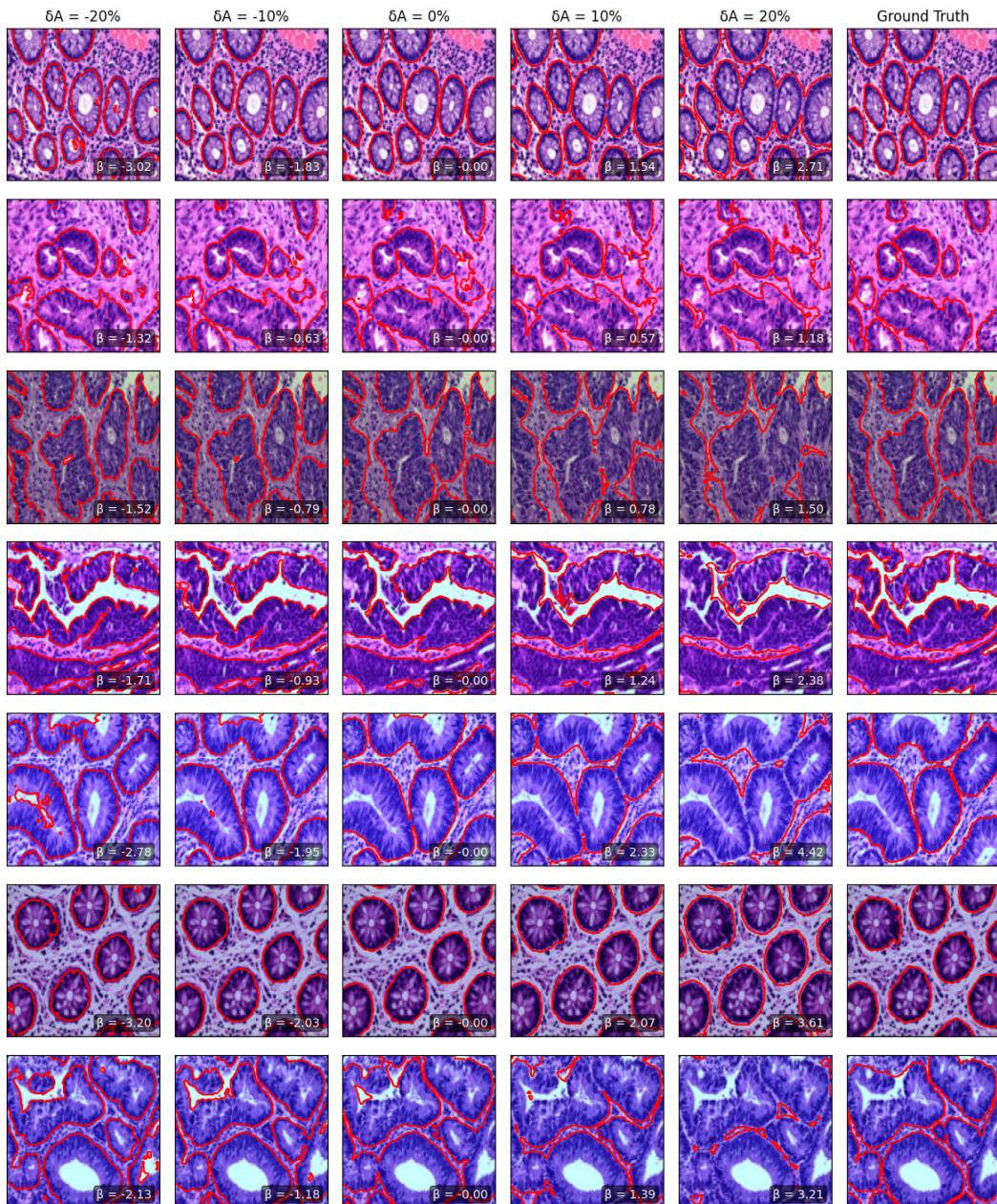
	H&E	Skin Lesion	Nodule	PolyP
Compute time for full dataset (Mean \pm STD in seconds)	73.6 \pm 0.6	305.8 \pm 1.1	93.3 \pm 0.9	73.6 \pm 0.6



1363
 1364 **Figure 11: COMPASS methods do not require substantial computing times.** The calibration
 1365 step requires multiple forward passes. However, we find that combining forward passes and binary
 1366 search enables fast calibration. We show the average computational time required for calibration
 1367 (for 100 repeats) across 4 datasets using a single NVIDIA A100 GPU. We compute times for the
 1368 symmetric (without A-) and asymmetric (A-), deep (-Deep) and (-Shallow) layers, and COMPASS-L
 1369 versus COMPASS-J. The full calibration runtimes are on the order of seconds for the full calibration
 1370 dataset. The number of samples used for calibration was 223 (H&E), 1000 (Skin Lesion), 349
 1371 (Thyroid), and 200 (PolyP).



1374
 1375
 1376
 1377 **Figure 12: Monotonicity verification.** We verify the nestedness of linear latent perturbations
 1378 (Definition 1). For each dataset, we perform a sweep across different β s and compute the change in
 1379 volume $\delta A = \frac{A_\beta - A_0}{A_0} \times 100$ where A_β is the area when the original latent is perturbed by β .

1404 **G SEGMENTATION OVERLAYS FOR COMPASS-J AND COMPASS-L**
1405
1406
14071408 **G.1 SEGMENTATION OVERLAYS FOR DIFFERENT PERCENTAGES OF CHANGE IN**
1409 **SEGMENTATION AREA (δA) FOR COMPASS-J**
1410
1411
1412
1413
14141449
1450
1451
1452
1453
1454
1455
1456
1457 Figure 13: Segmentation area increases with β for H&E. Each row is a different sample. $\delta A = 0\%$ is the original prediction.

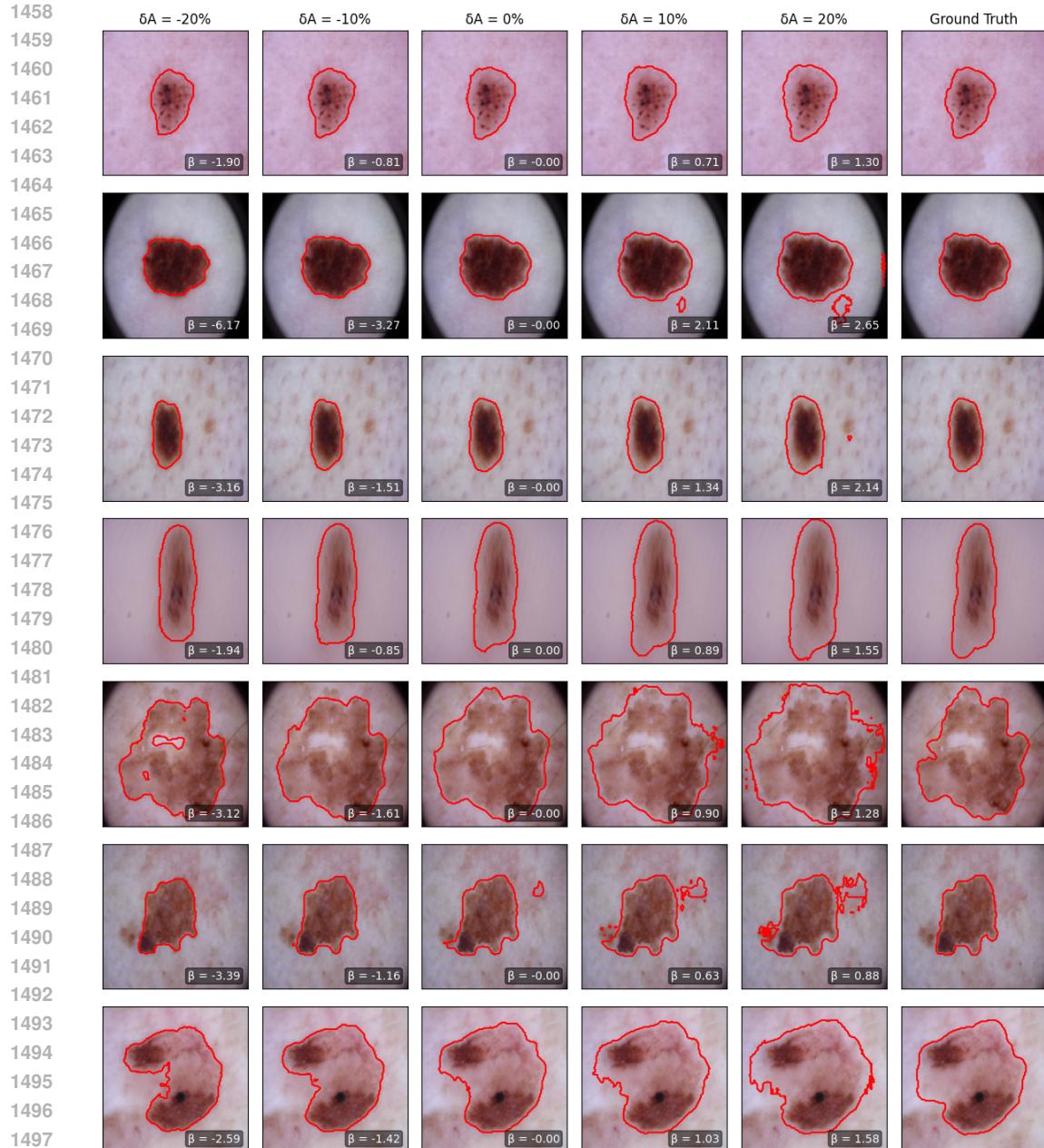


Figure 14: Segmentation area increases with β for Skin Lesion. Each row is a different sample. $\delta A = 0\%$ is the original prediction.

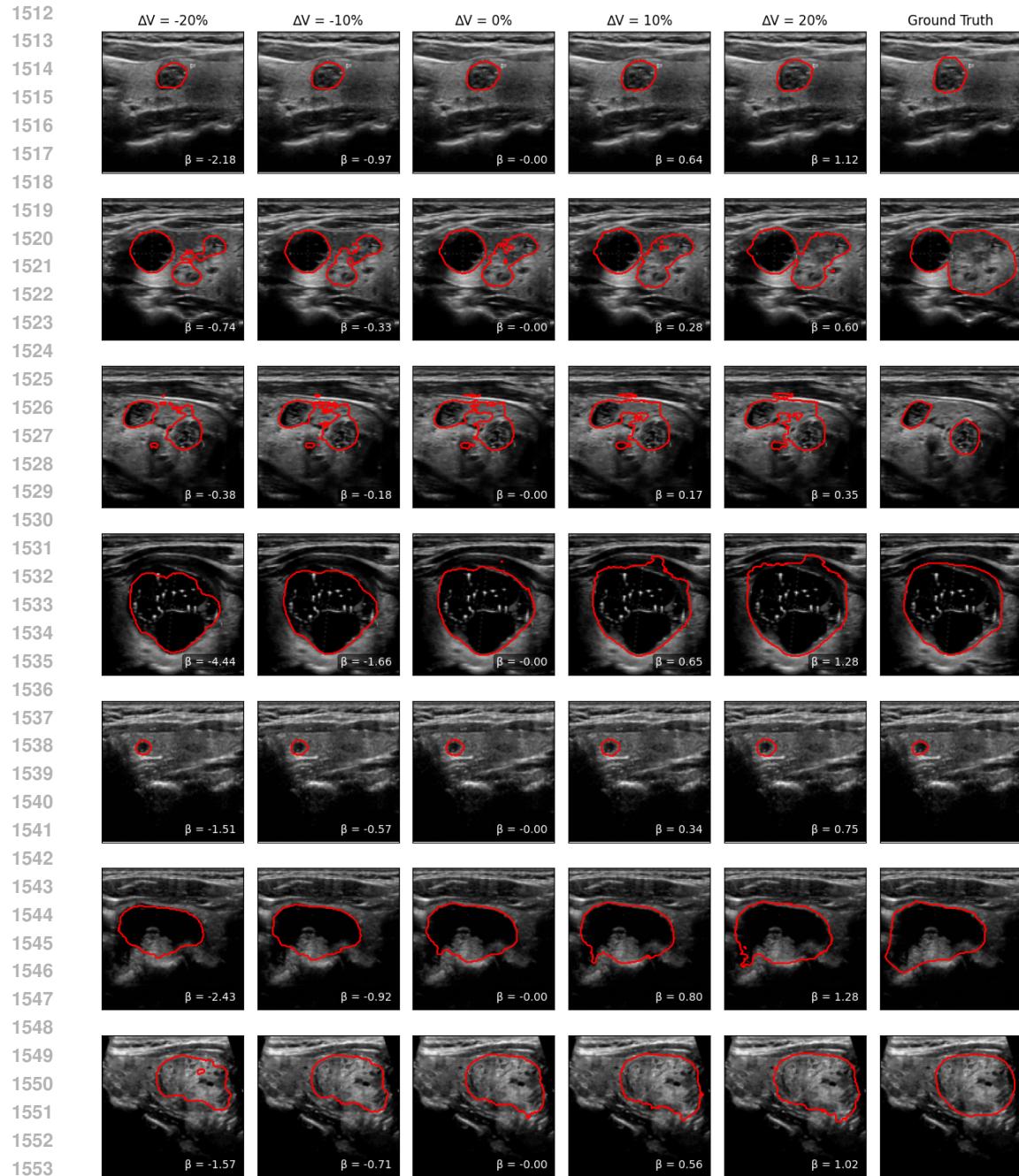


Figure 15: Segmentation area increases with β for Thyroid Nodule. Each row is a different sample. $\delta A = 0\%$ is the original prediction.

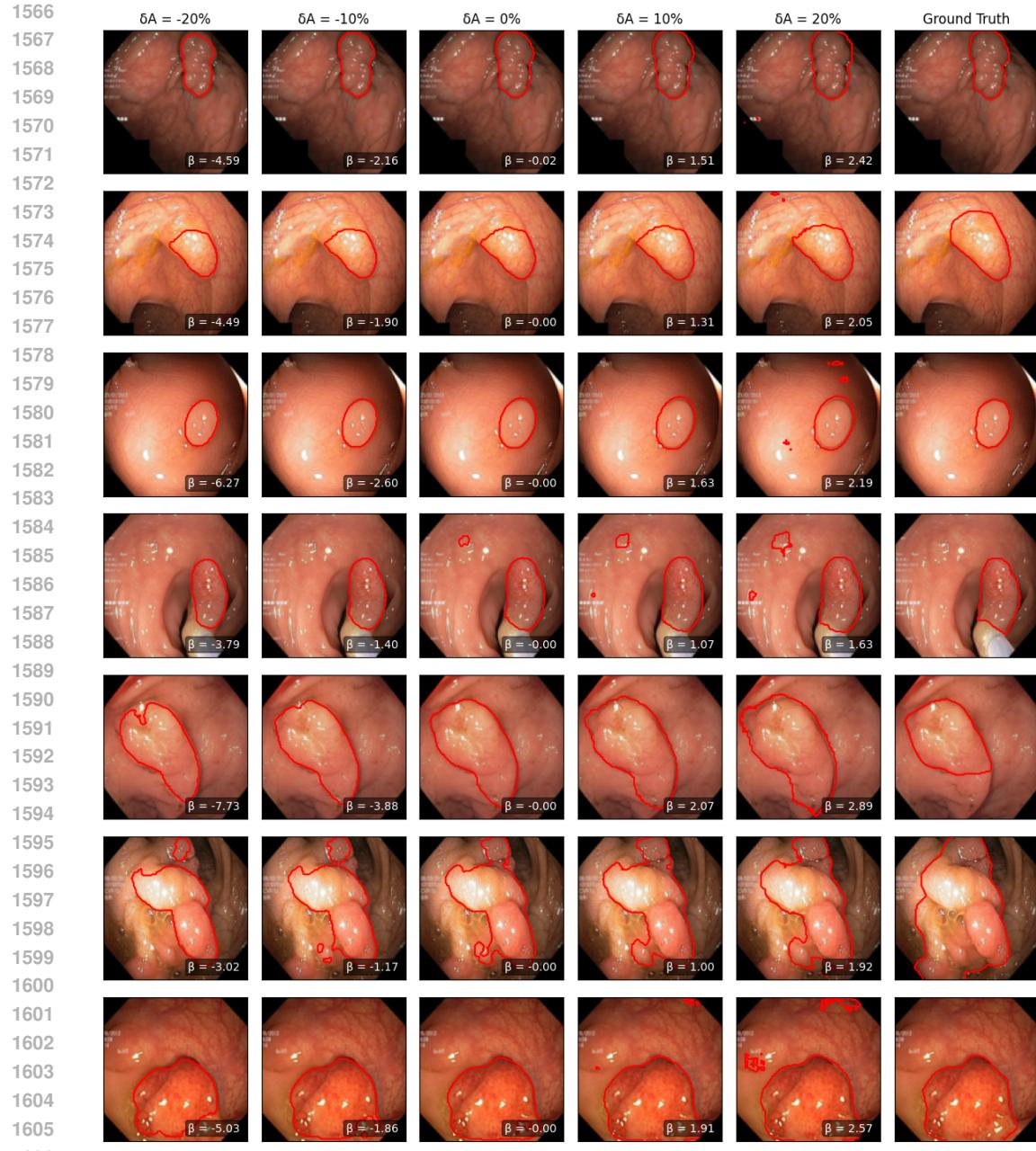
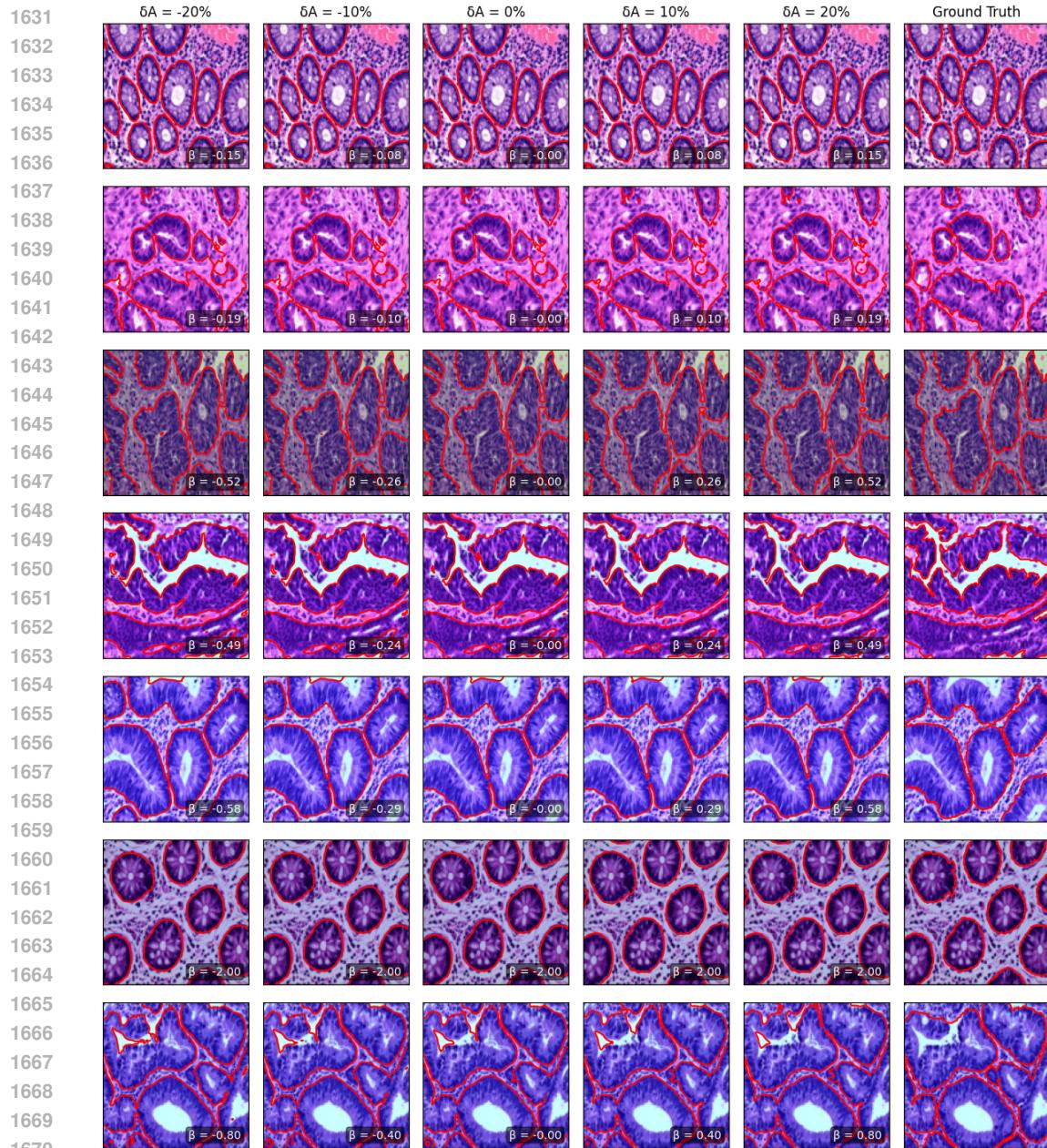


Figure 16: Segmentation area increases with β for PolyP. Each row is a different sample. $\delta A = 0\%$ is the original prediction.

1620
 1621 **G.2 SEGMENTATION OVERLAYS FOR DIFFERENT PERCENTAGES OF CHANGE IN**
 1622 **SEGMENTATION AREA (δA) FOR COMPASS-L**
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630



1672 Figure 17: Segmentation area increases with β for H&E. Each row is a different sample. $\delta A = 0\%$
 1673 is the original prediction.

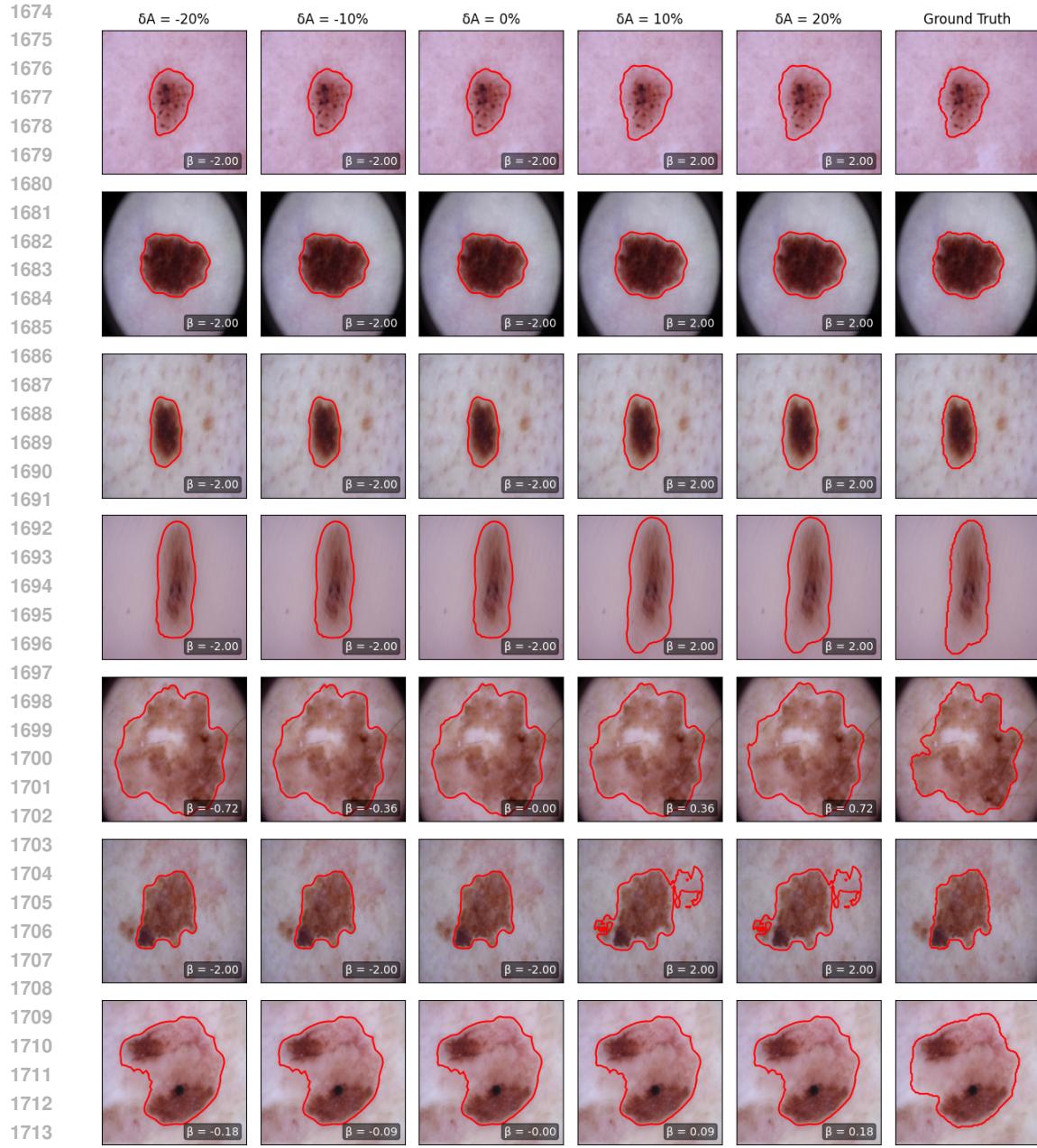


Figure 18: Segmentation area increases with β for Skin Lesion. Each row is a different sample. $\delta A = 0\%$ is the original prediction.

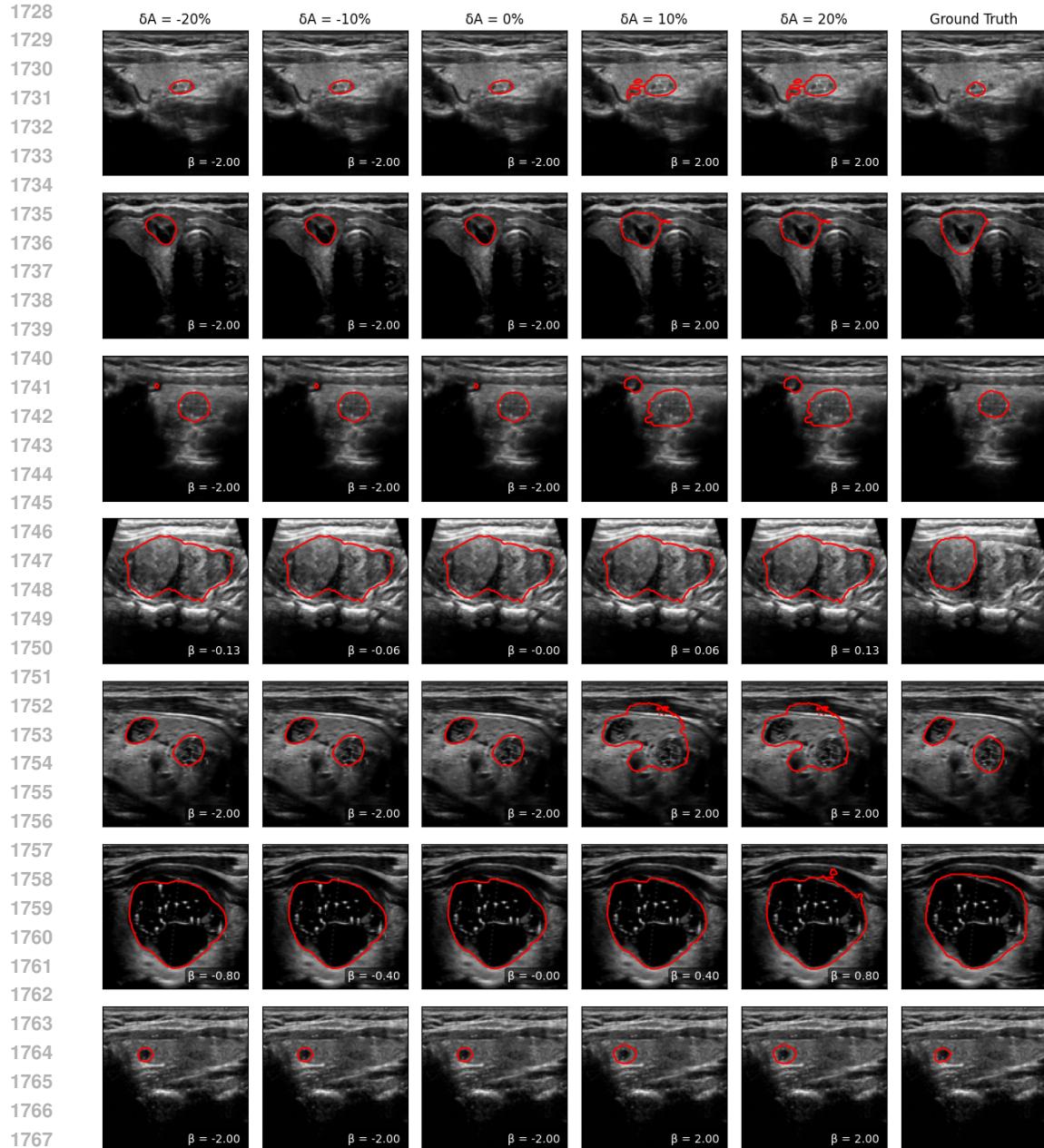


Figure 19: Segmentation area increases with β for Thyroid Nodule. Each row is a different sample. $\delta A = 0\%$ is the original prediction.

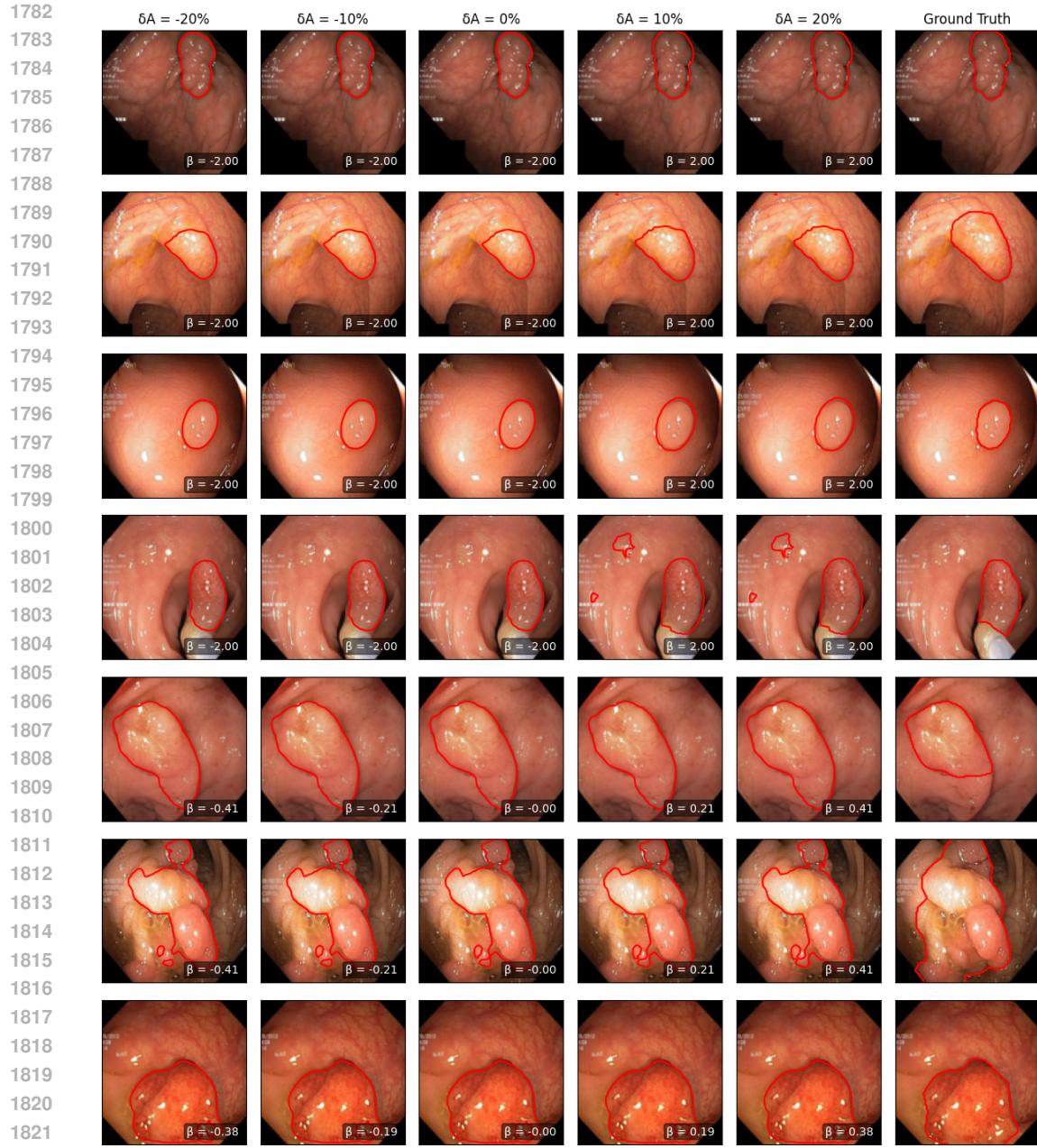


Figure 20: Segmentation area increases with β for PolyP. Each row is a different sample. $\delta A = 0\%$ is the original prediction.