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ABSTRACT

We seek to create agents that both act and communicate with other agents in pursuit
of a goal. Towards this end, we extend LIGHT (Urbanek et al., 2019)—a large-
scale crowd-sourced fantasy text-game—with a dataset of “quests”. These contain
natural language motivations paired with in-game goals and human demonstrations;
completing a quest might require dialogue or actions (or both). We introduce a
reinforcement learning system that (1) incorporates large-scale language modeling-
based and commonsense reasoning-based pre-training to imbue the agent with
relevant priors; and (2) leverages a factorized action space of action commands
and dialogue, balancing between the two. We conduct zero-shot evaluations using
held-out human expert demonstrations, showing that our agents are able to act
consistently and talk naturally with respect to their motivations.

1 INTRODUCTION

There has been a recent improvement in the quality of natural language processing (NLP) and
generation (NLG) by machine learning (ML) (Vaswani et al., 2017; Devlin et al., 2018); and in
parallel, improvement to goal-oriented ML driven agents in the context of games (Vinyals et al.,
2019; Schrittwieser et al., 2019). However, agents that can communicate with humans (and other
agents) through natural language in pursuit of their goals are still primitive. One possible reason for
this is that many datasets and tasks used for NLP are static, not supporting interaction and language
grounding (Brooks, 1991; Feldman & Narayanan, 2004; Barsalou, 2008; Mikolov et al., 2016;
Gauthier & Mordatch, 2016; Lake et al., 2017). Text-based games—where players see, act upon,
and communicate within a dynamic world using natural language—provide a platform on which to
develop such goal-driven agents.

LIGHT (Urbanek et al., 2019), a large-scale crowdsourced fantasy text-adventure game, consisting of
a set of locations, characters, and objectsa possesses rich textual worlds, but without any notion of
goals to train goal-driven agents. We present a dataset of quests for LIGHT and demonstrations of
humans playing these quests (as seen in Figures 2 and 3), providing natural language descriptions in
varying levels of abstraction of motivations for a given character in a particular setting.

To complete these quests, an agent must reason about potential actions and utterances based on
incomplete descriptions of the locations, objects, and other characters. When a human is placed
in a fantasy setting such as LIGHT, they already know that kings are royalty and must be treated
respectfully, swords are weapons, etc.—commonsense knowledge that a learning agent must acquire
to ensure successful interactions. To equip agents with relevant priors in such worlds, we domain-
adapt the large-scale commonsense knowledge graph ATOMIC (Sap et al., 2019) to the LIGHT
fantasy world—to build ATOMIC-LIGHT.

We then introduce a reinforcement learning (RL) system that incorporates large-scale language
modeling and the above commonsense-based pre-training. We show that RL is superior to behavior
cloning or other supervised training on our data; and that carefully combining pre-training with RL is
superior to either.

However, we find that although pre-training can be an effective tool in this setting, it requires more
finesse than in the standard supervised setting. In particular, we find that simply pre-training a model
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Setting You are in the Dangerous Precipice. The dangerous precipice overlooks the valley below. The ground slopes down to the
edge here. Dirt crumbles down to the edge of the cliff. There’s a dragon crescent, a knight’s armor, a golden dragon egg, and
a knight’s fighting gear here. A knight is here.You are carrying nothing.

Partner: Knight.
Persona I am a knight. I come from a lower-ranking noble family. I serve under the king, as my father did before me. In times of war,

I fight on horseback.
Carrying knight’s armor, golden dragon egg, knight’s fighting gear
Self: A dragon.
Persona I am a dragon living in the mountains. I enjoy hoarding treasure. I terrorize the local populace for fun.

Carrying Nothing.

Figure 1: Setting and character information for both self and partner characters as taken from LIGHT.
Motivations: Timeline:

-4 hours go to dangerous precipiceShort I need to recover the dragon egg that was stolen and punish the knight. -15 min get knights armor from knight
-10 min get golden dragon egg

Now hit knightMid I need to return the golden dragon egg to my treasure hoard.
+5 min put dragon egg on back

+15 min eat the knightLong I need to build the largest hoard ever attained by any one dragon. +2 hours go to the mountains

Figure 2: Motivations with different levels of abstractions and corresponding sequence of timeline
actions in chronological order for the self character in LIGHT-Quests. There are 7486 quests in total.

Insssssolent pessst! I should immolate you for this tresssspasss.

And why is that, dragon?

Ssstealing my preccciousss golden egg! I’ll tell you what, I’ll give you 10 sssseconds to amussse me with your sssstory and THEN I’ll
burn you alive!

You said you wanted to attack me, dragon, did you not?

Go ahead, I’m lisssssstening.
get golden dragon egg

Now now! I would have given you that had you asked!

Assssssk for my own property back? What a riduculousss notion

Look here, I told you to watch your mouth and you didn’t, so leave or I’ll make you leave.

And now threatsss! Thisss is proving to be a mossst engaging conversssation.
hit knight

Give my regardsss to the valley floor below!

Figure 3: Example of a demonstration of a human (blue shaded) completing the above quest while
role-playing as the self character with a partner agent (grey shaded). There are 2111 such human
demonstrations of average sequence length 12.92, consisting of 22672 dialogues in total.

on a large “generic” corpus (Sap et al., 2019; Baumgartner et al., 2020) of commonsense/language
data or pre-training on the domain specific LIGHT corpus, and then fine-tuning via RL is less effective
than training RL from scratch. Furthermore, by carefully combining general and domain-specific
pre-training, we observe large improvements over RL from scratch.

In short, the contributions of this paper are threefold: (1) A dataset of quests, LIGHT-Quests, and a
companion fantasy themed commonsense knowledge graph ATOMIC-LIGHT; (2) a reinforcement
learning architecture and training methodology that use these datasets to create goal-driven agents
that act and speak in the LIGHT environment; and (3) Empirical zero-shot evaluations based on
human quest demonstrations and an analysis of large-scale transformer-based pre-training trends in
static vs. interactive settings, showing that we have trained agents that act consistently and speak
naturally with respect to their motivations.

2 RELATED WORK

We focus on four major areas of related work: text-based game-playing, goal-oriented dialogue,
commonsense reasoning in language, and general language-informed RL.

Text-based game-playing. Côté et al. (2018) introduce TextWorld, a framework for procedurally
generating text-based games via grammars, and Yuan et al. (2018); Yin & May (2019); Adolphs
& Hofmann (2019); Adhikari et al. (2020) build agents that operate in this environment—focusing
on aspects such as efficient exploration and zero-shot generalization to new, procedurally generated
environments. Similarly, Hausknecht et al. (2020) introduce Jericho, a framework and series of
baseline agents for interacting with human-made text-games such as Zork (Anderson et al., 1979).
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This resulted in agents developed by works such as Zahavy et al. (2018); Ammanabrolu & Hausknecht
(2020), aiming to learn to execute contextually relevant actions. Other works such as Narasimhan
et al. (2015); He et al. (2016) explore how to best factorize such text-game action spaces. None of
these works consider agents with motivations and personas nor require any dialogue.

Goal-oriented dialogue. This form of dialogue has traditionally been closely related to specific tasks
useful in the context of personal assistants with dialogue interfaces (Henderson et al., 2014; El Asri
et al., 2017). RL has been studied for such tasks, usually to improve dialogue state management (Singh
et al., 2000; Pietquin et al., 2011; Fatemi et al., 2016) and to improve response quality (Li et al., 2016).
In particular, the negotiation tasks of Yarats & Lewis (2017); Lewis et al. (2017), where two agents
are trying to convince each other to perform certain actions, are related to the tasks in LIGHT-Quests.
These works all lack environment grounding and the notion of diverse agent motivations.

Commonsense reasoning in language. Works such as Bosselut et al. (2019); Guan et al. (2020)
focus on pre-training transformer-based language learning systems with large-scale commonsense
knowledge graphs such as ATOMIC (Sap et al., 2019) and ConceptNet (Speer & Havasi, 2012)
for use in knowledge graph completion and story ending generation respectively. Fulda et al.
(2017); Ammanabrolu & Riedl (2019); Ammanabrolu et al. (2020); Murugesan et al. (2020) look
at commonsense reasoning in interactive environments, with the former focusing on affordance
extraction using word embeddings and the latter three on transferring text-game playing skills via
pre-training using question-answering and large-scale knowledge graphs.

Language-informed reinforcement learning. Luketina et al. (2019) provide an overview of RL
informed by natural language. Of these works, the ones most related to ours are those falling into
the category of instruction following—where an agent’s tasks are defined by high level instructions
describing desired policies and goals (MacMahon et al., 2006; Kollar et al., 2010). Visual and
embodied agents using natural language instructions (Bisk et al., 2016; Kolve et al., 2017; Anderson
et al., 2018) or in language-based action spaces (Das et al., 2017) utilize interactivity and environment
grounding but have no notion of agent motivations, nor make any attempt to explicitly model
commonsense reasoning. Perhaps closest in spirit to this work is Prabhumoye et al. (2020), where
they use artificially selected goals in LIGHT and train RL agents to achieve them. Similarly to the
others, this work does not contain the motivations provided by LIGHT-Quests nor any modeling of
commonsense reasoning. Further, they limit their RL problem to 1 and 3-step trajectories that only
involve speech, and no actions —compared to the human demonstrations in LIGHT-Quests which
contain both actions and speech sequences of average length 12.92.

3 LIGHT-QUESTS AND ATOMIC-LIGHT

This section first provides a brief overview of the LIGHT game environment, followed by descriptions
of the LIGHT-Quests and ATOMIC-LIGHT datasets used in this paper.

Background. The LIGHT game environment is a multi-user fantasy text-adventure game consisting
of a rich, diverse set of characters, locations, and objects (1775 characters, 663 locations, and 3462
objects). Characters are able to perform templated actions to interact with both objects and characters,
and can speak to other characters through free form text. Actions in text games generally consist of
verb phrases (VP) followed optionally by prepositional phrases (VP PP). For example, get OBJ, put
OBJ, give OBJ to CHAR, etc.. There are 13 types of allowed verbs in LIGHT. These actions change
the state of the world which is expressed to the player in the form of text descriptions.

3.1 LIGHT-QUESTS

Figures 1, 2, and 3 summarize the data that we collected for LIGHT-Quests. Data is collected via
crowdsourcing in two phases, first the quests then demonstration of humans playing them. During the
first phase, crowdworkers were given a setting, i.e. situated in a world, in addition to a character and
its corresponding persona and asked to describe in free form text what potential motivations or goals
could be for that character in the given world. The kind of information given to the crowdworkers
is seen in Figure 1. Simultaneously, they were also asked to provide a sequence of seven timeline
actions—one action that needs to be completed now and three before and after at various user-defined
intervals—for how the character might go about achieving these motivations.
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Given the information in Figure 1, the crowdworkers completed the above outlined tasks and produce
data as seen in Figure 2. Motivations come in three levels of abstraction—short, mid, and long—
corresponding to differing amounts of the timeline. For example, the short motivation is always
guaranteed to correspond most closely to the now position on the timeline. Action annotation is
pre-constrained based on the classes of verbs available within LIGHT. The rest of the action is
completed as free form text as it may contain novel entities introduced in the motivations. There are
5982 training, 756 validation, and 748 test quests. Further details regarding the exact data collection
process and details of LIGHT-Quests are found in Appendix A.1.1.

After collecting motivation and timelines for the quests, we deployed a two-player version of
the LIGHT game, letting players attempt the quests for themselves in order to collect human
demonstrations. Figure 3 shows an example human expert demonstration of a quest. Players were
given a character, setting, motivation, and a partner agent and left to freely act in the world and talk
to the partner in pursuit of their motivations. The partner agent is a fixed poly-encoder transformer
model (Humeau et al., 2020) trained on the original LIGHT data as well as other human interactions
derived via the deployed game—using 111k utterances in total. Players first receive a role-playing
score on a scale of 1-5 through a Dungeon Master (DM), a learned model that ranks how likely their
utterances are given the current context. Once they have accumulated a score reaching a certain
threshold, they are allowed to perform actions. We employ this gamification mechanism to encourage
players to role-play their character persona and its motivations, leading to improved user experience
and data quality (Horsfall & Oikonomou, 2011). They are then given further reward if the actions
they perform sequentially match those on the timeline for the given quest. The game ends after a
maximum of six turns of dialogue per agent, i.e. twelve in total. The average sequence of a human
demonstration is 12.92, with an average action sequence length of 2.18 and dialogue of 10.74. There
are 1800 training, 100 validation, and 211 test human expert demonstrations after the data was filtered.
Additional details and examples are found in Appendix A.2.

3.2 ATOMIC-LIGHT

Commonsense reasoning is a critical cornerstone when building learning agents that navigate spaces
such as LIGHT-Quests. To this end, we domain-adapt the large-scale commonsense knowledge
base ATOMIC (Sap et al., 2019) to LIGHT. ATOMIC contains information relevant for everyday
commonsense reasoning in the form of typed if-then relations with variables. ATOMIC is organized
into a set of events, e.g. “X puts X’s trust in Y” and annotated relation types such as “needs”, “wants”,
“attributes”, and “effects” that label the effects. It is designed to be a general atlas of commonsense
data and so is neither dependent on a specific environment or a character’s persona and motivations.

To construct ATOMIC-LIGHT, we specifically use the relations for “intents”, “effects”, “wants”
and ”needs” and expand the 〈subject, relation, object〉 triples found in the graph into templated
natural language sentences. These sentences are then rewritten to better reflect the fantasy LIGHT
domain. Named entities and other noun phrases in ATOMIC are masked out and filled in us-
ing BERT (Devlin et al., 2018) fine-tuned using a masked language model loss on the entire
LIGHT and LIGHT-Quests data. We investigate the benefits of such domain adaptation on down-
stream tasks in Section 4.3. An example of a clause using the wants relation in ATOMIC is as
follows, “PersonX puts PersonX trust in PersonY, wants, rely on PersonY.” In ATOMIC-LIGHT,
this is rewritten to: “The merchant puts the merchant’s trust in the guard, as a result the merchant
wants to rely on the guard.” Similarly, an example of an effect using the needs relation is, “Before,
the merchant puts the merchant’s trust in the guard, the merchant needs to be friends with the guard.”
ATOMIC-LIGHT contains 216686 training, 35340 validation, and 38565 test samples. Further details
of the construction of this dataset are found in Appendix A.4.

4 AGENTS THAT ACT AND SPEAK

This section describes the creation of the agents that learn to act and speak conditioned on their
motivations in the LIGHT environment. The overall architecture and training are first outlined,
followed by a detailed discussion on types of encoder pre-training.
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Figure 4: Overall RL Switch architecture and process. Blue shaded components can be pre-trained
and Red shaded components are trained with RL. Solid lines indicate gradient flow.

4.1 LIGHT RL ENVIRONMENT

The environment as seen in Figure 4 consists of three components. The first is a partner agent, which
is a model trained to play other agents in the game, as in Prabhumoye et al. (2020). Next is the game
engine, which determines the effects of actions on the underlying game graph (Urbanek et al., 2019).
Finally, there is the Dungeon Master (DM), which is trained to score the naturalness of dialogue.

Partner Agent. The partner agent is a poly-encoder transformer model (Humeau et al., 2020) that
is pre-trained on the Reddit dialogue corpus, then on LIGHT and the human demonstrations of
LIGHT-Quests. Following the format seen in Figure 3, the partner agent does not have a motivation
itself but is trained to react to agents with motivations. Following Prabhumoye et al. (2020), we keep
the partner model fixed during the episodes where the LIGHT agent trains to ensure that it retains
natural English semantics—avoiding the problem of language drift by learning an emergent language
with that must agree with the partner’s usage (Lee et al., 2019).

Action Rewards via the Game Engine. All actions, either those of the agent-in-training or the
partner agent, are processed by the engine, checking for goal state completion—hence known as act
goals. For example, if the LIGHT agent had the motivation to acquire a sword, the goal could be
completed via a:

1. self act completion: where the agent acquires a sword itself by picking it up, stealing it,
convincing the partner to drop theirs so you can pick it up, etc.

2. partner act completion: where the agent uses speech to convince their partner to achieve
the goal for them (e.g., by persuading the partner to give them the sword).

Reaching an act goal provides reward ra of 1 and 0 otherwise. At each step, the engine also provides
us with the set of valid actions. These are the subset of the action space A which are guaranteed to
be a valid change to the world from the current state st, i.e. an action to give your partner a sword
cannot be valid unless you possess the sword.

Speech Rewards via the Dungeon Master. Following prior works on using transformers for
automatic evaluation of natural language generation (Sellam et al., 2020), we utilize a learned model–
the Dungeon Master (DM)—to score the agent’s ability to speak. The DM used here is a poly-encoder
model trained on collected human quest demonstrations as well as the original conversations in
LIGHT. It is conditioned on quests and motivations and thus able to provide a (noisy) indication
of how natural the agent’s dialogue utterances are given its immediate context, similarly to the
function of the DM during the data collection process. Given the dialogue portion of a human quest
demonstration of length n, the DM returns a reward ru of 1

2n if an utterance was in the demonstration
(for a maximum of one time per episode for each utterance from the demonstration). A further 1

2n
is given each time the utterance is scored as being within the top-k most likely utterances by the
DM. This naturalness objective will be hence referred to as a speech goal. These rewards thus also
denser than act goals, helping the agent learn overall. Further, similarly to the game engine, the DM
also provides a set of M valid utterances which are the M most likely dialogue candidates from the
candidate set for the current context.
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4.2 TRAINING A LIGHT AGENT WITH SWITCH REINFORCEMENT LEARNING

The overall architecture of our agent is shown in Figure 4. It consists of an encoder, a switch, an
action network, and a dialogue network. First, we construct the action spaces—factorized into actions
and utterances. The possible actions are the set of all actions taken in the demonstrations (4710 total)
and the possible utterances are all utterances from the demonstrations (22672 total). The encoder
network processes the setting, persona, motivation, as well as the full history of actions and dialogues
performed by the agent and the partner, input as a text sequence. The features from the encoder,
which here are the hidden states at the final layer of a transformer, are used as input by all following
components of the agent. In Section 5 we show how different encoder training data affects the model.

Next, a switch module makes the decision regarding whether the agent should act or talk in the
current context and activates the corresponding policy network. In this work, the switch is simple: it
outputs an action every k dialogue utterances; where during training k is chosen to match the ratio
of utterances to actions on that particular quest from the human demonstrations, and during testing,
k is chosen to match the average action to utterance ratio. Both the action and dialogue policies
consist of a a single GRU layer followed by an n-layer feed-forward network given input features
from the encoder. Once the LIGHT agent has output an utterance or action, it is processed by the
environment—the partner agent, the game engine and the DM.

We use A2C (Mnih et al., 2016) to train the LIGHT agent, treating the two policy networks as
two separate actors with a shared critic. The shared critic is motivated by the concepts of self act
completion and partner act completion seen in Section 4.1 where the LIGHT agent can speak to
convince the partner to achieve an act goal. Each agent in a batch is initialized via priority sampling
(Graves et al., 2017) with a different quest, i.e. quests that the agent has historically successfully
completed less often are given a greater weight when sampling from the pool of all possible training
quests. In addition to a normal entropy regularization term, we also add a regularization term that
encourages the models to produce “valid” outputs as judged by the game engine and the DM for
actions and utterances respectively. Additional training details are found in Appendix B.2.

4.3 ENCODER PRE-TRAINING TASKS

Prior work on commonsense reasoning in supervised natural language learning (Bosselut et al., 2019)
suggests that the encoder is key to overcoming the challenges posed by the LIGHT-Quests dataset
even in an RL setting. We describe a series of encoder pre-training tasks, designed to help the LIGHT
agent either act more consistently or speak more naturally.

ATOMIC-LIGHT As seen in Section 3, ATOMIC-LIGHT is a (domain-adapted) fantasy common-
sense knowledge graph, and as such provides priors for an agent on how to act consistently in
the world. For example, given a clause such as “The knight wishes to slay the dragon, as a result
the knight needs to acquire a sword,” the task would be to predict the underlined text—a form of
knowledge graph completion (Wang et al., 2017).

Reddit We use a previously existing Reddit dataset extracted and obtained by a third party and made
available on pushshift.io (Baumgartner et al., 2020) seen in Roller et al. (2020). This dataset has
been used in several existing dialogue-based studies and has been shown to result in more natural
conversations (Yang et al., 2018; Mazaré et al., 2018).

LIGHT-Original The original LIGHT dataset (Urbanek et al., 2019) is organized similarly to the
human demonstrations found in LIGHT-Quests, i.e. an interspersed sequence of dialogue and actions
collected from humans role-playing a character. The task itself is to predict the next action or
utterance given the prior dialogue history as well as the current setting and persona for a character.
They are collected in a chit-chat fashion, with no notion of objectives, and so provide priors on how
to generally act consistently and speak in a fantasy world, but not directly how to complete quests.

LIGHT-Quests Pre-training with this newly introduced dataset consists of three tasks. (1) Bag-of-
action timeline prediction in which, given a quest consisting of setting, persona, and motivations, any
one of the actions in the timeline must be predicted. (2) Sequential timeline prediction in which, given
a quest consisting of setting, persona, motivations, and the first n actions in the timeline, the n+ 1th

action must be predicted. (3) Predict the next dialogue utterance given a human demonstration in a
manner similar to the LIGHT-original tasks. The first two tasks are designed to help the agent act
consistently and the third to help it speak naturally with respect to its motivations.
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Model Reinforcement Learning Behavioral Cloning
Act Goals Speech Goals Act & Speech Goals Act & Speech Goals

Scratch 0.418 0.118 0.103 0.0003
General 0.146 0.040 0.028 0.00226
Light 0.115 0.028 0.022 0.0934
General+Light 0.251 0.094 0.081 0.115
Adaptive 0.420 0.330 0.303 0.147

Table 1: Encoder Type RL Zero-Shot Evaluations averaged over 3 independent runs. Act goals and
speech goals are as described in Section 4.1. Standard deviations for all experiments are less than 0.01.
The “Act & Speech Goals” column refers to quests where the agent has simultaneously achieved both
types of goals within the allotted episode. Human act goal completion = 0.6 as measured during the
second phase of the LIGHT-Quests data collection.

0 20000 40000 60000 80000
Steps (x10)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
oa

lC
om

pl
et

io
n

R
at

e

Encoder Types Act Goals

General
General+Light

Adaptive
Scratch

Light

0 20000 40000 60000 80000
Steps (x10)

0.0

0.1

0.2

0.3

0.4

G
oa

lC
om

pl
et

io
n

R
at

e

Encoder Types Speech Goals

General
General+Light

Adaptive
Scratch

Light

Figure 5: Encoder types RL reward curves averaged over 3 independent runs.

5 EVALUATION

We conduct two ablation studies, (1) to compare the effects of the encoder pre-training tasks in
RL settings vs. supervised behavior cloning, and (2) to analyze the interplay between actions and
dialogue for self and partner act completions.

5.1 ENCODER PRE-TRAINING TYPE ABLATION STUDY

Pre-training is done on the tasks described in Section 4.3 by training a 12 layer transformer with 256
million parameters using a cross-entropy loss as seen in Humeau et al. (2020). These weights are
then transferred to the Blue shaded portion of the encoder as seen in Figure 4 and frozen. A further
three randomly initialized-layers are appended on to the end, indicated by the Red portions, into
which gradients flow. This is done as optimizing all the parameters of such a model via RL over
a long horizon is both data inefficient and computationally infeasible. Additional hyperparameter
details are found in Appendix B.1. We investigate the following five different pre-training models to
see how they compare on act and speech goal completions when trained with RL and in a supervised
manner with behavior cloning:

Scratch No pre-training is done, the encoder is a 3-layer randomly initialized transformer and trained
along with the policy networks.

General Multi-task trained using both pushshift.io Reddit and the commonsense dataset ATOMIC-
LIGHT, giving the agent general priors on how to act and speak.

Light Multi-task trained on all tasks in LIGHT-original and LIGHT-Quests, giving the agent priors
on how to act and speak with motivations in the LIGHT fantasy domain.

General+Light Multi-task trained on all tasks used in the General and Light models.

Adaptive Here we adaptively train a General+Light model that is first initialized itself from a General
model, providing additional regularization to help balance between Light and General tasks.
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Ability Scratch Adaptive
Act Goals Speech Goals Act & Speech Act Goals Speech Goals Act & Speech

Act+Speech 0.418 0.118 0.103 0.420 0.330 0.303
Act Only 0.478 - - 0.469 - -
Speech Only 0.036 0.165 0.028 0.0398 0.341 0.030
-No Speech Goals 0.0526 0.0521 0.0331 0.0673 0.0947 0.041

Table 2: Ability type ablations averaged across 3 runs with standard deviations less than 0.01.

Table 1 describes the results for this ablation. Models were each zero-shot evaluated on 211 human
demonstrations from the LIGHT-Quests test set for a single episode per quest across three independent
runs. Figure 5 shows learning curves during training for each encoder type. We first see that
performance when trained with RL, i.e. with interactivity and environment grounding during training,
results in higher performance than behavioral cloning for all the models. In both RL and behavior
cloning settings the Adaptive model outperforms all others in all the metrics.

When trained supervised (behavioral cloning), we see trends mirroring standard pre-training in static
text corpora. Transfer is easy and the Scratch model performs significantly worse than all others; and
each new task added improves the agent’s ability to speak and act. In particular, we see that Light
outperforms General, showing that the more similar the pre-training tasks are to the downstream
tasks, the better the supervised performance.

However, these trends do not hold in the RL setting. The Scratch model outperforms everything except
the Adaptive model and General outperforms Light. In part, this may be due to specification gaming
(Krakovna et al.); however Adaptive does strongly outperform Scratch in goals with dialogue. This
suggests that transfer (and fine-tuning) is not as simple in the RL setting as in the supervised setting,
but still can be useful if carefully done. We note that domain adapative pre-training (intermediate task
transfer) has previously been shown to give modest gains in supervised learning (Phang et al., 2018;
Gururangan et al., 2020), but not with the large effects seen here for RL. Figure 5 further shows that
with the right combination of tasks, not only is the generalization performance better, but training
itself is more sample efficient—requiring fewer steps before reaching asymptotic performance.

5.2 ABILITY TYPE ABLATION STUDY

To better understand the interplay between acts and speech resulting in self and partner act goal
completions, we perform an ablation study selectively dropping either the agent’s ability to talk or act.
We train the agent to either only act, only speak, only speak with only action rewards. In the scenarios
when the agent can only speak, the agent has to convince the partner to help achieve the agent’s goal.

The results are outlined in Table 2. Unsurprisingly, when trained to only act, the act goal completion
rate increases over when it can both act and speak. Similarly, when trained to only speak the speech
goal completion rates also increase. We can draw two conclusions from these results: (1) It is much
easier to do an action yourself than to convince the partner to do it (2) Removing speech goals
increases the act goal completion rates corresponding to higher partner act completions. Thus, the
sequences of dialogue utterances required to convince the partner to achieve the agent’s goal are
likely often at odds with those sequences required to maximize speech goals.

6 CONCLUSION

Operating on the hypothesis that interactivity is key to language learning, we introduce two datasets—
a set of quests based on character motivations in fantasy worlds, LIGHT-Quests, and a large-scale
commonsense knowledge graph, ATOMIC-LIGHT—and a reinforcement learning system that lever-
ages transformer-based pre-training to facilitate development of goal-driven agents that can act and
speak in situated environments. Zero-shot evaluations on a set of novel human demonstration show
that we have trained agents that act consistently and speak naturally with respect to their motivations.
A key insight from our ablation study testing for zero-shot generalization on novel quests is that large-
scale pre-training in interactive settings require careful selection of pre-training tasks—balancing
between giving the agent “general” open domain priors and those more “specific” to the downstream
task—whereas static methodologies require only domain specific pre-training for effective transfer
but are ultimately less effective than interactive methods.
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