Under review as a conference paper at ICLR 2025

HYPERPARAMETER OPTIMIZATION VIA
INTERACTING WITH PROBABILISTIC CIRCUITS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the growing interest in designing truly interactive hyperparameter opti-
mization (HPO) methods, to date, only a few allow to include human feedback.
However, these methods add friction to the interactive process, rigidly requiring
to fully specify the user input as prior distribution ex ante and often imposing
additional constraints on the optimization framework. This hinders the flexible
incorporation of expertise and valuable knowledge of domain experts, which might
provide partial feedback at any time during optimization. To overcome these limi-
tations, we introduce a novel Bayesian optimization approach leveraging tractable
probabilistic models named probabilistic circuits (PCs) as surrogate model. PCs
encode a tractable joint distribution over the hybrid hyperparameter space and
evaluation scores, and enable exact conditional inference and sampling, allowing
users to provide valuable insights interactively and generate configurations adher-
ing to their feedback. We demonstrate the benefits of the resulting interactive HPO
through an extensive empirical evaluation of diverse benchmarks, including the
challenging setting of neural architecture search.

1 INTRODUCTION

Hyperparameters crucially influence the performance of machine learning (ML) algorithms and must
be set carefully to fully unleash the algorithm’s potential (Bergstra & Bengio, 2012; Hutter et al., 2013;
Probst et al., 2019). Manually finding good hyperparameters is a tedious and costly task. Thus, various
approaches have been proposed to automatize this process which is referred to as hyperparameter
optimization (HPO) (Bischl et al., 2023). Generally, HPO is framed as optimizing an expensive black-
box function since the true functional form of the objective is commonly unknown, and the evaluation
of hyperparameter configurations is costly, as it requires training ML models several times. Given the
rise of deep learning, there is also a growing interest in optimizing the hyperparameters defining the
architecture of neural models, commonly referred to as neural architecture search (NAS). The main
goal in NAS and HPO is to efficiently traverse the search space to find good configurations quickly
and avoid unpromising regions. Bayesian optimization (BO) methods have proven to be sample
efficient and converge on good configurations quickly. They exploit knowledge about previously
evaluated configurations by learning a surrogate model at each iteration to approximate the optimized
unknown objective function (Hutter et al., 2011; Falkner et al., 2018). A selection policy employs the
learned surrogate to determine the next configuration to be evaluated (Garnett, 2023; Wang et al.,
2022). Selection policies aim to balance the exploitation of promising regions of the search space
with the exploration of undiscovered ones. Prominent policies optimize an acquisition function
assessing the utility of each configuration in terms of the mentioned trade-off (Hutter et al., 2011;
Hvarfner et al., 2022) or employ sampling strategies that frame the selection of the next configuration
as a multi-armed bandit problem and maximize a reward provided by the surrogate (Shahriari et al.,
2016; Wang et al., 2022).

Although the recent advancements in HPO and NAS could facilitate the design and optimization of
ML models for non-experts, in most of the cases, hyperparameters are still tuned manually (Bouthillier
& Varoquaux, 2020) and the majority of cutting-edge neural architectures, e.g., transformers (Vaswani
et al., 2017), are derived by hand. Given that many ML practitioners perform hyperparameter tuning
purely based on their knowledge, experience, and intuition, integrating this valuable knowledge
to guide HPO algorithms during optimization is of high value since it can substantially foster
the search and mitigate its cost. For example, in Fig. 1 (Left), three hyperparameters of the

Under review as a conference paper at ICLR 2025

S

subtree ~ I I

g / N

S P 2 wp, Wp,

] T u §

P W R E

= (N ; 5

Al p(v)-powy =p, P Ps Ps =]

: ® R

=]

o

dbdbdb éh
See set {N=16, W=3} optimize { 0.5 N
A> \ / A 0.0 05 1.0 15 2.0
Hyperparameter R (Image Resolution)
optimize ~y optimize — =+ mBO selection IBO-HPC selection
iterations * — =+ BOProO selection —— user-defined prior

Figure 1: Interactive Bayesian Hyperparameter Optimization. (Left) We devise interactive
Bayesian HPO by employing PCs as surrogate models encoding a joint distribution over hyperparam-
eters and evaluation scores. They allow users to directly condition the surrogate on their beliefs while
new candidates are generated via tractable sampling. Thus, user knowledge (priors or point-wise
values) is reflected accurately. (Right) Accurately reflecting user beliefs is crucial for interactive HPO
to fully leverage user knowledge. IBO-HPC (our method) precisely reflects the user prior provided
over the hyperparameter R (image resolution), while 7BO and BOPrO fail to do so.

JAHS benchmark (Bansal et al., 2022) are optimized (depth multiplier N, width multiplier W, and
resolution R of a deep CNN). During an HPO run, a user might realize that values around N = 16
and W = 3 yield high-performing models. Hence, a user can guide the HPO algorithm with the
obtained knowledge (here, N = 16 and W = 3) without restarting the optimization from scratch.
This can considerably increase the convergence speed and quality of the final solution by focusing
the optimization on remaining hyperparameters (here R, details in App. A). Recent works by Souza
et al. (2021) and Hvarfner et al. (2022) allow users to infuse knowledge into a BO framework via
user-defined prior distributions. To integrate user feedback, both approaches employ weighting
schemes that alter the behavior of the acquisition function to follow the user-defined priors. Given a
configuration, Souza et al. (2021) weight the surrogate’s prediction with the prior, while, Hvarfner
et al. (2022) directly reshape the acquisition function by weighting it with the prior. Although these
approaches are valid and principled ways to guide an HPO task, their weighting schemes limit the set
of compatible acquisition functions and, therefore, the selection policies. Furthermore, they assume
user knowledge to be available only ex ante, i.e., before the optimization, hindering users to adjust
their beliefs flexibly, at any iteration during the optimization. Moreover, these approaches might
not reflect user knowledge precisely as defined in the prior due to the non-linear integration of the
priors in the acquisition function. For example, in Fig. 1 (Right), the configurations selected by
both BOPrO (Souza et al., 2021) and #BO (Hvarfner et al., 2022) during the first 20 iterations of
optimization remarkably deviate from the given user prior.

To overcome the above limitations and to integrate user feedback in HPO and NAS more flexibly,
making the optimization truly interactive, we introduce INTERACTIVE BAYESIAN OPTIMIZATION
VIA HYPERPARAMETER PROBABILISTIC CIRCUITS (IBO-HPC).' This novel BO method provides
an elegant and flexible mechanism to incorporate user knowledge at any time during optimization
without relying on weighting schemes reshaping an acquisition function. Instead, we derive a selection
policy that accurately reflects user beliefs by allowing users to directly condition the surrogate on
those beliefs. Conditions can be specific values or distributions representing users’ uncertainties over
values of a subset of hyperparameters. Besides this natural incorporation of user knowledge, we
introduce a novel, purely data-driven selection policy which suggests new configuration candidates
leveraging conditional sampling and avoiding an additional inner loop optimization of an acquisition
function. We achieve these benefits by employing as a surrogate a fairly recent tractable probabilistic
model called probabilistic circuits (PCs) (Choi et al., 2020). In contrast with other common choices
in HPO and NAS such as Gaussian processes (GPs) (Rasmussen & Williams, 2006) and random
forests (RFs) (Breiman, 2001), PCs compactly model a joint distribution. PCs allow the tractable

"We make our code available at https://anonymous.4open.science/r/jahs_sand-40B3/
and provide all logs and data at https://hessenbox.tu-darmstadt.de/getlink/
fiL7ifX7hqglTfATMnxndkELS/logs_v2.zip.

https://anonymous.4open.science/r/jahs_sand-40B3/
https://hessenbox.tu-darmstadt.de/getlink/fiL7ifX7hq1TfA7MnxndkELS/logs_v2.zip
https://hessenbox.tu-darmstadt.de/getlink/fiL7ifX7hq1TfA7MnxndkELS/logs_v2.zip

Under review as a conference paper at ICLR 2025

and exact computation of arbitrary marginal and conditional distributions, and provide tractable
(conditional) sampling, rendering them a natural choice for interactive HPO. To ensure robustness
against potentially misleading user input, we devise a decay mechanism to decrease the influence of
user knowledge over time. In the following, we refer to these PCs that encode joint distributions over
hyperparameters and evaluations as hyperparameter probabilistic circuits (HPC).

We make the following contributions: (1) We introduce a novel HPO method named IBO-HPC that
enables direct incorporation of user knowledge into the selection policy at any time s.t. the user
knowledge is precisely reflected in the selection policy as specified by the user. (2) We formally
define a notion of interactive policy in HPO, and show that IBO-HPC conforms to this notion and
is guaranteed to reflect user knowledge as provided in the optimization process. (3) We provide an
extensive empirical evaluation of IBO-HPC showing that it is competitive with strong HPO and
NAS baselines without user interaction and outperforms them when leveraging user knowledge.

2 RELATED WORK

Bayesian optimization (BO) is an approach to optimize an unknown and expensive black-box
function and thus is a natural choice for tackling HPO tasks. BO methods sequentially update,
based on observations, a surrogate model that approximates the unknown objective function and
captures dependencies between configurations from the search space and the evaluation function’s
values. In a selection policy, the surrogate is used to choose only promising configurations evaluated
next (Hutter et al., 2011; Snoek et al., 2012; Mockus, 1975; Shahriari et al., 2016). Common choices
for surrogate models are Gaussian processes (GPs) (Rasmussen & Williams, 2006) or random forests
(RFs) (Breiman, 2001).

Due to the rise of deep learning, neural architecture search (NAS) has become increasingly relevant.
Besides BO, different approaches based on local search (Den Ottelander et al., 2021), reinforcement
learning (Pham et al., 2018; Zoph & Le, 2017), and gradient descent (Liu et al., 2019) have been
proposed. See White et al. (2023) for a comprehensive survey on NAS. To foster the development
and fair comparison of HPO and NAS algorithms, different benchmarks have been proposed. These
benchmarks define a search space over architectures and hyperparameters and train all candidates
to provide several quantities such as validation and test accuracy. Ying et al. (2019) and Dong &
Yang (2020) introduce such benchmarks for NAS (NAS-Bench-101/201) while Bansal et al. (2022)
introduces a benchmark for joint optimization of hyperparameters and neural architectures (JAHS).

Leveraging previous HPO runs to increase the efficiency of HPO on related problems has been
considered in several works under the umbrella of hyperparameter transfer learning (HTL). Prominent
approaches perform HTL by projecting objective responses of all runs to a common response surface,
via learning a common representation of HPO tasks or by pruning the search space based on previous
tasks (Yogatama & Mann, 2014; Wistuba et al., 2015; Perrone et al., 2018; Vanschoren, 2018; Salinas
et al., 2020; Horvath et al., 2021).

With the goal of making HPO more trustworthy, several works have introduced methods to provide
explanations in HPO (Hutter et al., 2014; Moosbauer et al., 2021; Watanabe et al., 2023; Segel et al.,
2023), while involving feedback during search has received little attention. Hvarfner et al. (2022)
allow users to provide prior beliefs via prior distributions over the search space. The provided user
prior is used to reshape the acquisition function when selecting new configurations, thus, favoring
configurations that received a high likelihood in the prior. Mallik et al. (2023) propose a similar
mechanism to incorporate user knowledge in multi-fidelity optimization. However, such approaches
assume an ex ante full specification of the priors, often with additional constraints such as requiring
invertible priors (Ramachandran et al., 2020) or a specific acquisition function (Souza et al., 2021).
As illustrated in Sec. 1, the mentioned approaches have several drawbacks in reflecting given user
knowledge well when selecting new configurations. We believe that truly interactive HPO methods
should not assume ex ante specification of user knowledge and should reflect user knowledge properly.

3 INTERACTIVE HYPERPARAMETER OPTIMIZATION

We now present IBO-HPC, which provides a flexible way to interact with the optimization process
via probabilistic queries. This way, user knowledge is decoupled from shaping acquisition functions

Under review as a conference paper at ICLR 2025

while reflecting given knowledge in the selection policy as specified by the user. In this section, we
briefly revise BO as a general framework for HPO before introducing our definition of a feedback
adhering interactive policy. Next, we introduce HPCs and present the concrete instantiation of our
interactive optimization method. For completeness, we start with a general formal definition of the
HPO problem (Kohavi & John, 1995; Hutter et al., 2019).

Definition 1 (Hyperparameter optimization). Given hyperparameters H = {H1, ..., H,} with
associated domains Hq, ... , H,,, and a set of problem instances X, we define a search space
©® =H, x--- xH,. Fora given problem instance x € X and evaluation function f : @ x X — R,
hyperparameter optimization aims to solve 0* = arg mingee f(60;x).

3.1 INTERACTIVITY IN BAYESIAN HPO

Bayesian Optimization. BO aims to optimize a black-box objective function f : ® — R which is
costly to evaluate, i.e., to find the input 8* € arg mingee f(0) (Shahriari et al., 2016). BO typically
tackles such problem in sequential steps, leveraging two key ingredients: a probabilistic surrogate
model and a selection policy determining the next 6’ to be evaluated. Given a set D,, of observations
that correspond to the configurations with associated evaluations (6;, f (Oj)) j=1...n, the surrogate
s € § aims to induce a distribution over functions p(f|D,,). The selection policy uses s to select the
next 8’ € O s.t. it achieves a good exploration-exploitation trade-off. Prominent selection policies
optimize an acquisition function a : ® x 8 — R, such as expected improvement (Jones et al., 1998),
that estimates the utility of an evaluation at an arbitrary point & € ® under a surrogate s € S. The
configuration @', evaluated next, is selected by optimizing a. A popular alternative to obtain the next
configuration 8’ is Thompson sampling (Wang et al., 2022). The obtained tuple (8’, f(6’)) is added
to D,, and used to update the surrogate model for the next iteration. This process is repeated until
convergence.

An interactive BO method should be capable of incorporating, at any time, the knowledge provided
by users; also, the selection policy should reflect the provided knowledge as specified by the user.
Consequently, we formalize the concept of an interactive selection policy, or interactive policy for
short, that adheres to these requirements.

Definition 2 (Interactive Policy). An interactive policy is a functionp : 8§ X @ x K — P(O)
mapping from the set of surrogates 8 and search space © to the set of all distributions P(©) over
the search space © while accepting user knowledge K € K.

Note that the collection of user knowledge /C and the set of surrogates S are left unspecified to keep
Def. 2 rather general. Since Def. 2 can be trivially achieved, e.g. by ignoring user knowledge, we
introduce feedback adhering interactive policies that guarantee that (i) user knowledge affects the
policy’s outcome and (ii) user knowledge is reflected in the interactive policy as specified.

Definition 3 (Feedback Adhering Interactive Policy). Given user knowledge KC € IC and surrogate
st € 8 at iteration t, an interactive policy p is called efficacious if p(©, s¢, K) # p(©, st, 0) where
() indicates that p is applied without user knowledge. If further K is provided as a distribution

q(?tl) over H C H, we call p feedback adhering if it is efficacious and f’H\’H (@, s, K) = q('f{)

holds, i.e., the distribution over ‘H induced by the selection policy equals the prior q(#) in the next
iteration.

In Def. 3, the first condition ensures that the user knowledge has an effect on the sampling policy.
The second condition ensures that in the first iteration, after that a user provides a distribution over a
subset of hyperparameters, the values sampled for the specified hyperparameters follow exactly the
distribution ¢ given by the user. Note that user knowledge could also be misleading; thus, Def. 3
does not require user knowledge to have exclusively positive effects. Equipped with Def. 2 and 3, we
now introduce IBO-HPC that adheres to both definitions.

3.2 INTERACTIVE BAYESIAN OPTIMIZATION WITH HYPERPARAMETER PROBABILISTIC
CIRCUITS

In this section, we introduce an interactive Bayesian optimization method that fulfills Def. 3. It
employs hyperparameter probabilistic circuits (HPCs) as a surrogate model and a selection policy
leveraging the flexible inference and sampling of HPCs, avoiding an additional inner loop optimization

Under review as a conference paper at ICLR 2025

of an acquisition function. Before delving into our method, we first provide preliminaries on
probabilistic circuits.

Hyperparameter Probabilistic Circuits Algorithm 1: Interactive BO with HPCs
(HPCs). Motivated by the lack of truly inter- (IBO-HPC). Our interactive BO method al-
active Bayesian HPO methods, we seek a policy lows for flexible incorporation of user knowl-
that enables flexible interactions with the opti- edge at any iteration via conditional sampling
mization procedure by providing an arbitrary enabling true interaction with users.

amount of knowledge about hyperparameters Data: Search space © over

at any time during the optimization while H = {H,, ..., H,}, problem instance
reflecting user beliefs as specified. Probabilistic xEX pri’or distribution »(©)

circuits (Choi et al., 2020) are computation objecti’ve F:@x X >R, user prior
graphs that compactly represent multivariate (7:1) s optional and b ded at
distributions. PCs can answer a wide range of q\7t) 15 opional and can be provided a
probabilistic queries in a tractable fashion and any time, decay -y

(conditionally) generate new samples. These ! Z) o 0.

features make them a good candidate for our 2 fori € {1,.. W J} do

purpose of building a policy adhering to Def. 3. i ’0D~_p ,gad ’ (0, (8, %))};

More formally, a PC is a computational graph s while not converged do

encoding a distribution over a set of random vari- every L-th iteration, fit HPC s on D;
ables X. It is defined as a tuple (G, ¢) where - [* = max; D;

G = (V, E) is a rooted, directed acyclic graph s b ~ Ber(p);

and ¢ : V — 2% is the scope function as- if prior q(#) given and b = 1 then
signing a subset of random variables to each sample N conditions h ~ (7:‘)
node in G. For each internal node N of G, the 1 C —p(Z)' q ’
scope is defined as the union of scopes of its E for_con’ dition b in b do
children, i.e. ¢(N) = Unreenn¢(N'). Each 3 sample B cz)nﬁgurations
leaf node L computes a distribution/density over , S
its scope ¢(L). All internal nodes of G are ei- 01 .5~ sH\HIH)
ther a sum node S or a product node P where 14 07 = argmaxgco; S @)
each sum node computes a convex combination 5 C=Ccue;; o

of its children, i.e., S = > yey(s) ws,NN, and 6* ~U(C);

each product computes a product of its children, ; else

ie, P = HNeCh(P) N. We assume smooth and 4 |0 ~ s(H|f)

decomposable PCs (see App. C for details); 19 D=DuU (0, f(0,x));

thus, our method can exploit tractable inference, 2o p=""p;

sampling, and conditioning of PCs. For a more 2 present evaluations D;

detailed description of PCs, refer to App. C; for
an overview, see Fig. 1 (Left).

We jointly model the hyperparameters and evaluation scores with PCs; thus, we refer to these
surrogates as hyperparameter probabilistic circuits (HPC). Given the hybrid (discrete and continuous)
nature of hyperparameter search spaces, in this work, we focus on a type of PCs tailored for hybrid
domains named mixed sum-product networks (MSPNs). An MSPN is a decomposable and smooth
PC with piecewise polynomial leaves. These properties types allow MSPNs to represent valid
distributions over hybrid domains (i.e. discrete and continuous variables) (Molina et al., 2018).

Method. We now describe our method shown in Algorithm 1. Since our surrogate is a density
estimator, we start off by sampling J hyperparameter configurations from a prior distribution p, e.g.,
a uniform distribution, and evaluate them by querying the objective function f (Line 1-5). The
function f yields a performance score of a model trained to solve a given problem instance x with
the sampled configuration 6. After evaluating each sampled 8 we obtain a set D of pairs (6, fo(x))
and fit a HPC s estimating the joint distribution p(#, F'), where H is the set of hyperparameters and
F is a random variable representing the evaluation score (Line 7). IBO-HPC proceeds by selecting a
configuration 6 that gets evaluated next, i.e., our feedback adhering interactive policy is applied. Our
policy exploits the flexible and exact inference of HPCs to derive arbitrary conditional distributions
according to the partial evidence at hand (Peharz et al., 2015). We target the configurations that are
likely to achieve a better evaluation score. Thus, a posterior distribution over the hyperparameter
space is derived by conditioning on the best score f* = max¢ D observed so far alongside with

Under review as a conference paper at ICLR 2025

(optlonal) user knowledge KC. For now, K is assumed to be given in the form of conditions such as
H = h where 7 C H is a subset of hyperparameters being set to h. With Bayes rule and tractable
marginal inference and sampling of HPCs, we obtain the conditional distribution and use it to sample
a new configuration from promising regions in the search space.

P(H\HIH,F = f*)=s(H\ H|H,F = f*)
0~ p(H\HIH,F = f)

Since users might be uncertain about hyperparameter values, defining a prior q(’f-t) over H might be
more reasonable than setting a fixed value for certain hyperparameters. The prior ¢(H) is interpreted

as a distribution over conditions of the form # = h where h ~ ¢(#). This induces a different
weighted version of the distribution given in Eq. 1.

PHN\HIHF = [*)-q(H) = s(H\ HIH,F = [*) - q(H) @

Since user intuition can be wrong, we allow IBO-HPC to recover from sub-optimal user knowledge
by deciding whether or not to use the provided X based on a Bernoulli distribution with success
probability p. To ensure that IBO-HPC gradually recovers when misleading K is provided, we
decrease the likelihood of using K in each iteration after X was supplied via a decay factor v. When
user knowledge is provided at iteration 7', the distribution over configurations after T' + ¢ iterations

reads:

Vo sS(HA\HIH,F = f*)-q(H) + (1= ~'p) - s(H|F = [7) 3)
Note that fusing the distribution in Eq. 2 with the HPC to allow exact inference and conditioning
is non-trivial since the prior g is defined over an arbitrary subset and no further assumptions about
q are made. Thus we approximate Eq. 2 by sampling N times from q(’?:t) and use Eq. 1 to obtain

N conditional distributions respecting the user prior q(’f-t) To select a promising configuration for
evaluation from the approximated distribution in Eq. 2 while still achieving exploration, we sample
B configurations from all /V conditionals. For each conditional, the configuration maximizing the
likelihood s(H|F' = f*) is selected to reduce the candidate set to configurations likely to achieve
a high evaluation score. This leaves us with N configurations from which we sample uniformly to
select the configuration evaluated next (Line 10-16). We found that setting B = 1 works surprisingly
well. A discussion about the quality of our approximation is given in App. B.4. The surrogate is
kept fixed for L optimization rounds before retraining it. This fosters exploration by leveraging
uncertainty encoded in the (conditional) distribution of the surrogate. An iteration is concluded by
updating the set of evaluations D that can be presented to the users (Line 20-21). The algorithm runs
until convergence or another condition for termination, e.g., a time budget limit is encountered.

ey

Remark 1. Although different, our sampling policy shares similarities with Thompson Sampling
(TS): TS samples function values from the posterior and selects the next configuration based on the
obtained maximum of the function. Instead of sampling the function value from the posterior, we use
the maximum obtained so far and use it to sample the next configuration.

Theoretical Properties. After presenting IBO-HPC as an instance of an IBO algorithm, we now
show that the policy applied to select the next configuration is a feedback adhering interactive policy
according to Def. 3. Since modeling dependencies among hyperparameters is non-trivial for users,
we only require users to provide a product distribution as prior knowledge.

Proposition 1 (IBO-HPC Policy is feedback adhering interactive). Given a search space © over
hyperparameters H, an HPC s € S, user knowledge KC € IKC in form of a prlor q over H C H st
the margmal distribution over H of s conditioned on f* is different than q(H), i.e., fﬂ\% 7-L|F =

1) # q(), the selection policy of IBO-HPC is feedback adhering interactive. The proof is provided
in the App. B.1.

Besides being feedback adhering, IBO-HPC is a global optimizer for black-box optimization.
Proposition 2 (IBO-HPC is a global optimizer). IBO-HPC minimizes simple regret, which is defined
asr = f(h) — f(h*) for a hyperparameter configuration h € © and global optimum h*. A proof is
given in B.2.

To analyze the convergence rate of IBO-HPC, we involve the expected improvement (EI) with a
surrogate PC s. This gives us the following proposition.

Under review as a conference paper at ICLR 2025

0.25
0.10
) 8 8
E E I
e It ©0.08{:
Z 8 8
3
0.06
0 2 1 . 0 2 4
wall-clock time (sec.) 1e7 wall-clock time (sec.) 1e6 wall-clock time (sec.) 1e7
(a) JAHS (CIFAR-10) (b) JAHS (C. Histology) (c) JAHS (F-MNIST)
0.064 T 0.100 B —— [BO
i IBO (w/ interaction@10)
0.062 = [BO (w/ interaction@5)
5 5 0.095 RS (w/ interaction@10)
g 0.060 g RS (w/ interaction@5)
2 = 7BO
80.058 £0.090 SMAC
BO w/ TPE
0.056 BOPro
0.0 0.5 1.0 000 BO wl R
. . . 0 5000 10000 vev Pri
wall-clock time (sec.) 1e6 wall-clock time (sec.) E;lorband
(d) NAS-Bench-101 (CIFAR-10) (e) NAS-Bench-201 (CIFAR-10) /\ time of interaction

Figure 2: IBO-HPC outperforms state of the art. For 5/5 tasks across three challenging benchmarks,
IBO-HPC is competitive with strong baselines when no user knowledge is provided. When beneficial
user beliefs (A) are provided, either after 5 iterations (—) or after 15 iterations (—), it outperforms
all competitors w.r.t. convergence and solution quality on 4/5 tasks.

Proposition 3 (Convergence of IBO-HPC). Assume a non-noisy differentiable L-Lipschitz continuous
function f : R® — R with global optimum h* € R? that is convex within a ball B,(h*) = {h €

4. ||h — h*|| < r}. Further, assume we have given a dataset D = {(hy,v1), ..., (hy,y,)} where
allh; € B, and y; = f(h;) and a decomposable, complete PC s over H U { F'} where the support
of H = B, and the support of F' = R. Assume s locally maximizes the likelihood over D and that
all leaves are Gaussians. Then, the convergence rate of IBO-HPC is lower bounded by the expected
improvement (EI) in each iteration, that is

Tzlw<Hef< “”) H rf(f}j)JrLei). “@

Here, T, is the number of induced trees of s (see Def. 4 in App. B.3), ¢; = ||p; + «; - diag(%;) — h*|],
each p; is the mean vector of a d-dimensional multivariate Gaussian defined by the i-th induced tree,
YJ; is the corresponding correlation matrix and hy is the best performing configuration until iteration
t. A proof'is given in App. B.3.

Intuitively, the EI (and thus the convergence rate) is determined by (1) the probability of sampling a
configuration in a region bringing us closer to h* and (2) how much we expect to move towards the
optimum h* if (1) occurs. While (1) is lower bounded by considering how close the mixture means
are to the best obtained configuration h} at iteration ¢, and how far off the mixture means are from the
optimum h*, (2) is lower bounded for each mixture component by ¢; and the Lipschitz constant L.

4 EXPERIMENTAL EVALUATION

We now provide an extensive empirical evaluation of IBO-HPC and aim to answer the following
research questions: (Q1) Can IBO-PC compete with prominent baseline HPO algorithms? (Q2)
How does the performance of IBO-HPC, provided with user knowledge at various points during
optimization, compare to existing approaches incorporating user knowledge ex ante? (Q3) Is IBO-
HPC capable of reliably recovering from misleading user interactions?

Under review as a conference paper at ICLR 2025

Experimental Setup. We compare IBO-HPC against seven diverse competitors: local search
(LS) (White et al., 2020), BO with random forest (RF) surrogate (Head et al.), and SMAC (Hutter
et al., 2011) as standard HPO methods. Furthermore, we used random search (RS) (Bergstra &
Bengio, 2012) with user priors, BOPrO (Souza et al., 2021), 7/BO (Hvarfner et al., 2022) and
Priorband (Mallik et al., 2023) which allow ex ante incorporation of user knowledge. Since Priorband
is a multi-fidelity method, we reserved the number of epochs as the fidelity in each benchmark. For
all non-multi-fidelity methods, set it to the highest possible value. For our evaluation, we employ
four real-world benchmarks, i.e., NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201 (Dong &
Yang, 2020) as tabular NAS benchmarks, JAHS (Bansal et al., 2022) as a surrogate benchmark for
joint architecture and hyperparameter search, as well as HPO-B (Arango et al., 2021) containing a
large collection of challenging OpenML tasks. We evaluate IBO-HPC on seven diverse tasks and five
different search spaces covering continuous, discrete, and mixed spaces. Our evaluation considers the
optimization of neural architectures and tree-based models on image and tabular data. For NAS (and
NAS+HPO), we consider CIFAR-10 (JAHS, NAS-Bench-101, NAS-Bench-201), Fashion-MNIST
(JAHS), and Colorectal Histology (JAHS). To make the optimization problem more challenging, we
extended the search space definition of JAHS (see App. D). This is possible since JAHS is a surrogate
benchmark. Additionally, we consider optimizing an XGBoost and random forest classifier on the
credit-g dataset, taken from the HPO-B benchmark. As usual, we optimize the validation accuracy as
our objective. All algorithms were repeated on 500 different seeds for a maximum of 2000 iterations
(100 iterations for HPO-B). We report the mean test error against computational cost and provide
standard error to quantify uncertainty. The computational costs are reported as the accumulated
wall-clock time of training and evaluation of each sampled configuration, where the benchmarks
provide wall-clock times for each configuration. All experiments were run on DGX-A100 machines.

User Interactions. For the experiments, beneficial and misleading user interactions have been defined
as user priors for each benchmark. To define priors, we randomly sampled 10k configurations and
kept the best/worst performing ones, denoted as h™ and h~, respectively. To demonstrate that user
priors over a few hyperparameters are enough to improve the performance of IBO-HPC significantly,
we defined beneficial interactions by selecting a small subset of hyperparameters H C H. Then,
we defined a prior over each H € H s.t. the probability of sampling the value of H given in h™,
denoted by h™[H], is 1000 times higher than sampling a different value than h*[H]. For misleading
interaction, £ was chosen to be large to demonstrate that IBO-HPC recovers even if a large amount
of misleading information is provided. We then defined priors over H as for beneficial interactions;
however, this time the probability to sample h~[H] is 1000 times higher than for other values for
each H € 7{. The priors were chosen to be rather strong since, as emphasized in Sec. 1, the stronger
the prior, the better TBO and BOPrO reflect user knowledge in their selection policy. Striving for a
fair comparison, we opted for such strong priors. Further, we aimed to show that IBO-HPC reliably
recovers from receiving large amounts of strongly misleading knowledge. Sometimes, it is easier for
users to specify a concrete value for certain hyperparameters instead of defining a distribution. Thus,
we also conducted experiments with priors defined as a point mass. See App. D for further details.

4.1 (Q1) IBO-HPC 1s COMPETITIVE IN HPO & NAS

To demonstrate the effectiveness of IBO-HPC, we ran IBO-HPC on all tasks without user interaction.
We compared its performance against two strong BO baselines and LS. Fig. 2 shows that the
performance of IBO-HPC without user interaction is competitive to or outperforms BO baselines in
4/5 tasks across the NAS-101/201 and JAHS benchmarks. We obtained similar results on HPO-B
(see App. D.3). These results show that IBO-HPC performs well in complex and realistic settings.
Also, it underlines that HPCs accurately capture characteristics of the objective function and that our
sampling-based selection policy reliably identifies good configurations. Besides the quality of the
final solution, we also observe that IBO-HPC converges at rates similar to those of the baselines. The
only exception, where SMAC and LS achieve better results than IBO-HPC, is NAS-101. While LS is
known to be a strong baseline for NAS (White et al., 2020; Den Ottelander et al., 2021), we posit that
SMAC’s more complex selection policy is particularly effective in handling sparse search spaces like
NAS-101, which comes with a much sparser representation than NAS-201 and JAHS. To summarize,
we state that IBO-HPC is competitive with existing strong BO baselines when no interaction takes
place, and answer (Q1) affirmatively.

Under review as a conference paper at ICLR 2025

0.25 0.200
0.175
L 0.20 o0
g 50.150 5
5 g E
£0.15 50125 2o.08
2 £0.100 £
0.10 0.075 0.06
0 2 4 0 1 2 3 0 2
wall-clock time (sec.) 1e7 wall-clock time (sec.) 1e6 wall-clock time (sec.) 1e7
(a) JAHS (CIFAR-10) (b) JAHS (C. Histology) (c) JAHS (F-MNIST)
0.064 0.1000
0.062 0.0975
8 50.0950 — IBO
E 0.060 g IBO w/ interaction@5
3 2 0.0925 = [BO w/ 4 interactions
20.058 20.0900 7TBO Recover
BOPrO Recover
0.056 0.0875 /\ misleading interaction
0.0 05 10 0.0850, 5000 10000 /\ beneficial interaction
wall-clock time (sec.) 1e6 wall-clock time (sec.)

(d) NAS-Bench-101 (CIFAR-10) (e) NAS-Bench-201 (CIFAR-10)

Figure 3: IBO-HPC recovers from misleading interactions. IBO-HPC automatically recovers (—)
from misleading feedback provided as point values at the Sth iteration of the search (1st A). Also,
when providing harmful and beneficial beliefs alternatively (A /A), IBO-HPC (—) catches up with
or outperforms 7BO (----) and BOPrO (----) in 4/5 cases.

4.2 (Q2, Q3) INTERACTIVE AND RESILIENT HPO & NAS wiTH IBO-HPC

We now demonstrate that IBO-HPC successfully handles various kinds of user knowledge (point
values and distributions), analyze the benefits of user knowledge w.r.t. convergence speed, and
demonstrate IBO-HPC'’s recovery from misleading beliefs. Therefore, different beneficial and
misleading user beliefs about hyperparameters for all benchmarks were defined (details in App. D).

Beneficial Interactions. Fig. 2 shows a clear positive effect of providing beneficial user beliefs
(i.e. distribution or fixing hyperparameters) to IBO-HPC across all tasks. This holds for very early
interactions (after 5 iterations; — and —) and later interactions (after 15 iterations; —). Remarkably,
we observed a clear benefit in terms of convergence speed and improvement in solution quality,
especially for more complex search spaces. Besides outperforming strong HPO baselines incapable
of incorporating user knowledge, IBO-HPC is competitive to or outperforms 7BO, Priorband and
BOPrO, which assume user priors to given ex ante. These results show that IBO-HPC'’s policy reflects
user beliefs accurately and leverages provided knowledge effectively by sampling configurations
that are promising according to both, user belief and the surrogate HPC. App. D provides additional
experiments on HPO-B showing similar results.

Recovery and Multiple Interactions. User beliefs could also be misleading for the optimization
process; thus, an interactive HPO algorithm should recover from such misleading interactions and
allow users to correct their initial beliefs. We demonstrate that IBO-HPC recovers from misleading
user knowledge by deliberately providing IBO-HPC with known sub-optimal values for a large number
of hyperparameters to ensure a significant negative effect on the optimization process (see App. D for
details). Fig. 3 shows that IBO-HPC (—) recovers similarly well or better as 7BO and BOPrO from
misleading interactions. In most cases, IBO-HPC catches up with standard HPO competitor methods.
This confirms that IBO-HPC'’s recovery mechanism works reliably and that misleading user beliefs
do not deteriorate IBO-HPC’s performance in the long run. Again, on NAS-101, IBO-HPC is less
effective, which we attribute to the sparse nature of NAS-101 (see Sec. 4.1). Since users might revise
their beliefs when no improvement is obtained, we demonstrate that IBO-HPC successfully handles
multiple, contradictory interactions. Therefore, we first provided IBO-HPC with the same misleading
beliefs as before at an early stage (after 5 iterations), followed by an alternation of beneficial and

Under review as a conference paper at ICLR 2025

% 1200 18

S Il [BO-HPC runtime (%) Int i 16

%} [1 SMAC runtime (%) 16 nteractlon@

;1000 + + —— Interaction@5

> 14

4

£ 800 12

2)

8 600 10

(] 3] 8

£ &

S 400 I [

3 6

& [_

£ 200 4 T J

k| 2 J

& 0 L] T +
NAS-20INAS-101 JAHS = JAHS JAHS 0 NAST01 NASZ01 JAHS JAHS JAHS

(C-10) (C-10) (C-10) (FM) (CH) (C-10) (C-10) (C-10) (FM) (CH)

Benchmark (ordered by #hyperparameters) Benchmark

(a) (b)

Figure 4: IBO-HPC achieves considerable runtime improvements. (a) IBO-HPC is more efficient
than SMAC in 4/5 cases (averaged over 20 runs). With the number of hyperparameters increasing,
the gap between IBO-HPC and SMAC in terms of computational efficiency is larger. Runtimes of
2000 iterations normalized between [0, 1] are reported per benchmark (highest obtained runtime for a
given benchmark is 1). (b) Beneficial interactions lead to significant speed-ups, from 2 to 10x.

harmful beliefs every 10 iterations. As expected, the misleading interactions decelerate IBO-HPC,
and the recovery mechanism is triggered. In contrast, with beneficial interactions, IBO-HPC quickly
catches up with the competitors or even outperforms them, confirming that IBO-HPC leverages
valuable feedback in critical conditions (see Fig. 3 (—) and App. D).

Speed-up. Both, the runtime of the optimization loop (fitting surrogate and suggesting the next
configuration) and convergence speed are crucial for efficient HPO. We, therefore, analyze the average
runtime of IBO-HPC’s optimization loop and the increase in convergence speed when valuable user
knowledge is provided to IBO-HPC as a distribution. In Fig. 4 (a) we compare the runtime of the
optimization loop of SMAC and IBO-HPC, averaged over 20 runs. IBO-HPC is considerably faster
than SMAC in 4/5 cases, especially in larger search spaces. We attribute this to the efficiency of PCs
and of our selection policy (i.e., conditional sampling). In Fig. 4 (b), we ran IBO-HPC without user
interaction and obtained the wall-clock time needed for the best evaluation result (denoted as t,,).
Then, we ran IBO-HPC with beneficial user knowledge and measured the estimated wall-clock time
until IBO-HPC found an equally well or better-performing configuration (denoted as ¢;). Fig. 4 (b)
reports the relative performance speedup ttT for all 500 runs. A median speed-up of 2 to 10x with
useful user interactions, clearly demonstrates IBO-HPC’s increase in convergence speed while saving
resources. Since IBO-HPC effectively incorporates various user interactions, leading to remarkable
speedups, and provides a reliable recovery mechanism, we answer (Q2) and (Q3) positively.

5 CONCLUSION

We introduced a novel definition of interactive BO policies and an interactive BO method named
IBO-HPC that leverages the flexible inference of probabilistic circuits to flexibly incorporate user
beliefs. With no user knowledge, IBO-HPC is competitive with strong baselines and it outperforms
competitors when knowledge is available. Also, it reliably recovers from misleading user beliefs and
converges significantly faster when provided with valuable user knowledge, thus, saving resources.

Limitations & Future Work. Whereas IBO-HPC enables flexible interactive BO, the necessity to
retrain the surrogate model at each iteration remains. Thus, prospective directions could explore
methods of continual learning (Mundt et al., 2023) to increase the overall efficiency and knowledge
reuse over different HPO and NAS settings. Moreover, to model hybrid domains, we relied on
HPCs employing piecewise polynomials that might not be sufficient to model complex distributions.
Therefore, more sophisticated alternatives could further improve performance.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Sebastian Pineda Arango, Hadi S. Jomaa, Martin Wistuba, and Josif Grabocka. Hpo-b: A large-scale
reproducible benchmark for black-box hpo based on openml, 2021.

Archit Bansal, Danny Stoll, Maciej Janowski, Arber Zela, and Frank Hutter. Jahs-bench-201: A
foundation for research on joint architecture and hyperparameter search. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(2), 2012.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas,
Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, Difan Deng, and Marius Lindauer.
Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), 2023.

Xavier Bouthillier and Gaél Varoquaux. Survey of machine-learning experimental methods at
NeurIPS2019 and ICLR2020. Research report, Inria Saclay Ile de France, January 2020.

Leo Breiman. Random forests. Machine learning, 45:5-32, 2001.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. Technical report, UCLA, 2020.

Tom Den Ottelander, Arkadiy Dushatskiy, Marco Virgolin, and Peter A. N. Bosman. Local search
is a remarkably strong baseline for neural architecture search. In Evolutionary Multi-Criterion
Optimization: 11th International Conference, 2021.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations (ICLR), 2020.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter opti-
mization at scale. In International Conference on Machine Learning (ICML), 2018.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Robert Gens and Pedro Domingos. Learning the structure of sum-product networks. In Proceedings
of the 30th International Conference on Machine Learning, volume 28, pp. 873-880. PMLR, 2013.

Tim Head, MechCoder Gilles, Louppe laroslav, Shcherbatyi fcharras, Zé Vinicius, cmmalone,
Christopher Schroder, nel215, Nuno Campos, Todd Young, Stefano Cereda, Thomas Fan, Justus
Schwabedal, Mikhail Hvass-Labs, Pak SoManyUsernamesTaken, Fred Callaway, Loic Esteve,
Lilian Besson, Peter M. Landwehr, Pavel Komarov, Mehdi Cherti, Kejia (KJ) Shi, Karlson
Pfannschmidt, Fabian Linzberger, Christophe Cauet, Anna Gut, Andreas Mueller, and Alexander
Fabisch. skopt. URL https://github.com/scikit-optimize/scikit-optimize.

Samuel Horvéth, Aaron Klein, Peter Richtarik, and Cedric Archambeau. Hyperparameter transfer
learning with adaptive complexity. In International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 1378-1386, 2021.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Learning and Intelligent Optimization: 5th International
Conference, 2011.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Identifying key algorithm parameters
and instance features using forward selection. In Learning and Intelligent Optimization: 7th
International Conference, 2013.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient approach for assessing hyperpa-
rameter importance. International Conference on Machine Learning (ICML), 2014.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated Machine Learning: Methods,
Systems, Challenges. Springer Nature, 2019.

11

https://github.com/scikit-optimize/scikit-optimize

Under review as a conference paper at ICLR 2025

Carl Hvarfner, Danny Stoll, Artur Souza, Marius Lindauer, Frank Hutter, and Luigi Nardi. mbo:
Augmenting acquisition functions with user beliefs for bayesian optimization. In International
Conference on Learning Representations (ICLR), 2022.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13:455-492, 1998.

Ron Kohavi and George H. John. Automatic parameter selection by minimizing estimated error. In
International Conference on Machine Learning (ICML), 1995.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations (ICLR), 2019.

Neeratyoy Mallik, Eddie Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lindauer,
Luigi Nardi, and Frank Hutter. Priorband: Practical hyperparameter optimization in the age of
deep learning. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

J. Mockus. On the bayes methods for seeking the extremal point. IFAC Proceedings Volumes, 8(1,
Part 1):428-431, 1975.

Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana Esposito, and
Kristian Kersting. Mixed sum-product networks: A deep architecture for hybrid domains. In AAAI
Conference on Artificial Intelligence, 2018.

Julia Moosbauer, Julia Herbinger, Giuseppe Casalicchio, Marius Lindauer, and Bernd Bischl. Explain-
ing hyperparameter optimization via partial dependence plots. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Martin Mundt, Yongwon Hong, Iuliia Pliushch, and Visvanathan Ramesh. A wholistic view of
continual learning with deep neural networks: Forgotten lessons and the bridge to active and open
world learning. Neural Networks, 160:306-336, 2023.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro M. Domingos. On theoretical
properties of sum-product networks. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2015.

Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cedric Archambeau. Scalable hyper-
parameter transfer learning. In Advances in Neural Information Processing Systems (NeurIPS),
volume 31, 2018.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International Conference on Machine Learning (ICML), 2018.

Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. Tunability: Importance of hyperparameters
of machine learning algorithms. The Journal of Machine Learning Research, 20(1):1934-1965,
2019.

Anil Ramachandran, Sunil Gupta, Santu Rana, Cheng Li, and Svetha Venkatesh. Incorporating expert
prior in bayesian optimisation via space warping. Knowledge-Based Systems, 195:105663, 2020.

Carl Rasmussen and Christopher Williams. Gaussian Processes for Machine Learning. MIT Press,
2006.

David Salinas, Huibin Shen, and Valerio Perrone. A quantile-based approach for hyperparameter
transfer learning. In International Conference on Machine Learning (ICML), pp. 8438-8448, 2020.

Sarah Segel, Helena Graf, Alexander Tornede, Bernd Bischl, and Marius Lindauer. Symbolic
explanations for hyperparameter optimization. In International Conference on Automated Machine
Learning, 2023.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148-175, 2016.

12

Under review as a conference paper at ICLR 2025

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems (NIPS), 2012.

Artur L. F. Souza, Luigi Nardi, Leonardo B. Oliveira, Kunle Olukotun, Marius Lindauer, and Frank
Hutter. Bayesian optimization with a prior for the optimum. In European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD),
2021.

Joaquin Vanschoren. Meta-learning: A survey, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NIPS), 2017.

Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian
optimization, 2022.

Shuhei Watanabe, Archit Bansal, and Frank Hutter. PED-ANOVA: efficiently quantifying hyper-
parameter importance in arbitrary subspaces. In International Joint Conference on Artificial
Intelligence (IJCAI), 2023.

Colin White, Sam Nolen, and Yash Savani. Exploring the loss landscape in neural architecture search.
In Conference on Uncertainty in Artificial Intelligence (UAI), 2020.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta
Dey, and Frank Hutter. Neural architecture search: Insights from 1000 papers. arXiv preprint
arXiv:2301.08727, 2023.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Sequential model-free hyperparameter
tuning. In 2015 IEEE International Conference on Data Mining, pp. 1033—-1038, 2015.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In International Conference on
Machine Learning (ICML), 2019.

Dani Yogatama and Gideon S. Mann. Efficient transfer learning method for automatic hyperparameter
tuning. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2014.

Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos. Collapsed variational inference for
sum-product networks. In Proceedings of The 33rd International Conference on Machine Learning,
volume 48, pp. 1310-1318. PMLR, 2016.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations (ICLR), 2017.

13

Under review as a conference paper at ICLR 2025

A MOTIVATION & REAL-WORLD EXAMPLE

Reflecting user knowledge accurately is crucial for interactive HPO methods to fully benefit from
human knowledge and improve trustworthiness. Existing weighting scheme based methods like TBO
and BOPrO fail to reflect user priors accurately in their selection policy as it can be seen in Fig. 5 (a).
Here, we show a 1d-example of a Branin function with an optimum around x = 0.5. The user prior
(in red) is placed at x = 0.3. Both 7BO and BOPrO fail to select the next configuration from the
high-density region of the prior; thus, the user prior is not incorporated in the selection process as
a user would expect. We followed the recommendation of (Hvarfner et al., 2022) and set 3 = %
where we ran 7BO for 7" = 10 iterations. Our method, IBO-HPC, solves this issue, which we now
demonstrate based on a real-world example.

To this end, we ran 7BO, BOPrO — both of which leverage a weighting scheme to incorporate user
priors —, and IBO-HPC for 7" = 100 iterations on the CIFAR-10 task of the JAHS benchmark (Bansal
et al., 2022). Thus, we set the decay parameter of 7BO to 10. We specified a Gaussian prior
distribution with 4 = 1 and o = 0.3 (Fig. 5 (b), purple) over the hyperparameter RESOLUTION
(R) that controls the down-/up-sampling rate of an image fed into a neural network. The rest of the
hyperparameters for this specific task (i.e. the network architecture and all other hyperparameters;
see App. D for details) were optimized by 7BO, BOPrO and IBO-HPC without any user knowledge.
All methods received the same user prior (7BO and BOPrO from the beginning of the optimization;
IBO-HPC after 5 iterations). From the iteration the user prior was provided on, we then considered
the values chosen for RESOLUTION by 7BO, BOPrO, and IBO-HPC for the next 20 iterations and
estimated a density of selected values for R (see Fig. 5 (b)). We chose 20 as the horizon under
consideration because for higher (3, the prior is weighted down later in 7BO (see (Hvarfner et al.,
2022), Alg. 1) and BOPrO (see (Souza et al., 2021) Eq. 4). In the JAHS setup with 7" = 100 and
B = 10, the prior is weighted down after the 10th iteration in 7BO and BOPrO. In the 20th iteration,
7BO and BOPrO exponentially weigh down the prior with exponent 0.5. The density value of the
mode of our prior is then 1.26°° ~ 1.12. For IBO-HPC, we chose the decay v = 0.995; hence,
after 20 iterations, we get 1.26 - 72° ~ 1.14 for the mode of the prior. Thus, we weigh down the
prior by approximately the same factor in 7TBO, BOPro, and IBO-HPC, ensuring a fair comparison.
We obtained that neither the choices for R by #BO (green dashed line) nor the choices of BOPrO
(red dashed line) reflect the user prior as specified. While 7BO’s choices of RESOLUTION are
biased towards smaller values, BOPrO does not reflect the user’s uncertainty well in its choices of
RESOLUTION. In contrast, IBO-HPC (blue solid line) precisely reflects the user prior as specified (up
to random variations due to sampling).

——- w. mBO acquistion =~ —— 7BO acquistion x Observations
0.15 3.0 I
0.10 I\
S . 2.5 I
= =)] \
=]
£ 0.05 g 2.0 -
g a
s 0.00 3 1
o 2.0 g \
m ©
5] 0.075 o
:
g 0.050 §
U
= 0.025
01 +0.000
-1.0 =05 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
X Hyperparameter R (Image Resolution)
—— User prior —— BOPrO acquistion ——-w. BOPrO acquistion ==' 7BO selectim.] IEO‘IZP% SelfCtifm
——. 1D Branin Function Next configuration == BOPrO selection —— user-defined prior
(b)

(a)

Figure 5: IBO-HPC reflects user priors as specified. In contrast to other weighting scheme based
methods like 7BO and BOPrO, IBO-HPC reflects the user prior as specified in its selection policy.

B PROOFS

In this section we provide the proof of Proposition 1 of the main paper.

14

Under review as a conference paper at ICLR 2025

B.1 IBO-HPC’s PoLICY IS FEEDBACK ADHERING INTERACTIVE

Proposition 1 (IBO-HPC Policy is feedback adhering interactive). Given a search space ® over
hyperparameters H, an HPC s € S, user knowledge KL € IC in form of a prior ¢ over H C H s.t.
f?—t\’ﬁt s(H|F = f*) # q(*H), the selection policy of IBO-HPC is feedback adhering interactive.

Proof. We have to show that the policy of IBO-HPC is feedback adhering, i.e. it conforms with
Def. 3: The distribution over the configuration space used to obtain new configurations is different
if user knowledge is provided from the distribution used if no user knowledge is provided (policy
is efficacious) and the provided user knowledge is represented during configuration selection as
specified (feedback adhering).

We first show that the selection policy of IBO-HPC is efficacious.

IBO-HPC selection policy is efficacious. Since the decay mechanism allowing IBO-HPC to
recover from misleading knowledge can be treated as a constant in each iteration, it is enough if

S(H\H/H =hF=f*)-qH=h)#sH\HIH=0F=f*) q(# = 0) holds for any
surrogate s representing a joint distribution over search space ‘H and prior ¢ over H C H to make
the policy efficacious. Note that we assume that /C is given in form of a prior ¢(#) over H as before.

Since () ¢ H is assumed, our policy ignores any prior if no user knowledge is provided. Thus, in this
case, the policy samples from the distribution

SCHIF = f*) = s(H\HIFHLF = 7). /H LSE= 1))

Since s(H \ H|H, F = f*) is the same, regardless of whether user knowledge is given or not, user
knowledge will lead to a different distribution if f?-t\'ﬁt s(H|F = f*) # q(*H) holds. Since Prop. 1
demands that this is the case, our policy is efficacious according to Def. 2.

We can now proceed and show feedback adherence of the IBO-HPC selection policy.

IBO-HPC selection policy is feedback adhering. The proof that our policy is feedback adhering

directly follows by design: If a user prior g(#) is given, Eq. 3 is approximated by sampling N
conditions h} ~ q(#H) and computing N conditionals s(# \ H|H = b, F = f*),...,s(H \
H|H = by, F = f*). We can approximate ¢(#) arbitrarily close with N — oo. To select
the next configuration, we sample B configurations from each of the /V conditionals and select the
configuration maximizing s(H|F = f*) for each conditional. This leaves us with NV candidates. Note
that at this point, the hyperparameters # still follow ¢(?) with N — oo as the conditions of s(# \
HIH = W), F = f*),...,s(H \ H|H = h'y, F = f*) remain fixed and only hyperparameters
of the set 7 \ H can vary/are sampled. Thus, maximizing the likelihood s(#|F = f*) is only
done w.r.t. hyperparameters in H \ H. This implies that sampling hyperparameters H \ H can

be biased while sampling from (%) is unaffected because the conditions h, - are sampled first
in i.i.d. fashion. Our policy selects the configuration evaluated next by uniformly sampling from
the remaining NV candidates. Since uniformly sampling L times from a set of [V samples from a
distribution g results in approximating q arbitrarily close for N — oo and L — oo, we conclude that
user priors are exactly reflected as specified in our selection policy. This concludes our proof that the
selection policy of IBO-HPC is efficacious and feedback adhering. O

B.2 IBO-HPC MINIMIZES SIMPLE REGRET

We introduce the following proposition:

Proposition 4 (IBO-HPC minimizes Simple Regret). /BO-HPC minimizes simple regret, which is
defined as r = f(h) — f(h*) for a hyperparameter configuration h € © and global optimum h*.

Proof. Assume that w > 0 holds for each weight w of a PC s, that each leaf node of s is a distribution
p s.t. p(x) > 0 for some x and assume f is not noisy. Then, the PC fulfills the positivity assumption,
ie. s(H="h,F = f(h)) > 0. It follows that s(H = h|F = f*) > 0 forany f* and any h € ©.

15

Under review as a conference paper at ICLR 2025

Thus, with iterations 7' — oo, the probability of sampling the global optimum h* in one of the
iterations gets 1, and thus r = f(h*) — f(h*) = 0. O

B.3 CONVERGENCE SPEED OF IBO-HPC

In this section, we analyze the convergence speed of IBO-HPC at each iteration. Therefore, let us
state a well-known result of the PC literature on which our analysis is based.

Definition 4. Induced Trees (Zhao et al., 2016). Given a complete and decomposable PC s over
H={Hy,...,H,}, T = (Tv,Tg) is called an induced tree PC from s if

1. N € Ty where N is the root of s.

2. for all sum nodes S € Ty, exactly one child of S in s is in Ty, and the corresponding edge
isin Tg.

3. for all product node P € Ty, all children of P in s are in Ty, and the corresponding edges
in TE

We can use Def. 4 to represent decomposable and complete PCs as mixtures (Zhao et al., 2016).

Proposition S (Induced Tree Representation). Let 7, be the total number of induced trees in s. Then
the output at the root of s can be written as y_,° ; ik jyetsn wri [T, pe(H; = h;), where Ty is

the t-th unique induced tree of s and p;(H;) is a univariate distribution over H; in T; as a leaf node.

With this, we are ready to analyze the convergence speed of IBO-HPC in each iteration. Assume a
non-noisy differentiable L-Lipschitz continuous function f : R? — R with global optimum h* € R¢
that is convex within a ball B,.(h*) = {h € R? : ||h — h*|| < r}. Further, assume we have given
a dataset D = {(hy,v1),...,(h,,yn)} where all h; € B, and y; = f(h;) and a decomposable,
complete PC s over H U { F'} where the support of H = B, and the support of F' = R. Assume
s locally maximizes the likelihood over D and that all leaves are Gaussians. Note that LearnSPN
yields decomposable and complete PCs that locally maximize the likelihood of the given data (Gens
& Domingos, 2013).

We analyze the convergence properties of our algorithm by examining the expected improvement (EI)
in each iteration. Therefore, denote the best score obtained until iteration ¢ as ¥; and its corresponding
configuration as h;. For better readability, we write s(H = h|F' = y}) as s(h|y;) from now on.
Then, the expected improvement of IBO-HPC within B, is given by

[sthlyi) - 1ir) < 7] - £(h) ©
heB,
h}
= [sl). @
Here, w.l.o.g. we assume that hj < hj, for all dimensions k € {1,...,d} and call I the indicator

function. Using Prop. 5, the fact that the first product of the induced tree representation of a PC s
acts as an edge selector, the fact that the conditional of a PC is a PC again, and the Gaussian leaf
parameterization of s, we can write s as a Gaussian Mixture, i.e., s(h|y;) = Y72 wo(h; p;, ;).
Here, ¢ is the density of the Gaussian distribution parameterized by mean g and covariance matrix >
and corresponds to the second product in the induced tree representation of s. Thus, Eq. 6 can be
rewritten as

S [otz - £ ®
=1

Due to the L-Lipschitz assumption, || f(h) — f(h')|| < L-||/lh—h’|| holds for all h, h’ € B,.. Hence,
we can use a Taylor approximation and write f(h) ~ f(h*) + Vf(h*) - ||h — h*|| which is upper
bounded by f(h*) + L|/h — h*||. Then, we can write an upper bound of EI as

16

Under review as a conference paper at ICLR 2025

Sowi [othis B (70) + Ll -) ©)
i=1 h*

s h? h;

=3 w < [otipn s s+ [othips S L~ h*||>> (10)
i h* h*

—sz(B [o i, B + B fone (1)]). (an

h*

In the last step, we defined gn+(h) := L||h — h*||. Note that we take the expectation w.r.t. the
truncated normal distribution because we consider the interval [h*, h¥]. Also note that f(h*) is
constant. Thus, we can omit it for the sake of convergence analysis. Since g~ is linear, we can use
the linearity of the expectation and write

sz (¢h pir 2)+gh*(ﬂ‘3¢i[h])) (12)
:iwz (((hi; i, 3i) — @(h"; pi, 54)) + L|[Eg, [h] — h*|\), (13)

where @ (h; p,) is the cumulative distribution function of multivariate Gaussian. Since the expec-
tations E4, [h] are taken over the truncated normal, they can be lower bounded by g + « - diag(X).
Thus, we have to set a series of «; where each «; = min(h; — p;, h* — p;). Then, we can write

S (@005 10, 20) — (0% i, 50)) + (e + 0 diag(2) ~ 1)) (14)
Setting €; = ||p; + a; - diag(X;) — h*|| and splitting the sum yields

iwi O (hy; i, X5) sz h*; i, i) + i:wiLGi~ (15)
i=1 i=1

U%ing that the cumulative multivariate Gaussian ®(h}; p;,%;) can be lower bounded by
H 1 ®(hj;; iy, X4,), we can lower-bound the entire equation, giving us

sz H(I) ht]auma z“ sz H‘I)]7,U’zja i +szL€z (16)

Since ®(*£) = 1 (1 + erf()) holds, we rewrite

Zwl Herf(] “”) Zwl Herf(EZ“?J) +:_ZslwiLq a7
zzswi- (Herf(u”) Herf(S f;]) —l—LeZ) (18)
i=1 55

Note that we dropped constants and scaling by = of the error function as it does not affect the overall
result.

Under review as a conference paper at ICLR 2025

Intuitively spoken, the EI is lower bounded by the cumulative probability mass (given by error
function erf) within the region defined by the largest discrepancy between minimal error w.r.t. to the
observed data (i.e., bad convergence when s overfits) and the maximal error w.r.t. h* (i.e., D does
not contain points close to the optimum), multiplied by a linear approximation of the objective f
between the best observed configuration h; and h*.

Note that this result does not incorporate user knowledge. The analysis of the effect of user knowledge
is straightforward. If helpful user knowledge is given, this can be seen as shifting at least one
dimension j of at least one mean vector gy by some ¢ towards h*, i.e., o, = pr +(0,...,9,...,0).
Then, assuming all ¥; stay as above,

d h — d h* — ;.
Zwi.(Herf(_gijjxl/%])_jl;[erf<_£ijj\‘/‘§3)+lz€i)

i=1 j=1 1
T, d d
E h*_ﬂz /.L»LJ
< 3w (JLet(R2—20) - T erf(2)+ Lei)
i=1,ik j=1 Eijj\/i j=1 i \/_

This is easy to see since the distribution we sample configurations from is shifted towards the global
optimum h*, thus increasing the probability of sampling a configuration closer to h*, ultimately
leading to faster convergence.

B.4 AcCCURACY OF IBO-HPC’S SELECTION PoOLICY

Here, we briefly discuss the accuracy of IBO-HPC’s policy in selecting new configurations for
evaluation based on the obtained data (see Eq. 2). Note that the sampling from the distribution
provided in Eq. 2 is accurate if (1) the s represents the data D accurately and (2) sampling from s and
the prior ¢ is unbiased (i.e., samples are drawn according to the underlying distribution). Let us start
with (1). Since we employ LearnSPN (Gens & Domingos, 2013) to obtain s (a PC in form of SPN), s
will locally maximize the log-likelihood of the training data (i.e., the configuration-evaluation pairs
obtained). This means that there is no other SPN in the space of the learnable SPNs via LearnSPN
that achieves a better log-likelihood given the data.> Hence, as long as the ground truth distribution p
(or a good approximation of it) is representable by an SPN, we can recover p with arbitrarily small
error with iterations 7" — oo.

Looking at (2), we sample from two distributions when selecting a new configuration. First, we
sample from the prior ¢, then from the conditional s(# \ H|# = h,F = f*) where h ~ q.
Assuming ¢ is a tractable distribution (e.g., a parametric one such as an isotropic Gaussian), sampling
is immediate and not biased (i.e., performed via simple transformations such as the Box-Muller
transform). Note that the assumption on ¢ being a tractable (and relatively simple) distribution can
be made safely since providing highly complex distributions as user knowledge is hard to do for
most users. When considering sampling from the conditional s(\ H|# = h, F' = f*), it should
be noted that this conditional is a valid PC again (specifically, a PC in the form of an SPN when
obtained with LearnSPN). The model is unchanged and only evaluated differently, i.e., by providing
the partial evidence at leaves and evaluating the model bottom-up first (see Choi et al. (2020)). Then,
PC sampling is performed top-down by sampling from the simple categorical variables represented
by the sum nodes and then from the selected univariate leaves. Thus, the process is tractable (linear
in the circuit size) and not biased by further operations or assumptions (Choi et al., 2020). Thus, we
conclude that the approximation in Eq. 2 is accurate in the limit N, 7" — oo.

C PROBABILISTIC CIRCUITS

Since probabilistic circuits (PCs) are a key component of our method, we provide more details on
these models in the following. Let us first start with a rigorous definition of PCs.

?Assuming an oracle for the variable splitting. See Proposition 1 in Gens & Domingos (2013).

18

Under review as a conference paper at ICLR 2025

Definition 5. A probabilistic cricuit (PC) is a computational graph encoding a distribution over a
set of random variables X. It is defined as a tuple (G, ¢) where G = (V, E) is a rooted, directed
acyclic graph and ¢ : V — 2% is the scope function assigning a subset of random variables to each
node in G. For each internal node N of G, the scope is defined as the union of scopes of its children,
i.e. p(N) = Unreen(n)- Each leaf node L computes a distribution/density over its scope ¢(L). All
internal nodes of G are either a sum node S or a product node P where each sum node computes a
convex combination of its children, i.e., S =" cch(s) WS,N N, and each product computes a product

of its children, i.e., P = [[ycapy N-

With this definition at hand, we describe the tractable key operations of PCs relevant to our method in
more detail.

Inference. Inference in PCs is a bottom-up procedure. To compute the probability of given evidence
X = x, the densities of the leaf nodes are evaluated first. This yields a density value for each leaf.
The leaf densities are then propagated bottom-up by computing all product/sum nodes. Eventually,
the root node holds the probability/density of x. Note that typically, multiple leaf nodes correspond to
the same random variable. Thus, if the children of a sum node have the same scope, we can interpret
sum nodes as mixture models. Conversely, if the children of a product node have non-overlapping
scopes, a product node can be interpreted as a product distribution of two (independent) random
variables. We call these two properties smoothness and decomposability. More formally, smoothness
means that for each sum node S € V it holds that $(N) = ¢(N’) for N, N’ € ch(S). Decomposability
means that for each product node P € V it holds that $(N) N ¢(N’) =) for N,N’ € ch(P), N # N'.
Hence, PCs can be interpreted as hierarchical mixture models.

Marginalization. Decomposability implies that marginalization is tractable in PCs and can be
done in linear time of the circuit size. This is because integrals that can be rewritten by nesting
single-dimensional integrals can be computed only in terms of leaf integrals, which are assumed to
be tractable as they follow certain distributions (e.g., Gaussian). Computing such nested integrals
only in terms of leaf integrals is possible because single-dimensional integrals commute with the
sum operation and affect only a single child of product nodes. For more details on the computational
implications of decomposability, refer to (Peharz et al., 2015).

Practically, there are two ways to marginalize certain variables from the scope of a PC. One approach
is structure-preserving, and marginalization is achieved by setting all leaves corresponding to the set
of random variables that are supposed to be marginalized to 1. The second approach constructs a
new PC representing the marginal distribution, i.e. the structure of the PC is changed. The second
approach is beneficial if samples should be drawn from the marginalized PC because the sampling
procedure remains the same, i.e. the PC is adopted to obtain the marginal distribution, not vice versa.

Conditioning. Computing a conditional distribution p(X;|Xs2) = T z (;(()X) where X; UXy =X
X2

and X; N Xy = () is achieved by combining marginalization (denominator) and inference (numerator).
Since inference is tractable for PCs in general and marginalization is tractable for decomposable PCs,
conditioning is also tractable.

Sampling. Sampling in PCs is a top-down procedure and recursively samples a sub-tree, starting at
the root. Each sum node S holds a parameter vector w s.t. ZLSB(S” w; = 1. Based on the distribution
induced by w, one of the children of S is sampled as a sub-tree. By decomposability, the scope of the
children of a product node is non-overlapping; thus, sampling from a product node corresponds to
sampling from all its child nodes. If a leaf node is reached, a sample is obtained from the distribution

at that leaf.

Learning. Learning PCs consists of two steps: Identify the structure of the PC and learn the parame-
ters of the PC. A common approach to learning both the structure and parameters is LearnSPN (Gens
& Domingos, 2013). We employ LearnSPN to learn the PC after obtaining new data. The basic
idea of LearnSPN is to split the data by alternating clustering (i.e., split the data along the sample
dimension) and independence tests (i.e., split the data along the features dimension). In other words,
the data matrix is split by rows (samples) and columns (features). Usually, rows are clustered when
the independence test fails in splitting the features. Clusters correspond to sum nodes in the learned
PC, while product nodes correspond to successfully passed independence tests (assessing that two
subsets of features are statistically independent). The parameters (i.e., weights of sum nodes) are

19

Under review as a conference paper at ICLR 2025

set proportional to the cluster sizes of clusters represented by the child nodes of a sum node. Leaf
parameters are commonly defined via maximum likelihood estimation.

D EXPERIMENTAL DETAILS
Here we present additional details of our empirical evaluation.

D.1 SEARCH SPACE EXTENSION OF JAHS

To make the HPO problem on JAHS more challenging, we decided to extend the search space slightly
as JAHS - as a surrogate benchmark — allows us to query hyperparameter values which were not
tested explicitly in the benchmark. We defined three search spaces for JAHS which are presented in
the following table.

S1 S2 S3
Activation [Mish, ReLLU, Hardswish] [Mish, ReLU, Hardswish] [Mish, ReLU, Hardswish]
Learning Rate [1e-3, 1e0] [1e-3, 1e0] [1e-3, 1e0]
Weight Decay [1e-5, 1e-2] [1e-5, 1e-2] [1e-5, 1e-2]
Trivial Argument | [True, False] [True, False] [True, False]
Opl 0-6 0-6 0-6
Op2 0-6 0-6 0-6
Op3 0-6 0-6 0-6
Op4 0-6 0-6 0-6
Op5 0-6 0-6 0-6
Op6 0-6 0-6 0-6
N 1-15 1-11 1-5
W 1-31 1-23 1-16
Epoch 1-200 1-200 1-200
Resolution 0-1 0-1 0-1

Table 1: JAHS Search Space. We define three versions of the JAHS search space, ranging from
simpler to harder spaces.

20

Under review as a conference paper at ICLR 2025

D.2 INTERACTIONS

Here we provide the interactions used for our experiments.

JAHS The following JSON code shows the interactions performed in our JAHS experiments. The
first interaction is a misleading interaction, followed by a beneficial interaction and a no interaction
(for recovery).

[

"type" : "phad" ,

"intervention": {"Activation": 1, "LearningRate":
0.8201676371308472, "N": 15,

"Opl": 3, "Op2": 4, "Op3": 1, "Op4": 2, "Resolution":
0.5096959403985494,

"TrivialAugment": 0, "wW": 14,

"WeightDecay": 0.002697686639935806, "epoch": 10},

"iteration": 5
b
{
"type": "good",
"intervention": {"N": 3, "W": 16, "Resolution": 1},
"iteration": 15
b
{
"type": "good",
"intervention": null,
"iteration": 20
b
{
"type": "qood",
"kind": "dist",
"intervention": {"N": {"dist": "cat", "parameters":
(1, 1, 1, le4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11},
"W": {"dist": "cat", "parameters":
(L, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, led]l},
"Resolution": {"dist": "uniform", "parameters": [0.98,
1.021}1},
"iteration": 5

]

NAS-Bench-101 The following JSON code shows the interactions performed in our experiments on
NAS-Bench-101. The first interaction is a misleading interaction, followed by a beneficial interaction
and a no interaction (for recovery).

[

"type" : "bad" ,

"kind": "point",

"intervention": (0O, 1, 1, ©O0, O, O, O, 1, O, O, O, 1, 0, 1,
OI OI 1’ 1’ l’ OI 1]’

"iteration": 5
by
{
"type": "g-ood",
"kind": "point",

"intervention": (1, O, 1, O, 1, 1, 1, 0, O, 0O, O, O, 1, O,
o, 0, 1, o, 1, 0, 11,
"iteration": 12

21

Under review as a conference paper at ICLR 2025

b
{
"type" . "gOOd" ,
"kind": "point",
"intervention": null,
"iteration": 20
by
{
"type": "good",
"kind": "dist",
"intervention": {
"e_0_1": {"dist":
"e_0_2": {"dist":
"e_0_3": {"dist":
"e_0_4": {"dist":
"e_0_5": {"dist":
"e_0_o6": {"dist":
"e_1_2": {"dist":
"e_1_3": {"dist":
"e_1_4": {"dist":
"e_1_5": {"dist":
"e_1_6": {"dist":
"e_2_ 3": {"dist":
"e_2_4": {"dist":
"e_2_5": {"dist":
"e_2_6": {"dist":
"e_3_4": {"dist":
"e_3_5": {"dist":
"e_3_6": {"dist":
"e_4_5": {"dist":
"e_4_6": {"dist":
"e_5_6": {"dist":
b
"iteration": 5
}

]

"cat",
"cat",
"cat "’
"cat",
"cat",
"cat "’
"Cat",
"cat",
"cat "’
"Cat",
"cat",
"cat "’
"cat",
"cat",
"cat "’
"Cat",
"cat",
"cat "’
"Cat",
"Cat",
"cat "’

"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":
"parameters":

NAS-Bench-201 The following JSON code shows the interactions performed in our experiments on
NAS-Bench-201. The first interaction is a misleading interaction, followed by a beneficial interaction
and a no interaction (for recovery).

{
"type": "good",
"kind": "point",
"intervention": {"Op_0": 2, "Op_1": 2, "Op_2": 0},
"iteration": 5
b
{
"type ": "bad",
"kind": "point",
"intervention": {"Op_O": 1, "Op_1": 2, "Op_2": 1},
"iteration": 5
b
{
"type": "good"’
"kind": "point",

"intervention": null,

22

Under review as a conference paper at ICLR 2025

"iteration": 20
by
{
"type": "good",
"kind": "dist",
"intervention": {"Op_0": {"dist": "cat", "parameters": [1,
1, le4, 1, 11},
"Op_1": {"dist": "cat", "parameters": [1,
1, 1le4, 1, 11},
"Op_2": {"dist": "cat", "parameters":

[led4, 1, 1, 1, 11},
"iteration": 5

D.3 FURTHER RESULTS & ABLATIONS

In this section, we provide further results and ablations. Fig. 6 provides additional results on two
challenging tasks of the HPO-B benchmark (search space IDs 6767, 6794; dataset ID 31). Both search
spaces have more than 10 hyperparameters and the goal is to solve a classification task. IBO-HPC
outperforms the baselines or is competitive with the baselines in both cases, i.e., where feedback
is given, and no user feedback is given. Fig 7 shows results of IBO-HPC on JAHS, NAS201, and
NAS101 where the given user feedback was either a fixed value or a distribution over configurations.
Both cases are handled well by IBO-HPC, demonstrating its flexibility. Fig. 8 provides a more detailed
view of the effectiveness of IBO-HPC and its recovery mechanism. It can be seen that IBO-HPC
successfully recovers from harmful user feedback in JAHS and NAS-201 (—). Also, it can be seen
that IBO-HPC handles alternating and contradictory user feedback well by leveraging information
from beneficial feedback and ignoring harmful feedback (—). In NAS-101, however, IBO-HPC is
less effective in general, which can be explained by the extreme sparsity of the NAS-101 benchmark.
While NAS-101 and NAS-201 are highly similar, NAS-101 uses a binary encoding of architectures,
while NAS-201 uses a much denser dictionary-like representation. Although both benchmarks are
highly similar, IBO-HPC performs well on NAS-201 but is not as effective on NAS-101, underlining
our explanation.

Fig. 9 shows the CDF of test accuracy across the baselines and IBO-HPC. It can be seen that IBO-
HPC invests more computational resources in good-performing configurations than other methods
while achieving state-of-the-art or better results. In other words, IBO-HPC avoids exploration in
unpromising regions of the search space. This is because IBO-HPC samples configurations from a
conditional distribution where the condition is the best evaluation score obtained. Thus, exploration
is purely data-driven and focuses on regions that perform similarly to the incumbent at a particular
1teration.

Fig. 10 shows the influence of the decay parameter 7y in cases where harmful or misleading user
knowledge was provided to IBO-HPC at an early iteration (10 in this case). It can be seen that
for higher -, IBO-HPC requires more time to recover than for smaller 7. This aligns with our
expectations since a larger vy corresponds to a high likelihood of the user knowledge being used for
many iterations. In contrast, if -y is small, likely, the user knowledge is only considered for a certain
number of iterations with high likelihood. Thus, for smaller v IBO-HPC can recover faster.

Fig. 11 shows the effect of conditioning on the {0.25, 0.5, 0.75}-quantile of the obtained evaluation
scores instead of the maximum evaluation score. As expected, the higher the quantile, the better
the performance of IBO-HPC as we aim to maximize the objective function. Thus, conditioning on
higher values guides the optimization algorithm to configurations that yield better evaluation scores.

Lastly, Fig. 12 depicts the effect of changing L, i.e. the number of samples drawn from the
surrogate before the surrogate is updated. We found that the sample size has no effect on the overall
performance of IBO-HPC. However, for some tasks (JAHS CIFAR-10 and CO), a significant variation
of convergence speed in early iterations — depending on the choice of L — was obtained. Choosing
L = 20 seems to lead to fast and stable convergence behavior.

23

Under review as a conference paper at ICLR 2025

We followed the same experimental protocol as for all other experiments in Fig. 10-12, except that
each algorithm was run only 100 times instead of 500 times on each task.

0.02077 0.10 —— [BO
: |
§‘; IBO (w/ interaction@5)
00153 0.08
5 : al| 5 Sea. RS (w/ interaction @ 5)
E o010 500 L T nBO
. N by ‘“‘s:‘——_\ _____
*g’j R ©0.04 — SMAC
g T BO w/ TPE
T e T e R TTr—
0.02 e BOPrO
BO RF
0.0005 25 50 75 0.005 25 50 75) w/
wall-clock time (sec.) wall-clock time (sec.) * Priorband
(a) HPO-B (6794:31) (b) HPO-B (6767:31) (c) Legend

Figure 6: IBO-HPC is competitive or outperforms strong baselines on HPO-B. (a) IBO-HPC
outperforms all BO baselines that allow users to provide a prior before optimization when feedback
is provided at the 5th iteration. Moreover, IBO-HPC is competitive to other BO methods without
any user knowledge given. Reults were obtained on HPO-B with search space ID 6794 and dataset
ID 31. (b) IBO-HPC outperforms all BO baselines when no user feedback is provided and beats all
interactive BO baselines, except for TBO, when feedback is provided at the Sth iteration. Results are
obtained on HPO-B with search space ID 6767 and dataset ID 31.

0.20

test error
test error

0 2 4 20 1 2 3 0 2
wall-clock time (sec.) 17 wall-clock time (sec.) 1e6 wall-clock time (sec.) 1e7

(a) JAHS (CIFAR-10) (b) JAHS (C. Histology) (c) JAHS (F-MNIST)
0.064
0.062]: . —IBO
5 } —— IBO w/ interaction@5
£0.060 IBO w/ interaction@10
- = IBO w/ dist. interaction@5
2 TBO
0.058 BOPIO
SMAC
0.056 ==DBO w/ RF
LS

0.0 0.5 1.0

wall-clock time (seé.) le6

(d) NAS-Bench-101 (CIFAR-10)

0 5000 10000
wall-clock time (sec.)

(e) NAS-Bench-201 (CIFAR-10)

/\ time of interaction

Figure 7: IBO-HPC outperforms state of the art. For 4/5 tasks across three challenging benchmarks,
IBO-HPC is competitive with strong baselines when no user knowledge is provided. When beneficial
user beliefs (A) are provided, either as distributions (—) or point values (—, —), it outperforms
all competitors w.r.t. convergence and solution quality on most tasks. Early interactions (—/— at
Sth iteration, at 10th iteration) speed convergence up.

24

Under review as a conference paper at ICLR 2025

test error

2 4
wall-clock time (sec.) 1e7

(a) JAHS (CIFAR-10)
0.064 N

0.062{ +\"

test error

o o
o o
I3 >
© =)

0.056
0.0

0.5 1.0
wall-clock time (sec.) 1e6

(d) NAS-Bench-101 (CIFAR-10)

0.200
0.175
£0.1501:.
3]
$0.125
7
20.100
0.075

1
wall-clock time (sec.) 1e6

(b) JAHS (C. Histology)

0.094

test error
e e
o o
© ©
S N

0.088

0.086

0 5000 10000
wall-clock time (sec.)

(e) NAS-Bench-201 (CIFAR-10)

test error

wall-clock time (sec.) 1e7

(c) JAHS (F-MNIST)

IBO

IBO (w/ interaction@>5)
IBO (w/ 4 interactions)
PiBO Recover

BOPrO Recover

SMAC

= == BO w/ RF

LS

Figure 8: IBO-HPC recovers from misleading user feedback. IBO-HPC successfully and consis-
tently recovers from misleading user feedback and performs equally well as if no feedback was given.
Also, IBO-HPC handles alternating, contradictory feedback well and is able to leverage beneficial
feedback while ignoring misleading feedback.

1.0 1.0 1.0
0.8 ? 0.8 0.8
0.6 ; 2, 0.6 0.6
[a)] ',' [a)] [a)]
©o.4 / ©o.4 ©o.4
0.2 0.2 0.2
0.0 0.0} — 0.0
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90
Test Accuracy (%)

(a) JAHS (CIFAR-10)

Test Accuracy (%)

(b) JAHS (C. Histology)

1.0 1.0
0.8 0.8
i 0.67 1,06
=] ! [=)]
Coar | ©o.4
0.21 | 0.2
0.04 - 0.0

10 20 30 40 50 60 70 80 90
Test Accuracy (%)

(d) NAS-Bench-101 (CIFAR-10)

10 20 30 40 50 60 70 80 90
Test Accuracy (%)

(e) NAS-Bench-201 (CIFAR-10)

Test Accuracy (%)

(c) JAHS (F-MNIST)

-~ IBO
~— IBO (w/ interaction@5)
= [BO (w/ 4 interactions)
IBO (w/ interaction@10)

——— IBO (w/ interaction@5)
= [BO (w/ dist. intervention@5)
BO w/ RF
+ nBO

+ BOPro
== LS
SMAC

Figure 9: CDF of Test Accuracy. IBO-HPC samples more good-performing configurations than
most other BO baselines on most tasks. Thus, IBO-HPC invests more computational resources
in good configurations than other methods. We conjecture that this is because IBO-HPC selects
configurations s.t. they are likely to perform similarly to the incumbent in each iteration. Interestingly,
RS also samples many well-performing configurations on the JAHS benchmark.

25

Under review as a conference paper at ICLR 2025

0.300
— IBO y=0.3 0.16 —— IBO y=0.3 0.11 —— IBO y=0.3
0.275 1BO y=0.7 —— IBO y=0.7 — IBOy=0.7
] . 0.14 IBO y=0.99 . 010 —— IBO y=0.99
£0.250 —— IBO y=0.99 5 y=0. 5 y=0.
2 E £0.09
©0.225 $0.12 @
2 g 3
£0.200 £0.10 3008
0.07
0.175 0.08
0158525 50 75 0 2 i 0980 25 50 75
wall-clock time (sec.) 1e7 wall-clock time (sec.) 1e6 wall-clock time (sec.) 1e7
(a) JAHS (CIFAR-10) (b) JAHS (C. Histology) (c) JAHS (F-MNIST)
0.0700 — IBOy=03 0.12 — IBO y=0.3
0.0675 —— IBOy=0.7 — IBOy=0.7
_ - 50.11 —— 1BO y=0.99
§0.0650 1BO y=0.99 E
o [
£ 0.0625 $0.10
8 3
0.0600 0.09
0.0575
0.0 05 1.0 1.5 0.08 5000 10000
wall-clock time (sec.) 1e6 wall-clock time (sec.)
(d) NAS-Bench-101 (CIFAR-10) (¢) NAS-Bench-201 (CIFAR-10)

Figure 10: Ablation: Effect of ~ on recovery of IBO-HPC. As expected, we found that IBO-HPC
recovers faster for smaller values of . This is because smaller v values lead to a higher decay of
the probability of conditioning on the provided user knowledge. Thus, with faster decay, IBO-HPC
recovers faster from harmful or misleading user knowledge (provided at iteration 10).

0.30
—— IBO q=0.25 0.16 —— IBO q=0.25 0.11 —— IBO q=0.25
—— IBO q=0.5 — IBO q=0.5 — IBO q=0.5
0.14 - 0.10 =
5 0.25 —— IBO q=0.75 5 —— IBO q=0.75 5 —— IBO q=0.75
£ g £0.09
3} ©0.12 @
2 7 7
£0.20 €010 20.08
0.07
015 — 0.06
0 2 4 6 0 2 4] 2 4 6
wall-clock time (sec.) 1e7 wall-clock time (sec.) 1e6 wall-clock time (sec.) 1e7
(a) JAHS (CIFAR-10) (b) JAHS (C. Histology) (c) JAHS (F-MNIST)
0.0700
— IBOg=0.25 0.12 —— IBO q=0.25
0.0675 —— IBO q=0.5 — IBOg=0.5
- - 50.11 —— IBO q=0.75
g 0.0650 IBO q=0.75 E
o)
%0.0625 30.10
3 3
0.0600 & 000 |
0.0575
0.0 05 10 0.08 5000 10000
wall-clock time (sec.) 1e6 wall-clock time (sec.)
(d) NAS-Bench-101 (CIFAR-10) (e) NAS-Bench-201 (CIFAR-10)

Figure 11: Conditioning on sub-optimal evaluation scores slow down IBO-HPC- Conditioning on
the evaluation score of high-performing configurations is crucial for the performance of IBO-HPC. To
analyze the effect of conditioning on evaluation scores of sub-optimal configurations, we conditioned
on the {0.25, 0.5,0.75}-quantile of all evaluation scores obtained until iteration ¢. As expected, for
higher quantiles (i.e. better evaluation scores), IBO-HPC finds better configurations.

26

Under review as a conference paper at ICLR 2025

0.300
—— IBO @ 5 samples 0.16 —— IBO @ 5 samples 0.11 —— IBO @ 5 samples
0.2751h g0 © 10 samples —— IBO @ 10 samples ool — IBO @ 10 samples
£0.250{| — 1BO @ 20 samples | &C14|\ — IBO @20 samples | 5 —— IBO @ 20 samples
g —— IBO @ 30 samples = IBO @ 30 samples £0.0911 —— IBO @ 30 samples
®(0.225 2012 o
[} [}
] Q
<0.10 =
0.08
0.1505 3 a 3 0 i 3 3 s 006, 3 1 3
wall-clock time (sec.) 1e7 wall-clock time (sec.) 1e6 wall-clock time (sec.) 1e7
(a) JAHS (CIFAR-10) (b) JAHS (C. Histology) (c) JAHS (F-MNIST)
0.0700
—— IBO @ 5 samples 0.12 —— IBO @ 5 samples
0.0675] —— IBO @ 10 samples —— IBO @ 10 samples
Sooesol IBO @ 20 samples § 0.11 —— IBO @ 20 samples
% ’ —— IBO @ 30 samples g —— IBO @ 30 samples
20.0625 +0.10
Q Q
] 3
0.0600 0.09
0.0575
0.0 05 10 0.08; 5000 10000
wall-clock time (sec.) 1e6 wall-clock time (sec.)
(d) NAS-Bench-101 (CIFAR-10) (e) NAS-Bench-201 (CIFAR-10)

Figure 12: L has no significant effect on IBO-HPC’s performance. We found that fixing the
surrogate model for L = {5, 10,20, 30} iterations does not lead to significant differences in the
performance and convergence speed of IBO-HPC. Only in earlier iterations was a significant variation
in convergence speed found on JAHS CIFAR-10 and JAHS CO. However, these variations vanish
with the progress of optimization.

27

Under review as a conference paper at ICLR 2025

D.4 COMPUTATIONAL COST

We now provide details on the computational costs of IBO-HPC. Therefore, we analyzed the composi-
tion of the overall runtime of an optimization run and measured the time needed to train configurations
suggested by IBO-HPC versus the time spent on actually performing optimization (including fitting
the surrogate PC and sampling new configurations). Fig. 13a shows that the computation time spent
on learning the PC and sampling new configurations is negligible compared to the time spent on
training the suggested configurations. Additionally, 13b shows that IBO-HPC is faster than SMAC
in 4/5 cases in terms of runtime. Here, we considered the time spent in updating the surrogate and
suggesting new configurations. Note that this does not include training costs. Interestingly, with the
increasing size of the search space, the efficiency advantage of IBO-HPC is increasing. We suspect
that the intensify-mechanism in SMAC, which includes a local search, is the reason for the higher
computational costs of SMAC.

Q1200
_100{ 2277 9672 00 L2900 80001 < B 1BO-HPC runtime (%)
x n i 0
P 71000 [1 SMAC runtime (%) + +
= 80 >
2 2
g 2 800
o :
g 60 I Evaluation time (%) 8
% [] Optimization time (%) E 600
» 40 E
;: o 400
]
£ &
5]
5% 2 200
= T
0 . . . ©
NAS-101NAS-201 JAHS JAHS JAHS Moo

NAS-20INAS-101 JAHS AHS AHS
(C-10) (C-10) (C-10) ~(FM) (CH) (©10) (010) (C-10) “(FM) (CHD
Benchmark Benchmark (ordered by #hyperparameters)

(a) (b)

Figure 13: IBO-HPC is a cost-efficient HPO method. (a) Learning a surrogate and suggesting
new configurations is negligible in terms of computational costs compared to training the suggested
configurations. We computed the time spent on training configurations (blue) vs. time spent learning
a PC and suggesting new configurations (orange). In all experiments, the training of configurations
caused the large majority of computational costs, often even approaching 100%. (b) IBO-HPC is
more efficient than the prominent HPO algorithm SMAC in 4/5 cases (averaged over 20 runs). Also,
with the increasing number of hyperparameters, the gap between IBO-HPC and SMAC in terms of
computational efficiency is larger. We report runtimes normalized between [0, 1] per benchmark s.t.
the highest obtained runtime for a given benchmark is 1.

D.5 EXPLORATION-EXPLOITATION TRADE-OFF OF IBO-HPC
An effective mechanism to trade off exploration versus exploitation is crucial for high-performing
hyperparameter optimization algorithms. Below we show that IBO-HPC’s sampling policy effectively

achieves this trade-off. In early iterations, IBO-HPC explores the search space (high sample variance),
while in later iterations, it exploits the knowledge collected (low sample variance).

28

Under review as a conference paper at ICLR 2025

o o o e
° =3 ° =
= = & =)

variance ot sampled HP values
1)
o
2

o
o
S

=

20

IS
1

60 80
Iteration

(a) Learning Rate

Variance of sampled HP values
S o 2 o o = =
U > N » o o =

20

IS
1

60 80
Iteration

(b) Weight Decay

S
g
kS

Noow

/

Variance of sampled HP values

o
3

S

-
N

Variance of sampled HP values
e o o = = =
N ® © o = i

Variance of sampled HP value:

e o o =

94 ® © o

o

20 40 60 80
Iteration

(d) Op2

Figure 14: IBO-HPC effectively trades off exploration and exploitation. IBO-HPC’s sampling
policy naturally and effectively trades off exploration (high sampling variance in early iterations)
versus exploitation (low sampling variance in later iterations). We show the sampling variance of 6
hyperparameters of the JAHS benchmark (CIFAR10) for each iteration, averaged over 20 runs of

IBO-HPC.

=

20

IS
1

60 80
Iteration

(c) Opl

w

/

o

o

o
©

e
=3
=]

Variance ot sampled HF values
o o o o o
o [=] (=3 (=] —_
[} - =3 © o

o

20 40 60 80
Iteration

(e) Op3

o

20 40 60 80
Iteration

(a) Learning Rate

o

20 40 60 80
Iteration

(f) Op4

[
oo W
S o o

Variance ot sampled HP values
[y
1N
o

o
-
5]

o

20 60 80
Iteration

F

S

- - -
[o w

Iy
o

Variance of sampled HP values

1.10
1.05
1.00
0 20 40 60 80
Iteration
(d) Op2

Figure 15: IBO-HPC effectively trades off exploration and exploitation. IBO-HPC’s sampling
policy naturally and effectively trades off exploration (high sampling variance in early iterations)
versus exploitation (low sampling variance in later iterations). We show the sampling variance of 6
hyperparameters of the JAHS benchmark (Colorectal Histology) for each iteration, averaged over 20

runs of IBO-HPC.

20 40 60 80
Iteration

(c) Opl

-
w
a

-
w
S

-
S
o

-
IS
S

-
N
o

-
N
=)

Variance ot sampled HP values

-
o
o

(b) Weight Decay
0 20 40 60 80
Iteration
(e) Op3

29

o

20

~
S

60 80
Iteration

(f) Op4

Under review as a conference paper at ICLR 2025

D.6 HYPERPARAMETERS OF IBO-HPC

IBO-HPC comes with a few hyperparameters itself, which have to be set. For our experiments, we
set the number of iterations the surrogate is kept fixed L = 20, the decay value v = 0.9. We let all
methods optimize for 2000 iterations for fair comparison. Our surrogate models, i.e., PCs and the
associated learning algorithm, have some hyperparameters as well. The structure learning algorithm
splits use the RDC independence test and K-means clustering. The threshold to detect independencies
is set to 0.3, and the minimum number of instances per leaf is adapted dynamically based on the
number of configurations tested during an optimization run.

D.7 HARDWARE

We ran all our experiments on DGX-A100 machines and used 10 CPUs for each run, thus parallelizing
some sub-routines (e.g. learning of PCs). We did not use any GPUs as we queried the benchmarks
employed to provide the performance of configurations. The JAHS benchmark requires a relatively
large RAM (> 16G B) to run smoothly as it loads large ensemble models.

E WORKING EXAMPLE

In the following we consider a more detailed example of our proposed method from a user perspective.
We assume that we only optimize 3 hyperparameters here, W, N and R which correspond to the
hyperparameters W, N and RESOLUTION in the JAHS benchmark.

The optimization starts where each of the hyperparameters gets optimized by our method. At some
point, the user interacts with the optimization process and sets W and N to a fixed value (blue in Fig.
16). From then on, the model only optimizes the remaining hyperparameter R (green in Fig. 16),
using conditional sampling from the resulting conditional distribution that the HPC represents after
the interaction.

/P1 P,
s}&q u
g ©6 7
3 P4 Ps P6\
- ® & B -
optimize ERE ER i 5 G optimize
® 0 0O O
O _» (N=16,W=3)
)
,I.,I . >
1terations

Figure 16: Example of IBO-HPC. A user specifies certain aspects of the hyperparameter search
space during optimization. Afterward, IBO-HPC takes user knowledge into account when sampling
new configuration candidates.

30

	Introduction
	Related Work
	Interactive Hyperparameter Optimization
	Interactivity in Bayesian HPO
	Interactive Bayesian Optimization with Hyperparameter Probabilistic Circuits

	Experimental Evaluation
	(Q1) IBO-HPC is Competitive in HPO & NAS
	(Q2, Q3) Interactive and Resilient HPO & NAS with IBO-HPC

	Conclusion
	Motivation & Real-World Example
	Proofs
	IBO-HPC's Policy is Feedback Adhering Interactive
	IBO-HPC minimizes Simple Regret
	Convergence Speed of IBO-HPC
	Accuracy of IBO-HPC's Selection Policy

	Probabilistic Circuits
	Experimental Details
	Search Space Extension of JAHS
	Interactions
	Further Results & Ablations
	Computational Cost
	Exploration-Exploitation Trade-off of IBO-HPC
	Hyperparameters of IBO-HPC
	Hardware

	Working Example

