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ABSTRACT

Recent advancements in reinforcement learning (RL) have showcased remarkable
effectiveness in optimizing policies amidst noise. However, these endeavours have
often overlooked the critical aspect of independence between the signal and noise
within latent spaces, leading to performance limitations. To address this concern,
we begin by conducting a thorough analysis of the identifiability of latent signal
and latent noise. This analysis implicitly underscores the pivotal role of indepen-
dence between these two components in RL.
A fundamental characteristic of the state variable is its role as the causal parent of
the expected accumulated reward, providing a natural indicator for disentangling
the state from noise. Leveraging this indicator, we demonstrate that a constrained
state estimation function capable of accurately recovering both the transition and
reward can precisely disentangle state and noise in scenarios characterized by de-
terministic dynamics with stochastic noise. In the case of stochastic dynamics,
our constrained state estimation function ensures an optimal policy, even when
the state and noise may not be fully disentangled. We then translate these theoret-
ical findings into a novel methodology, which effectively isolates the signal from
the noise within the latent space. This is achieved through the seamless integration
of structural independence and statistical independence into a unified framework.
Structurally, our proposed method employs two distinct decoders for latent signal
and latent noise, enabling each decoder to capture exclusive features specific to its
respective space. Statistically, the independence between latent signal and latent
noise is enforced through a reward preservation constraint. Empirical evidence
from extensive benchmark control tasks attests to the superiority of the proposed
approach over existing algorithms in the effective disentanglement of signals from
noise.

1 INTRODUCTION

Model-Based Reinforcement Learning (MBRL) is a Reinforcement Learning methodology that in-
tegrates a learned environment model, commonly referred to as the “world model”, with a planning
algorithm to guide an agent’s decision-making process (Polydoros & Nalpantidis, 2017). The world
model predicts future states and rewards based on interactions between the agent and the environ-
ment, while the planning algorithm utilizes these predictions to simulate potential scenarios and
formulate the agent’s policy. Recently, there has been a surge of interest in learning latent-space
world models. These models map high-dimensional observation data, such as images, to an abstract
latent representation, effectively capturing the dynamics of the environment within this learned la-
tent space (Ha & Schmidhuber, 2018; Hafner et al., 2019; 2020; Sekar et al., 2020; Hafner et al.,
2023). This approach offers the advantage of simplifying complex environments, reducing compu-
tational demands, and potentially enhancing policy generalization. However, a common assumption
in these methods is that observed data is noise-free. In practical applications where noise is preva-
lent, this can significantly hinder the effectiveness of these techniques. This challenge arises from
the difficulty of disentangling the reward-related aspects or “signals”, which cannot be readily sep-
arated from the noise-related components. Such entanglement can introduce distractions during the
learning process, ultimately leading to suboptimal performance (Efroni et al., 2021).

Addressing the challenge of disentangling signals from noisy observations has garnered substantial
attention across various domains in machine learning, encompassing areas such as domain adapta-
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tion/generalization (Von Kügelgen et al., 2021), nonlinear Independent Component Analysis (ICA)
(Khemakhem et al., 2020), and others (Chen et al., 2018). These endeavours offer theoretical as-
surances for recovering signals from noisy observations, assuming the presence of an invertible
mapping between the observation space and the latent state space.

In the realm of reinforcement learning, Huang et al. (2022) and Liu et al. (2023) have introduced akin
techniques for extracting signals from noisy observations, leveraging temporal causal models. How-
ever, their reliance on the invertible mapping assumption confines their theory to fully observable
Markov Decision Processes (MDPs) or very specific forms of Partially Observable Markov Deci-
sion Processes (POMDPs). In contrast, Wang et al. (2022) and Fu et al. (2021) have proposed two
distinct reinforcement learning frameworks to disentangle signals from noisy observations, albeit
without offering any theoretical guarantees for recovering the accurate signal.

Huang et al. (2022); Liu et al. (2023) approach the problem of disentangling signal from noise as
a causal identifiability challenge, relying on observational data. Consequently, their methodology
may necessitate strong assumptions regarding the geometry of the state space, as well as assumptions
concerning the mapping from state/noise to observations. In the domain of reinforcement learning,
however, we possess the ability to alter policies, thereby influencing the distribution of accumulated
rewards. This affords us interventional data from a causal perspective, allowing for more lenient
assumptions about the state space and the state/noise to observation mapping.

To be more precise, we can ascertain the state variable by evaluating whether it induces a change
in expected accumulated rewards. Leveraging the Markovian nature of Markov Decision Processes
(MDPs), this is equivalent to examining transition reservations and reward reservations. This unique
property enables us to establish a novel method for achieving causal identifiability in the state/noise
disentanglement problem within the context of reinforcement learning. Subject to certain assump-
tions, we demonstrate that it is possible to disentangle noise from the state in the presence of noisy
observations. Moreover, when these assumptions are violated, our results indicate that the optimal
policy based on our estimated state aligns exactly with the optimal policy derived from the true
underlying state representation.

Drawing upon these theoretical findings, we have devised a novel approach for learning world mod-
els, enabling the disentanglement of state and noise. Our world model includes two recurrent state
space models (RSSMs) to faithfully model the underlying dynamics of state and noise and thus the
transition preservation and noise preservation conditions in our theory are preserved. Experimental
evaluations conducted on the Deepmind Control Suite and Robodesk demonstrate that our algorithm
consistently outperforms previous methodologies by a substantial margin.

2 PRELIMINARIES AND RELATED WORKS

2.1 MARKOV DECISION PROCESS

The Partial Observable Markov Decision Process (POMDP) can be defined as a 7-tuple
(S,A,O, T ,M, R, γ), where S,A and O represent the state, action, and observation space of the
problem, T = p(s′|a, s) denotes the probability of transition to state s′ given state s ∈ S and action
a ∈ A, o = M(s′, z) denotes the noisy observation function where z denotes the noise, and R(s, a)
is a real-valued reward function encoding the task objective. Finally, γ is a discounting factor that
characterizes the decay of rewards with time. The POMDP can be represented by a temporal causal
model shown in Figure 1. When the state is directly observable, the POMDP is reduced to a MDP
defined as a 5-tuple (S,A, T , R, γ).

In practice, the true underlying state is often not directly observable. Thus assume that we have
a state estimation function g : O 7→ Sg , we can always have a derived MDP (Sg,A, T g, Rg, γ),
where

Sg = {ŝ|ŝ = g(o), o ∈ O}, (1a)

T (ŝ′, a, ŝ) =
∑

o′:g(o′)=ŝ′

∑
o:g(o)=ŝ

Pr(o′|a, o), (1b)

Rg(ŝ = g(o), a) = Es∼Pr(s|o)R(s, a), (1c)
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Figure 1: The temporal causal model for reinforcement learning on Markov Decision Process (MDP)
with noisy observation, where s denotes the latent signals while z represents the latent noise, both of
which remain unobservable. Each edge in the model signifies a causal direction. The nodes shaded
in grey correspond to the elements of action a, reward r, and visual observation o that are observable.
In the context of reinforcement learning, the change of policy with change the distribution of action,
and thus can be viewed as intervention. This intervention can be used to identify if part of the
observation will result in a change in the expected accumulated reward and thus we are able to
disentangle state and noise for a wide range of MDPs.

usually, the derived MDP will not be equivalent to the original MDP denoted by (S,A, T , R, γ). For
General POMDP, it would not be possible to recover the state from pure observation. In this case, we
will first consider a specific POMDP, where the observation function M is invertible. In this case,
one way to ensure the equivalence is to ensure that the existence of bijection between the estimated
state ŝ and the underlying state s, which is also known as bisimulation, or block identifiability of
the causal model (Huang et al., 2022; Liu et al., 2023). For the non-invertible observation function,
we will convert the POMDP to belief-MDP where the state is a distribution over the original state
space.

2.2 REPRESENTATION LEARNING IN RL

In recent years, Markovian representation learning in RL has employed various algorithms, includ-
ing bisimulations (Gelada et al., 2019; Zhang et al., 2020), contrastive augmentation(Laskin et al.,
2020; Misra et al., 2020; Deng et al., 2022) endeavour to represent states by distinguishing them
in a contrastive manner. (Dann et al., 2018; Du et al., 2019; Huang et al., 2022) have proven that
the minimal representation for the POMDP can be extracted from rich observations with specific
constraints. The efficacy of reconstruction-based model-based reinforcement learning (MBRL) in
optimizing policies by backpropagating through latent-space rollouts has been practically demon-
strated in the Dreamer(Hafner et al., 2019), DreamerV2(Hafner et al., 2020), and DreamerV3(Hafner
et al., 2023). On top of dreamers, denoising worlds models were proposed, including, TIA (Fu et al.,
2021), Denoised-MDP (Wang et al., 2022) and (Liu et al., 2023).

3 LEARNING TO DISENTANGLE STATE AND NOISE

We focus on MDPs with discrete state, noise, and observation spaces, which can be interpreted
as a causal model, as depicted in Figure 1. We first lay down the theoretical groundwork for the
disentanglement of the signal and noise within MDPs under some mild assumptions. Subsequently,
we affirm that policy optimality is indeed achieved even if the assumptions are not met. Finally, we
concretize our theoretical insights through the development of a dedicated learning algorithm.

3.1 BLOCK IDENTIFIABILITY OF STATE AND NOISE

Previously, the identifiability of disentanglement of state and noise was established in the context
of continuous state and noise spaces. This involved making assumptions about the smoothness and
invertibility of the observation function, as well as certain geometric properties of the state space
(Liu et al., 2023; Huang et al., 2022). As these results rely on specific properties of continuous
function such as smoothness, these results can not be easily extended to discrete cases. For discrete
cases, we lack properties such as smoothness and thus it is more challenging. Furthermore, the
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results on discrete space often can be easily extended to continuous space as we can always convert
continuous state spaces into discrete ones through quantization.

In our case, we also assume the invertibility of the observation function, and for state space, we
would like to assume that there is no redundancy in the state representation. Given a state as initial
state, we can then apply different series of actions, which will result in different accumulated re-
wards. If given two different states as initial states, the result of expected accumulated reward is the
same after applying any action series, the two state can be considered as equivalent and there must
be some redundancy in current state representation (Bennouna et al., 2021), and it would be natural
to assume that such redundancy does not exists. Finally, we would like to firstly assume that the
transition is deterministic and later we seek to loose the assumption.

Our main result on the state/noise disentanglement can be stated as follows.
Proposition 1 (Disentanglement). Given a POMDP (S,A,O, T ,M,R, γ), assume that

1. Invertible Observation function: M is invertible;

2. No redundancy: for any s0 ̸= s′0 ∈ S, there exists an integer n and an action series
a0, a1, . . . , an−1 such that∑
sk,1≤k≤n

n−1∑
i=0

γiR(si, ai)

i−1∏
j=0

T (sj+1, aj , sj) ̸=
∑

s′k,1≤k≤n

n−1∑
i=0

γiR(s′i, ai)

i−1∏
j=0

T (s′j+1, aj , s
′
j);

3. Deterministic: The transition is deterministic, and the state and action space are finite.

There exists an state/noise estimation function h(o) : O 7→ S ×Z satisfying that

1. Transition preservation: For any observation o and any action, let ŝ, ẑ = h(o), we have
∀ŝ′

Pr(ŝ′|a, ŝ) =
∑

o′:ŝ′,ẑ′=h(o′)

Pr(o′|a, o);

2. Reward preservation: ∃R̂ such that for any state observation pair (s, o) with ŝ, ẑ = h(o),
for any action a, R̂(ŝ, a) = R(s, a);

and the function disentangles the state and noise, i.e. there exists bijection between the estimated
state and the true state, as well as for the noise.

Proposition 1 actually can be viewed as pushing redundant observation representation to non-
redundant state representation. For the specific POMDP where the observation function M is in-
vertible, the main issue is that the same state will be mapped into multiple different observations.
Thus to obtain a compact representation of the optimal policy, we need to remove the redundant
part in observation (i.e. noise) to get the underlying state, which is equivalent to finding a minimal
representation that can preserve the transition and reward.

Remarks on state modelling The state and noise can be further split into controllable ones and
non-controllable ones as Wang et al. (2022) and Liu et al. (2023) as the dynamics of non-controllable
ones are independent with action. The further disentanglement may help to provide a more compact
representation of transitions in the world model. Without such disentanglement, we are still able to
obtain the optimal policy. In this case, we only disentangle the state and noise based on the fact if it
affects the accumulated reward or not.

3.2 POLICY OPTIMALITY

Proposition 1 guarantees that we can disentangle state and noise by finding a state/noise estimation
function that satisfies the transition preservation and reward preservation constraints for determin-
istic POMDP where there is no redundancy in state representation. If the deterministic assumption
on POMDP is not satisfied, the transition preservation and reward preservation condition in Propo-
sition 1 can still be applied to find a state representation that preserves the optimal policy.
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Proposition 2. Given a POMDP (S,A,O, T ,M,R, γ), assume that M is invertible, there exists
an invertible state/noise estimation function h : O 7→ S ′ ×Z ′ satisfies that:

1. Transition preservation: For any observation o and any action, let ŝ, ẑ = h(o), we have
∀ŝ′

Pr(ŝ′|a, ŝ) =
∑

o′:ŝ′,ẑ′=h(o′)

Pr(o′|a, o);

2. Reward preservation: ∃R̂ such that for any state observation pair (s, o) with ŝ, ẑ = h(o),
for any action a, R̂(ŝ, a) = R(s, a);

and the optimal policy on the MDP derived by state estimation function h (by ignoring the estimated
noise) is also the optimal policy of the original MDP.

General Partially Observable Case: In various real problems, it would not be possible to have
an invertible observation function. More specifically, multiple different states may be mapped into
the same observation. In this case, it would not be possible to recover the original state using pure
observation. Fortunately, we can convert the POMDP into an equivalent full-observable belief-
MDP. For the belief-MDP, we can convert it to a POMDP with an invertible observation function
by using all historical observations and actions of the original POMDP as observation. Using this
conversion, our Proposition 1 and Proposition 2 can disentangle state and noise for general POMDP,
or at least find a state representation that leads to the same optimal policy. However in practice due
to the computational cost finding the optimal policy of POMDP remains an open and challenging
problem.

3.3 LEARNING WORLD MODEL AND POLICY

Based on Proposition 1 and Proposition 2, we can design an algorithm that can learn to disentangle
the state and noise, or learn a state representation that will lead to an optimal policy if the conditions
in Proposition 1 is not satisfied. Our world model including the two Recurrent State Space Models
(RSSMs, (Gregor et al., 2018)) for state and noise are modeled as Variational Auto Encoder (VAE),
and one reward model. Typically a standard RSSM encompasses a representation model, a transition
model and an emission model, which models the dynamics of an MDP in a variational manner.

Particularly in our world model, the RSSMs serve as the h function in Proposition 1 and Propo-
sition 2, the transition preservation constraints in the two propositions are enforced by fitting the
data transition with the world model transition, and the reward preservation constraints are enforced
by minimizing the negative log-likelihood of estimated reward conditional on estimated state. Our
notations are summarized in Eq. 2.

Components State-RSSM & Reward Model Noise-RSSM
Transition Model pψ(st|st−1, at−1) pψ(zt|zt−1)
Representation Model qψ(st|st−1, at−1, ot, zt) qψ(zt|zt−1, ot, st−1, at−1)
Emission Model pθ(o

s
t |st) pθ(o

z
t |zt)

Reward Model log pθ(rt|st)

(2)

Our priors on state and noise, denoted as pψ(st|st−1, at−1) and pψ(zt|zt−1) respectively, are es-
tablished through two separate transition models—one for state and one for noise. Specifically, the
prior for the current state (e.g., st) is derived from the transition of the previous state and action,
namely, st−1 and at−1, while the prior for the current noise (e.g., zt) is modelled as the transition
from the previous noise, zt−1. Given these priors, however, computing the true posterior distribu-
tion, represented as pψ(st, zt|st−1, at−1, zt−1, ot), is still generally an intractable task due to the
complexity introduced by multiple integrals in the marginal distribution. To address this challenge,
we employ a structural variational posterior distribution, known as the representation model within
the context of RL, to provide an approximation of the true posterior distribution:

qψ(st, zt|st−1, at−1, zt−1, ot) = qψ(st|st−1, at−1, ot, zt)qψ(zt|zt−1, ot, st−1, at−1). (3)

Note that prior research efforts (Fu et al., 2021) have sought to alleviate computational complex-
ities by adopting a simplified factorized variational posterior. In these approaches, the factorized
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variational posteriors for st and zt are assumed to be mutually independent, conditioned on the ob-
servational data ot. While this simplifies the optimization process, it does, however, deviate from
the fundamental principle that st and zt should exhibit mutual dependence, given the presence of
observational data ot. Driven by this consideration, we emphasize the superiority of the proposed
structural variational posterior, as defined in Eq. 3. This formulation effectively captures the interde-
pendency between st and zt given the observational data ot offering a more accurate representation
compared to the commonly used factorized variational posterior. Consequently, when combining
the priors with the structural variational posterior, we derive the evidence lower bound (ELBO):

LELBO =− E
[
log p(ot|st, zt)− αDKL(qψ(st|st−1, at−1, ot, zt)∥pψ(st|st−1, at−1))

− βDKL(qψ(zt|zt−1, ot, st−1, at−1)∥pψ(zt|zt−1)))

]
.

(4)

In our empirical approach, we introduce two hyper-parameters, denoted as α and β, to effectively
enforce the Kullback–Leibler divergence between the variational posterior and the prior. It is worth
noting that even with the incorporation of α and β, the modified ELBO continues to serve as a
lower bound on the marginal log-likelihood of the observational data ot. Furthermore, recognizing
that noise and state independently contribute to the observational data ot, we employ two distinct
networks to reconstruct the observational data ot, expressed as p(ot|st, zt) = p(ozt |zt)p(ost |st). By
combining this reconstruction process with the negative log-likelihood of reward estimation, we
derive the final objective as follows:

Lobj = LELBO −E[log pθ(rt|st)].︸ ︷︷ ︸
Lr

(5)

Overall, the proposed RSSM learning objective comprises two key components: the ELBO loss,
denoted as LELBO, and the reward loss, denoted as Lr. The LELBO component ensures the preserva-
tion of all information contained within the observational data, which includes a mixture of state and
noise information. In tandem with this, the Lr component serves the crucial purpose of disentangling
state information from noise information within the mixture of state and noise information. This is
particularly important since rewards depend solely on state information and are entirely independent
of noise.

Transition and Reward Preservation Constraints In the temporal causal model (Shown in Fig-
ure 1, the state is the only parent of In our implementation, we enforce the reward preservation
constraints by maximising the log-likelihood between the estimated state and reward. Meanwhile
Fu et al. (2021) attempts to minimize the dependency between noise and noise by minimising the
log-likelihood between estimated state and reward, which requires a regressor that will predict a
reward dislikes the real one. Thus, it in contrast will result in the estimated noise to contain informa-
tion about the reward so that the regressor can give a dissimilar output. Liu et al. (2023) minimizes
the dependency between reward and noise by minimizing the mutual information between them.
However, the estimation of mutual information is known to be highly non-trivial, and our Proposi-
tion 2 actually implies that the independency between noise and reward can be enforced by transition
preservation and reward preservation condition.

Similar to the previous work(Hafner et al., 2020; Wang et al., 2022), we also employ online learning
to optimize policies through the training of an actor-critic model using latent signal trajectories.
These trajectories are exclusively composed of the generated state derived from the state dynamics
model since the absence of noise could improve the sample efficiency of the actor-critic model.

4 EXPERIMENTS

The present study aimed to assess the efficacy of a proposed method in various image observa-
tion environments, including the DeepMind Control Suite (DMC) Tunyasuvunakool et al. (2020)
and RoboDesk Kannan et al. (2021). In DMC, six control tasks, where the observation space is
64× 64× 3, and the proposed method was tested in environments with additional noisy distractors.
To introduce noise, the pure blue background is replaced with a grey-scaled video sampled from Ki-
netics 400 ”Driving car”. Previous works, including TIA Fu et al. (2021), Denoisedmdp Wang et al.
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(2022), and IFactor Liu et al. (2023), only chose a piece of random video as the background dur-
ing the simulated episodes and data collection, which makes model learn the true dynamics easily.
However, in reality, the noise is much more diverse, which makes previous methods less practical.
Therefore, instead of always using the same video, The background of each simulated episode will
be randomly selected from Kinetics 400. Moreover, the agent is tested by using another bunch of
unseen videos. Therefore the comparison is made on 3 different versions of DMC environments,
which are Noiseless DMC (original DMC), DMC with uniform background, and DMC with diverse
background. RoboDesk task, where the observation space is 96 × 96 × 3, is a modification from
Denoisedmdp, where the agent can switch the TV to green by pushing the button and is rewarded
by the greenness of the TV Wang (2022). Additional noisy distractors such as videos from Kinetics
400(the same video selected setting as that in DMC), environment flickering, and camera jittering
are also included. Similarly, the training and test videos were separated.

4.1 BASELINES

The proposed method was compared with three model-based baselines: DreamerV3 Hafner et al.
(2023), Task Informed Abstractions (TIA) Fu et al. (2021), DenoisedMDP Wang et al. (2022), and
IFactorLiu et al. (2023). DreamerV3 Hafner et al. (2023) represents the latest iteration of the
Dreamer model, featuring a larger and more robust architecture optimized for general RL tasks.
TIA Fu et al. (2021) also designed separate but symmetric dynamics and decoder for state and
noise, however, the ground-truth reward when only considering latent noise as input, may not lead
to the statistical independence of state and noise. DenoisedMDP Wang et al. (2022) . It seeks
to achieve this disentanglement by separating the uncontrollable factors, controllable factors, and
reward-irrelevant factors in an observation into three distinct latent variables. It utilizes a single
decoder to map both latent signals and noise to reconstruct observations. IFactor Liu et al. (2023)
is the state-of-the-art reconstruction-based MBRL method, similar to DenoisedMDP, controllable
factors, and reward-irrelevant factors are taken into consideration and the inter-causal relations are
identified based on the strong assumptions. TIA, DenoisedMDP and IFactor were designed for noisy
environments, but the DreamerV3 is not. All the methods were trained for 1 million environment
steps and evaluated every 5,000 environment steps based on the average return from 10 episodes
consisting of 1,000 steps each. The evaluation metrics’ mean and standard deviation are derived from
three independent runs. Each DMC task takes 8 hours on a GTX 3090 GPU, while the RoboDesk
task takes 15 hours. We follow the same hyper-parameters (α, β, and the dimension of latent states)
from DenoiedMDP without further tuning.

4.2 PERFORMACE ON DMC TASKS

Considering the relative ease of implementing the noiseless DMC and Uniform DMC compared to
the more complex Diverse DMC, our methods may not exhibit exceptional performance in com-
parison with other approaches, as demonstrated in the supplementary materials (see C.2). The
performance and reconstruction results are presented in Table 4.2, Figure 2, and the figures in 5.
These findings demonstrate that our method not only ensures optimal disentanglement and con-
vergence but also achieves superior performance and reconstruction outcomes. If the robot’s body
occupies a significant portion of the image, it will be easily identified; otherwise, its identification
becomes challenging, which can be quantified by signal-to-noise ratio (SNR). Tasks with high SNR
include Walker Run, Cheetah Run, and Finger Spin tasks, where disentangling state-noise relation-
ships could potentially be facilitated. The state reconstruction results demonstrate that the compared
method still encounters challenges in preserving the integrity of the state, as well as distinguishing
between state and noise. For instance, in tasks such as Walker Run and Cheetah Run, DenoisedMDP
and IFator inadvertently disclose certain state details to the noise. Although TIA also utilizes the
separate RSSM, it still encounters challenges in distinguishing between state and noise in Finger
Spin, potentially due to an incorrect learning objective. Another notable distinction between TIA
and our approach lies in the utilization of asymmetric decoders for state and noise, enhancing the ef-
ficiency of disentanglement as demonstrated by our ablation study. The situation worsens with lower
SNR, making other methods ineffective in identifying the robot in Ball in Cup Catch and Cartpole
Swingup tasks. In contrast, our method not only separates the state from noise effectively in tasks
with higher SNR but also accurately captures states even in tasks with lower SNR. For example, both
the cup and ball can be captured in the task Ball in Cup Catch, the cart is captured in the Cartpole
Swingup, and the Red destination is captured in Reacher Easy. The superior reconstruction state
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consistently leads to enhanced performance, as demonstrated in Table 4.2. Our method only falls
short in the Reacher Easy task, while DreamerV3 surpasses other denoising methods specifically
designed for this purpose.

Task Dreamer TIA DenoisedMDP IFactor Ours
Cartpole Swingup 167.15 ± 54.00 122.28 ± 13.34 132.97 ±5.44 144.72 ± 27.86 195.13±19.00

Cheetah Run 144.03 ±59.20 351.91 ± 127.79 221.83 ± 41.74 248.35± 104.87 520.57 ± 130.84
Ball in cup Catch 64.77 ± 112.19 31.31 ± 41.27 50.14 ± 31.08 134.60 ±60.60 272.60 ± 136.25

Finger Spin 310.66 ± 121.82 282.74 ± 230.41 75.11 ± 64.41 566.38 ±344.57 615.01± 211.31
Reacher Easy 441.33 ± 472.06 86.98 ± 53.85 101.28 ± 19.60 176.55 ±83.70 71.43 ± 13.29
Walker Run 108.52 ±98.38 315.87 ± 127.00 74.36 ± 19.57 68.77 ± 20.00 437.20 ± 71.80

Table 1: The experiments were conducted on the Diverse DMC tasks, and the performances were
evaluated based on the mean episode return and standard deviation from three independent runs.
The best results are highlighted in bold. Our method outperforms others in the majority of tasks.

Figure 2: In the diverse video background scenario, Our method outperformed other’s strong base-
lines to achieve the best performance in 5 out of 6 tasks, except for the Reacher easy.

4.3 PERFORMANCE ON ROBODESK

Given the provision of Robodesk, which offers a comprehensive reward-related state observation
(with a high signal-to-noise ratio), such as assessing the greenness of the TV screen, we find that the
performance of the compared methods is closely matched. The corresponding results are presented
in Figure 7.

4.4 ABLATION STRUDY

In the ablation study, we conducted a performance comparison between symmetric and asymmetric
structures on the DMC with diverse backgrounds. The symmetric structure employed two 8-layer
decoders, while the asymmetric structure consisted of an 8-layer state decoder and a 4-layer noise
decoder. Table 2 and Figure 3 illustrate the disentanglement achieved by the asymmetric structures.
This is because our algorithm attempts to compress all reward-related information into the compact
state representation, a decoder with stronger representation power may allow better compression of
the encoder. Especially, with symmetric structures, it is possible to make the model mistake the
noise as the state.
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Task Cartpole Swingup Cheetah Run Ball in cup Catch Finger Spin Reacher Easy Walker Run
Asymetric decoders 195.13 ± 19.00 520.57 ± 130.84 272.60 ±136.25 615.01 ± 211.31 1.43±13.29 437.20 ± 71.80
Symetric decoders 141.94 ±10.85 292.49 ± 94.19 126.59 ± 35.30 269.87± 218.16 90.41 ± 22.43 320.56 ± 247.30

Table 2: This comparison is conducted on the Diverse DMC tasks, The Asymmetric structure per-
forms better than in almost all the tasks except for the Reacher Easy. The best results are highlighted
in bold.

Figure 3: The Asymmetric world model demonstrates superior performance over the symmetric
one in the majority of tasks within a diverse video background scenario. A high standard deviation
indicates that the symmetric world model lacks stability across different random seeds.

5 CONCLUSION

Recent studies that delve into the intersection of causality and reinforcement learning have made
notable strides. However, they often overlook certain crucial aspects of problem settings within the
realm of RL. For instance, some of these works make strong assumptions about the geometry of
the state space, as well as assumptions concerning the mapping from state or noise to observation.
In our approach, we take a starting point from the perspective of RL, thoroughly examining these
specific problem settings within the RL context. Subsequently, we demonstrate how we can sub-
stantially relax the assumptions made in previous work regarding the identification of latent state
and noise. This relaxation of assumptions serves to bridge the gap between fundamental theoretical
concepts and their practical applicability in RL, contributing to a more holistic understanding and
application of these ideas. Furthermore, we translate our insights into a novel methodology, incor-
porating unique design elements such as employing two decoder network structures and enforcing
independence between state and noise through KL divergence penalties. Our empirical findings,
derived from comprehensive benchmark control tasks, substantiate the superiority of our proposed
approach compared to existing algorithms in effectively disentangling signals from noise.
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A PROOF OF PROPOSITIONS

Proposition 1 (Disentanglement). Given a POMDP (S,A,O, T ,M,R, γ), assume that

1. Invertible Observation function: M is invertible;

2. No redundancy: for any s0 ̸= s′0 ∈ S, there exists an integer n and an action series
a0, a1, . . . , an−1 such that

∑
sk,1≤k≤n

n−1∑
i=0

γiR(si, ai)

i−1∏
j=0

T (sj+1, aj , sj) ̸=
∑

s′k,1≤k≤n

n−1∑
i=0

γiR(s′i, ai)

i−1∏
j=0

T (s′j+1, aj , s
′
j);

3. Deterministic: The transition is deterministic, and the state and action space are finite.

there exists an state/noise estimation function h(o) : O 7→ S ×Z satisfies that

1. Transition preservation: For any observation o and any action, let ŝ, ẑ = h(o), we have
∀ŝ′

Pr(ŝ′|a, ŝ) =
∑

o′:ŝ′,ẑ′=h(o′)

Pr(o′|a, o);

2. Reward preservation: ∃R̂ such that for any state observation pair (s, o) with ŝ, ẑ = h(o),
for any action a, R̂(ŝ, a) = R(s, a);

and the function disentangles the state and noise, i.e. there exists a bijection between the estimated
state and the true state, as well as for the noise.

Proof. The existence of h is trivial as the invert of M must satisfy the transition preservation and re-
ward preservation condition. Then for a h function satisfies the two conditions, it would be straight-
forward to show that the estimated state ŝ is a valid representation (defined in Definition Definition
3.1 of Bennouna et al. (2021)) of the original MDP. By Proposition 3.3 of Bennouna et al. (2021), S
is the unique minimal state representation of the MDP given the no equivalent state and determinis-
tic assumption. Then by the fact the space of ŝ is also S, it would be trivial that there must exist a
bijection between the estimated state and the true state. Then by the fact that M and h are invertible,
there must exist a bijection between the estimated noise and the true noise.

Proposition 2. Given a POMDP (S,A,O, T ,M,R, γ), assume that M is invertible, there exists
an invertible state/noise estimation function h : O 7→ S ′ ×Z ′ satisfies that:

1. Transition preservation: For any observation o and any action, let ŝ, ẑ = h(o), we have
∀ŝ′

Pr(ŝ′|a, ŝ) =
∑

o′:ŝ′,ẑ′=h(o′)

Pr(o′|a, o);

2. Reward preservation: ∃R̂ such that for any state observation pair (s, o) with ŝ, ẑ = h(o),
for any action a, R̂(ŝ, a) = R(s, a);

and the optimal policy on the MDP derived by state estimation function h (by ignoring the estimated
noise) is also the optimal policy of the original MDP.

Proof. The existence of h is trivial as the invert of M must satisfy the transition preservation and
reward preservation condition.

Then for a h function satisfies the two conditions, we prove it leads to the optimal policy. For
the invertible observation function M, it is obvious we can use observation as a state. Thus we
only need to prove that the optimal policy obtained from the estimated state is the same as from
observation. Let’s consider the first step of value iteration, where all initial value is set to zero.
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Figure 4: The overall illustration of our world model.

For all state-observation pair (s, o), let ŝ, ẑ = h(o), it is straightforward that the value iteration on
estimated state space and observation space satisfies1:

Q1(ŝ′, a) =R̂(ŝ, a) + γ
∑
ŝ′

Pr(ŝ′|a, ŝ)V 0(ŝ′)

=R(o, a) + γ
∑
ŝ′

∑
o′:ŝ′,ẑ′=h(o′)

Pr(o′|a, o)V 0(o′)

=R(o, a) + γ
∑
o′

Pr(o′|a, o)V 0(o′) = Q1(o, a), (6a)

V 1(ŝ′) =V 1(o) = max
a

Q1(ŝ′, a) = max
a

Q1(o, a). (6b)

Assume that after k iterations of value iteration, we still have that

Qk(ŝ′, a) = Qk(o, a), V k(ŝ′) =V k(o). (7)

It would be straightforward after the k + 1’s iteration we have

Qk+1(ŝ′, a) =R̂(ŝ, a) + γ
∑
ŝ′

Pr(ŝ′|a, ŝ)V k(ŝ′)

=R(o, a) + γ
∑
ŝ′

∑
o′:ŝ′,ẑ′=h(o′)

Pr(o′|a, o)V k(o′)

=R(o, a) + γ
∑
o′

Pr(o′|a, o)V k(o′) = Qk(o, a), (8a)

V k+1(ŝ′) =V k+1(o) = max
a

Qk+1(ŝ′, a) = max
a

Qk+1(o, a). (8b)

Then by mathematical induction, the value iteration procedure on the estimated state space and the
original state space must match. Finally, by the fact that value iteration must converge to the optimal
policy, it would be obvious that the optimal policy on the estimated state space matches the optimal
policy on the original MDP.

B OVERALL STRUCTURE

C PERFOMANCE ON DMC VATIANTS

C.1 NOISELESS DMC

The performance of the compared method in noiseless DMC environments is illustrated in Table 3
and Chat 5. In these noiseless environments, symmetric decoders are employed for both state and

1Here we slightly abuse the notation R(o, a) = R(s, a) where observation o corresponds state s.
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noise. Due to the minimal presence of noise, the raw observation can be considered a state observa-
tion, rendering only the state decoder necessary. If we were to retain only one decoder, the proposed
structure would be reduced to a typical dreamer model.

Task Dreamer TIA DenoisedMDP IFactor Ours
Cartpole Swingup 824.62 ± 59.36 716.55 ± 151.01 555.49± 416.89 836.21 ± 26.45 824.27±12.01

Cheetah Run 780.62 ± 106.69 573.56 ± 361.39 815.78 ± 72.20 717.14± 213.07 797.16 ± 24.96
Ball in cup Catch 970.44 ± 9.04 959.00 ± 6.38 956.48 ± 8.21 908.54 ± 102.09 947.77±20.35

Finger Spin 939.22 ± 22.22 252.66 ± 219.10 442.76 ± 152.80 695.97 ± 248.07 469.78 ± 228.85
Reacher Easy 801.44 ± 166.39 891.66 ± 120.26 680.30 ± 259.33 948.92±39.07 541.24±390.41
Walker Run 762.29± 103.05 553.41 ± 55.30 629.54 ± 57.89 405.77 ± 78.61 642.19 ± 39.93

Table 3: The performances of the compared methods in the noiseless DMC environments.

Figure 5: In the noiseless DMC, armed by a much deeper world model, DreamerV3 always can
achieve the best performance.

C.2 DMC WITH UNIFORM BACKGROUND

Previous work(TIA, DenoisedMDP and IFactor) were trained and tested their method on the Uni-
formed background DMCs, where the disentanglement could be easier. The performance of the
compared methods is shown in Table 4 and Figure 6. Since DreamerV3 is not designed for the
purpose of denoising, it is not included in the comparison on the Uniform DMC.

Task TIA DenoisedMDP IFactor Ours
Cartpole Swingup 119.94 ± 16.41 97.19 ± 18.58 209.80± 354.54 172.28± 70.26

Cheetah Run 291.08 ± 74.14 317.31 ± 13.66 514.51 ± 165.56 469.47± 117.29
Ball in cup Catch 52.36 ± 49.66 120.22 ± 25.17 5.63 ± 9.75 201.81±156.10

Finger Spin 354.44 ± 299.01 559.95±47.03 504.3 ± 169.35 371.04±179.50
Reacher Easy 366.19 ± 129.51 639.53 ± 118.87 832.36 ± 79.60 345.44 ± 471.07
Walker Run 325.18 ± 42.01 401.35 ± 59.74 212.36 ± 166.29 507.25 ± 139.84

Table 4: The performances of the compared methods in Uniform DMC environments with unseen
video backgrounds. The best results are in Bold.

C.3 DMC WITH DIVERSE BACKGROUND

Chart 2 and Figures in 5 show the episode returns and reconstruction results for all the compared
methods.
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Dreamer TIA DenoisedMDP IFactor Ours

Raw Observation

State Reconstruction

Noise Reconstruction

Table 5: The Reconstruction visualization of six DMC tasks, namely Walker Run, Cheetah Run,
Finger Spin, Reacher Easy, Cartpole Spingup and Ball in Cup Catch, demonstrates the reconstruction
of signal and noise from different world models. Our models exhibit clear decoupling between
state and noise, whereas other compared methods produce numerous erroneous reconstructions and
consistently sacrifice the state observation.
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Figure 6: In the noiseless DMC, armed by a much deeper world model, DreamerV3 always can
achieve the best performance.

D PERFORMANCE ON ROBODESK

In the Robodesk tasks, we can see that all the compared methods achieve quite close performance,
around 500. However, because of the rich reward-related state, the error tolerance is much higher
than DMC. Therefore, Robodesk might not be an appropriate evaluation environment.

Figure 7: All compared methods demonstrate comparable performance on RoboDesk.
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Dreamer TIA DenoisedMDP IFactor Ours

Raw Observation

State Reconstruction

Noise Reconstruction

Table 6: In the Robodesk task, all methods exhibit comparable performance, but their denoising
capabilities vary. TIA fails to identify the Robot arm; DenoisedMDP and our method mistake the
greenness as noise; IFactor also mistakes the green light as noise. Although methods confuse the
state and noise, they still get quite good performance maybe because the reward-related state obser-
vation is rich.
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