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Abstract. Kidney cancer is one of the top ten cancers in the world, and
its incidence is still increasing. Early detection and accurate treatment
are the most effective control methods. The precise and automatic seg-
mentation of kidney tumors in computed tomography (CT) is an impor-
tant prerequisite for medical methods such as pathological localization
and radiotherapy planning, However, due to the large differences in the
shape, size, and location of kidney tumors, the accurate and automatic
segmentation of kidney tumors still encounter great challenges. Recently,
U-Net and its variants have been adopted to solve medical image seg-
mentation problems. Although these methods achieved favorable perfor-
mance, the long-range dependencies of feature maps learned by convolu-
tional neural network (CNN) are overlooked, which leaves room for fur-
ther improvement. In this paper, we propose an squeeze-and-excitation
encoder-decoder network, named SeResUNet, for kidney and kidney tu-
mor segmentation. SeResUNet is an U-Net-like architecture. The encoder
of SeResUNet contains a SeResNet to learns high-level semantic features
and model the long-range dependencies among different channels of the
learned feature maps. The decoder is the same as the vanilla U-Net. The
encoder and decoder are connected by the skip connections for feature
concatenation. We used the kidney and kidney tumor segmentation 2021
dataset to evaluate the proposed method. The dice scores of SeResUNet
in kidney, masses, and tumor are 91.6%, 58.8%, 54.16%, respectively.

Keywords: Kidney tumor segmentation · Squeeze-and-excitation net-
work · U-Net.

1 Introduction

Kidney cancer is the malignant tumor with the highest mortality in the uri-
nary system. Computed tomography (CT) imaging is the most common medical
treatment for kidney cancer inspection and diagnosis. Segmenting kidneys and
tumors from CT images is an important prerequisite for medical methods such as
pathological localization and radiotherapy planning. This is usually done manu-
ally by professional medical personnel or staff with relevant backgrounds. How-
ever, manual segmentation of kidney and kidney tumor from a large number of
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slices is time-consuming and suffers from human error. Automatic segmentation
of the kidney and tumor can help doctors quickly locate the tumor and prepare
for further surgical planning. The expansion of public databases has extremely
promoted the segmentation of medical images. The kidney tumor segmentation
challenge 2019 (KiTS19) [4] first released a public data set with kidney tumor an-
notations for the participants to develop automated segmentation approaches.
KiTS19 provides 300 high-quality CT scan images of kidney cancer patients.
Among them, 210 high-quality annotated CT scans are used for training, and
90 CT scans are used for algorithm testing. The KiTS19 Challenge has greatly
promoted the segmentation of kidneys and kidney tumors.

Recently, deep learning-based methods have achieved impressive performance
on medical image segmentation. Specifically, U-Net and its variants [11,1,14,8]
are widely exploited for kidney and kidney tumor segmentation. For example,
Yang et al. proposed a 3D full convolutional network combined with a pyramid
pooling module (PPM) for kidney and kidney tumors segmentation, which can
make full use of the 3D spatial contextual information to improve the segmenta-
tion of the kidney as well as the tumor lesion [12]. Abhinav Dhere et al. used the
anatomical asymmetry of the kidney to define an effective kidney segmentation
agent task through self-supervised learning [2]. Yu et al. proposed a framework
named Crossbar-Net, which through vertical patches and horizontal patches to
capture both the global and local appearance information of the kidney tumors,
and cascade the horizontal sub-model with the vertical sub-model to segment
the kidney and tumor [13]. Isensee et al. use the nnUnet for kidney and kidney
tumor segmentation, which won the 1nd place in the kidney tumor segmentation
challenge 2019 (KiTS2019) [7]. Hou et al. proposed a three-stage self-guided net-
work to accurately segment kidney tumors. The first stage determines the rough
position of the target, the second stage optimize, smooth kidney boundary and
get the initial tumor segmentation result, the tumor refine net is proposed to
optimize previous stage’s tumor segmentation result in the third stage, which
ranked the 2nd place in the KiTS19 [5]. Although these methods achieved fa-
vorable performance, the long-range dependencies of feature maps learned by
convolutional neural network (CNN) are overlooked, which leaves room for fur-
ther improvement.

Motivated by the squeeze-and-excitation network [6] to model long-range de-
pendencies of the learned feature maps, in this paper, we propose a squeeze-and-
excitation encoder-decoder network, named SeResUNet, for kidney and kidney
tumor segmentation. Specifically, SeResUNet is an U-Net-like architecture in-
cluding an encoder, a decoder, four skip connection paths. The encoder of SeRe-
sUNet contains a SeResNet to learns high-level semantic features and model
the long-range dependencies among different channels of the learned feature
maps. The decoder is the same as the vanilla U-Net. The encoder and decoder
are connected by the skip connections for feature concatenation. We evaluated
the proposed method on the 2021 kidney and kidney tumor segmentation chal-
lenge(KiTS21) dataset [4]. Experiment result shows that the dice scores of SeRe-
sUNet in kidney, masses, and tumor are 91.6%, 58.8%, 54.16%, respectively.
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2 Method

In this section, we detail our architecture for automated kidney and kidney
tumor segmentation in CT images. First, We introduced the overall architecture
in Section 2.1. In Section 2.2, the squeeze-and-excitation module are specified.
Then, in Section 2.3, we present the deep supervision used in this work. Finally,
the loss function is discussed in Section 2.4.

Fig. 1. Network architecture for segmentation

2.1 Architecture

The overview of our proposed framework is shown in Fig 1. Our method is an
encoder-decoder architecture. The encoder adopts ResNet50 [3] as backbone,
including four residual blocks followed by maxpooling layers, to gradually aggre-
gate high-level semantic information. In addition, we exploit the Squeeze-and-
Excitation(SE) module in the encoder to model long-range dependencies of chan-
nel relation among the input feature maps. Specifically, SE module transform
the feature maps into a channel descriptor, then recalibrate the input features
themselves by channel-wise multiplication. The decoder up-samples the high-
level feature map to obtain the segmentation map with size the same as the
original image. Each convolution layer of decoder is of kernel size of 3× 3, stride
of 1, and padding of 1. In order to avoid the problem of vanishing gradient and
to train the proposed network quickly, we introduce multi-level deep supervision
in the decoder, where deep supervision is performed on each layer of the decoder
so that the shallow layer can be fully trained. After the four-layer up-sampling
of the decoder, a segmentation map with the same size as the original image is
obtained.
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2.2 Squeeze-and-Excitation module

We employ Squeeze-and-Excitation(SE) module [6] to capture channel-dependencies
of the learned features. The structure of the SE module is depicted in Fig 2.

ÿ

ÿ

ÿÿ

Fig. 2. Squeeze-and-Excitation module

Squeeze operation compresses each two-dimensional feature channel into a
real number with a global receptive field, and the output dimension matches the
input feature channel number. In short, it is to carry out global average pooling,
the specific equation is as follows

Sc = Fs (ωc) =
1

H ×W

H∑
α=1

W∑
β=1

ω(α, β) (1)

where ωc represents the cth feature map of size H×W . After Eq. 1, the H×W×C
input is converted to 1 × 1 × C, which represents the numerical distribution of
the C feature maps in this layer, corresponding to the Fs (·) in Fig. 2.

Excitation is similar to the gate in the recurrent neural network, expresses
the correlation between different feature channels by generating weights for each
feature channel, the specific equation is as follows

Ec = Fe(S,W ) = σ(g(S,W )) = σ (W2δ (W1S)) (2)

where σ refers to the ReLU [9] function, W1,W2 is a fully connected layer with
different parameters, used to fuse feature map information of different channels.
The dimension of E obtained after Eq.2 is 1× 1× C, where C is the number of
channels.

Recalibration operation multiply the excitation output E by the previous
features, completing the recalibration of the original feature in the channel di-
mension. The specific equation is as follows

Fscale (ωc, Ec) = ωc · Ec (3)

2.3 Deep supervision

To avoid the vanishing gradient problem and quickly train the proposed net-
work, we perform deep supervision in the decoder, as shown in the right of



Title Suppressed Due to Excessive Length 5

Fig.1. Specifically, each layer of the decoder predicts a segmentation map for the
calculation of the loss function. This is different from multi-task learning (MTL).
MTL has different ground truths to calculate different losses, while there is only
one ground truth for deep supervision. Different network layers calculate loss
and sum them according to different coefficients. The weighted coefficients are
set as 0.4, 0.3, 0.2, 0.05, 0.05, respectively. Since the sizes of feature map of each
output layer are different, we down-sample the ground truth to the same size of
the corresponding output segmentation map for loss calculation.

2.4 Loss function

Loss function is used to estimate the degree of inconsistency between the pre-
dicted segmentation map f(x) of the model and the ground truth Y . Considering
the proportions of the volume of the kidney, tumor, cyst and background area are
different, there is an imbalance in data distribution. Therefore, we use weighted
cross-entropy (WCE) loss function to solve this problem.The specific definition
is as follows

Lwce(β, P ) =

S∑
i=0

βiP iGT log
(
pipred

)
(4)

where S is the number of classes, specific for kidney, kidney tumor, kidney cyst
and background. P iGT and pipred are the probabilities of the ith class of the ground

truth and the prediction respectively, βi is the weight of the ith class. Here, the
weights βi are set to 1.0, 2.0 ,4.0 and 4.0 for kidney, tumor, cyst and background
respectively, in Eq. 4 according to the preliminary experiments.

3 Experiments

In this section, we illustrate the KiTS21 dataset on Section 3.1. Then, the eval-
uation metrics are presented on Section 3.2. Next, we describe the pre-process
and post-process methods on Section 3.3. Finally, we specify the implementation
details on Section 3.4.

3.1 Datasets

The CT scans used in this work come from The 2021 Kidney and Kidney Tumor
Segmentation Challenge(KiTS21), which contains 300 complete data of kidneys,
kidney tumors, kidney cysts and background labels. We randomly divided 60
data into one big category, divided into five in total, for five-fold cross-validation.

The data labels provided by the KiTS21 challenge are not exactly the same.
Some data contains 4 complete labels, and some may only contain 3 of them.
This also makes the training of our model difficult. Fig.3 shows some of them.
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Fig. 3. Illustration of the annotations in the KiTS21 dataset.

3.2 Metrics

This article employs Dice and surface Dice similarity coefficient (surface DSC)[10]
to evaluate our segmentation results. Dice is one of the most commonly used eval-
uation indicators. Specifically, we use kidneys, kidney tumors, and cysts as the
foreground, everything else as background to calculate Dice scores. In medical
images, the voxel spacing is usually unequal, and the calculation of surface vox-
els usually leads to larger errors. The surface Dice used in this article is given
an allowable error distance, and the surface within this error range is regarded
as the overlapping part, the surface overlap dice value of the ground truth mask
and the predict mask is calculated.

3.3 Pre- and post-processing

We consider using 2D U-Net to complete our experiments. KiTS21 challenge
provides 3D dataset, we first convert voxels into slice data, highlight organ and
tumor features through threshold processing and threshold normalization, en-
hance the data by flipping, random cropping, and random translation.

In the post-processing part, considering the influence of noise, we perform
the operation of the largest connected domain on the data to eliminate the noise.

3.4 Implementation details

First, we initialize the model parameters, set the training epoch to 20, the initial
learning rate to 10−5, batchsize is set to 8, and use the Adam optimizer. The
proposed network was implemented in python using Pytorch(v1.5.1) framework
in the backend. All training and testing experiments are run on a workstation
with an NVIDIA GeForce GTX 2080Ti with 11G GPU memory.

4 Result

We evaluated our model on KiTS21 dataset through five-fold cross-validation.
The final results were obtained by averaging the best performance of each fold.
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Table 1 reports the quantitative results of the proposed SeResUNet and the most
commonly used segmentation methods. The dice of kidney, masses and tumor are
91.60%, 58.80%, 54.16% respectively, and the surface dice are 84.62%, 37.91%,
37.59% respectively. In addition, the segmentation results are shown in Fig.4.

Table 1. Dice score (mean) and Surface Dice of the proposed method on 5-fold Cross
Validation.

Method Kidney (Dice) Masses (Dice) Tumor (Dice) Kidney (SD) Masses (SD) Tumor (SD)

2D U-Net 0.9132 0.3769 0.3712 0.8425 0.2618 0.2573
SeResUNet18 0.8801 0.3923 0.3556 0.7952 0.2677 0.2370
SeResUNet50+D 0.9144 0.5797 0.5274 0.8396 0.4187 0.3741
SeResUNet18+D 0.9160 0.5880 0.5416 0.8462 0.3791 0.3759

Fig. 4. Qualitative comparison of segmentation results for KiTS21 dataset test:Ground
truth, U-Net, SeResUNet, SeResUNet50 with deep supervision(SeResUNet50+D),
and proposed SeResUNet18 with deep supervision(SeResUNet18+D). Color coding:
red,Kidney; green,Tumor; blue,Cyts.

5 Discussion and Conclusion

In this work, we proposed a novel segmentation network called SeResUNet to
deal with the kidney and tumor segmentation task. First, we adopt the encoder-
decoder architecture like U-Net, and use ResNet to deepen the network in the
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encoder. At the same time, in order to avoid deep network degradation prob-
lems and speed up the convergence, we add multi-level deep supervision to the
decoder. In addition, we noticed the importance of different channels and intro-
duced Squeeze-and-Excitation module, which automatically obtains the weight
of each feature channel through learning, and then highlights useful features
based on this weight and suppresses features that are not useful for the current
task. Finally, the weight cross-entropy loss function is used to solve the problem
of data imbalance. Through the evaluation on the KiTS21 dataset, it can be seen
that the model we proposed has a stronger ability in the kidney and its tumor
segmentation.

It can be seen from table 1 that our network is improved by 0.28%, 21.1% and
16.88% respectively compared with the classic network 2D U-Net. The segmenta-
tion results of the kidney have not improved much, but the segmentation results
of tumors and cysts have improved greatly, indicating that our model performs
better in the subtle parts. Compared with Se-ResUNet18 and Se-ResUNet50,
kidney, masses and tumor are increased by 0.16%, 0.83%, 1.42% respectively, it
shows that the results obtained by deeper networks are not necessarily better.
In addition, we also compare whether to use deep supervision. The experimen-
tal result shows that the segmentation results of our model after adding deep
supervision will be much better.
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