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Abstract—Rationalization, a data-centric framework, aims to build self-explanatory models to explain the prediction outcome by
generating a subset of human-intelligible pieces of the input data. It involves a cooperative game model where a generator generates
the most human-intelligible parts of the input (i.e., rationales), followed by a predictor that makes predictions based on these generated
rationales. Conventional rationalization methods typically impose constraints via regularization terms to calibrate or penalize undesired
generation. However, these methods are suffering from a problem called mode collapse, in which the predictor produces correct
predictions yet the generator consistently outputs rationales with collapsed patterns. Moreover, existing studies are typically designed
separately for specific collapsed patterns, lacking a unified consideration. In this paper, we systematically revisit cooperative
rationalization from a novel game-theoretic perspective and identify the fundamental cause of this problem: the generator no longer
tends to explore new strategies to uncover informative rationales, ultimately leading the system to converge to a suboptimal game
equilibrium (correct predictions v.s collapsed rationales). To solve this problem, we then propose a novel approach, Game-theoretic
Policy Optimization oriented RATionalization (PORAT), which progressively introduces policy interventions to address the game
equilibrium in the cooperative game process, thereby guiding the model toward a more optimal solution state. We theoretically analyse
the cause of such a suboptimal equilibrium and prove the feasibility of the proposed method. Furthermore, we validate our method on
nine widely used real-world datasets and two synthetic settings, where PORAT achieves up to 8.1% performance improvements over
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existing state-of-the-art methods.

Index Terms—Data-centric Explainability, Self-explanation, Rationale Mining, Game-theoretic Policy Optimization.

1 INTRODUCTION

W Ith the success of deep learning in processing large-
scale data, the demand for model interpretability has
garnered significant attention in recent years [1]]. Ideally,
model explanations should be both plausible and faithful,
which means they should be aligned with human under-
standing and can reflect the model’s predictive behaviour
simultaneously [2], [3]]. Early studies of explainability [4]-
[8], focusing on model-centric explanations, try to leverage
post-hoc explanation by approximating important features
through machine learning models to explain predictions.
Despite appearing plausible, this may not faithfully repre-
sent an agent’s decision [1]], since the explanation generation
process is trained separately from the model predictions.
In contrast to model-centric post-hoc methods, data-centric
self-explanation techniques typically offer increased trans-
parency and faithfulness [9], as the prediction is made based
on the explanation itself [[10], [11].

In this study, our primary focus is on investigating a
general data-centric self-explaining framework called Ratio-
nalizing Neural Predictions (RNP, also known as rational-
ization) [12], which with its variants has become mainstream
approach for facilitating the interpretability of models [13]-

This manuscript is under review by IEEE. Yunxiao Zhao, Zhigiang Wang,
Jiye Liang, Ru Li are with School of Computer and Information Tech-
nology, Shanxi University, Taiyuan, China (e-mail: yunxiaomr@163.com,
{wangzq,ljy liru}@sxu.edu.cn). Xingtong Yu is with the School of Computer
and Information Systems, Singapore Management University, Singapore
(yxt95@mail.ustc.edu.cn). Xiaoli Li is with the Institute for Infocomm Re-
search, A*Star, Singapore (xIli@i2r.a-star.edu.sg). This work has been submit-
ted to the IEEE for possible publication. Copyright may be transferred without
notice, after which this version may no longer be accessible.

y [0.1]

= |[0.1,0.91—s iy, | H(Y,T)
(Aroma) d

A

Predictor Y

el SO
X Generator Z

Fig. 1: A standard RNPAframework on the binary sentiment
analysis, where X, Z, Y, Y represent the input data, ratio-
nale, prediction and the groundtruth label, respectively.

[21]], and also has the potential to be applied to downstream
tasks such as sentiment analysis [12], [22], image classifi-
cation [23]], graph neural networks [24], legal judgment [25],
and the recommendation system [26]. As illustrated in Fig/T}
there is a standard rationalization RNP framework, which
aims to generate a small and human-intelligible subset (i.e.,
rationale) from the input data to support and explain the
prediction results when yielding them. Here, they highlight
key textual spans for input data and utilize a cooperative
game with two players (a generator and a predictor) to
maximize prediction accuracy through the computation of
the maximum mutual information (MMI) loss [27]. As a
result, this principle aims to faithfully provide explanations
to explain the coupled connection between the input and
the model-agnostic task label [28].

Despite such a rationalization model can ensure the
faithfulness of the model [27] (i.e., certification of exclu-
sion [29]), the cooperative game is difficult to train if the
generator and the predictor are not well coordinated. In
this paper, we identify two key challenges that constrain
the learning and optimization of the rationale within this
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self-explaining framework. i) Mode collapse of rationale
generation. Mode collapse refers to the phenomenon
where, during the process of generating self-explanations,
the predictor produces correct predictions, yet the generator
consistently outputs collapsed rationale patterns. It becomes
fixated on a few dominant modes in the training data
and fails to capture the rational rationale distribution. As
illustrated in Fig2} NV different rationale modes prevent the
generator from generating meaningful rationales with high
plausibility. The generator may produce some meaningless
fragments that are decorrelated information (e.g., Pattern
1) or not human-intelligible (e.g., Pattern N) to explain
the predictor’s prediction on the Aroma aspect. Though
the predictor infers correct predictions, the generator yields
uninformative rationales, converging to a sub-optimal state
(correct predictions v.s collapsed rationales). The core idea
lies in the fact that the generator initially produces a specific
pattern (maybe bad patterns), when passed to the predictor,
which still leads to a correct label. In such cases, the gener-
ator can receive positive feedback and is thus encouraged
to overfit to that particular pattern. ii) Unified modeling of
rationale patterns. Most existing research focuses on indi-
vidual cases, lacking of unified modeling for data-intrinsic
rationale patterns. For example, a series of studies adopts
causal inference and a rectified criterion to exclude the
mode collapse of spurious correlations (Pattern 1). Chang et
al. [30] use an environment-agnostic predictor to recognize
spurious correlations; Yue et al. [31] aim to remove spurious
correlations based on backdoor adjustment; Liu et al. [32]
propose the minimum conditional dependence criterion to
uncover causal rationales rather than spurious features.
In addition, some studies use additional information to
regularize the predictor to address the partial degeneration
problem (Pattern 2). Yu et al. [27] uses soft attention from the
generator to input full text information into the predictor;
Huang et al. [33] and Liu et al. [15] follow the importance
of full input and align from different points of view; Liu
et al. [21] uses the same encoder between the generator
and the predictor to transmit information. Although the
above studies have made progress on these two patterns,
the patterns present in the data are not finite in variety, as
evidenced by recently identified rationalization failure [16].
Moreover, some studies [28], [32] also indicate that various
data features may compete with the true rationale for extrac-
tion opportunities, thereby hindering the interpretability of
the data. This can easily lead to the generator developing
diverse rationales selected without human understanding.
To address the above problems, we unify spurious cor-
relations, degeneration and other collapsed rationale frag-
ments, treating them collectively as suboptimal rationales;
and systematically revisit the cooperative mechanism of
rationalization from a novel game-theoretic perspective and
present the existing cooperative problem in the rationaliza-
tion framework. We theoretically analyze that the funda-
mental cause of collapsed rationales is that the generator no
longer tends to explore new strategies and falls into a sub-
optimal game equilibrium. Therefore, to solve this problem,
we propose a novel rationalization method and prove its
feasibility from a game-theoretic perspective, termed Policy
Optimization oriented RATionalization (PORAT), which
aims to guide the rationalization model to cope with such a
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Pattern 0: Rational Rationale

Input: the head is large , white , and foamy and sticks for awhile .

it smells very clean but robust for the style . ... it is quite sweet with
a subtle fruitiness , the grains are sweet as well .

Label (about the beer’s Aroma aspect): Positive

Prediction: Positive

Selected rationale: [“it smells very clean but robust for the style .””]
(about the beer’s Aroma aspect)

Pattern 1: Spurious Correlation

Input: the head is large , white , and foamy and sticks for awhile .

it smells very clean but robust for the style . ... it is quite sweet with
a subtle fruitiness , the grains are sweet as well .

Label (about the beer’s Aroma aspect): Positive

Prediction: Positive

Selected rationale: [“it is quite sweet with a subtle fruitiness , the
grains are sweet as well .”] (about the beer’s Palate aspect)

Pattern 2: Rationale Degeneration

Input: the head is large , white , and foamy and sticks for awhile .
it smells very clean but robust for the style . ... it is quite sweet with
a subtle fruitiness , the grains are sweet as well .

Label (about the beer’s Aroma aspect): Positive

Prediction: Positive

Selected rationale: [, white , and and for . it the”] (Degenerate to
partly meaningless fragments)

Pattern N: Rationale Collapse

Input: the head is large , white , and foamy and sticks for awhile .

it smells very clean but robust for the style . ... it is quite sweet with

a subtle fruitiness , the grains are sweet as well .

Label (about the beer’s Aroma aspect): Positive

Prediction: Positive

Selected rationale: [, , ., .”] (Degenerate to completely
Qeaningless fragments)

/

Fig. 2: Rationales of different patterns illustrate the ratio-
nales of rational, spurious correlation, partial degeneration,
and complete degeneration, which are caused by the gener-
ator. Human-annotated rationales are underlined; “red text”
indicates rationales generated by models.

suboptimal equilibrium and to promote the mode collapse
problem of cooperative rationalization. The contributions of
this paper can be summarized as follows:

e New perspective: We unify the concept of collapsed
rationales, systematically revisit the cooperative game
mechanism of rationalization from a novel perspective,
and reveal the game-theoretic problem between two
players, i.e., sub-optimal game equilibrium.

o Theoretical insights: We theoretically analyze the fun-
damental causes of the sub-optimal game equilibrium
problem between two players in rationalization.

o New methodology: We propose a novel method called
PORAT, which progressively introduces policy inter-
ventions to address the sub-optimal game equilibrium
problem in the cooperative game process. Moreover, we
prove the feasibility of the proposed PORAT.

o Empirical results: Extensive experiments on real-world
benchmarks (nine widely used datasets) and synthetic
settings (two synthetic settings) demonstrate the effec-
tiveness of PORAT, which improves the F1 score by up
to 8.1% as compared to the state-of-the-art method.

The remainder of this paper is organized as follows. Sect.
summarizes the related works. The problem definition of
rationalization is given in Sect. 3| The revisiting of cooper-
ative rationalization is specified in Sect. @ including game-



theoretic mechanisms and problems. The proposed method
and theoretical insights are presented in Sect. |5 Besides,
the experimental results and analysis are in Sect. Finally,
we conclude this study in Sect. [/} To streamline the main
text for better readability, we have moved some non-critical
technical proofs and setups to the Appendices.

2 RELATED WORK

Explainability is a critical research area in the fields of
data science and artificial intelligence. In this section, we
categorize the explainability research into three main types:
data-centric explanations, model-centric explanations and
generative explanations with large language models. our
primary focus will be on the methods of rationalization in
the domain of data-centric explanation research.

2.1 Data-centric rationalization explanations
Data-centric rationalization has received increasing atten-
tion in recent years, aiming to answer the question: Which
parts of the input data drive the prediction made by deep
neural networks (DNNs)? [13]. Typically, this research con-
sists of a generator and a predictor, which produces task-
specific predictions using the predictor, while the generator
identifies a short and coherent subset of the original input
(namely rationale) that is sufficient to explain and support
the prediction. There are two main lines of research: super-
vised rationalization and unsupervised rationalization.
Supervised rationalization. The supervised rationalization
framework jointly utilizes rationales and class labels during
training. Representative works mainly focus on benchmarks
and proposed methods [3], [34]-[36]. For example, DeYoung
et al. [34] propose an ERASER benchmark which contains
several datasets with both task labels and gold rationales.
Lehman et al. [35] propose a pipeline approach as a super-
vised baseline. Chan et al. [3] develop a unified framework
to replace previous works’ heuristic design choices with a
generic learned rationale generator. Li et al. [36] propose
to employ mixed adversarial training and boundary match
constraint to improve supervised rationales. These studies
usually rely on gold rationales annotated by humans during
model training, and formulate rationalization as a multitask
learning problem, optimizing the joint likelihood of both
class labels and extractive rationales. However, for most
tasks, obtaining large-scale annotated rationales is impracti-
cal, which limits the applicability in real-world scenarios.
Unsupervised rationalization. The other major line of re-
search is initiated by Lei et al. [12], who propose a unsu-
pervised framework for self-explainable rationale learning.
This approach also employs a generator and a predictor
component. Since the predictor makes its decision solely
based on the explanation produced by the generator, the
resulting rationale is faithful to the model’s behavior [27],
[29], [37]. However, optimizing unsupervised rationales re-
mains a challenging problem. Some early studies [38]-[40]
mainly focus on how to mitigate this blocking problem from
a rationale sample perspective. Most recent studies have
focused separately on individual collapsed problems.

For example, a series of studies uses additional informa-
tion alignment to regularize the predictor, aiming to directly
improve the degeneration. Yu et al. [9] add a complementary
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predictor that uses text not selected as the rationale, and
use soft attention from the generator to input full text
information into the predictor [27]. Huang et al. [33] and
Liu et al. [15] follow the importance of full input and
align from different points of view. Yue et al. [41] improve
rational representations by reducing the mutual information
between rational and non-rational parts of the input. Liu et
al. [21] use the same encoder between the generator and the
predictor; they also introduce lipschitz continuity to model
asymmetric learning rates, with the aim of decoupling the
optimization frequency of two players [20]. Zhao et al. [14]
and Hu et al. [16] introduce an extra reinforced causal agent
and a guidance module to guide the generator regulate the
degeneration process of rationalization, respectively.

On the other hand, some work introduces causal theory
and a rectified criterion to address the problem of spurious
correlations. Chang et al. [30] use an environment-agnostic
predictor to recognize spurious correlations. Yue et al. [31]
aim to remove spurious correlations based on backdoor
adjustment. Liu et al. [32] propose the minimum conditional
dependence criterion to uncover causal rationales rather
than spurious features, also introduce a new criterion that
treats spurious features as equivalent to plain noise.

Although the above methods achieve improvements
on individual collapsed mode problems, few studies have
investigated the underlying nature of these collapsed ra-
tionales and conducted unified modeling. Moreover, the
interaction between the two players in rationalization has
not been fully explored. In this paper, we analyze the coor-
dination mechanism of rationalization using game-theoretic
methodology from a novel perspective, aiming to systemat-
ically reveal relationships and underlying problem between
two players, and propose a solution to address this problem.

2.2 Model-centric post-hoc explanations

Different from data-centric methods, model-centric methods
aim to approximate the important features used by machine
learning models to generate predictions, which has also
been widely explored [4], such as LIME [5], SHAP [6],
Anchors [7] and so on. Recently, Menon et al. [§] pro-
pose MaNtLE, a natural language explainer, to analyze a
set of classifier predictions and generate natural language
explanations for structured classification tasks. From the
perspective of explanation provenance, these methods are
commonly known as post-hoc explanation approaches, as
the explanations they provide are generated independently
of the well-trained predictor. As a result, post-hoc explana-
tion usually provides less transparency [1] and faithfulness
[9]. Therefore, these explanation methods are a research line
that is related but orthogonal to our research.

2.3 Generative explanation with large language models
With the great success of large language models, a new
line of research in explainability has emerged: in-context
learning (ICL)-based chain-of-thought (CoT) reasoning [42].
Instead of identifying rationales from the input data, these
methods generate intermediate reasoning steps before pro-
ducing an answer, treating the reasoning process itself as
an explanation. This compelling CoT technique has inspired
several variants such as IRCoT [43], Self-ASK [44], FLARE



[45] and DRAGIN [46], all of which have shown promising
progress. However, due to unpredictable failure problems
[47] and hallucinated reasoning [48], CoT-based generative
explanations produced by large language models are often
unreliable in high-stakes scenarios. Recent studies suggest
that language models still struggle with unsupervised, self-
explanatory tasks [18], [32], also CoT-based language model
reasoning is not always faithful [49], [50].

3 PROBLEM DEFINITION

Notations. In this study, without losing generality, we con-
sider the classification problem and denote the generator
and predictor as fg(-) and fp(-), with §, and 6, representing
their parameters. Here, to ensure clarity and facilitate better
comparison with mainstream methods, we consider input
X as text data. Therefore, the input can be represented as
X = [x1,22,...,21](1 < i <) consisting of text tokens z;,
where [ is the number of tokens. The label of X is a one-hot
vector Y € {0, 1}, where c is the number of categories.

Self-explanation rationalization. The standard rationaliza-
tion framework RNP consists of a generator fg(-) and a
predictor fp(:), where the generator aims to select the most
informative pieces from the input X. For each (X,Y) € D,
the generator first gets a sequence of binary masks M =
[m1,ma, ...,mz] € {0,1}. Then, it forms the rationale Z by
the element-wise product of X and the binary mask M:

Z=M®oX = [myx1, moxa, ..., mExy]. (1)

Subsequently, the informativeness of the rationale 7z gen-
erated by fc(-) is measured by the negative cross entropy
—H(Y,Y;), where Y; is the output of fp() with the input
being Z. Consequently, the generator and the predictor are
usually optimized cooperatively:

min WYY | fo(X).s8Y = fplfe(X). @

Here, we denote the rationale Z generated by fq(X), ie.,
Z = fa(X). Ideally, the rationale Z by the model should
consist of meaningful rationales with best plausibility, which
we denote best rationale as Z (named golden rational.
Sparsity and continuity constraints. To make the rationales
generated by fo(-) human-intelligible, RNP methods usu-
ally constrain the rationales by compact and coherent reg-
ularization terms. Thus we also adopt the same constraints
used in most research:

M
Q(M)=A1'|l||1—8’+)\22mt—mt_1 (3)
t

where [ denotes the number of tokens in the input. The
first term encourages that the percentage of the tokens
being selected as rationales is close to a pre-defined level
s. The second term encourages the rationales to be coherent.
Finally, the overall objective learned is defined as

minl = min HY,Y) +Q(M),s.t.Y = fp(fa(X)). 4)

Note that the golden rationale called refers only to the rationale
under the assumed ideal conditions, the actual task is unsupervised
rationalization during model training [17], [51]].
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Fig. 3: The coordination mechanism in RNP framework.

4 REVISITING COOPERATIVE RATIONALIZATION

In this section, we first present the knowledge of prelimi-
naries (Sect. to illustrate the coordination mechanism of
the RNP models (Sect. £.2). Then, we analyze relationships
and the underlying problem between two players from a
game-theoretic perspective (Sect. [4.3).

4.1 Preliminaries

To intuitively illustrate the game-theoretic dynamics of RNP
models, we first define the rationale optimization process,
following prior work. We model the training process of
rationale as a Markov decision process M = {S, A, P, R}
from the generator perspective [14], where S = {s'} represents
set of states abstracting the process of optimizing rationale
during training, and A = {a'} indicate the set of actions
that update a rationale to the one state. In particular, the
transition dynamics P(s'*![s?, a’™!) specify how the state
51 is updated from the prior state s’ by taking action a’**.
Besides, R(s?,a’*!) quantifies the reward obtained after
taking action a’™! based on the prior state s’. Therefore,
cooperative training for rationale can be depicted as the
sequence process (s°,al,r! st ... a® r5 &), where the
state s' at timestep ¢ can be formulated by s = Z; in
the t-th update. However, previous work [14], [27] neglects
the involvement of the predictor. To this end, we introduce
the following definitions, which enable us to derive game-
theoretic policies of both the generator and the predictor
during the game.

Definition 1 (Two-Agent Markov Games for Rationaliza-
tion). Let M be a markov game process with two agents. It can
be defined as a 7-tuple < N, S, A, P, po,~v, R > of states S,
actions A, transition probability function P (st | st a), the
initial state distribution po, a discount factor ~y, and the joint
reward function R, where N = {1,2}.

Definition 2 (Game-theoretic Policy for Rationalization). A
game-theoretic policy w(a | s')is a probability distribution defined
asw: S x A [0,1] indicating the probability of choosing an
action given the state s at timestep t. In this paper, we follow
previous work [14]], [27] and target on generate-predict strategies
to learn a conditional policy w(a | s*), which indicates a policy
for the generation or prediction of a candidate rationale.



4.2 Game-theoretic Mechanism for Rationalization

As shown in Figl3} a standard RNP game consists of a
generator f, a predictor fp and an environment E. The fg
produces a rationale and feeds this action back to the envi-
ronment. Meanwhile, fp receives a rationale and performs a
fitting, guiding fg's policy update. Furthermore, E provides
the corresponding observations and rewards based on the
actions of f¢, respectively. However, it lacks a direct reward
for fp since model faithfulness is a key concern. fp can only
receive those rationales from fq [20], [27]], [29]]. This leads to
a key characteristic: the quality of rationales generated by the
fa relies on the fp’s supervision; and whatever the fq transmits,
the fp receives. Therefore, we can derive a proposition for
the nature of rationalization as follows,

Proposition 1 (Dependence and Non-discriminatory). Given
an RNP model, which consists of a generator fq and a predictor
fp. Let X, Y and Z be the input data, label and rationale, where
Z; and Z i are two candidate rationales. Then we have

o Dependence (for Generator): ming, H(Y, Y),stY =
fp(2);Z = fa(X), which means learnable parameter O
depends on the fp’s supervised loss.

o Non-discriminatory (for Predictor): Y = fp(Z;) and Z; =
Z, which is satisfied for fp; however, Yy = fp(Zj) and
Zj # Z, which is also satisfied for fp.

This implies that to ensure interpretability (faithfulness), the
rationalization model indirectly compromises the reward
optimization process inherent in the game. We further in-
vestigate this mechanism by providing insights from both
probabilistic and suboptimality perspectives.

Ideally, the rationale candidate generated by the gener-
ator at time ¢ should be the most informative text segment,
while simultaneously constrained by Equation[3] if and only
if there is exactly one, i.e., the gold rationale (we denote
that Z.). In this context, the generator’s policy network
produces an action profile based on its distribution, thereby
obtaining a candidate rationale Z; as the current state s;.
Considering probabilistic events, the goal is to learn a high-
quality of rationale Z, from [ masked tokens. The total
number of possible events in the sample space is 2!, while
the probability of the model learning Z_ is only o. Therefore,
there is a low probability of identifying a high-quality rationale
in an unsupervised setting. On the other hand, Z. at time
t contains the higher informative piece, and the failed ra-
tionale Z. (Z.'s complementary set for X), which contains
the lowest informative one. Geperally, for the MMI loss, we
have Lyar(Ze) << Laa1(Zc) [28]. When the generator
samples a rationale candidate Z;, the loss can be expressed
as

Larae1(Zs) = Aoararr(Ze) + (1= N Lararr(Ze),  (5)

where A = d(Z,, Z.) represents the distance between the
generated candidate rationale Z; and the gold rationale Z,
[20]. Based on the above, we derive the following lemma.

Lemma 1. Let Lyspr(Z,) and LMMI( ) represent the MMI
loss corresponding to the gold rationale and the failed rationale,
respectively. Then, existing at least one suboptimal state Z; such
that,

Lam1(Ze) < Lvar(Ze) < Lnr(Ze). (6)
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When A\ = 1 holds, Lasar(Z:) = Lyar(Ze) that is rela-
tively small; when A = 0 holds, Laar(Z:) = Lyumi(Ze)
that is relatively large; and when 0 < A < 1 holds, the loss
of Z; falls between the two.

In summary, within the game-theoretic framework for
rationalization, unsupervised optimization rarely leads di-
rectly to a high-quality rationale. Once a low-quality rationale
is selected, the model is likely to converge to a suboptimal state.

4.3 Game-theoretic Problem for Rationalization

Then, what leads to such a sub-optimal state? To analyze
the cooperative correlation between the generator fz and
the predictor fp, we use the actor-critic-based process [52]-
[54] to present rationale generation and optimization. Here,
we denote the fg as an actor and the fp as a critic.

State-action value and state value learning. The actor
fa and the critic fp collaboratively optimize the rationale
generation policy, where fg is responsible for generating
rationale candidates (generation policy), and fp is respon-
sible for estimating the policy and guiding the optimization
of the policy. Formally, the state-action value function () and
the state value function V' at time step ¢ can be expressed as:

Qﬂ'(st7a) _ Vﬂ(st+1)’

VT (Sf> = Rt + H(}/St ) }A/st)7 (7)

where (s, a) measures the expected return when taking
action a in state s under policy m; V(s) measures the
expected return when following policy 7 from state s. In
rationalization, the optimization of the actor Q(s,a) and
the critic V'(s) are mutually dependent. Specifically, Q(s, a)
is influenced by V(s) in the next time step, while V(s) is
affected by immediate reward R’ and supervised label loss
H. Here, R" is the sparsity and continuity constraints (Eq@;
‘H represent the calculated loss by the groundtruth label Yi:
and prediction Yy at timestep .

Policy update and estimation. Given a policy 7 at timestep
t, we can formalize the policy update for actor fo by
computing an advantage function [55] in rationalization.

VoJ(mg) = Esmdr amn [Vologmg(als)A™ (s, a)],

8
— Exodr gon [Vo log mo(Z]X)AT(X, 2)], O

where d™(s) represents the state distribution under pol-
icy m, and Vg denotes the direction of gradient update;
A™ (st a) = Q™(s',a) — V™ (s') indicates the advantage of
the action a compared to the current return of the state s
at timestep ¢. In rationalization, the state-action function
Q7 (s', a) is estimated by the state-value function V7 (s'*1)
at the next time step, where

Vix (570 = QM) + H(Yaern, Varn), Ve = f(s).
)
Coordinated Game-theoretic Problem: The actor who no
longer tends to explore new strategies leads to a subop-
timal equilibrium. To intuitively illustrate the coordinated
problem between two players, we first reveal a phenomenon
about empirical bias. As shown in Table [I} regardless of
whether the given rationale mode 7 is collapsed, once the
critic function V7™ (s) introduces an erroneous bias in its
estimation, it will lead to the advantage function A™(s,a)
guiding the actor Q™ (s, a) towards a near-zero. Moreover,

st+1 =
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Fig. 4: The overview architecture of PORAT, where X, Z, Y,Y represent the input text, rationale, prediction and the
groundtruth label, respectively. Here, we provide policy intervention at (¢ + 1)-th timestep, which is a progressive policy
optimization to help the whole model escape a suboptimal state.

TABLE 1: A toy example payoff (negative entropy) table
of the optimization in accordance game, where Coll. rati.
and Rati. rati. represent collapsed rationales and rational
rationales, respectively; Real. loss indicates Lsasr in Eqﬁ

Rati. moder Real. loss  V(s) e(sh)  Q(st,a) A(sta)
Rati. rati. 1.0 10000.0  -9999.0 9999.4 -0.6~=0
Coll. rati.(1) 8500.0 1.0 8499.0 1.3 0.3=0
Coll. rati.(2) 9000.0 1.0 8999.0 11 0.1=0
Coll. rati.(3) 10000.0 1.0 9999.0 0.9 -0.1=0

Q™ (s,a) learns this error €(s) introduced by V™ (s). With
Proposition [T, we have that the actor fg relies solely on the
critic fp’s estimation. Errors in the critic’s estimation will
prevent the policy from converging to the optimal solution.
Formally, we can express error €(s) at timestep ¢ by

V7(s) = V*(s) — e(s),

where V*(s) is the optimal state value, and €(s) represents
the estimation error of the critic fp. Therefore, an incorrect
advantage function is generated under a given policy,

AT(s,a) = Q"(s,a) = V7™(s) = Q"(s,a) = (V7(s) — €(s)),
=Q"(s,a) = V*(s) +(s).
1)

If €(s) is too large or consistently negative at timestep ¢,
then A™ (s, a) may become excessively small, preventing the
actor fg from exploring new strategies. Therefore, we can
establish the following theorem.

Theorem 1. Given an RNP model with fg and fp. Let €(s?)
be the estimation error of the fp for a candidate rationale 7,
at timestep t. If exist e(s') # 0, then the fg no longer tends
to explore new strategies to uncover more informative rationale.
That is to say, the policy of fc 7 satisfies that

Ir £ 7%, V(s a),A"(s"a) =0
= VgJ(m) = Est o [Vologm(als")A™(s"

(10)

,a)] =0. (12)

Theorem [T|suggests that regardless of the policy profile of fc, if
the estimation of fp is biased, the RNP model will no longer tends
to explore new strategies, which leads to a continual degeneration.

5 METHODOLOGY AND THEORETICAL ANALYSIS

To address the above problem, we propose PORAT (FigH),
a game-theoretic policy optimization for self-explanation
rationalization, including the proposed method (Sect.
and theoretical insights (Sect.[5.2).

5.1 The Proposed Method

As shown in Equation intuitively, if we introduce a
regularization penalty term, the error of the critic can be
alleviated. Recent work [15], [21], [27], [33], has explored
this through calibrating or penalizing the predictor. How-
ever, the penalty factor is difficult to control, which could
lead to longer optimization paths or introduce extra local
optima [28]. When the model converges to local optima,
these approaches also encounter a bottleneck.

Diverging from previous research, we aim to develop
a method to help the model cope with such continual
degeneration so that, regardless of the strategy chosen by
the model, gradient-based descent can guide it out of local
optima. We assume that at timestep ¢, the RNP model is in
a suboptimal state. According to Theorem [1} we can derive
that the fg’s policy gradient is nearly zero,

VoJ(m) = Egt o [Vglogm(als')A™ (s',a)] =0, (13)
which means that the fg no longer explores new actions,
falling into a continual degeneration. Furthermore, we have

A7(st,a) = Q(s", a) —

V*(s') +e(sh) =0.  (14)



If we can ensure that A™ (s a) # 0, fg will be able to
escape the suboptimal equilibrium at time ¢ + m (m > 0).
Formally, this can be expressed as:

AT(s" 1 a) = Q7 (s a) = V(") £ 0. (15)
We first need to confirm whether there is a more optimal
policy selection. Here, we establish the following lemma.

Lemma 2. Let S = {X1,..., X} be the set of all candidate
rationales for a given input X, and let +C' and —C suggest a best
rationale and a suboptimal one. Suppose fq satisfies a suboptimal
state st at timestep t, there exists at least one state induced by the
corresponding policy profile (a|s'™1) that enables fg to escape
the st, that is,

Vst ~ d™ € S, VoJ(n) =0 = In(als'™), 5.t.VeJ (1) # 0,

(16)
and 7(a|s = {nGc x 7o} and {xC. x 7} are two
solutions for the policies of fo and fp.

t+1)

Lemma ] means that: there exists a strategy 7,1 that
enables the model to escape the suboptimal state s’, and
the policy 711 is from 7i(i € {fa, fr},j € {+C,=C}).
However, according to the Proposition |1} we have the non-
discriminability for predictor, which means if f; = R, then
R= fp.

Parameter Freezing as Intervention. To this end, we dis-
entangle the game between the generator and the predictor
from the policy optimization perspective, as shown in Fig[4]
Specifically, we first freeze the generator while keeping
the predictor active, which allows the generator to block
the predictor’s suboptimal feedback and generate diverse
candidate rationales as optional strategies. Formally, let
V™ (st*1) = 0, we can rewrite the Equation as

AW(St+1,a) — Qw(st+1,a) _ Vﬂ'(stJrl) — Qw(st+1’a) # 0

17)
Since the model is in a suboptimal state at timestep ¢,
Equation [17|is equivalent to the generator selecting subop-
timal rationale at time ¢ + 1, while the predictor does not
further fit it. In addition, we have A™ (st‘H, a) # 0, allowing
the generator to continue exploring new actions. However,
by continuously optimizing Equation |17} the error induced
by the predictor’s estimation will be learned by the new
Q™ (s'™1, a). Therefore, we further freeze the predictor to
mitigate the impact of errors arising from the suboptimal
state. This allows the predictor to block the continuously
degenerating parameter updates. According to Equation
we have Q™ (s, a) = V™ (s'T1), so,

A" (s a) = Q7 (st a) — VT (sh) = VT (st — VT (sh).
(18)
Intuitively, if V™ (stT1) — V™ (s) = 0, then fp will overfit
the state s'. Therefore, to address the problem, we let
V™ (stT1) = 0, and freeze the predictor fp at timestep ¢ + 1
in practice. Finally, following the general setup of RNP, we
simultaneously activate both the fg and the fp, enabling
them to collaborate once again.
Policy Optimization. Based on above, given the input X at
timestep ¢ + 1, the learning objective of the model J(7) can

be represented as
J(m(als™h) = EW e oor Llogma(als™1)[Q (s, a)]}
+EZn oor {logmo(als™ [~V ()]}
B o {log mo(als Q7 (s @) = V(s

(19)
further derivation, we have
J(mg) = min H(Y, fH(fG(X) + QM)
oL+t
+221}I}H(Ya FEH (X)) + Q(M) (20)

+ min K, fETETHXTTY)) + QM)

t+1 pgt+1
99+ 79p+

Iteration and Inference. Equation[20|ensures that the model
can temporarily adjust a state. However, the local minima
explored by multilayer networks are not unique [56], [57]. To
address this issue, we introduce a progressive optimization
process [58] and set the update timestep to N. After N time
steps, we reintroduce the aforementioned policy optimiza-
tion for model iteration. The final optimization process can
be expressed as follows:

T T
L= Y LY.+ > LY)k={1,...n}
i=0,i¢{k*N} ie{k*N}

21
where L(Y,Y) = ming, o, H(Y,Y) + Q(M), Lo(Y,Y) =
J(mk*N). During the inference phase, following the general
self-explanation setup [12], [14], [20], the fp only uses the
rationale generated by the fg for model prediction.
Algorithm. To help readers better understand the process,
we detail the main steps for the training and inference phase
in Algorithm [1} in which the input is a dataset D, and the
output is a model ¢} capable of providing both predictions
7; and rationales Z; for a data sample ;.

5.2 Theoretical Analysis

Theorem 2. Given an RNP model with two players (i.e., fq and
[p) and a suboptimal state s* at timestep t, where s' indicates an
collapsed rationale candidate Z, € X from fq at time t. Suppose
fa satisfies the following condition,

VoJ(m) = E,q [Vologm(als')A™(s',a)] =0, (23)

then, we have that after m time steps, the fusion and optimization
of additional policy actions can be such that

A”(st"’m,a) — QW(St—Hn, a) _ VTr(St-‘rm) # 0. (24)

Proof. We first denote a suboptimal state as s’. According to
Theorem |1} we can obtain

VoJ(m) = E,q [Vglogm(als')A™(s',a)] =0, (25)

which means A™(s’,a) = 0, the generator fc no longer
tends to explore new strategies. According to Theorem 1, we
define the gain change function of both players as ¢; o, (1) =
max{0, J;(a;, 7—;) — J;(7)} where i indicates the i-th player.
When ¢; 4, (7) > 0,

max{0, J;(a;, 7—;) — Ji(m)} > 0,

Jias, m—;) > Ji(m), (26)



Algorithm 1 PORAT Algorithm

Input: A dataset D, including Dyyain and Dies
Output: A self-explanation model 0%
// Training Phase
while not converged do
for z; € Diyain, in epoch do
Compute the output of fg and fp:

AU N

(22)

7: Minimize H(y;, ¥:)-
8: Update 67, 0. through gradient decent.

)
907 0108 < 0
10: // Game-theoretic Policy Intervention
11: Execute Eq.(17): freezing 9;, update 9;.
12: Execute Eq.(18): freezing 0, update 0.

13: Update 0., update 6.

14:  end for

15: end while

16: // Inference Phase

17: for M IS Diest do

18:  Compute the predicting label ; and generated expla-
nation Z; using Eq.(22) by substituting the parameters
03 and 67.

19: end for

20: Output: 9} =0 Ues; (z;, 25,7;), V2 € Diegt

we have A™(s',a) # 0. However, according to Theorem
the joint action candidate of fi and fp under the RNP
game cannot find a better joint policy that improves the
payoff of the RNP model. Therefore, we need to introduce
additional policies to enable the model to find the global
optimum s*, but finding the global optimum directly is
difficult [59]. According to Lemma [2} we can identify at
least two intermediate policy points that guide the model
to escape the suboptimal state.

Therefore, if we can integrate these two policy profiles,
we will be able to guide the advantage function such that
A™(s',a) # 0. Furthermore, with Equation 7} we have

AT (s ) = VT (st — VT (s, (27)

This indicates that we can learn the aforementioned inter-
mediate policy points in the RNP game by controlling the
value function V™ (s), such that,

AT(s"a) = QT (s a) — V(") £ 0. (28)

where m indicates the learning period. The proof of Theo-
rem [2| is finished, which suggests that we can let the RNP
models learn policy optimization to solve the suboptimal
state for self-explanation rationalization.

6 EXPERIMENTS
In this section, we evaluate our method PORAT in various
settings to demonstrate its effectiveness.

6.1 Experimental Setup

Datasets. We compare PORAT using BeerAdvocate [60],
BeerAdvocate* [12] and HotelReview [61], which are three
multi-aspect sentiment classification benchmarks widely
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TABLE 2: Statistics of datasets where Pos and Neg denote
the number of positive and negative examples in each set.

Train Dev Annotation

Datasets Pos Neg Pos Neg Pos Neg

Benchmarks

Appearance 202385 12897 28488 1318 923 13
BeerAdvocate |60 Aroma 172299 30564 24494 3396 848 29
Palate 176038 27639 24837 3203 785 20
Appearance® 16891 16891 6628 2103 923 13
BeerAdvocate* [12]  Aroma* 15169 15169 6579 2218 848 29
Palate* 13652 13652 6740 2000 785 20
Location 7236 7236 906 906 104 96
HotelReview [61] Service 50742 50742 6344 6344 101 99
Cleanliness 75049 75049 9382 9382 99 101

used in rationalization. Note that each of them contains
three distinct aspects, which are trained independently in
our experiments. Consequently, these three benchmarks can
be considered as nine distinct datasets to some extent.
Following previous research [14], [20], [33], we obtain Beer-
Advocate [60], BeerAdvocate* [12], and HotelReview [61]
datasets, which are all publicly available. As shown in
Table |2, the specific splitting details of the nine datasets
are presented. In particular, BeerAdvocate is a correlated
dataset on beer reviews that can be regarded as addressing
the spurious correlation problem, while BeerAdvocate* is
a dataset decorrelated by Lei et al. [12] that focuses on
the degeneration problem. For HotelReview, it is another
benchmark also widely used in rationalization. In synthetic
settings, we use the same experiment setup as Yu et al. [27],
Liu et al. [20] and Wu et al. [62] did.

Baselines. To validate the effectiveness of PORAT in a
rationalization framework, we compare with seven latest
methods for BeerAdvocate, including one standard rational-
ization method: RNP [12]; two calibration-based methods:
DARE [41], FR [21]; two causal-based methods: INVRAT
[30], MCD [32]; and two recent guidance-based methods:
AGR [14] and G-RAT [16]. For BeerAdvocate* and HotelRe-
view benchmarks, we compare with one standard method
and five recent models, including RNP [12], DMR [33], A2R
[27], FR [21], DR [20] and G-RAT [16].

Evaluation Metrics. Following previous methods [27], [29],
[31], [33], we focus on the quality of rationales and adopt
Precision (P), Recall (R), and Fl-score (F1) as metrics. To
fairly compare, we perform the best results on the valida-
tion set before testing on the test set. Here, Acc denotes
the accuracy of the prediction task based on the selected
rationales, while S represents the average ratio of selected
tokens to the total length of the original text.

Implementations. We utilize one-layer 200-dimension bi-
directional gated recurrent units (GRUs) [63] followed by
one linear layer for each of the players, and the word
embedding is 100-dimension Glove [64]. We use Adam [65]
as the optimizer. The reparameterization trick for binarized
sampling is Gumbel-softmax, which is also the same as
existing research [20], [32], [38]. To verify the effectiveness
of our PORAT by intervening policy, we perform ablation
studies by intervening in the policies of both the prefix gen-
erator and the prefix predictor. To minimize the influence
of other factors, we conduct the ablation experiments using
the same hyperparameters as the baseline. In experiments,
we use two different architectures (DR [20] and AGR [14])
as the backbone models to validate PORAT on different
benchmarks, respectively. All our experiments are run on
NVIDIA RTX 6000 Ada GPUs with 48GB.
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TABLE 3: Comparison with previous methods on BeerAdvocate [60] benchmark. S is a hyperparameter, which encourages
that the percentage of the tokens being generated as rationales is close to a pre-defined level. The bold numbers are the
best results for our proposed method. The same applies below.

BeerAdvocate-Appearance

BeerAdvocate-Aroma

BeerAdvocate-Plate

Methods

S Acc P R FI S Acc P R FI S Acc P R F1
RNP 10.0 - 324 186 236 10.0 - 448 324 376 100 - 246 235 240
INVRAT 10.0 - 426 315 362 100 - 412 391 401 10.0 - 349 456 395
DARE 10.0 - 639 428 513 100 - 505 448 475 10.0 - 331 458 384
FR 111 758 704 420 526 97 877 681 422 521 11.7 879 437 409 423
MCD 95 815 942 484 639 99 875 846 539 658 94 873 609 471 531
AGR 124 813 804 554 656 123 878 684 541 604 124 862 544 559 551
G-RAT 105 824 818 463 591 105 852 820 554 662 95 892 562 431 488
PORAT (Ours) 139 839 791 59.6 68.0 115 875 802 590 680 116 88.0 654 611 63.2
RNP 20.0 - 394 449 420 200 - 375 519 435 200 - 216 389 278
INVRAT 20.0 - 589 672 628 200 - 293 521 375 200 - 240 552 335
DARE 20.0 - 63.7 718 67.5 200 - 41.0 615 493 200 - 244 549 338
FR 209 846 749 849 796 195 893 587 733 652 202 882 366 594 453
MCD 200 8.5 793 85 823 193 834 658 814 728 196 877 413 650 505
AGR 197 852 833 884 8.8 196 892 657 827 732 180 870 452 656 535
G-RAT 197 850 802 82 826 202 881 605 782 682 203 861 384 627 476
PORAT (Ours) 193 854 846 881 863 192 894 694 83 765 193 867 506 786 61.6
RNP 30.0 - 242 412 305 300 - 271 557 364 30.0 - 154 422 226
INVRAT 30.0 - 415 748 534 300 - 228 651 338 300 - 209 716 323
DARE 30.0 - 455 806 581 300 - 327 682 442 300 - 19.7 705 308
FR 296 864 506 814 623 308 881 374 750 499 301 870 245 588 346
MCD 297 867 596 956 734 296 902 461 875 604 294 870 305 724 429
AGR 280 874 616 933 742 306 897 435 853 576 304 883 321 785 456
G-RAT 296 872 560 894 689 298 904 424 811 557 297 862 270 644 380
PORAT (Ours) 287 861 619 958 752 283 903 489 887 630 296 893 331 790 46.7
TABLE 4: Comparison with previous methods on BeerAdvocate* [[12] benchmark.
Methods BeerAdvocate*-Appearance* BeerAdvocate*-Aroma* BeerAdvocate*-Plate*
S Acc R F1 S Acc P R F1 S Acc P R F1
RNP 182 833 738 727 732 160 852 641 659 649 130 8.2 601 631 615
DMR 18.2 - 711 702 707 154 - 59.8 589 593 119 - 532 509 520
A2R 184 839 727 723 725 154 863 636 629 632 124 812 574 573 574
FR 184 872 829 826 88 150 886 747 721 734 121 897 678 662 67.0
DR 183 811 824 816 8.0 154 862 777 768 772 125 850 659 660 66.0
G-RAT 18.5 - 848 832 840 155 - 791 743 766 123 - 634 672 652
PORAT (Ours) 181 831 8.2 831 842 156 880 779 782 780 125 840 690 69.0 69.0
TABLE 5: Comparison with previous methods on HotelReview [61]] benchmark.
Methods HotelReview-Location HotelReview-Service HotelReview-Cleanliness
S Acc P R F1 S Acc P R F1 S Acc P R F1
RNP 88 975 462 482 471 110 975 342 329 335 105 960 291 346 316
DMR 10.7 - 475 601 531 116 - 43.0 436 433 103 - 314 364 337
A2R 85 875 431 432 431 114 965 373 372 372 89 945 332 333 333
FR 90 935 555 589 571 115 945 448 447 448 11.0 960 349 434 387
DR 105 935 517 637 571 118 965 450 502 475 103 945 386 451 416
G-RAT 10.1 - 56.1 593 576 121 - 48.8 441 463 119 - 414 373 392
PORAT (Ours) 102 940 534 631 578 132 955 450 518 482 106 935 387 464 422

6.2 Evaluation on Standard Benchmarks

(1) Results on BeerAdvocate benchmark [60]. We first set
the rationale sparsity S to approximately 10%, 20%, and 30%
[29], [31], [32]]. As shown in Table [3, we achieve significant
improvements in F1 scores across various aspects, with an
increase of up to 8.1% in the Palate aspect (s =~ 10%).
The significant improvement shows the superiority of our
proposed game-theoretic policy optimization for PORAT
in solving suboptimal rationalization, which can help RNP
models to explore more optimal policies for games.

(2) Results on BeerAdvocate* benchmark [12]. As shown in
Table [4] the results on BeerAdvocate* are illustrated, which

focuses more on the research problem of decorrelation [20].
We can observe that our proposed method once again
obtains the best performance across all three aspects of the
decorrelated beer dataset consistently.
(3) Results on HotelReview benchmark [61]. Table [
presents the experimental results on the HotelReview. In
this benchmark, we set the rationale sparsity close to the
human-annotated rationales. We can find that our proposed
method also achieves varying degrees of improvement in
the Location, Service and Cleanliness three datasets.

In conclusion, we demonstrate that our proposed
method PORAT outperforms the best existing methods in
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TABLE 6: Experimental results that induces degeneration on synthetic settings. “skewk” means that the predictor is pre-
trained for k epochs.

Aspect  Settin RNP A2R FR DR PORAT (Ours)
P & Acc P R FI Acc P R F1I Acc P R F1I Acc P R F1I Acc P R F1
skewl0 82.6 68.5 63.7 61.5 845 783 70.6 69.2 87.1 739 71.7 72.8 8.0 773 75.7 76,5 86.7 77.0 80.0 78.5
Aroma* skewl5 80.4 54.5 51.6 49.3 81.8 58.1 53.3 51.7 86.7 71.3 68.0 69.6 854 76.1 772 76.6 86.6 77.1 79.2 78.1
skew20 76.8 10.8 14.1 11.0 80.0 51.7 479 463 85.5 723 69.0 70.6 855 773 762 76.8 86.1 77.6 79.6 78.6
skewl0 773 56 74 55 828 50.3 48.0 455 75.8 54.6 61.2 57.7 858 67.7 68.6 682 847 68.3 682 68.3
Palate* skewl5 77.1 12 25 1.3 809 302 299 27.7 81.7 51.0 584 545 839 66.3 66.7 66.5 847 68.0 68.4 68.2
skew20 756 04 14 06 767 04 16 0.6 831 48.0 589 529 85.0 594 62.6 61.0 85.7 66.6 67.6 67.1

TABLE 7: Experimental results that induces spurious correlation on

synthetic settings. Here, following the same setting
[62], we report the results of three random seeds across nine distinct setups where “bias=c” indicates the distinct biases of

spurious correlations to use Spurious-Motif datasets [66].

Suprious-Motif Datasets

Methods bias=0.1 bias=02 _ bias=03 _ bias=04  bias=05 _ bias=06 __ bias=07 _ bias=08  bias=09 Avg
Attention - - - - 18.3413.0 - 182414 - 134413 -
ASAP - - - - 18.849.3 - 18.6+0.7 - 121491 -
Topk Pool - - - - 20.7+5.7 - 212456 - 14.84+1.8 -
SAG Pool - - - - 19.846.2 - 20.1+6.4 - 13.64+1.4 -
DIR 262414 28.042.8 29.84136 28.843.0 302433 2994924 30.8+1.6 287443 24441 3 285496
DIR-DR 26.0+43.1 | 282439 29.844.3 | 292444 2914411 29041.7) 286413 281407l 263116 282425
DIR-PORAT 2721551 29.7+157 313:127 299:3:1 309+;717 308:187 B3L3:1.071 3041357 255+t15 2971107
w/op. 26.240.5 281422 289427 283438 30.3+3.0 30.6+2.7 311420 2774126 20.34+1.7 279424
w/og. 252419 265415 294494 284419 299432 281406 29.042.1 28.6+3.6 252430 278499
found in Appendices). The results of inducing degeneration
T of o are shown in Table[fl We find that PORAT achieves effective
i improvements across different experimental settings in both
’ aspect-based datasets. In particular, for the Palate task,
‘ . . under the condition where the skew predictor is trained for
T ———— 20 epochs, the performance of the previous SOTA model
(a) Appearance (b) Aroma (c) Palate DR, exhibits a degradation trend (68.2 — 66.5 — 61.0). In

842 69.0

H H 72 7
660
) J ) . . .
81 s s
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(h) Service (i) Cleanliness

Fig. 5: Ablation Studies on (a-c) BeerAdvocate [60], (d-f)
BeerAdvocate* [12] and (g-i) HotelReview [61]] Benchmarks.

terms of F1 score across nine datasets from three benchmark
datasets (fifteen experiment settings), while maintaining
competitive accuracy. This highlights that proposed PORAT
method not only offers more accurate explanations than the
existing methods but also exhibits strong generalizability.

6.3 Evaluation on Synthetic Settings

To better show the influence of sub-optimal state equilib-
rium, we further conduct two synthetic experiments.

(1) Degeneration. It is a typical phenomenon of suboptimal
states. To show that even if the predictor overfits to trivial
patterns and falls in a suboptimal equilibrium, PORAT can
still escape, we conduct the same synthetic experiment as Yu
et al. [27] and Liu et al. [20] did (The specifical setting can be

contrast, PORAT maintains stable performance (68.3 — 68.2
— 67.1). Compared to DR, PORAT achieves up to a 6.1%
improvement in mitigating degeneration.

(2) Spurious correlations. We also conduct synthetic exper-
iments to evaluate the effectiveness in addressing spurious
correlations as Wu et al. [62] did (The specifical setting can
be found in Appendices). As shown in Table [/, we can
observe that, compared to the previous SOTA method DR,
PORAT achieves significant improvements in 8 out of 9 ex-
perimental settings. In particular, compared to the backbone
model, PORAT does not exhibit any performance degrada-
tion, whereas DR shows varying degrees of performance
decline in six settings (bias=0.1, 0.3, 0.5, 0.6, 0.7, 0.8). This
further indicates that DR is sensitive to data distributions
with prominent spurious patterns, while PORAT remains
robust under such conditions. Moreover, we can see that
PORAT also demonstrates more stable performance since it
achieves a smaller mean variance.

6.4 Experiment Analysis

(1) Ablation analysis. To further verify the effectiveness of
PORAT, as well as to investigate the impact of the policies
adopted by the predictor and generator players, we remove
the optimized policies on three benchmarks to conduct ex-
periments. For a fair comparison, we do not specifically tune
the hyperparameters and use the same hyperparameters
for both PORAT and the modules to be ablated. As de-
picted in Fig[5| by removing all policies, we observe varying
degrees of declination across multiply aspects in the nine
datasets, which highlights the effectiveness of the proposed



TABLE 8: Results of methods with low sparsity on BeerAdvocate* benchmark.

Beer-Appearance*

Beer-Aroma*

Beer-Plate*

S Acc P R F1 S Acc P R F1 S Acc P R F1
RNP 11.9 - 720 461 562 10.7 - 705 483 573 10.0 - 53.1 428 475
CAR 11.9 - 762 493 599 103 - 50.3 33.3 40.1 10.2 - 56.6 46.2 509
DMR 11.7 - 83.6 528 647 117 - 63.1 476 543 107 - 55.8 48.1 51.7
FR 127 839 776 533 632 108 876 829 579 682 100 845 693 558 61.8
DR 128 838 818 566 669 115 835 650 606 627 112 823 732 586 651
PORAT (Ours) 11.7 842 90.5 573 70.2 11.6 840 843 629 720 108 867 719 624 66.8
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TABLE 9: Experiments on large language model encoder.

Hotel-Location

Hotel-Service Hotel-Cleanliness

Methods A P R FI _Ac P R TFI A< P R _H
In Context Learning (ICL)
Llama-3.2-1B (ICL) 742 5.7 5.7 57 833 5.6 5.6 56 810 6.2 6.2 6.2
Llama-3.2-3B (ICL) 759 7.7 7.9 78 913 100 100 100 918 6.1 6.1 6.1
Llama-3.1-8B (ICL) 959 428 428 428 972 359 360 360 943 235 236 23.6
Supervised Fine-Tuning (SFT)
Llama-3.2-1B (SFT) 56.8 11.0 108 109 576 113 115 114 579 88 8.8 8.8
Llama-3.2-3B (SFT) 952 374 374 374 885 302 303 302 955 175 175 175
Llama-3.1-8B (SFT) 848 340 341 340 905 353 354 354 920 249 250 250
PORAT (Ours) 940 534 631 578 955 45.0 51.8 482 935 38.7 464 42.2
TABLE 10: Experiments on small language model encoder.
Methods s Acglotel—lijocatlorf{ . w(: ) m
MCD-BERT-Tiny 94 850 147 164 155 = o4 = .
MCD-BERT-Tiny-OOD ~ 10.1 8901 85 104 94 1T 1R =
MCD-BERT-Tiny-PORAT 98 8651 162 189 1741
Methods —oeenvice, (a) Appearance*  (b) Aroma* (c) Palate*
MCDBERTTiny-00D 106 9401 121 113 117 Fig. 6: Low sparsity ablation results
MCD-BERT-Tiny-PORAT 106 9451 18.0 182 18171
Methods . AEICOtel'CII‘fanhneﬁs " predictive accuracy, generating self-explainable rationales
MCD-BERT-Tiny 104 895 78 206 191 remains a challenge for language models, and our method
MCD-BERT-Tiny-OOD 100 97.01 7.8 8.7 83 outperforms language models with fewer than 8 billion pa-
MCDBERT-Tiny-PORAT 96 9101 204 218 2117 rameters. Meanwhile, as shown in Table[I0} we also employ

framework. In addition, additional ablation studies on the
spurious correlations synthetic experiments (Table [7) also
highlight the importance of both the generator (g.) and the
predictor (p.) policy interventions in PORAT.

(2) Low-sparsity analysis. The low-sparsity experiments
demonstrate the RNP model’s robustness [20]. Using the
same settings [20], [33]], [67], we also conduct an experiment
where the sparsity of selected rationales is extremely low.
The results are presented in Table || We can observe that
PORAT also effectively improves the models’ robustness
compared to previous models. Besides, we also conduct the
ablation results on low-sparsity experiments and observe
the impact across multiple aspects (Figlf). This consistently
demonstrates the improvement of PORAT in terms of ro-
bustness, which indicates the diversity advantage.

(3) Analysis with pretrained language model encoder.
Then, how do pretrained language models perform in terms
of self-explanation? So, we further compare with language
models encoders, including fine-tuning (FT)-based, prompt-
based and supervised FT (SFT)-based methods, with <1B,
3B, and 8B parameters. As shown in Table [J] we observe
that although various types of models can achieve high

language models as backbones to show the competitiveness
of our PORAT. Consistent with most research [10], [11],
[32], here we also use the BERT encoder as a backbone for
a fair comparison. We observe that our proposed method
PORALt not only improves predictive performance but also
substantially enhances the self-explanation performance.

6.5 Optimization and Parameter Analysis

(1) Analysis of different prefix-player policy optimization.
We also investigate the results of intervening with different
prefix player policies. We discover that the impact of policy
optimization for different players varies across different
datasets. As shown in FigP} in the BeerAdvocate bench-
mark, intervening in the prefix predictor of the baseline
model effectively helps the model escape the suboptimal
state, leading to a significant improvement in model per-
formance (from 85.8/73.2/53.5 to 86.1/75.1/58.0). However,
this is not the case on the other two benchmarks, which may
be related to the inherent difficulty of the datasets and their
distribution. The experiments with the out-of-distribution
(OOD) method in Table [10| further validate that while the
distribution improves predictive performance, it also im-
pacts the self-explanatory capability. Therefore, optimizing



12

TABLE 11: Examples of generated rationales from DR and PORAT. Human-annotated rationales are underlined. Rationales

selected by the generator are highlighted in red, where ”a”, ”s” and

by annotators from appearance, aroma and palate aspects.

Iltll

in the input text indicate the rationales annotated

DR

PORAT

Aspect: Beer-Aroma

Label: Positive, Prediction: Positive

Input Text: ... a:pours a clear golden color with a huge 4-finger
white head that lasts forever s : spicy phenolic aroma with hints of
hops . t : smooth heavy malt brew with sweet spices and alcohol
in the background . herbal hops and tad fruity finish . m : medium
body and high carbonation . o : very sweet beer - unique - but
nothing i would grab again .

Aspect: Beer-Aroma

Label: Positive, Prediction: Positive

Input Text: .. a:pours a clear golden color with a huge 4-finger
white head that lasts forever s : spicy phenolic aroma with hints of
hops . t : smooth heavy malt brew with sweet spices and alcohol
in the background . herbal hops and tad fruity finish . m : medium
body and high carbonation . o : very sweet beer - unique - but
nothing i would grab again .

Aspect: Beer-Aroma

Label: Positive, Prediction: Positive

Input Text: ... the pour a clear deep amber , the head is mediorce
, the lace spare , the color off white . nose is malt , citrus tones ,
light hints of bubble gum . front is malt, sweet , the top is medium
, the finish is acerbic , dry , the 10 % abv , is felt in the "tummy ’
and the long lasting alcohol bitter aftertaste . works for me !, as
i like my beers pungent and brawny . ranks # 504 on my current
1000 beer master list .

Aspect: Beer-Aroma

Label: Positive, Prediction: Positive

Input Text: ... the pour a clear deep amber , the head is mediorce
, the lace spare , the color off white . nose is malt , citrus tones ,
light hints of bubble gum . front is malt , sweet , the top is medium
, the finish is acerbic , dry , the 10 % abv , is felt in the "tummy ’
and the long lasting alcohol bitter aftertaste . works for me !, as
i like my beers pungent and brawny . ranks # 504 on my current
1000 beer master list .

Aspect: Beer-Aroma

Label: Positive, Prediction: Positive

Input Text: reviewed halloween evening , 2009 . poured a
very nice deep copper color with fantastic head and lacing . great
scent , very deep bitter aromas , a lot of citrus tones and a slight

Aspect: Beer-Aroma

Label: Positive, Prediction: Positive

Input Text: reviewed halloween evening , 2009 . poured a
very nice deep copper color with fantastic head and lacing . great
scent , very deep bitter aromas , a lot of citrus tones and a slight

pine tinge . great taste , a nice deep maltiness with a fantastic
bitter ending ; very nice american hops ( citrus ) with a nice earthy
undertone to it . goes down very nice , with just the slightest hop
roughness . great beer .

pine tinge . great taste , a nice deep maltiness with a fantastic
bitter ending ; very nice american hops ( citrus ) with a nice earthy
undertone to it . goes down very nice , with just the slightest hop
roughness . great beer .

the strategy for different pattern distributions helps improve
performance in rationalization.

(2) Analysis of time interval for optimization. To gain
an insight into the effects of selecting different interval of
timestep IV, we also conduct the analysis experiments vary-
ing N from 1 to 10. As Fig[7[a-b) show, we can observe that
the impact of policy intervention time intervals is relatively
minor. In contrast, applying policy interventions solely to
either the generator or the predictor results in poorer model
stability, whereas their joint presence leads to more stable
performance. This further strengthens the effectiveness of
our proposed method and validates the feasibility of the
theoretical framework. In addition, we also provide analysis
with the longer interval from 20 to 200 in Fig[7(c-d), which
once again validates the previous conclusion.

6.6 Visualization Analysis

In Table we also visualize the rationales generated us-
ing recent model DR and our PORAT intuitively. We find
that although both models provide correct predictions, DR
instead correlates with other aspects. This indicates that DR
has already been able to focus on explanations in the Aroma
aspect. However, it fails to simultaneously address spuri-
ous correlations or other forms of suboptimal rationales
well, while PORAT demonstrates superior capability. One
possible reason is that DR only focuses on degeneration to
employ a smaller lipschitz constant to capture semantically
closer rationale candidates [20]]. But this still limits its scala-
bility in addressing other pattern problems.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose PORAT, a policy optimization-
based data-centric self-explanation rationalization method.

Fl-Score
Fl-Score

2

H

Attt

,,,,,,,,,,,

(b) Palate*-10

T 7 &
Time Interval

(a) Aroma*-10

Fl-Score
Fl-Score

Time Interval

(d) Palate*-200

% s 7 8 %
Time Interval

(c) Aroma*-200

Fig. 7: Analysis of policy optimization timestep.

We first systematically revisit the cooperative game mech-
anism of rationalization in a novel game-theoretic perspec-
tive, and reveal the game-theoretic problem between two
players in rationalization. Then we theoretically analyze the
causes of the game-theoretic problem between two players
in rationalization and also prove the feasibility of the pro-
posed method. Extensive experiments on nine widely used
real-world datasets and two synthetic settings show that
our proposed method significantly improves performance
and outperforms several recently published SOTA methods.
Furthermore, experiments on ablation studies, low-sparsity
analysis, and language models analysis demonstrate the
effectiveness and diversity of PORAT. Moving forward, we
plan to explore the feasibility of rationalizing predictions for



large generative language models such as self-explanation
foundation model, and further study other way to address
the collapsed self-rationales in the field of rationalization.
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