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Abstract

Recently, test-time scaling of Large Language Models (LLMs) has emerged as a
practical alternative to parameter and data scaling. Reasoning tasks often require
large-scale, RLVR-based LLMs, while more economical LLMs can handle simpler
tasks. Routing an LLM tailored to suitability (i.e., capability and cost) ensures
usability and efficiency. We introduce LLMRec, which routes the most suitable
LLM to the user query without pre-inference on the candidate LLM zoo. It pio-
neeringly reframes the LLM routing problem as a comprehensive recommendation
system (RecSys) task. Our core insight is that an LLM’s suitability for a query is a
complex, latent signal equal to user-item preference. LLMRec systematically engi-
neers features for candidate LLMs (intrinsic attributes and capability distributions),
queries (general semantics and meta-dimensional info), and context (inference
type, cost budgets). It also incorporates behavioral features to learn high-order
interactions. LLMRec is designed to generalize to out-of-domain datasets and
adapt to new LLMs as the model zoo evolves. We define the metric with the Pareto
frontier under user-specified cost budgets. Across six datasets, LLMRec achieves
an average cost reduction of over 38% while maintaining accuracy and consistently
outperforming baselines in converging toward the Pareto frontier.

1 Introduction

The rapid growth of large language models (LLMs) [27, 38]] has produced a diverse ecosystem
of models varying in scale, functionality, and performance. The parameter scaling era gave rise
to models ranging from 1B-parameter edge-device variants to 100B+ omni-models [48] 157]. The
subsequent test-time scaling era introduced advanced reasoning LLMs like DeepSeek-R1 [[15]], which
leverage reinforcement learning and extended thinking processes for superior performance.

In practice, companies often provide LLMs-as-API-services [19]. For medium-sized business clients,
the monthly expenses for these services can reach millions of dollars [1], [53]]. A significant challenge
arises from this diversity: the capabilities of large or reasoning-heavy LLMs often far exceed the
requirements of some downstream tasks, leading to unnecessary costs. Smaller-scale LLMs are
typically sufficient for handling simple tasks, but more complex tasks, such as code generation [[10]]
or mathematical reasoning [12]], often require techniques like chain-of-thought (CoT), or larger,
reasoning LLMs with extended inference tokens [28| [13 54]. An intuitive idea emerges: can we
intelligently route user queries to the most suitable LLM, balancing performance and cost?

A good model routing outcome hinges on cost considerations, primarily driven by two factors [3]]:
the cost per token and the number of tokens generated. The former reflects the expense of producing
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a single token, typically scaling with the size of the candidate LLM. The latter is closely tied to the
inference mode, or whether the LLM is RLVR-based. The total cost can be defined as the product
of these two. A general observation is that larger LLMs or long-chain inference increase costs but
improve task completion and accuracy. From that, our model routing goal is to minimize costs without
sacrificing accuracy, approaching the Pareto optimum in the trade-off between cost and accuracy.

In this paper, we propose LLMRec, which pioneeringly reframes the model routing problem as a
comprehensive recommendation system (RecSys) task. We find the underlying logic of these two
problems is equivalent: (1) RecSys learns the complex match between a user and an item to predict a
personalized Preference. (2) Model Routing learns the optimal match between a query and an LLM
to evaluate its comprehensive Suitability (i.e., capability and cost). Importantly, both tasks share an
assumption: RecSys is effective because a user’s preference is a complex, latent signal. Similarly, an
LLM’s suitability for a query is a profound, implicit match determined by its specific capabilities,
domain expertise, and cost, which can be learned from massive historical performance logs.

Specifically, we introduce the feature engineering paradigm from RecSys into model routing. In
LLMRec, queries and LLMs correspond to users and items. We systematically construct features for:
(1) Model and Query: An LLM representation captures intrinsic attributes (like architecture, scale,
origin, training details, efc.) and capability distributions (as performance on benchmarks at release and
on a core set we constructed). For query representation, we consider general semantic embeddings
and meta-dimensional information (including high-level evaluations like answer difficulty, reasoning
level, and domain category). (2) Context: As RecSys dynamically adjusts recommendations based
on different times or locations, we use the user-specified infer type (e.g., self-consistency, CoT, and
Tree-of-Thought) and cost threshold as contextual features, enabling adaptation to different service-
level objectives. (3) Behavioral sequences: Furthermore, we build dynamic interaction features based
on the performance of candidate LLMs on i) a core set of tasks and ii) on top-k nearest training
neighbors of the current query. Like modern RecSys, the core of the LLMRec framework learns
the complex, high-order cross-information among model, query, behavioral, and contextual features.
This drives it to accurately predict a suitability score for each candidate LLM, recommending the one
that best approaches the Pareto optimum for the given cost constraint.

LLMRec is designed to be robust, generalizing to out-of-domain datasets, and adapting to new LLMs
as the model zoo evolves. While maintaining accuracy, LLMRec reduces costs by an average of over
38% across six datasets. It consistently outperforms all baselines in converging toward the Pareto
frontier under various cost budgets. Our main contributions are as follows:

* We are the first to systematically apply recommendation systems to model routing, achieving
economical, efficient, and iterative optimization.

* We implemented model, query, behavioral, and contextual features, allowing users to specify the
inference type and a cost threshold to constrain the routing.

* We develop a cost-budget-based Pareto metric tailored for LLM routing applications.

* We construct a large-scale training set and routing benchmark, including evaluations on unseen
datasets and dynamic model zoos.

LLMRec is versatile, efficient, and adaptable to the evolving LLM landscape, offering a scalable
solution for real-world LLM API deployment.

2 Preliminary

We start by presenting the model, query, and pipeline of the LLM router, and discuss its connection
to RecSys. We then introduce the deployment and related work of model routing.

2.1 Notations

Key Elements in LLM Routing Consider a scenario where, when using an LLM API, the system
provides a candidate LLM zoo M = (f1,f2,...,fM). In this case, the user provides a task
consisting of an instruction set Dy, = {(x;,a;)}Y;, where the LLM f™ produces the output as
0; = f™ (x;;1;) oninput x; using inference mode I; € Z, and the correct answer is a;. The accuracy
is given by Acc (0;, a;). In this paper, we focus on the case that /™ represents a decoder-only text
generation LLM. As established in the the core challenge of LLM routing is to predict the
suitability of an LLM f™ € M for a given query (x;; I;) without first generating the actual output o,
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Figure 1: Comparison of the performance laws of LLMs with different scales, architectures, and
tasks. For most LLM architectures, smaller-scale LLMs can accomplish most simple tasks efficiently;
routing to a smaller-scale LLM can reduce deployment costs.

from each candidate model. This suitability is conceptually consistent with the foundation of RecSys,
which operates by predicting the complex user preference.

Brief Background on Recommendation System The core task of RecSys is to learn the complex
matching relationships between users and items. A typical process begins by collecting user and item
features, their historical interaction logs, and contextual information. The model then learns a user’s
preference for different items under various scenarios. The ranking task in RecSys estimates the
probability of a user clicking on each item.

Cost-effective Routing Pipeline Our task is to select an LLM f for each instruction x; and the
inference mode I; to minimize cost while maintaining accuracy. We define the per-token cost of an
LLM as t", and the goal is:

= argmax E;[Acc(f™ (x;;1;), a;)], st Ztm o] <€, (1)
freMIET —

where 0; = f™ (x;;1;). The cost of the input sequence is omitted (as it is fixed for all methods).
e represents the user-specified cost threshold. In our formulation, exceeding the cost threshold e
incurs some penalty, but it is less critical than losing accuracy. The upper bound of LLM routing
performance depends on the number of instructions for which no available LLM can produce a correct
answer. In practice, directly optimizing as a hard-constraint problem is intractable. The
budget € is a global constraint summed over the entire dataset, whereas the router must make a local
decision for each query x;. Furthermore, a router trained to satisfy a fixed € is inflexible; it cannot
adapt to a different user-specified budget without being retrained. To overcome this, we reframe the
problem by treating the cost threshold € as a dynamic input feature. This converts the hard constraint
into a learnable condition. The router learns a policy that associates different budget levels with
corresponding routing strategies, enabling it to dynamically balance cost and accuracy based on the
user’s needs. We formally define the router, f™"", as a policy that selects a model /™ € M given
an input x;, an inference mode I;, and the cost threshold e.

Definition of the Pareto Front based on Cost Intervals In practical applications, service providers
tend to prioritize accuracy as a key performance indicator over cost. This preference stems from
their desire for a predictable performance outcome rather than an uncertain level of accuracy after
incurring expenses. Therefore, when LLM API service providers implement LLM routing, they often
address the dual problem of the optimization presented in the above Equation. This dual problem
aims to minimize costs subject to a constraint on a target accuracy. At this point, we introduce the
concept of Pareto dominance. For any two routing solutions, say solution f;°"**" and solution f;*"*',
characterized by their respective metrics (e.g., accuracy and cost), we state that solution a Pareto
dominates solution b (denoted as fi°"" > f;°"*") if and only if solution a is strictly better than
solution b in at least one objective and not worse in the other objectives. If one solution has lower
accuracy but also a lower cost than another, neither solution dominates. They may belong to the same
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Figure 2: Comparison of Different Methods for Utilizing pre-trained LLM Libraries: Ensemble
and Re-ranking methods require inference from all candidate LLMs. The Ensemble approach
combines the outputs of multiple LL.Ms, while the Re-ranking selects the most suitable response
from all generated outputs. Mixture-of-Experts (MoE) integrates routing within the Transformer
layer structure. LLM Routing in our setup directs instruction to one of the candidate LLMs without
requiring inference on the target instruction for all LLMs.

Pareto front. If both solutions fall within the user’s acceptable range for both cost and accuracy, they
are both considered comparatively optimal.

2.2 Related Work

Leveraging the formalized setting, we revisit key features from the

* No pre-inference model interactions. Some model ensemble or cascade strategies aim to se-
lect and synthesize the optimal response from all candidate models, considering input-response
relationships. Some scoring strategies have been applied in reinforcement learning-based LLM
training. Others include classical machine learning techniques [[7} 40, |20} 21]] and multi-perspective
deep ensemble methods [35 [22]. However, these methods can introduce significant delays in LLM
APIs, especially with large-scale candidates. In LLMRec, inferring each model for every target
instruction is not feasible.

* Generalization in new scenarios. LLMRec is designed for LLM APIs with a focus on router
scalability. While some transfer learning approaches [5 29,159, [39] use proxy source-target metrics
based on label distribution matching, they are limited by the target set seen during training [9]. On
the other hand, LLM APIs have a flexible natural language output space, meaning the router should
generalize zero-shot to unseen user instructions.

* Extension on updated candidate models. Some application-specific router frameworks [44} 3| [14]]
have addressed the issues mentioned above. However, most approaches fix the candidate model zoo
in order to stabilize routing training and deployment scenario [136} 16, 17, 146, |37]]. Additionally,
some mixture-of-experts (MoE) [45, [18| 131]] use MLPs within transformer blocks as experts,
embedding a router to select among them to reduce inference costs. However, these methods tightly
couple router and model parameters, so when the expert zoo is updated, the router needs to adapt
through complex incremental learning [41}64], which may introduce issues like hyperparameter
sensitivity and catastrophic forgetting.

In summary, while existing approaches have made significant strides in specific aspects of model
routing, LLMRec distinguishes itself by offering a solution that holistically addresses the challenges
of pre-inference overhead, zero-shot generalization to new instructions, seamless extension to updated
model libraries, and inherent cost-efficiency. Its novel use of a recommendation system framework,
as depicted in based on learnable representations of models and queries, allows for dynamic
and efficient routing in large-scale LLM API environments. LLMRec introduces a scalable approach



by creating a universal, learnable model representation, turning LLM routing into learning both
model and query embeddings. The model representation encodes capabilities and behaviors and is
optimized with a dynamic embedding vocabulary. This universality allows new LLMs to quickly
index into the embeddings after lightweight inference, unlike the random initialization and re-training
needed in Model Spider [63]. Finally, the routing process estimates the relationship between the
model and query representations.

3 Learning to Route Test-Time Economical LLM

In this section, we outline LLMRec framework, discuss the construction of the recommendation
representations, implementation details, and cost constraints in deployment.

3.1 Representation of Model & Query

Motivation: The model is a black box to the router, and decisions must be made without inferring
on all candidate models to minimize overhead. Directly extracting features from an LLM’s high-
dimensional parameters is infeasible. To address this, we construct a model representation that
incorporates both intrinsic properties and capability distributions. This allows the router to learn how
a model’s potential impacts its generalization to new instructions. To achieve this, we also build a
comprehensive coreset of diverse evaluation data. The advantage is that when a new model arrives,
we can assess its core capabilities on this coreset with minimal overhead.

Model Representation For the candidate LLM f™, we categorize its representation into intrinsic
properties and capability distributions, with each dimension optional.

1. Intrinsic properties include model structure (e.g., publisher, name, architecture, number of layers,
layer types, total parameters, training details, precision, and feature descriptions). Additional
information may include HuggingFace download count, open-source licenses, etc.

2. Capability distributions are divided into evaluated on offline benchmark and online coreset.

(a) Given that most LLMs publish standard benchmark performances on release, we document
model performance on benchmarks such as MMLU [24], MMLU-Pro [51]], BBH [47], ARC-
Challenge [6], Truthful QA [32]], Winogrande [43]], and HellaSwag [60]]. For reasoning capa-
bilities, we consider domains like mathematics (MATH [25], MMLU-STEM, GSMS8K [12])
and code generation (HumanEval [10]], HumanEval+ [34], MBPP [4]], MBPP+ [34])). For
offline capabilities, we focus on the average performance across these datasets, and definitely,
the router will not explicitly know which benchmark the current user query belongs to.

(b) To expand the assessment of model capabilities, we also create an online evaluation coreset:
it acts as a bridge linking the model’s historical behavior with its future expected performance.
By sampling 20-shot examples from each of the 71 categories in MMLU and MMLU-Pro,
we form a core set of 1,415 instructions for online evaluation. In parallel, we select from
specialized domains like mathematics, code generation, healthcare, law, and finance. We
extract 5 keywords for each category as semantic descriptors and compute class-center
embeddings. Detailed information is provided in the [section 4]

Query Representation We divide the representation for a user instruction x; into general semantic
representation and meta-dimensional information.

1. General semantic embeddings: For a user instruction x;, we use 3 general encoders v (e.g.,
GTEarge [62] ~ 0.33B, Qwen2.5-0.5B-Instruct [57)], and RoBERTa-Large) to extract embeddings.

2. Meta-dimensional information, e.g. answer difficulty, reasoning level, content diversity, tem-
poral stability, conceptual ambiguity, and domain expertise, is extracted via specific prompts by
encoder Qwen2.5-7B-Instruct [S7] through a few inference steps.

Context Representation We also construct contextual features to align routing decisions with
service-level objectives. These include the user-specified inference type (e.g., self-consistency, CoT,
Tree-of-Thought (ToT)) and the cost threshold, which we discretize into five levels.

The features described above are all attributes of either the query or the model side. In RecSys, these
are known as first-order features. We note that any of these feature dimensions can be optional (in
implementation, they are null-padded). Modern RecSys, however, automatically constructs and learns
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Figure 3: The flowchart of LLMRec. The representation of model, query, context, and behavioral
sequences is constructed. Then, the feature relationships are learned by the LLMRec with the RecSys
kernel to route to the corresponding LLM.

from numerous high-order cross-features to capture the complex, non-linear matching relationship
between the two sides. We introduce some examples of explicit cross-features, such as those centered
on the historical behavioral sequences of models relevant to the current query. Specifically, we
consider the performance of candidate LLLMs on i) our core set of tasks and ii) on the top-k nearest
training neighbors of the current query. These are introduced as dynamic capability features that are
more representative of and relevant to the query. While an inherent gap may exist between a model’s
static capabilities and a query’s semantics, the LLMRec framework, like modern RecSys, is designed
to learn from the complex, high-order relationships among all available model, query, contextual, and
behavioral sequence features.

3.2 Routing as Recommendation

We formalize the routing problem as a ranking in RecSys. In this paradigm, the input query (x;)
and candidate LLM (f™") are mapped to the user and item. The user-specified context, such as the
cost threshold and inference type, provides the situational context for the recommendation. The core
objective is to learn a function that predicts the suitability for any given (query, model, context) tuple.
This suitability is a complex, non-linear match using high-order cross-features, corresponding to
the core challenge in modern RecSys. LLMRec is designed to leverage principles from established
architectures to learn these interactions.

For instance, methods like Wide & Deep [[L1] excel by combining two components: a “wide” part
that memorizes explicit, low-order feature interactions (e.g., manually crafted crosses) and a “deep”
part that uses MLPs to generalize and learn implicit, high-order relationships from dense embeddings.
Manually designing cross-features is difficult. Models like DeepFM [23]] automate this by integrating
Factorization Machines (FM) with an MLP. The FM component efficiently models second-order
feature interactions by learning a low-dimensional latent vector for every feature and taking their dot
products. These latent vectors are shared with the deep component, allowing end-to-end learning.
Enhancements like AFM [55]] introduce an attention mechanism to weigh the importance of different
feature interactions. Other models learn implicit interactions more directly: FGCNN [33] applies
convolutions to the feature map to capture local interaction patterns. FiGNN [30] employs graph
neural networks (GNNs), treating features as nodes to capture complex, high-order relationships via
aggregation.

Furthermore, a model’s suitability is not static; it is highly dependent on the query. We draw
inspiration from behavioral modeling in RecSys, such as the Deep Interest Network (DIN) [65]],
which uses an attention mechanism to dynamically weigh a user’s historical behaviors based on their
relevance to a target item. Analogously, LLMRec treats a model’s historical performance, such as on
our coreset or on the top-k nearest training neighbors of the current query, as a dynamic behavioral
sequence. This allows the framework to learn a query-aware representation of a model’s capabilities.

By integrating first-order features (of query, model, context) and learning their complex, high-order
interactions, the RecSys framework learns to accurately rank all candidate LLMs. This ranking



allows it to recommend the model that best approaches the Pareto optimum for the given query and
service-level constraints.

3.3 Training Data Construction

A training instance is (q,m,c,b) — s, where the representations for the query (q), model (m),
context (c), and behavioral features (b) map to a target suitability score s. To learn this function, we
construct a massive dataset of over 1 billion model-query pairs. This dataset spans more than 50
LLM families (from 2024) evaluated on over 30 diverse benchmarks. We capture performance logs
using various inference modes, including direct generation, self-consistency [50], Chain-of-Thought
(CoT) [52], and Tree-of-Thought (ToT) [58]].

For each pair (x;,0!") (instruction x;, model m’s output 07*), we record the key labels as:

1. Accuracy (Acc): Evaluated using dataset-specific metrics against the ground-truth answer a;.
2. Cost: Calculated as Cost(o]*) = cy,, x |of*|, where cy,, is the estimated per-token inference cost
(based on model scale) and |0}"| is the length of response tokens.

To generate the ground-truth suitability ranking s, we follow a Pareto-based principle that prioritizes
cost-effectiveness. For a given query, we define the preference order as:

Rankjng = Sort ) ({fm}Acc(o:’L,aq’)>0) @ Shuffle ({fm}Acc(oZ",ai):O) 2

Cost(ol™

where @ denotes ordered concatenation. All models that correctly solve the task (Acc > 0) are
ranked first, sorted by their Cost(-) in ascending order (lower cost is better). All models that fail
(Acc = 0) are shuffled and ranked last. Crucially, this ground-truth ranking is computed relative to
the input contextual features c, especially the user-specified cost threshold. This teaches the LLMRec
to adapt its routings, learning which LLM is “best” under different budget constraints.

4 Experiments

4.1 Implementation Details

Candidate LLMs Zoo of Training As mentioned, we consider 52 different LLMs. Among them,
32 models are under 10B parameters, 15 models are between 10B and 20B parameters, and 5 models
are around 70B parameters. In practice, we test more than 80 models, but exclude early models that
did not have CoT capabilities.

Domains of Training Datasets We consider general evaluation datasets, commonsense reasoning,
math reasoning, code generation, symbolic reasoning, and specific domain datasets such as medical,
law, and financial datasets, totaling 35 datasets.

Interaction Scaling We perform inference with each candidate LLM on the target datasets to
generate nearly 10m interaction pairs. We sample approximately 1100k of these for training, with
stronger-performing pairs being assigned higher sampling weights. Out of the 35 datasets, 24 are
multiple-choice datasets, and 11 are fill-in-the-blank or question-answer datasets, including token
generation via the generate method. For these datasets, we incorporate self-consistency, CoT, and
Tree-of-Thought (ToT) reasoning modes. We also include datasets where the performance did not
improve or even declined after applying complex reasoning modes.

Evaluation Metrics We evaluate the 24 multiple-choice datasets using perplexity (PPL). Most
additional 11 fill-in-the-blank datasets are evaluated using regular expressions to extract the final
answers. We follow the corresponding evaluation libraries for some domain-specific datasets (such as
math extraction processes or code generation-type pass @k).

Candidate LLMs Zoo of Evaluation As shown in[Table 1} we have mixed 5 small-scale LLMs
with fewer than 10B parameters, 2 LLMs between 10B and 20B parameters, and 3 large-scale LLMs
with around 70B parameters to ensure that the LLM library contains varying capabilities, from small
to large.



General Comm. Reasoning Mean

Method #Params  \ i U TruthfulQAARC-C  MMLU-stem
5-shot 0-shot 25-shot 5-shot
Small-scale LLMs (<10B)
InternLM2.5 [8] 7.7B 69.88 54.56 60.75 65.31 62.63
Meta-Llama-3 jyryce [49] 8.0B 65.59 51.63 62.12 58.32 59.42
Qwen?2 pngruct 1561 7.6B 69.13 55.49 61.43 63.45 62.38
GLM-4 [61] 9.4B 69.28 59.32 66.13 64.45 64.80
Phi-3 sman-128x [2] 7.4B 7590  64.62 71.08 69.09 70.17
Best-Performing of Small-scale LLMs - 7590  64.62 71.08 69.09 70.17
Large-scale LLMs (~70B)
Meta-Llama-3 pryce [49] 70B 79.89 61.83 71.67 73.92 71.83
Qwen?2 [pgiruct 1561 72B 83.79 54.85 68.62  79.85 71.78
Mixtral-8x22B 1nstruct-vo.1 [26]] 140B 77.63 68.19 72.78 71.64 72.56
Best-Performing of Large-scale LLMs - 83.79 68.19 72.78 79.85 76.15
LLM Routing
Random Selection ~ 32B 72.98 58.87 67.83 67.96 66.91
GTELarge [62] ~ 55B 7472 61.08 69.62 69.12 68.64
LR [42] ~ 33B 73.25 59.61 66.04 68.12 66.76
Deep & Wide [11] ~ 27B 8232  67.44 71.67 77.37 74.70
Ours w/ DeepFM [23] ~ 26B 82.29 67.81 71.93 76.74 74.69
AFM [33] ~ 25B 79.84  63.53 70.39 77.50 72.82
DIN [63] ~31B 8392 66.83 7295  78.36 75.52

Table 1: Comprehensive Routing Evaluation on General, Commonsense, and Reasoning Tasks.
We compare the response accuracy across various benchmarks (MMLU, Truthful QA, ARC-C, and
MMLU-stem). We categorize methods by model scale (Small-scale LLMs, Large-scale LLMs, and
LLM Routing methods). We show the number of parameters (“#Params”). Bold represents the best
performance, and underlined is the second-best.

Evaluation Benchmarks Similarly, we have construct evaluation dataset that includes general
evaluation benchmarks like MMLU [24]], Truthful QA [32]], and commonsense reasoning tasks such
as ARC-Challenge [6] and MMLU-stem [24], as well as mathematical reasoning benchmarks like
GSMSK [12], and symbolic reasoning tasks like BBH [47]. Different models exhibit performance
variations on these datasets. We reference the scale size and FLOPs to correspond with the cost, and
by multiplying the response token count, we calculate the total cost per unit on each dataset.

Model Representation Construction. As outlined in[section 3] we construct model representations
using the descriptions and coreset. Each dimension is segmented into multiple values, with continuous
values being bucketed. These segmented values are then mapped to randomly initialized embeddings,
which are incorporated into the training process.

Baseline methods. For the baseline, we consider randomly selecting from the LLM library and using
all responses o1 from the inference downstream datasets. We employ GTEgy. to match o; with the
instruction x;, and the LLM with the highest score is selected.

Average scale calculation (“#Params” in the Tables). We average the scales of all selected LLMs
based on the instruction dimensions of all evaluation data in both tables, which results in the LLM
scale presented in “#Params”.

Generalization to unseen models and datasets. As shown in the models underlined in our
LLM library have not appeared in the routing training set (one large-scale and one small-scale LLM).
All datasets, except for MMLU, are considered unseen datasets.



Math Reasoning Symbolic Reasoning

Method #Params GSMSK BBH Mean
4-shot, CoT 3-shot, CoT
Perf. Leng. Perf. Leng. Perf. Leng.
Small-scale LLMs (<10B)
InternLM2.5 7.7B 74.37 371 68.13 452 65.50 412
Meta-Llama-3 gyt 8.0B 56.18 273 60.93 399 59.13 336
Qwen?2 1spruct 7.6B 78.92 368 62.92 526 65.22 447
GLM-4 9.4B 79.53 505 74.43 487 68.86 496
Phi-3 gman-128x 7.4B 82.34 449 73.94 521 72.83 485
Best-Performing - 82.34 449 74.43 487 72.91 468
Large-scale LLMs (~70B)
Meta-Llama-3 et 70B 83.17 580 81.48 635 75.33 608
Qwen?2 1pstruct 72B 88.86 535 82.89 593 76.48 564
Mixtral-8x22B pstruct-vo.1 140B 84.31 553 79.54 610 75.68 582
Best-Performing - 88.86 535 82.89 593 79.39 564
LLM Routing
Random Selection ~ 32B 77.71 489 73.58 534 69.82 512
GTELarge ~ 55B 80.52 528 74.37 580 71.57 554
LR ~ 33B 83.40 457 73.84 532 70.71 495
Deep & Wide  ~ 27B 86.05 426 78.27 489 77.19 458
Ours w/ DeepFM ~ 26B 87.87 411 78.02 495 77.44 453
AFM ~ 25B 86.05 404 79.40 476 76.12 440
DIN ~ 31B 87.19 446 79.94 500 78.20 473

Table 2: Comprehensive Routing Evaluation on Math and Symbolic Reasoning Tasks. We
compare performance on math and symbolic reasoning tasks, showing response accuracy (‘“Perf.”)
and average token usage (“Leng.”). Similar to we estimate the approximate model scale
associated with each routing method. The total computational cost of a method on the data is
approximately proportional to the product of the model scale (“#Params”) and the average token
usage (“Leng.”). Bold is the best, and underlined is the second-best.

4.2 Results Analysis

illustrates the performance of LLMRec using different recommendation system kernels on
General and Commonsense Reasoning tasks. We test our routers at two scales, with small-scale LLMs
showing some variation in performance. Among the small-scale LLMs, Phi-3 Small-128K achieved
the best results, scoring the highest across all tests with an average of 70.17. Other small-scale
LLMs, such as InternL.M2.5, Meta-Llama-3 Instruct, Qwen2 Instruct, and GLM-4, also deliver decent
performance.

In the large-scale LLM category, Qwen?2 Instruct (72B) outperforms the others, notably earning
a high score of 79.85 on MMLU-stem. Meta-Llama-3 Instruct (70B) follows closely, showing
strong performance across most tests. Mixtral-8x22B Instruct-v0.1 excels in specific metrics like
TruthfulQA, but its overall average score was slightly lower than the other methods. LLMRec
manages the routing of instructions for all the above LLMs. Comparison methods were also used,
such as random selection and embedding matching using GTEL e (With estimated LLM scales of
32B and 55B). Most of LLMRec’s routes were in the 20B+ range. When routing LLMs with the
recommendation system’s DIN architecture, the best results are achieved when historical model-data
interactions are included in the sequence, reaching an average accuracy of 75.52. Wide & Deep and
DeepFM also achieve similarly high performance with relatively low overhead. Notably, on MMLU
and ARC-Challenge, the LLM’s performance surpasses the top-performing models in the datasets.

In we present the routing capability on deep reasoning tasks, including GSM8K and BBH
datasets for math and symbolic reasoning. The candidate LLM library and comparison methods are
the same as in In this evaluation, the LLMs performed inference through a generation-based



approach and assembled CoT. The “Mean” in the represents the average across all data,
including the results from[Table 1| After inference, we calculate the average token length for each
method. The overall cost for each method is roughly determined by multiplying the model scale by
the token length. LLMRec achieves superior performance while reducing the average output length
by approximately 30% compared to others, resulting in the optimal average performance.

Limitations

LLMRec has not considered market factors such as fluctuations in LLM API pricing; instead, we use
the LLM parameter scale as an approximation. The generalization capability of model representations
under modified pricing schemes requires further investigation. The system’s evaluation of new LLMs
depends on a sufficient volume of historical interaction data. This creates a cold-start challenge, a
common issue for all routing systems in the rapidly evolving LLM ecosystem. This limitation may be
addressed by continuously updating the coreset to enhance the validity of the model representations.

5 Conclusion

In this paper, we introduced LLMRec, a novel framework that optimizes the cost-performance trade-
off for LLM API services by pioneeringly reframing model routing as a recommendation system
(RecSys) task. Our core insight is that an LLM’s suitability for a query, balancing capability and cost,
is a complex, latent signal equal to user-item preference. LLMRec learns this signal by modeling rich,
multidimensional features for models, queries, operational contexts (including user-specified cost
thresholds), and behavioral sequences. Our extensive experiments demonstrate that LLMRec reduces
inference costs by over 38% on average while preserving task accuracy. The framework shows robust
zero-shot generalization to unseen tasks and seamless adaptation to a dynamically evolving model
700, validating intelligent routing as a viable solution for scalable and economical LLM deployment.
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paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly summarize the paper’s core contributions
and define the scope of the research presented, accurately reflecting the content discussed in
the main body.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations in the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper is empirical and does not contain theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the paper, we have provided a detailed description of the model structure and
training method, and in the experimental section, we have detailed the evaluation protocol
and the datasets used for comparison.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code for the methods is provided in the supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specified the training pipeline, the evaluation settings and protocol, and the
evaluation datasets in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the statistical significance of the experiments in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the appendix, we describe the computational resources used to complete
model training and experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper is compliant with the NeurIPS Code of Ethics in all aspects.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This work has no potential negative societal impacts. The topic of the paper is
using large models for table understanding and question answering, which can be applied in
areas such as finance, healthcare, and science to improve productivity.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:|[NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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