
Under review as submission to TMLR

Optimal Input Gain: All You Need to Supercharge a Feed-
Forward Neural Network

Anonymous authors
Paper under double-blind review

Abstract

Deep learning training training algorithms are a huge success in recent years in many
fields including speech, text,image video etc. Deeper and deeper layers are proposed with
huge success with resnet structures having around 152 layers. Shallow convolution neural
networks(CNN’s) are still an active research, where some phenomena are still unexplained.
Activation functions used in the network are of utmost importance, as they provide non
linearity to the networks. ReLU’s are the most commonly used activation function.We show
a complex piece-wise linear(PWL) activation in the hidden layer. We show that these PWL
activations work much better than ReLU activations in our networks for convolution neural
networks and multilayer perceptrons. Result comparison in PyTorch for shallow and deep
CNNs are given to further strengthen our case.

1 Introduction

Multilayer perceptron (MLP) neural networks are used to solve a variety of real-life approximation tasks,
including stock market time series forecastingWhite (1988), power load forecastingKe et al. (2019), prognostics
Kara (2021), well log processing Wang et al. (2020), currency exchange rate predictionChen et al. (2021a),
control applicationsLewis et al. (1997) and stock and weather predictionMeesomsarn et al. (2009)Bochenek &
Ustrnul (2022). MLPs are also used in classification problems such as speech recognitionAdolfi et al. (2023),
fingerprint recognitionWang et al. (2022), character recognitionChen et al. (2021b), and face detectionKasar
et al. (2016). In recent times, they also form the back end of deep learning architectures as Tyagi (2018), Qi
et al. (2017).

The "no free lunch" theorem (NFL) Duda et al. (2012),Wolpert (1996) implies that no single discriminant
training algorithm is universally superior. Despite this, feed-forward neural nets, or MLPs, have gained
increasing popularity for two reasons. First, MLPs have the ability to approximate any continuous discriminant
function with arbitrary accuracy due to universal approximation capability Girosi & Poggio (1989), Cybenko
(1989), White (1990), Hartman et al. (1990) meaning that it can approximate the best classifier. However, a
feed-forward network with a single layer may struggle to learn and generalize correctly due to insufficient
learning, a lack of deterministic relationship between inputs and outputs, or an insufficient number of hidden
units Pao (1989), Werbos (1974), Goodfellow et al. (2016). Second, with proper training, an MLP can
approximate the Bayes discriminant Suter (1990) or the minimum mean-square error (MMSE) estimator
Geman et al. (1992),Manry et al. (1996),Wu (1996).

Training an MLP is an unconstrained optimization problem that usually involves first order gradient methods
such as backpropagation (BP), scaled conjugate gradient (SCG) Fitch et al. (1991)Møller (1993), OWO-BP
Hecht-Nielsen (1992), Tyagi et al. (2022a) and second order Levenberg-Marquardt (LM) Battiti (1992)Hagan
& Menhaj (1994) and Newton’s algorithm Tyagi et al. (2021), Tyagi et al. (2021) and OWO-MOLF Tyagi
et al. (2020). Within first and second order, training algorithms can be one stage, in which all the weights
of the network are updated simultaneously and two stage, in which input and output weights are trained
alternately Tyagi (2018). However, each of these approaches has its limitations. Newton’s and LM scale worse
than OWO-BP. OWO-BP takes O(N2

w) operations for sufficiently large Nw, where Nw is the total weights of
the network. It is also unduly slow in a flat error surface and could be a more reliable learning paradigm.

1



Under review as submission to TMLR

OWO-BP also lacks affine invariance Tyagi et al. (2022a). SCG scales well but has no internal mechanism to
overcome linearly dependent inputs Tyagi (2018). Newton’s method is a second-order algorithm that requires
computing and storing the Hessian matrix at each iteration, which can be computationally expensive Tan &
Lim (2019). The LM algorithm is faster than Newton’s method because it approximates the Hessian matrix
using the Jacobian matrix Levenberg (1944). However, it becomes less efficient as the number of parameters
increases Tan & Lim (2019).

MLP training is also sensitive to many parameters of the network and its training data, including the
input means LeCun et al. (1998a), the initial network weights Rumelhart et al. (1986), Kolen & Pollack
(1990), and sensitive to the collinearity of its inputs Hashem & Schmeiser (1995). Also, scaling the network
architecture to learn more complex representations is cumbersome. This limited applications involving MLP
to challenging but less complex problems where shallow architectures could be used to learn and model the
behavior effectively. The recent developments of transformers Vaswani et al. (2017) and their success in
complex applications involving natural speech Dong et al. (2018), Pham et al. (2019) and vision Kolesnikov
et al. (2021) have renewed interests in feed-forward network architectures, as they form the building blocks
to the more complex transformer architectures int (2023). Feed-forward network are also being used in active
production for radar perception stack in autonomous driving. Tyagi et al. (2022b).

We present a family of fast learning algorithms targeted towards training a fixed architecture, fully connected
multi-layer perceptron with a single hidden layer capable of learning from both approximation and classification
datasets. In Malalur & Manry (2009), a method for optimizing input gains called the optimal input gain
(OIG) was presented. Preliminary experiments showed that when this method was applied to the first-
order MLP training method like the BP, it significantly improved the overall network’s performance with
minimal computational overhead. However, the method performs less optimally under the presence of linearly
dependent inputs. In general, this is true for other MLP training algorithms as well. We expand the idea of
OIG to apply another first-order two-stage training algorithm called hidden weight optimization (HWO) Yu
et al. (2004), Tyagi et al. (2022a) to formulate the OIG-HWO algorithm.

Following Malalur & Manry (2009), we expand on the details of the motivation behind the OIG algorithm,
along with a thorough analysis of its structure, performance, and limitation. In addition, we propose
an improvement to overcome the limitation and compare the new algorithm’s performance with existing
algorithms. Our vision for the OIG-HWO presented in this paper is twofold, firstly, to be a strong candidate
for challenging but less complex applications that can rival available shallow learning architectures in speed
and performance, and secondly, to serve as a potential building block for more complex deep learning
architectures.

The rest of the paper is organized as follows. Section II covers the basics of MLP notation and training
and an overview of existing algorithms. Section III discusses the linear transformation of inputs. In Section
IV, we describe the OIG-HWO algorithm and its training process. Finally, in Section V, we compare the
results of the OIG-HWO algorithm to those obtained using existing approaches on approximation data and
classification data used for replacement in deep learning classifiers.

2 Prior work

2.1 Structure and notation

A fully connected MLP with one hidden layer is shown in Figure 1. Input weight w(k, n) connects the nth

input xp(n) to the kth hidden unit. Output weight woh(i, k) connects the kth hidden unit’s activation op(k)
to the ith output yp(i), which has a linear activation. The bypass weight woi(i, n) connects xp(n) to yp(i).
In the training data {xp, tp} for a fully connected MLP, the pth input vector xp is initially of dimension N
and the pth desired output (target) vector tp has dimension M. The pattern number p varies from 1 to Nv.
Let the input vectors be augmented by an extra element xp(N + 1) where xp(N + 1) = 1, so xp = [xp(1),
xp(2). . . xp(N + 1)]T . Weights leading away from xp(N + 1) are hidden or output layer thresholds. For the
pth pattern, the hidden unit’s output vector np can be written as

2



Under review as submission to TMLR

Figure 1: Single hidden layer fully connected MLP

np = W · xp (1)

where np is of size Nh by 1, and the input weight matrix W is of size Nh by (N + 1). For the pth pattern,
the kth hidden unit’s output, op(k), is calculated as op(k) = f(np(k)), where f(.) denotes a nonlinear hidden
layer activation function such as the rectified linear unit (ReLU) which is given as follows Nair & Hinton
(2010).

f(np(k)) = max(0, np(k)) =
{

np(k), if np(k) ≥ 0
0, if np(k) < 0

(2)

The M dimensional network output vector yp is

yp = Woi · xp + Woh · op (3)

where op is the Nh dimensional hidden unit activation vector. The last columns of W and Woi respectively
store the hidden unit and output unit threshold values. During training the unknown weights are solved by
minimizing a mean-squared error (MSE) function described as

E = 1
Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]2 (4)

Training a neural network involves formulating it as an unconstrained optimization problem and then applying
a learning procedure. Typically, the learning procedure is a line search Gill et al. (2019), with a layer-by-layer

3



Under review as submission to TMLR

optimization Biegler-König & Bärmann (1993), Zhang et al. (1999), Wang & Chen (1996), involving first and
second-order algorithms.

2.2 Scaled conjugate gradient algorithm

Conjugate gradient (CG) Tyagi et al. (2022a) line-searches in successive conjugate directions and has faster
convergence than steepest descent. To train an MLP using the CG algorithm (CG-MLP), we update all the
network weights w simultaneously as follows:

w← w + z · p (5)

where z is the learning rate that can be derived as LeCun et al. (1998a),Tyagi et al. (2022a).

z = −
∂E(w+z·p)

∂z
∂2E(w+z·p)

∂z2

|z=0 (6)

The direction vector p is obtained from the gradient g as

p← −g + B1 · p (7)

where p = vec (P, Poh, Poi) and P, Poh and Poi are the direction vectors corresponding to weight arrays
(W, Woh, Woi). CG uses backpropagation to calculate g. B1 is the ratio of the gradient energy from two
consecutive iterations. If the error function were quadratic, CG would converge in Nw iterations Boyd &
Vandenberghe (2004), where the number of network weights is Nw = dim(w). CG is scalable and widely
used in training large datasets, as the network Hessian is not calculated Le et al. (2011). Therefore, in a CG,
the step size is determined using a line search along the direction of the conjugate gradient.

SCG Møller (1993) scales the conjugate gradient direction by a scaling factor determined using a quasi-Newton
approximation of the Hessian matrix. This scaling factor helps to accelerate the algorithm’s convergence,
especially for problems where the condition number of the Hessian matrix is large. SCG requires the
computation of the Hessian matrix (or an approximation) and its inverse. Other variations of CG exist Tyagi
et al. (2014). However, in this study, we choose to use SCG.

2.3 Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm Tyagi et al. (2022a) is a hybrid first- and second-order training
method that combines the fast convergence of the steepest descent method with the precise optimization of
the Newton method Levenberg (1944). However, inverting the Hessian matrix H can be challenging due to
its potential singularity or ill-conditioning Bishop (2006). To address this issue, the LM algorithm introduces
a damping parameter λ to the diagonal of the Hessian matrix as

HLM = H + λ · I (8)

where I is an identity matrix with dimensions equal to those of H. The resulting matrix HLM is then
nonsingular, and the direction vector dLM can be calculated by solving:

HLM dLM = g (9)

The constant λ represents a trade-off value between first and second order for the LM algorithm. When λ is
close to zero, LM approximates Newton’s method and has minimal impact on the Hessian matrix. When λ is
large, LM approaches the steepest descent and the Hessian matrix approximates an identity matrix. However,
the disadvantage of the LM algorithm is that it scales poorly and is only suitable for small data sets Tyagi
et al. (2022a).

4



Under review as submission to TMLR

2.4 Output weight optimization

Output weight optimization (OWO) Barton (1991), Tyagi et al. (2021) is a technique to solve for Woh and
Woi . Equation (3) can be re-written as

yp = Wo · xap (10)
where xap = [xT

p : oT
p ]T is the augmented input column vector of size Nu = N + Nh + 1. Wo is formed as

[Woi : Woh] of dimensions M by Nu. The output weights can be found by setting ∂E/∂Wo = 0, which leads
to the set of linear equations

C = R ·WT
o (11)

where C = 1
Nv

∑Nv

p=1 xaptT
p and R = 1

Nv

∑Nv

p=1 xapxT
ap. Equation (11) can be solved using orthogonal least

squares (OLS) methods Tyagi (2018). OWO provides fast training and avoids local minima Manry et al.
(1994). However, it only trains the output weights.

2.5 Input weight optimization

Input weight optimization Tyagi (2018) is a technique for iteratively improving W via steepest descent. The
Nh by (N + 1) negative input weight Jacobian matrix for the pth pattern’s input weights is

G = 1
Nv

Nv∑
p=1

δpxT
p (12)

where δp = [δp(1), δp(2), ...., δp(Nh)]T is the Nh by 1 column vector of hidden unit delta functions Rumelhart
et al. (1985). W is updated in a given iteration as

W = W + z ·G (13)

where z is the learning factor. Combined with BP, we formulate OWO-BP Tyagi et al. (2022a), a two-stage
training algorithm developed as an alternative to BP. In a given iteration of OWO-BP, we first find the
weights, Woh and Woi and then separately train W using BP Tyagi (2018). OWO-BP is attractive for several
reasons. First, the training is faster since solving linear equations for output weights in a given iteration is
faster than using a gradient method. Second, when OWO optimizes output weights for a given input weight
matrix, some local minima are avoided. Third, the method exhibits improved training performance compared
to using only BP to update all the weights in the network. It can be shown that OWO-BP converges, and it
leads to the convergence of the weights to a critical point in weight space Tyagi et al. (2022a). This can be a
global minimum, a local minimum, or a saddle point.

2.6 Hidden weight optimization

HWO Scalero & Tepedelenlioglu (1992), finds an improved gradient matrix Ghwo by solving the following
linear equation

Ghwo ·Ri = G (14)
where Ri is the input autocorrelation matrix as

Ri = 1
Nv

Nv∑
p=1

xpxT
p (15)

and G is the backpropagation negative gradient matrix Rumelhart et al. (1985). Equation (14) can be
rewritten as

Ghwo = G ·Ri
−1 (16)

where Ghwo = G ·AT ·A. Equation (14) can be solved using OLS or matrix inversion using the singular
value decomposition (SVD). A is the whitening transform matrix Raudys (2001), Tyagi et al. (2020). It
is shown in Robinson & Manry (2013) that HWO is equivalent to applying a whitening transform to the
training data to de-correlate it. W is now updated using Ghwo instead of G as

W = W + z ·Ghwo (17)

5



Under review as submission to TMLR

3 Proposed work

The study of the effects of applying the equivalent networks theory to the augmented input vectors xp is
thoroughly discussed in Malalur & Manry (2009). In this work, we build upon the concept presented in
Malalur & Manry (2009), Nguyen et al. (2016) and examine the impact of transformed input gains on the
training process in conjunction with HWO.

3.1 Mathematical background

Consider a nonlinear network designated as MLP-1 with inputs x ∈ RN+1, where the restriction xN+1 = 1 is
imposed, and outputs y ∈ RM . Another network, referred to as MLP-2, has inputs x′ = A · x and outputs
y′ ∈ RM . These two networks are considered strongly equivalent if, for all xp ∈ RN+1, we have y′

p = yp.
The network MLP-1 is trained on the original input vectors xp, while MLP-2 is trained using the transformed
input vectors x′

p defined as

x′
p = A · xp (18)

where A is an N
′ by (N + 1) rectangular transformation matrix, for some N

′ ≥ (N + 1). We establish in
Malalur & Manry (2009) that input weights for MLP-1 and MLP-2 are related as

W′ ·A = W (19)

The negative gradient matrix for training the input weights in MLP-2 is given by G′ = G ·AT . Now, suppose
that this negative gradient G′ for MLP-2 is mapped back to modify the input weights in MLP-1, using
equation (19). The resulting mapped negative gradient for MLP-1 is then

G′′ = G ·Ri

Ri = AT ·A
(20)

By expressing the SVD of Ri as Ri = UΣUT , we can derive that Ri
−1 = UΣ−1UT , where U is an

orthogonal matrix, Σ is a diagonal matrix with the singular values of Ri, and Σ−1 is the diagonal matrix
with the reciprocal of the non-zero singular values of Ri. Using equation (20), it can be deduced that
A = Σ 1

2 UT . Comparing equation (20) with equation (16), it is clear that performing OWO-HWO is
equivalent to performing OWO-BP on input vectors to which the whitening transformation Robinson &
Manry (2013) has been applied. Since BP with optimal learning factor (OLF) converges, it is clear that
HWO with an OLF also converges.

Lemma-1 : If we are at a local minimum in the weight space of the original network, we are also at a local
minimum in the weight space of the transformed network.

This follows from ((20) if G = 0.

Lemma-2 : If the input weight matrix W′ of the transformed network is trained using BP, this is not
equivalent to applying BP to the original network’s weight matrix W unless the matrix A is orthogonal.

This can be derived from equation (20) because for any orthogonal matrix A, equation (20) becomes G′′ = G.
This is also intuitive if we consider that BP updates the weights in the direction of the negative gradient of
the loss function with respect to the weights.

Lemma-3 : For a non-diagonal matrix R, there exist an uncountably infinite number of matrices A that can
be constructed.

This follows from (20). It is because a non-diagonal matrix R has at least one non-zero element not located
on the main diagonal. As there are infinite choices for the values of these non-zero elements, there are an
uncountable number of possible matrices A that can be constructed by choosing the values of these non-zero
elements in R.

6



Under review as submission to TMLR

If the transformation matrix A is not orthogonal, then the mapped negative gradient for MLP-1 obtained
from MLP-2 will not be equivalent to the true negative gradient of the loss function with respect to the
weights in MLP-1. As a result, when optimal learning factors are used with BP to train the input weights,
training with the original data is equivalent to training with the transformed data. Therefore, orthogonal
transform matrices are useless in this context, as mentioned in Yu et al. (2005). Using the results derived
in this section, many ways to improve feed-forward training algorithms suggest themselves. The intuition
behind the proposed work is based on the following three ideas :

1. Choose a training algorithm that utilizes the negative gradient matrix G.

2. Substitute the negative gradient matrix G with the modified matrix G′′ from equation (20).

3. Identify appropriate elements in the matrix R.

Single-stage optimization algorithms, such as conjugate gradient (CG) Tyagi et al. (2022a), may be suitable for
addressing this problem. However, incorporating the elements of R as additional weights in the optimization
process may compromise the conjugacy of the direction vectors if R is solved for at each iteration. As an
alternative, using two-stage training algorithms that utilize the negative gradient matrix G or direction matrix
D, such as OWO-BP and OWO-HWO Chen et al. (1999). In this work, we focus on OIG to develop OIG-
HWO. Specifically, we will develop a method for solving the matrix R, compute the resulting Gauss-Newton
approximate Hessian for R, and apply the resulting OIG-HWO to improve the performance of OWO-BP.

3.2 Optimal Input Gain algorithm

There are at least two intuitive approaches for optimizing input gains to improve the performance of a given
training algorithm. To minimize the training error E, these approaches involve searching for either the matrix
A or the resulting matrix R in each iteration to minimize the training error E. As stated in Lemma-2,
optimizing R will likely yield fewer solutions. In this section, we describe a method for solving R, find
the resulting Gauss-Newton approximate Hessian for R, and use the resulting OIG algorithm to improve
OWO-BP. The simplest non-orthogonal, non-singular transform matrix A is diagonal. For this case, let r(k)
initially denote the kth diagonal element of R. Also, the elements of x′

p are simply scaled versions of xp.
Following

(20) we get

R =


r(1) 0 · · · 0 0

0 r(2) · · · 0 0
...

...
. . .

...
...

0 0 · · · r(N) 0
0 0 · · · 0 r(N + 1)

 (21)

Instead of using only the negative gradient elements g(k, n) to update the input weights, we use g(k, n) · r(n)
to replace g(k, n), the elements matrix G in equation 17. It is also noteworthy that the optimal learning
factor (OLF), z Tyagi et al. (2022a) be absorbed into the gains r(n). Consider a multi-layer perceptron
(MLP) being trained using the OWO-BP algorithm. The negative gradient G is a matrix of dimensions Nh

by (N + 1), and the error function to be minimized with respect to the gains r(n) is given in (4). This error
function is defined as follows:

yp(i) =
N+1∑
n=1

woi(i, n)xp(n) +
Nh∑
k=1

woh(i, k)·

f

(
N+1∑
n=1

(w(k, n) + r(n) · g(k, n))xp(n)
) (22)

7



Under review as submission to TMLR

The first partial of E with respect to r(m) is

dr(m) ≡ ∂E

∂r(m) = −2
Nv

Nv∑
p=1

xp(m)

M∑
i=1

[tp(i)− yp(i)]v(i, m)

(23)

Here, g(k, m) is an element of the negative gradient matrix G in equation (12), and o
′

p(k) denotes the
derivative of op(k) with respect to its net function. Then,

v(i, m) =
Nh∑
k=1

woh(i, k)o
′

p(k)g(k, m) (24)

Using Gauss-Newton updates Bishop (2006), the elements of the Hessian matrix Hig are

hig(m, u) ≡ ∂2E

∂r(m)∂r(u) = 2
Nv

Nv∑
p=1

xp(m)xp(u)·

M∑
i=1

v(i, m)v(i, u)

(25)

Finally, the input gain coefficient vector r is calcualted using OLS by solving

Hig · r = dr (26)

3.2.1 OIG Hessian matrix

We choose to use Hessian matrix to analyze the convergence properties of OIG-HWO. Equation (25) for the
OIG-HWO Hessian can be re-written as,

hig(m, u) =
Nh∑
k=1

Nh∑
j=1

[
2

Nv

Nv∑
p=1

xp(m)xp(u)o
′

p(k)o
′

p(k) ·
N+1∑
i=1

woh(i, k)woh(i, j)
]

g(k, m) · g(j, u) (27)

The term within the square brackets is nothing but an element from the Hessian of Newton’s method for
updating input weights. Hence,

hig(m, u) =
Nh∑
k=1

Nh∑
j=1

[
∂2E

∂w(k, m)∂w(j, u)

]
· g(k, m) · g(j, u) (28)

For fixed (m, u), the above equation can be expressed as

hig(m, u) =
Nh∑
k=1

gm(k)
Nh∑
j=1

hm,u
N (k, j)gu(j)

= gT
mHmu

N gu

(29)

where, gm is the mth column of the negative gradient matrix G and Hm,u
N is the matrix formed by choosing

elements from the Newton’s Hessian for weights connecting inputs (m, u) to all hidden units.

Equation (29) gives the expression for a single element of the OIG-HWO Hessian, which combines information
from Nh rows and columns of the Newton Hessian. This can be seen as compressing the original Newton

8



Under review as submission to TMLR

Hessian of dimensions Nh by (N + 1) down to (N + 1). The OIG-HWO Hessian encodes the information from
the Newton Hessian in a smaller dimension, making it less sensitive to input conditions and faster to compute.
From equation (28), we see that the Hessian from Newton’s method uses four indices (j, m, u, k) and can be
viewed as a 4-dimensional array, represented by H4

N ∈ RNhx(N+1)x(N+1)xNh . Using this representation, we
can express a 4-dimensional OIG-HWO Hessian as

H4
ig = GT H4

N G (30)
where H4

ig are defined as,

h4
ig(m, u, n, l) =

Nh∑
j=1

Nh∑
k=1

hN (j, m, u, k)g(j, n)g(k, l) (31)

where hN (j, m, u, k) is an element of H4
N . Comparing (28) and (31), we see that hig(m, u) = h4

ig(m, u, m, u),
i.e., the 4-dimensional H4

ig is transformed into the 2-dimensional Hessian, Hig, by setting n = m and l = u.
To make this idea clear, consider a matrix, Q, then p(n) = q(n, n) is a vector, p, of all diagonal elements of
Q. Similarly, the OIG-HWO Hessian Hig is formed by a weighted combination of elements from H4

N .

3.2.2 OIG Integrated with OWO-BP

To minimize the error function E, given the vector of input gains r, the gradient dr, and the Hessian Hig, we
can utilize Newton’s method. Two potential approaches can be taken in each iteration of this method, first is
that we transform the gradient matrix using R as shown in equation (20), and second, we decompose R to
find A using OLS, and then transform the input data according to equation (18) before applying OWO-BP
with the optimal learning factor (OLF). While the second approach may be more accurate, it is also more
computationally inefficient and, therefore, not practical, even when A is diagonal. Therefore, it is generally
recommended to use the first approach in order to minimize the error function effectively. Hence, the OWO
is replaced with OIG in the OWO-BP algorithm to form OIG-BP described in Algorithm 1.

Algorithm 1 OIG-BP training algorithm
1: Initialize W, Woi, Woh, Nit , it← 0
2: while it < Nit do
3: Solve (11) for all output weights.
4: Calculate negative G using equation (12)
5: OIG step Calculate dr and hessian Hig from (23) and (25) respectively.
6: Solve for r using equation (26)
7: Update W ← W + r · G
8: OWO step : Solve equation (11) to obtain Wo
9: it ← it + 1

10: end while

When there are no linearly dependent inputs, the OIG algorithm can find the optimal gain coefficients
for each input that minimize the overall mean squared training error. However, this is only sometimes
the case when there are linearly dependent inputs. In this scenario, it is straightforward to show that the
input autocorrelation matrix Rin and the gradient matrix G have dependent columns. This leads to the
OIG Hessian being ill-conditioned and to sub-optimal gain coefficients. This could cause OIG-BP to have
sub-optimal performance and possibly poor convergence.

3.3 Improvement to OIG-BP

In order to overcome sub-optimal performance of OIG in the presence of linearly dependent inputs, we show
the immunity of HWO to linearly dependent inputs. We analyze the effect of replacing BP used in OIG-BP
with HWO and show that using HWO forces Hig to be singular for linearly dependent inputs, which is highly
desirable in order to detect and eliminate the dependent inputs.

9



Under review as submission to TMLR

3.3.1 Effect of Linearly Dependent Inputs on HWO

If one of the inputs to the network is linearly dependent, it will cause the input auto-correlation matrix, Ri,
to be singular. This can affect the convergence of the CG algorithm, leading to poor training performance. In
this case, using OLS may be useful for detecting and eliminating the linearly dependent input. To compute
the orthonormal weight update matrix Ghwo using OLS, we first compute G′

hwo as

G′
hwo = G ·CT (32)

where C is a lower triangular matrix of orthonormal coefficients of dimension (N + 1). We can then map the
orthonormal weight update to the original weight update as

Ghwo = G′
hwo ·C

= G ·CT ·C
(33)

Assume xp(N + 2) was linearly dependent. This would cause the (N + 2)th row and column of Ri to be
linearly dependent. During OLS, a singular auto-correlation matrix transforms to the (N + 2)th row of C to
be zero. We replace BP in OIG-BP with HWO. The resulting OIG-HWO algorithm is described in Algorithm
2.

Algorithm 2 OIG-HWO training algorithm
1: Initialize W, Woi, Woh, Nit , it← 0
2: Calculate Ri using (15)
3: while it < Nit do
4: Calculate negative G using (12)
5: HWO step : Calculate Ghwo using (33) to eliminate any linear dependency in the inputs.
6: OIG step: Calculate dr and hessian Hig from (23) and (25) respectively.
7: Solve for r using equation (26)
8: Update W ← W + r · Ghwo
9: OWO step : Solve equation (11) to obtain Wo

10: it ← it + 1
11: end while

Lemma-3 : The OIG−HWO algorithm is immune to linearly dependent inputs and will completely ignore
the dependent inputs during training.

Since the (N + 2)th row of C will be zero, it follows that CT C, which will be a square, symmetric matrix
with zeros for the (N + 2)th row and column. Further, from (33), Ghwo will have zeros for the (N + 2)th

column. The implication is that the weight update vector computed for all input weights connected to the
dependent input (N + 2) is zero. These weights are not updated during training, effectively freezing them.
This is highly desirable, as the dependent input does not contribute any new information. Thus, HWO-type
update using OLS is perfectly capable of picking up linearly dependent inputs, leading to a robust training
algorithm. This makes OIG-HWO immune to linearly dependent inputs.

To illustrate the meaning of lemma-3, we took a data set called twod.tra ipn (2022), and generated a second
one by adding some dependent inputs. Networks for the two datasets were initialized with the same net
function means and standard deviations. Figure 2 clearly shows that the two training error curves overlay
each other, validating lemma-3.

10



Under review as submission to TMLR

Figure 2: Immunity of OIG-HWO to linearly dependent inputs

To further demonstrate lemma-3 and the effectiveness of OIG-HWO, we compare its performance on the
dependent dataset with LM and OIG-BP. Figure 3 shows how dependence can slow down learning in all
except the improved OIG-HWO algorithm. The effect is predominant in LM that takes huge computational
resources.

Figure 3: Performance comparison on dependent data

Mathematically, suppose that the input vector xp are biased such that E[xp] = m. A zero-mean version of
xp is x′

p which satisfies xp = x′
p + m. It is shown in Malalur & Manry (2009) that networks train more

effectively with bunbiased inputs. Now, x′
p can be expressed as A · xp, where

A =


1 0 · · · 0 −m1
0 1 · · · 0 −m2
...

...
. . .

...
...

0 0 · · · 1 −mN

0 0 · · · 0 1

 (34)

Figure 3 shows that non-orthogonal transform matrices improve the training since it makes the inputs
zero-mean. The HWO component of the OIG-HWO algorithm addresses the issue of sub-optimal performance
in the presence of linearly dependent inputs. It has been demonstrated that the HWO is immune to such
inputs Malalur & Manry (2009). By replacing the BP component of the OIG-BP with HWO, we can analyze

11



Under review as submission to TMLR

the effect on the singularity of Hig for linearly dependent inputs. This is beneficial because the singularity of
Hig allows for the detection and removal of dependent inputs.

4 Experimental Methods and Results

We evaluate the computational complexity and performance of the OIG-HWO algorithm compared to other
methods for approximation and replacement classifier tasks. In a replacement classifier, the OIG-HWO is
used as a substitute in a ResNet18 He et al. (2016) style deep learning architecture and compares its testing
performance to that of a scaled-CG (SCG) classifier Tyagi et al. (2021). We compare the performance of the
proposed OIG-HWO algorithm with four other existing methods, namely, OWO-BP, OIG-BP, LM, and SCG.
In SCG and LM, all weights are updated simultaneously in each iteration. However, in OWO-BP, OIG-BP,
and OIG-HWO, we solve linear equations for the output weights and then update the input weights.

4.1 Experimental procedure

All the experiments are run on a machine equipped with a 3 MHz Intel i-7 CPU and 32 GB of RAM running
the Windows 10 OS with PyTorch 1.13. We use the k-fold training with cross-validation and testing procedures
to obtain the average training, validation, and testing errors. Each data set is split into k non-overlapping
parts of equal size (k = 10 in our simulations). Of this, (k-2) parts (roughly 80%) are used for training. Of
the remaining two parts, one is used for validation, and the other is used for testing (roughly 10% each). The
procedure is repeated till we have exhausted all k combinations.

Validation is performed per training iteration (to prevent over-training), and the network with the minimum
validation error is saved. After training, the saved weights and the testing data are used to compute a
testing error, which measures the network’s ability to generalize. At the end of the k-fold procedure, the
average training and testing errors and the average number of cumulative multiplies required for training are
computed. These quantities form the metrics for comparison and are subsequently used to generate the plots
and compare performances.

In order to make a fair comparison of the various training methods for a given data set and fold, we use
the same initial network for each algorithm, using net control Tyagi et al. (2022a). In net control, random
initial input weights and hidden unit thresholds are scaled so each hidden unit’s net function has the same
mean and standard deviation. Specifically, the net function means are equal to .5, and the corresponding
standard deviations are equal to 1. In addition, OWO is used to find the initial output weights. This ensures
that all algorithms start at the same point in the weight space, eliminating any performance gains due to
weight initialization. This is evident in all the plots, where we can see that all algorithms have the same
starting MSE for the first training iteration. The final training error is hence not affected by different weight
initializations. For each approximation datasets, we calculate the lowest MSE and probability of error, Pe for
classification datasets.

4.2 Computational Burden

One of the metrics chosen for comparison is the cumulative number of multiplies required for training using a
particular algorithm. In this section, we identify the computational burden per training iteration for each of
the algorithms compared.

Let Nu = N + Nh + 1 denote the number of weights connected to each output. The total number of weights
in the network is denoted as Nw = M(N + Nh + 1) + Nh(N + 1). The number of multiplies required to solve
for output weights using OLS is Mols, which is given by

Mols = Nu(Nu + 1)
[
M + 1

6Nu(2Nu + 1) + 3
2

]
(35)

The numbers of multiplies required per training iteration using BP, OWO-BP, OIG-HWO, and LM are given
by

Mbp = Nv [MNu + 2Nh(N + 1) + M(N + 6Nh + 4)] + Nw (36)

12



Under review as submission to TMLR

Mowo−bp = Nv

[
2Nh(N + 2) + M(Nu + 1) + M(N + 6Nh + 4) +Nu(Nu + 1)

2

]
+ Mols + Nh(N + 1) (37)

Moig = Mowo−bp + Nv[(N + 1)(3MNh + MN + 2(M + N) + 3)−M(N + 6Nh + 4)−Nh(N + 1)] + (N + 1)3

(38)

Mlm = Mbp + Nv[MNu(Nu + 3Nh(N + 1)) + 4N2
h(N + 1)2] + N3

w + N2
w (39)

Mscg = 4Nv[Nh(N + 1) + MNu] + 10[Nh(N + 1) + MNu] (40)

Note that Moig consists of Mowo−bp plus the required multiplies for calculating optimal input gains. Similarly,
Mlm consists of Mbp plus the required multiplies for calculating and inverting the Hessian matrix. Nδ

h is the
number of new hidden units added at each growing step of the cascade correlation algorithm.

4.3 Approximation Dataset Results

We take mean square error (MSE) in the approximation datasets as the metric for various algorithm
performances. In all data sets, the inputs have been normalized to be zero-mean and unit variance. This way,
it becomes clear that OIG’s improved results are not due to a simple, single-data normalization. Table 1
shows the specifications of the datasets used to evaluate the algorithm performances.

Table 1: Specification of approximation datasets

Datasets N M Nv

Prognostics 17 9 4745
Remote Sensing 16 3 5992
Federal Reserve 15 1 1049
Housing 16 1 22784
Concrete 8 1 1030
White Wine 11 1 4898
Parkinson’s 16 2 5875

The number of hidden units for each data set is selected by first training a multi-layer perceptron with a
large number of hidden units followed by a step-wise pruning with validation Tyagi et al. (2020). The least
useful hidden unit is removed at each step until only one hidden unit is left. The number of hidden units
corresponding to the smallest validation error is used for training on that data set. A maximum number of
iterations is fixed for each algorithm, along with an early stopping criterion. The maximum training iterations
for all algorithms are set to 1000.

For each dataset, we perform a 10-fold training with cross-validation and testing for the proposed OIG-HWO
algorithm and compare with those listed in section 4, using the datasets listed in Table 1. Two plots are
generated for each datasets. The average mean square error (MSE) for training from 10-fold training is plotted
versus the number of iterations (shown on a log10 scale), and the average training MSE from 10-fold training
is plotted versus the cumulative number of multiplies (also shown on a log10 scale) for each algorithm. Our
results will present the average MSE achieved through training, along with the corresponding computational
requirements. Given the constraints on the length of the paper, we have opted to display two plots for
the initial dataset, while for the subsequent datasets, we depict the average MSE versus the cumulative
number of multiplications. This approach provides a more compelling representation of both the learning
and computational aspects of our study.

13



Under review as submission to TMLR

4.3.1 Prognostics Dataset

The Prognostics datasetile, called F-17 ipn (2022) consists of parameters that are available in the Bell
Helicopter health usage monitoring system (HUMS), which performs flight load synthesis, which is a form of
prognostics Manry et al. (2001). For this data file, 13 hidden units were used for all algorithms. In Figure 4,
the average mean square error (MSE) for training from 10-fold validation is plotted versus the number of
iterations for each algorithm. In Figure 5, the average training MSE from 10-fold validation is plotted versus
the cumulative number of multiplies. From Figure 4, the overall training error for the proposed OIG-HWO
overlaps with LM, with LM coming out on top by a narrow margin. However, the performance of LM
comes with significantly higher computational demand, as shown in Figure 5. Prognostics data is a highly
correlated/non-correlated dataset. The proposed OIG-HWO algorithm can give good performance despite
these dependent features. The reason is that the input gains checks on the dependent features and reduces
their effect while training. This aspect of input gains is not present in other comparing algorithms, and
hence they are not as efficiently performing as the proposed algorithm. Another aspect of the features is that
distinct distributions are essential in the algorithm’s performance. This is proven by evaluating the algorithms
using dependent features with and without. From Table 2, we observe that LM gives the marginally lowest
mean squared error followed by OIG-HWO. It is worth emphasizing that the OIG-HWO algorithm achieves
significantly lower testing errors than similar algorithms, except LM.

Figure 4: Average training MSE vs. Iterations for Prognostics data

4.3.2 Remote Sensing Dataset

The Remote Sensing data ipn (2022) represents the training set for inversion of surface permittivity, the
normalized surface rams roughness, and the surface correlation length found in backscattering models from
randomly rough dielectric surfaces Fung et al. (1992). For this dataset, 25 hidden units were used for all
algorithms. From Figure 6, the average training MSE from the 10-fold procedure for OIG-HWO is better
than all other algorithms being compared. Regarding computational cost, the proposed algorithms consume
the least computation than OWO-BP, SCG, LM and OIG-BP. However, except OWO-BP, all algorithms
utilize fewer computations about two orders of magnitude than LM. By assigning input gains, the proposed

14



Under review as submission to TMLR

Figure 5: Average training MSE vs. cumulative multiplies for Prognostics data

OIG-HWO algorithm computes tailored weights for each input feature, reducing the effect of less important
features and extracting useful information from the high dimensional dataset. From Table 2, we see that
OIG-HWO has less testing error than all the other algorithms except LM. However, LM requires far more
multiplier than OIG-HWO.

4.3.3 Federal Reserve Dataset

The Federal Reserve Economic Data Set fed (2011) contains economic data for the USA from 01/04/1980
to 02/04/2000 weekly. From the given features, the goal is to predict the 1-Month CD Rate similar to the
US Census Bureau datasets us (2022). For this data file, called TR on its webpage, 34 hidden units were
used for all algorithms. Figure 7 shows LM had the best overall training performance, with OIG-HWO
a close. The proposed improvement to OIG performs better than OIG-BP, SCG, and OWO-BP without
significant computational overhead. The proposed OIG-HWO algorithm can handle such data as it assigns
high weights to features with acceptable variance than to features with very low variance. Results obtained
from OIG-HWO act as a testament to the same. From Table 2, we observe that OIG-HWO has less testing
error than the other algorithms.

4.3.4 Housing Dataset

The Housing dataset del (2011) is designed based on data provided by the US Census Bureau us (2022). These
are all concerned with predicting the median price of houses in a region based on demographic composition
and the state of the housing market in the region. House-16H data was used in our simulation, with ‘H’
standing for high difficulty. Tasks with high difficulty have had their attributes chosen to make the modeling
more difficult due to higher variance or lower correlation of the inputs to the target. For this dataset, 30
hidden units were used for all algorithms. From Figure 8, the SCG algorithm at the end of training has
less training error, followed closely by LM and OIG-HWO, respectively. The OIG-HWO algorithm adjusts
the input gains and learns to assign lower weights to low variant features. Thus, the columns with almost

15



Under review as submission to TMLR

Figure 6: Average training MSE vs. cumulative multiplies for Remote Sensing dataset

constant values do not contribute toward the end goal. Table 2 shows the superiority of OIG-HWO having
less testing error over other algorithms.

4.3.5 Concrete Compressive Strength Dataset

The Concrete dataset Yeh (1998)con (2013) is the actual concrete compressive strength for a given mixture
under a specific age (days) determined by laboratory. The concrete compressive strength is a highly nonlinear
function of concrete age and ingredients. For this dataset, we trained all algorithms with 13 hidden units.
From Figure 9, LM has the best overall training error, followed by OIG-HWO and closely in third by SCG.
Table 2, also supports the advantage from OIG-HWO with less testing error over other algorithms.

4.3.6 Wine data set

The Wine dataset Whi (2013) Cortez et al. (2009) is related to the wine variant of the Portuguese "Vinho
Verde" wine. The inputs include objective tests (e.g., PH values), and the output is based on sensory data
(median of at least three evaluations made by wine experts). Each expert graded the wine quality between 0
(very bad) and 10 (very excellent). For this dataset, we trained all algorithms with 24 hidden units. Figure
9 shows that LM has the best final training performance, followed very closely by OIG-HWO. OIG-HWO
handles dependent features and accounts for the skewness in data, resulting in better results. Table 2 shows
that OIG-HWO has substantially better testing performance than the other methods.

4.3.7 Parkinson’s Dataset

The Parkinson’s data set par (2013), Little et al. (2008) comprises a range of biomedical voice measurements
from 42 people with early-stage Parkinson’s disease recruited to a six-month trial of a telemonitoring device
for remote symptom progression monitoring. The main aim of the dataset is to predict the motor and
total UPDRS scores (′motor′

UP DRS and ′total′
UP DRS) from the 16 voice measures. For this data set, LM’s

performed better than OIG-HWO in terms of the training error, followed by the rest. However, LM requires

16



Under review as submission to TMLR

Figure 7: Average training MSE vs. cumulative multiplies for Federal Reserve dataset

a lot more computations to achieve the slight improvement, as evident in Figure 11. For this dataset, we
trained all algorithms with 12 hidden units. From Table 2, we see that OIG-HWO has less testing error than
other algorithms.

Table 2: 10-fold testing MSE results for approximation dataset, (best testing MSE is in bold)

Dataset OWO-BP SCG LM OIG-BP OIG-HWO
Prognostics 3.2752E7 2.8224E7 1.4093E7 2.1490E7 1.4680E7
Remote Sensing 1.0655 0.8627 0.2954 0.7637 0.2094
Treasury 0.1391 0.3245 0.1072 0.1276 0.1036
Housing 17.2398E8 38.0949E8 11.9216E8 13.2538E8 11.7886E8
Concrete 30.5863 73.6012 27.7605 29.7421 27.1604
White Wine 0.5222 0.5812 0.4982 0.5027 0.4075
Parkinson’s 131.1679 127.3441 123.2571 124.2698 123.57576

4.4 Discussion

From the training plots and Table 2, we deduce the following :

1. OIG-HWO is the top performer in 5 out of the 7 data sets in terms of testing MSE. The following
best-performing algorithm is LM by a small margin. However, LM being a second-order method, its
performance comes at a significant cost of computation – almost two orders of magnitude greater
than the rest.

2. In terms of average training error, OWO-BP consistently appears in the last place on 4 of the 7 data
sets, while SCG features in the last place on 3 out of 7 data sets. However, being first-order methods,
they set the bar for the lowest computation cost.

17



Under review as submission to TMLR

Figure 8: Average training MSE vs. cumulative multiplies for Housing Dataset

3. When SCG is potentially overtraining, OIG’s training MSE is low for many of the initial iterations
so early stopping will make training more efficient, even if SCG has less training error at the end.

4. Both OIG-BP and OIG-HWO always perform better than their predecessors, OWO-BP and OWO-
HWO, respectively, on all data sets, and they are better than SCG. This performance is achieved
with minimal computational overhead compared to SCG and OWO-BP, as evident in the training
MSE plots vs. number of cumulative multiplications.

5. OIG-BP is never better than LM in training and testing MSE and consistently perfrom as the third
best for all the datasets. OIG-HWO is always better than OIG-BP.

6. LM performs marginally better than OIG-HWO on two data set (Prognostsics and Parkinson′s
datasets) and has almost identical or worst ten fold testing MSE for the rest of the datasets.

7. Ignoring LM, which is a second order computationally heavy, overall, OIG-based algorithms (OIG-BP
and OIG-HWO) are consistently in the top two performing algorithms.

As a general observation, both OIG-BP and OIG-HWO algorithms consistently outperform the OWO-BP
algorithm in all three phases of learning, namely training, validation, and testing. The insertion of OIG into
OWO-BP has been found to help enhance its performance. Furthermore, both OIG-BP and the improved
OIG-HWO algorithms outperform SCG regarding the average minimum testing error. The OIG-HWO
algorithm often performs comparably to LM but with minimal computational overhead. It is worth noting
that while OIG-BP is an improvement over OWO-BP, it is not as effective as the OIG-HWO algorithm.

4.5 Replacement Classifier Datasets

We compare the OIG-HWO with CG-MLP and SCG using transfer learning. The classification datasets
includes MNIST LeCun et al. (1998b), Scrap Kumar et al. (2022), Fashion-MNIST Kumar et al. (2022),

18



Under review as submission to TMLR

Figure 9: Average training MSE vs. cumulative multiplies for Concrete Dataset

CIFAR-10 Krizhevsky & Hinton (2009), SVHN Netzer et al. (2011), Cats-dogs Parkhi et al. (2012), Intel
Image Int (2021). All the datasets are normalized to zero minimum and maximum one-pixel values. Table 3
shows the specifications of the datasets used to evaluate the algorithm performances. We studied a transfer
learning comparison of the OIG-HWO, SCG, and OIG-BP algorithms using normalized classification datasets
with pixel values ranging from zero minimum to one maximum. Table 3 outlines the specifications of the
datasets used to evaluate algorithm performance.

Table 3: Replacement classifier datasets

Datasets N M Nv Nvtest
MNIST 28 x 28 x 1 10 54000 6000
Scrap 28 x 28 x 1 2 14382 3595
Fashion MNIST 28 x 28 x 1 10 60000 10000
CIFAR10 32 x 32 x 3 10 50000 10000
SVHN 32 x 32 x 3 10 73257 26032
Cats and Dogs 32 x 32 x 3 2 20000 5000
Intel Image 32 x 32 x 3 6 14034 3000

To create a replacement classifier in a deep learning architecture, we utilized the ResNet-18 architecture He
et al. (2016) in the MATLAB 2021 Neural Network toolbox mat (2021). We trained ResNet-18 for each
dataset, selecting the best validation accuracy (Pe) after a certain number of iterations. The training was
performed using a learning rate of 1e− 4, 32 batch size, and Adams Kingma & Ba (2014) optimizer. We
found the optimal Nh value by a grid search for various Nh values ([5, 10, 15, 20, 30, 100])). The feature vector
extracted before this final layer was common to all datasets and contained 512 features. The best network was
saved, and its final feature layer was extracted as input for each replacement classifier. ResNet-18 requires
input images of size 224 x 224 x 3. We implemented an augmented image datastore pipeline with the option
colorprocessing=gray2rgb to accommodate black and white images. We trained the network using a custom

19



Under review as submission to TMLR

Figure 10: Average training MSE vs. cumulative multiplies for White Wine Dataset

final classification layer tailored to the specific number of classes for each dataset. After training, we replaced
the final fully connected layer of ResNet-18, which has 1000 hidden units, with our replacement classifiers.
Table 4 shows the superiority of OIG-HWO based classifier over other algorithms.

Table 4: 10 fold cross validation Pe results for replacement classifier dataset, (best testing Pe is in bold, for
optimal Nh values)

Dataset SCG/Nh OIG-BP/Nh OIG-
HWO/Nh

MNIST 0.39/30 0.37/20 0.368/30
Scrap 0.728/20 0.554/10 0.509/30
Fashion MNIST 5.705/100 5.812/5 5.366/30
CIFAR10 6.76/100 6.599/5 6.227/100
SVHN 3.86025/30 3.632/30 3.619/100
Cats dogs 4.516/100 4.504/100 4.32/10
Intel image 9.483/100 9.287/10 9.02/100

5 Conclusion and Future Work

In this study, we investigated the impact of linear input transformations on the training of MLPs. To do
this, we developed the OIG-HWO algorithm, which optimizes the input gains or coefficients that scale the
input data before the MLP processes it. The OIG-HWO algorithm uses Newton’s method to minimize the
error function with respect to input gains enhancing convergence of OIG-HWO. It has been shown that the
learning behavior is different for functionally equivalent networks with different input transforms. It has also
been shown that learning in the transformed network is equivalent to multiplying the original network’s input

20



Under review as submission to TMLR

Figure 11: Average training MSE vs. cumulative multiplies for Parkinson’s Dataset

weight gradient matrix by an autocorrelation matrix. It has also been shown that Newton’s algorithm can be
used to find the optimal diagonal autocorrelation matrix, resulting in the optimal input gain technique.

Beyond this, the OIG-HWO algorithm has some interesting characteristics desirable for deep learning
architectures. Deep learning algorithms have performed exceptionally well in complex applications involving
natural language, speech, images, and visual scenes. An underlying issue among these applications is the
redundancy in data. Hence a typical pre-processing step in most deep learning applications is to apply
whitening transformation to the raw data. HWO, as mentioned earlier is equivalent to back-propagation
on whitened inputs. This means that OIG-HWO could serve as a building block for complex deep-learning
architectures that could use the raw data directly without a pre-processing operation.

The OIG technique has been used to substantially speed up the convergence of OWO-BP, which is a two-stage
first-order training algorithm. This algorithm was called OIG-BP. The OIG Gauss-Newton Hessian is a
weighted average of the input weight Gauss-Newton Hessian, where the weights are elements of the negative
input weight gradient matrix. OIG-BP was shown to be sub-optimal in the presence of linearly dependent
inputs. Subsequently, OIG was applied to OWO-HWO to create an improved algorithm called OIG-HWO.
Results from seven data sets showed that the OIG-based algorithms performed much better than two common
first order algorithms with comparable complexity, namely SCG and OWO-BP. They come close to LM
regarding the training error, but with orders of magnitude less computation. This is evident in all of the
plots of training error versus the required number of multiplies and also from the expressions for the numbers
of multiplies. Based on the results, we conclude that OIG-HWO is a strong candidate for shallow learning
architectures and performs better than the SCG and OIG-BP algorithms as a replacement classifier.

For future work, the OIG technique can be extended to additional one and two-stage first-order algorithms,
including standard BP, to other network types such as RBF networks and additional network parameters,
yielding fast second-order methods rival LM’s performance but with significantly reduced complexity.

21



Under review as submission to TMLR

References
Delve Datasets. http://www.cs.toronto.edu/~delve/data/datasets.html, 2011. The University of

Toronto.

Function Approximation Repo. http://funapp.cs.bilkent.edu.tr/DataSets/, 2011. Bilkent University.

UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/wine+quality, 2013.
University of California, Irvine, School of Information and Computer Sciences.

UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/concrete+compressive+
strength, 2013. University of California, Irvine, School of Information and Computer Sciences.

UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/parkinsons, 2013. Uni-
versity of California, Irvine, School of Information and Computer Sciences.

Intel Image Classification Data. https://www.kaggle.com/datasets/puneet6060/
intel-image-classification, 2021. Intel.

Matlab Deep Learning toolbox. https://www.mathworks.com/help/deeplearning/ref/resnet18.html,
2021. The MathWorks.

Regression data files. https://ipnnl.uta.edu/training-data-files/regression/, 2022. Image Process-
ing and Neural Networks Lab, The University of Texas Arlington.

Us Census Bureau. https://www.census.gov/data/datasets.html, 2022. United States Census Bureau.

Introducing Chat GPT. https://openai.com/blog/chatgpt, 2023. Open AI.

Federico Adolfi, Jeffrey S Bowers, and David Poeppel. Successes and critical failures of neural networks in
capturing human-like speech recognition. Neural Networks, 162:199–211, 2023.

Simon A Barton. A matrix method for optimizing a neural network. Neural Computation, 3(3):450–459, 1991.

Roberto Battiti. First-and second-order methods for learning: between steepest descent and newton’s method.
Neural computation, 4(2):141–166, 1992.

Friedrich Biegler-König and Frank Bärmann. A learning algorithm for multilayered neural networks based on
linear least squares problems. Neural Networks, 6(1):127–131, 1993.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

Bogdan Bochenek and Zbigniew Ustrnul. Machine learning in weather prediction and climate analy-
ses—applications and perspectives. Atmosphere, 13(2):180, 2022.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, USA, 2004.

Hung-Han Chen, Michael T Manry, and Hema Chandrasekaran. A neural network training algorithm utilizing
multiple sets of linear equations. Neurocomputing, 25(1-3):55–72, 1999.

Wei Chen, Huilin Xu, Lifen Jia, and Ying Gao. Machine learning model for bitcoin exchange rate prediction
using economic and technology determinants. International Journal of Forecasting, 37(1):28–43, 2021a.

Xiaoxue Chen, Lianwen Jin, Yuanzhi Zhu, Canjie Luo, and Tianwei Wang. Text recognition in the wild: A
survey. ACM Computing Surveys (CSUR), 54(2):1–35, 2021b.

Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine preferences
by data mining from physicochemical properties. Decision support systems, 47(4):547–553, 2009.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

22

http://www.cs.toronto.edu/~delve/data/datasets.html
http://funapp.cs.bilkent.edu.tr/DataSets/
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
https://archive.ics.uci.edu/ml/datasets/parkinsons
https://www.kaggle.com/datasets/puneet6060/intel-image-classification
https://www.kaggle.com/datasets/puneet6060/intel-image-classification
https://www.mathworks.com/help/deeplearning/ref/resnet18.html
https://ipnnl.uta.edu/training-data-files/regression/
https://www.census.gov/data/datasets.html
https://openai.com/blog/chatgpt


Under review as submission to TMLR

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: a no-recurrence sequence-to-sequence model
for speech recognition. In 2018 IEEE international conference on acoustics, speech and signal processing
(ICASSP), pp. 5884–5888. IEEE, 2018.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley & Sons, 2012.

J Patrick Fitch, Sean K Lehman, Farid U Dowla, SHIN-Y Lu, Erik M Johansson, and Dennis M Goodman. Ship
wake-detection procedure using conjugate gradient trained artificial neural networks. IEEE Transactions
on Geoscience and Remote Sensing, 29(5):718–726, 1991.

Adrian K Fung, Zongqian Li, and Kun-Shan Chen. Backscattering from a randomly rough dielectric surface.
IEEE Transactions on Geoscience and remote sensing, 30(2):356–369, 1992.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma. Neural
computation, 4(1):1–58, 1992.

Philip E Gill, Walter Murray, and Margaret H Wright. Practical optimization. SIAM, 2019.

Federico Girosi and Tomaso Poggio. Representation properties of networks: Kolmogorov’s theorem is irrelevant.
Neural Computation, 1(4):465–469, 1989.

Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Martin T Hagan and Mohammad B Menhaj. Training feedforward networks with the marquardt algorithm.
IEEE transactions on Neural Networks, 5(6):989–993, 1994.

Eric J Hartman, James D Keeler, and Jacek M Kowalski. Layered neural networks with gaussian hidden
units as universal approximations. Neural computation, 2(2):210–215, 1990.

Sherif Hashem and Bruce Schmeiser. Improving model accuracy using optimal linear combinations of trained
neural networks. IEEE Transactions on neural networks, 6(3):792–794, 1995.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural networks for perception, pp.
65–93. Elsevier, 1992.

Ahmet Kara. A data-driven approach based on deep neural networks for lithium-ion battery prognostics.
Neural Computing and Applications, 33(20):13525–13538, 2021.

Manisha M Kasar, Debnath Bhattacharyya, and TH Kim. Face recognition using neural network: a review.
International Journal of Security and Its Applications, 10(3):81–100, 2016.

Kang Ke, Sun Hongbin, Zhang Chengkang, and Carl Brown. Short-term electrical load forecasting method
based on stacked auto-encoding and gru neural network. Evolutionary Intelligence, 12:385–394, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

John Kolen and Jordan Pollack. Back propagation is sensitive to initial conditions. Advances in neural
information processing systems, 3, 1990.

Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob Uszkoreit, Lucas Beyer,
Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Sylvain Gelly, Thomas Unterthiner, and Xiaohua
Zhai. An image is worth 16x16 words: Transformers for image recognition at scale. 2021.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

23



Under review as submission to TMLR

Nalin Kumar, Manuel Gerardo Garcia, and Kanishka Tyagi. Material handling using machine learning system,
January 27 2022. US Patent App. 17/495,291.

Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew Y Ng. On optimization
methods for deep learning. In Proceedings of the 28th International Conference on International Conference
on Machine Learning, pp. 265–272, 2011.

Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr and Muller K. (eds.), Neural
Networks: Tricks of the trade, pp. 9–50. Springer, 1998a.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998b.

Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly of
applied mathematics, 2(2):164–168, 1944.

FL Lewis, S Jagannathan, and A Yeşildirek. Neural network control of robot arms and nonlinear systems. In
Neural Systems for control, pp. 161–211. Elsevier, 1997.

Max Little, Patrick McSharry, Eric Hunter, Jennifer Spielman, and Lorraine Ramig. Suitability of dysphonia
measurements for telemonitoring of parkinson’s disease. Nature Precedings, pp. 1–1, 2008.

Sanjeev S Malalur and Michael Manry. Feed-forward network training using optimal input gains. In 2009
International joint conference on neural networks, pp. 1953–1960. IEEE, 2009.

Michael Manry, Apollo. S J, L S Allen, W D Lyle, W Gong, M S Dawson, and A K Fung. Fast training of
neural networks for remote sensing. Remote Sensing Reviews, 9:77–96, 1994.

Michael T Manry, Steven J Apollo, and Qiang Yu. Minimum mean square estimation and neural networks.
Neurocomputing, 13(1):59–74, 1996.

MT Manry, H Chandrasekaran, CH Hsieh, Yu Hen Hu, and Jenq-Nenq Hwang. Signal processing applications
of the multilayer perceptron. In Handbook on Neural Network Signal Processing. CRC Press, 2001.

Karn Meesomsarn, Roungsan Chaisricharoen, Boonruk Chipipop, and Thongchai Yooyativong. Forecasting
the effect of stock repurchase via an artificial neural network. In 2009 ICCAS-SICE, pp. 2573–2578. IEEE,
2009.

Martin Fodslette Møller. A scaled conjugate gradient algorithm for fast supervised learning. Neural networks,
6(4):525–533, 1993.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814, 2010.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.edu/housenumbers/nips2011_
housenumbers.pdf.

Son Nguyen, Kanishka Tyagi, Parastoo Kheirkhah, and Michael Manry. Partially affine invariant back
propagation. In 2016 International Joint Conference on Neural Networks (IJCNN), pp. 811–818. IEEE,
2016.

Yohhan Pao. Adaptive pattern recognition and neural networks. 1989.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3498–3505, 2012. doi: 10.1109/CVPR.2012.
6248092.

24

http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf


Under review as submission to TMLR

Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues, Markus Müller, Sebastian Stüker, and Alexander Waibel.
Very deep self-attention networks for end-to-end speech recognition. arXiv preprint arXiv:1904.13377,
2019.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 652–660, 2017.

Sarunas Raudys. Statistical and Neural Classifiers: An integrated approach to design. Springer Science &
Business Media, 2001.

Melvin Deloyd Robinson and Michael Thomas Manry. Two-stage second order training in feedforward neural
networks. In The Twenty-Sixth International FLAIRS Conference, 2013.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error
propagation. Technical report, La Jolla Inst for Cognitive Science, University of California, San Diego,
1985.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating
errors. nature, 323(6088):533–536, 1986.

Robert S Scalero and Nazif Tepedelenlioglu. A fast new algorithm for training feedforward neural networks.
IEEE Transactions on signal processing, 40(1):202–210, 1992.

Bruce W Suter. The multilayer perceptron as an approximation to a bayes optimal discriminant function.
IEEE transactions on neural networks, 1(4):291, 1990.

Hong Hui Tan and King Hann Lim. Review of second-order optimization techniques in artificial neural
networks backpropagation. In IOP conference series: materials science and engineering, volume 495, pp.
012003. IOP Publishing, 2019.

Kanishka Tyagi. Automated multistep classifier sizing and training for deep learners. PhD thesis, Department
of Electrical Engineering, The University of Texas at Arlington, Arlington, TX, 2018.

Kanishka Tyagi and Michael Manry. Multi-step training of a generalized linear classifier. Neural Processing
Letters, 50:1341–1360, 2019.

Kanishka Tyagi, Nojun Kwak, and Michael T Manry. Optimal conjugate gradient algorithm for generalization
of linear discriminant analysis based on l1 norm. In ICPRAM, pp. 207–212, 2014.

Kanishka Tyagi, Son Nguyen, Rohit Rawat, and Michael Manry. Second order training and sizing for the
multilayer perceptron. Neural Processing Letters, 51(1):963–991, 2020.

Kanishka Tyagi, Chinmay Rane, Bito Irie, and Michael Manry. Multistage newton’s approach for training
radial basis function neural networks. SN Computer Science, 2(5):1–22, 2021.

Kanishka Tyagi, Chinmay Rane, and Michael Manry. Supervised learning. In Artificial Intelligence and
Machine Learning for EDGE Computing, pp. 3–22. Elsevier, 2022a.

Kanishka Tyagi, Yihang Zhang, John Kirkwood, Shan Zhang, Sanling Song, and Narbik Manukian. Radar
system using a machine-learned model for stationary object detection, 2022b. US Patent App. 17/230,877.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Daomiao Wang, Qihan Hu, and Cuiwei Yang. Biometric recognition based on scalable end-to-end convolutional
neural network using photoplethysmography: A comparative study. Computers in Biology and Medicine,
147:105654, 2022.

25



Under review as submission to TMLR

Gou-Jen Wang and Chih-Cheng Chen. A fast multilayer neural-network training algorithm based on the
layer-by-layer optimizing procedures. IEEE Transactions on Neural Networks, 7(3):768–775, 1996.

Yuqing Wang, Qiang Ge, Wenkai Lu, and Xinfei Yan. Well-logging constrained seismic inversion based on
closed-loop convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 58(8):
5564–5574, 2020.

Paul Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD thesis,
Committee on Applied Mathematics, Harvard University, Cambridge, MA, 1974.

Halbert White. Economic prediction using neural networks: The case of ibm daily stock returns. In ICNN,
volume 2, pp. 451–458, 1988.

Halbert White. Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary
mappings. Neural networks, 3(5):535–549, 1990.

David H Wolpert. The lack of a priori distinctions between learning algorithms. Neural computation, 8(7):
1341–1390, 1996.

Bing-Fei Wu. Minimum mean-squared error estimation of stochastic processes by mutual entropy. International
journal of systems science, 27(12):1391–1402, 1996.

I-C Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Cement and
Concrete research, 28(12):1797–1808, 1998.

Changhua Yu, Michael T Manry, and Jiang Li. Hidden layer training via hessian matrix information. In
FLAIRS Conference, pp. 688–694, 2004.

Changhua Yu, Michael T Manry, and Jiang Li. Effects of nonsingular preprocessing on feedforward network
training. International Journal of Pattern Recognition and Artificial Intelligence, 19(02):217–247, 2005.

Zhen Zhang, Weimin Shao, and Hong Zhang. A learning algorithm for multilayer perceptron as classifier.
In IJCNN’99. International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339),
volume 3, pp. 1681–1684. IEEE, 1999.

A Appendix: Training weights by orthogonal least squares

OLS is used to solve for the output weights, pruning of hidden units Tyagi et al. (2020), input units Tyagi
& Manry (2019) and deciding on the number of hidden units in a deep learner Tyagi (2018). OLS is a
transformation of the set of basis vectors into a set of orthogonal basis vectors thereby measuring the
individual contribution to the desired output energy from each basis vector.

In an autoencoder, we are mapping from an (N+1) dimensional augmented input vector to it’s reconstruction
in the output layer. The output weight matrix Woh ∈ ℜN×Nh and yp in elements wise will be given as

yp(i) =
N+1∑
n=1

woh(i, n) · xp(n) (41)

To solve for the output weights by regression , we minimize the MSE as in (4). In order to achieve a superior
numerical computation, we define the elements of auto correlation R ∈ ℜNh×Nh and cross correlation matrix
C ∈ ℜNh×M as follows :

r(n, l) = 1
Nv

Nv∑
p=1

Op(n) ·Op(l) c(n, i) = 1
Nv

Nv∑
p=1

Op(n) · tp(i) (42)

26



Under review as submission to TMLR

Substituting the value of yp(i) in (4) we get,

E = 1
Nv

Nv∑
p=1

M∑
m=1

[tp(m)−
Nh∑
k=1

woh(i, k) ·Op(k)]2 (43)

Differentiating with respect to Woh and using (42) we get

∂E

woh(m, l) = −2[c(l, m)−
Nh+1∑
k=1

woh(m, k)r(k, l)] (44)

Equating (44) to zero we obtain a M set of Nh + 1 linear equations in Nh + 1 variables. In a compact form it
can be written as

R ·WT = C (45)

By using orthogonal least square, the solution for computation of weights in (45) will speed up. For
convineance, let Nu = Nh + 1 and the basis functions be the hidden units output O ∈ ℜ(Nh+1)×1 augmented
with a bias of 1. For an unordered basis function O of dimension Nu , the mth orthonormal basis function
O′ is defines as « add reference »

O
′

m =
m∑

k=1
amk ·Ok (46)

Here amk are the elements of triangular matrix A ∈ ℜNu×Nu

For m = 1
O

′

1 = a11 ·O1 a11 = 1
∥O∥

= 1
r(1, 1) (47)

for 2 ≤ m ≤ Nu, we first obtain

ci =
i∑

q=1
aiq · r(q, m) (48)

for 1 ≤ i ≤ m− 1. Second, we set bm = 1 and get

bjk = −
m=1∑
i=k

ci · aik (49)

for 1 ≤ k ≤ m− 1. Lastly we get the coeffeicent Amk for the triangular matrix A as

amk = bk

[r(m, m)−
∑m−1

i=1 c2
i ]2

(50)

Once we have the orthonormal basis functions, the linear mapping weights in the orthonormal system can be
found as

w
′
(i, m) =

m∑
k=1

amkc(i, k) (51)

27



Under review as submission to TMLR

The orthonormal system’s weights W′ can be mapped back to the original system’s weights W as

w(i, k) =
Nu∑

m=k

amk · w
′

o(i, m) (52)

In an orthonormal system, the total training error can be written from (4) as

E =
M∑

i=1

Nv∑
p=1

[⟨tp(i), tp(i)⟩ −
Nu∑
k=1

(w
′
(i, k))2] (53)

Orthogonal least square is equivalent of using the QR decomposition Golub & Van Loan (2012) and is useful
when equation (45) is ill-conditioned meaning that the determinant of R is 0.

28


	Introduction
	Prior work
	Structure and notation
	Scaled conjugate gradient algorithm
	Levenberg-Marquardt algorithm
	Output weight optimization
	Input weight optimization
	Hidden weight optimization

	Proposed work
	Mathematical background
	Optimal Input Gain algorithm
	OIG Hessian matrix
	OIG Integrated with OWO-BP

	Improvement to OIG-BP
	Effect of Linearly Dependent Inputs on HWO


	Experimental Methods and Results
	Experimental procedure
	Computational Burden
	Approximation Dataset Results
	Prognostics Dataset
	Remote Sensing Dataset
	Federal Reserve Dataset
	Housing Dataset
	Concrete Compressive Strength Dataset
	Wine data set
	Parkinson’s Dataset

	Discussion
	Replacement Classifier Datasets

	Conclusion and Future Work
	Appendix: Training weights by orthogonal least squares

