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Abstract

Large language models, employed as multiple
agents that interact and collaborate with each
other, have excelled at solving complex tasks.
The agents are programmed with prompts that de-
clare their functionality, along with the topologies
that orchestrate interactions across agents. De-
signing prompts and topologies for multi-agent
systems (MAS) is inherently complex. To auto-
mate the entire design process, we first conduct
an in-depth analysis of the design space aiming
to understand the factors behind building effec-
tive MAS. We reveal that prompts together with
topologies play critical roles in enabling more ef-
fective MAS design. Based on the insights, we
propose Multi-Agent System Search (MASS), a
MAS optimization framework that efficiently ex-
ploits the complex MAS design space by interleav-
ing its optimization stages, from local to global,
from prompts to topologies, over three stages: 1)
block-level (local) prompt optimization; 2) work-
flow topology optimization; 3) workflow-level
(global) prompt optimization, where each stage is
conditioned on the iteratively optimized prompt-
s/topologies from former stages. We show that
MASS-optimized multi-agent systems outperform
a spectrum of existing alternatives by a substantial
margin. Based on the MASS-found systems, we
finally propose design principles behind building
effective multi-agent systems.

1. Introduction
Large language models (LLMs) have showcased extraor-
dinary capabilities in understanding, reasoning, and gen-
erating coherent responses based on user prompts, revolu-
tionizing a wide range of applications (Ouyang et al., 2022;
Kojima et al., 2022). LLM-based agents enhance usability
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Figure 1. Proposed Multi-Agent System Search (MASS) frame-
work discovers effective multi-agent system designs (with both
optimized topology and optimized prompts, right) via interleaved
prompt optimization and topology optimization in a customizable
multi-agent design space (key components illustrated on the left).

by autonomously handling complex tasks across diverse do-
mains, including code generation and debugging (Jimenez
et al., 2023), retrieval-augmented generation (Singh et al.,
2025; Wang et al., 2024a), data analysis (Hu et al., 2024b;
Guo et al., 2024), and interactive decision-making (Su et al.,
2025; Li et al., 2025). These agents are typically pro-
grammed with prompts that reinforce them to interact with
the environment, utilizing available tools, and approach their
objectives over multiple turns (Yao et al., 2023). Beyond
individual agents, LLMs can be orchestrated within com-
plex topologies that coordinate multiple agents toward a
shared objective. This type of multi-agent system (MAS)
typically outperforms its single-agent counterpart by involv-
ing more diverse agentic perspectives or role profiles, such
as agents as verifiers (Shinn et al., 2024) and multi-agent
debate (Wang et al., 2024b; Qian et al., 2024).

However, designing effective MAS for new domains often
proves to be challenging. First, the single agent might suffer
from prompt sensitivity (Verma et al., 2024), where simple
modifications in the prompt can already exert significant but
unexpected degradation of performance (Zhou et al., 2024b;
Liu et al., 2024a). In MAS, when sensitive agents are cas-
caded, the compounding effect due to prompt sensitivity
may be amplified. Together with the prompt design, crafting
an effective topology might demand a substantial amount
of manual experimentation, based on trial and error. The
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problem complexity is exacerbated by the overall combina-
torial search space, over not only the unbounded space of
prompt design but also the design decisions of what agent
to integrate into the topology.

Although recent research has explored automating various
aspects of agentic designs, there is still a gap in understand-
ing of what matters most regarding improved MAS perfor-
mance. For example, DSPy (Khattab et al., 2024) automates
the process of designing exemplars for improved prompt pro-
gramming. Li et al. (2024a) proposes to optimize MAS by
scaling up the number of agents in majority voting. ADAS
(Hu et al., 2024a) programs new topologies expressed in
code via an LLM-based meta-agent. AFlow (Zhang et al.,
2024b) searches better topologies using Monte Carlo Tree
Search within a set of predefined operators. However, the in-
terplay between multiple design spaces, including prompts
and topologies, remains unclear.

In this paper, we first conduct in-depth analyses of common
design spaces in MAS, examining the influence of various
aspects such as optimizing the prompts, scaling the number
of agents, and involving different types of topologies. Our
analyses reveal that prompts frequently form an influential
design component that yields strong-performing MAS, and
influential topologies only represent a small fraction of the
full search space. Based on these insights, we aim to distill
the essence of influential MAS components into a pruned
search space, thereby lowering the complexity of the overall
search process. We propose Multi-Agent System Search
(MASS), a novel multi-stage optimization framework that
automates the optimization for MAS over an efficient search
space. MASS integrates a plug-and-play prompt optimizer
and workflow optimizer over a configurable topology space.
It overcomes the complexity of joint optimization on MAS
by interleaving the optimization stages, from local to global,
from prompts to topologies, over three stages: 1) block-
level (local) prompt ‘warm-up’ for each topology block; 2)
workflow topology optimization in a pruned set of topology
space; 3) workflow-level (global) prompt optimization given
the best-found topology.

By optimizing over the identified influential components,
MASS yields optimized MAS that achieves state-of-the-
art performance, outperforming existing manually-crafted
MAS baselines and automatically-generated alternatives,
by a substantial margin, demonstrated across an extensive
selection of tasks, including reasoning, multi-hop under-
standing, and code generation. Based on the strongest MAS
found by MASS, we provide further insights and guide-
lines behind building effective MAS. Overall, our contri-
butions can be summarized as follows: 1) we provide an
in-depth analysis of the design factors that influence the
performance of LLM-based MAS, highlighting the impor-
tance of prompts and identifying the influential topologies;

2) we propose MASS, a novel multi-stage optimizer that
automates the MAS design by interleaving the optimization
of prompts and topologies in an influential search space;
3) MASS shows significant performance improvement on
various evaluation benchmarks, delivering guidelines for
building effective multi-agent systems for the future.

2. Designing Multi-Agent Systems
In this section, we provide a formulation for designing MAS,
followed by analyzing the influence of prompt and topology
designs. We refer to the structural arrangements of agents
(or equivalently, building blocks) as the topology of agents
and define workflowW as the logical sequence across dif-
ferent topologies that builds the MAS. The design of a MAS
can thus be broadly divided into two levels: block-level
design and workflow-level orchestration. At the block level,
we aim to design effective individual agents that best per-
form their intended role with better prompt design. On the
other hand, at the workflow level, the optimization involves
determining the types and quantities of agents to include and
how to arrange them in the most effective way, referred to as
the topology optimization. Formally, given a search space
A that defines all valid configurations a over the blocks (see
Fig. 4), workflow topology optimization can be expressed
as the following optimization problem with an objective
function f(·, ·) on a target input and output set (x, y) ∼ D:

W∗(a) = arg max
a∼A

E(x,y)∼D[f(W(a(x)), y)]. (1)

In the rest of this section, we provide an in-depth analysis
of each component of MAS design.

2.1. Block-level Analysis: Prompt Design for Agents

At the block level, the primary “optimizable component”
that significantly influences downstream performance is the
prompt, which defines the role of the agent (e.g., “You are
an expert in reflecting on errors...”), provides additional in-
structions to shape its behavior (e.g., “You should think step
by step...”) and optionally, contains few-shot demonstrations
(in-context examples) to guide the agent’s responses (Wan
et al., 2024). For instance, a state-of-the-art prompt op-
timizer searches both instructions and few-shot demon-
strations, where demonstrations are bootstrapped from the
model’s own, correct predictions on the validation set based
on a validation metric. Conditioned on the demonstrations,
the prompt optimizer then proposes a few candidates for
the instruction with a dataset summary or various hints to
improve candidate diversity (Opsahl-Ong et al., 2024). The
instructions and demonstrations are then jointly optimized.

Although it is well known that LLMs are sensitive to
prompts (Zhou et al., 2024a; Verma et al., 2024), apply-
ing automatic prompt optimization (APO) techniques to
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Figure 2. Accuracy vs. the total token counts for prompt-optimized
agents per question on MATH by Gemini 1.5 Pro compared to
scaling agents with self-consistency (SC), self-refine (reflect),
and multi-agent debate (debate) only. The error bar indicates
1 standard deviation. We show that by utilizing more compute,
better accuracy can be obtained via more effective prompting.

MAS is rather non-trivial. Unlike single-turn tasks where
APO can be easily performed by treating prompts as opti-
mizable variables and performance over a validation set as
the target. In MAS, APO becomes more complex due to the
interdependence across agents (e.g., the output of one agent
may be the input of another agent in a cascade with ground-
truth responses for intermediate outputs not being available)
and exponentially increasing complexity for combinatorial
optimization with more number of agents n involved; The
reward signals also become more sparse when n increases,
preventing us for implementing APO directly on MAS in
any manageable budget; as such, many prior works (Zhang
et al., 2024f; Xia et al., 2024) in MAS still primarily use
handcrafted prompts instead of including the prompts as
optimizable components in the MAS design.

To systematically understand the influence of prompt de-
sign in MAS, we specifically and quantitatively analyze
the effect of prompt optimization and compare its effective-
ness to other operations common in MAS literature, such
as scaling with more agents but with default prompts. We
conduct APO on a chain-of-thought (Kojima et al., 2022)
agent with both instruction optimization and 1-shot exem-
plar optimization via MIPRO (Opsahl-Ong et al., 2024),
and fairly compare the total inference token cost with self-
consistency (Kojima et al., 2022), self-refine (Madaan et al.,
2024), and multi-agent debate (Du et al., 2024), where the
specifications are provided in App. §B. In Fig. 2, prompting,
which equips agents with more informative instructions and
exemplars, demonstrates significant advantages in its token-
effectiveness over other building blocks. Furthermore, by
applying self-consistency on top of the prompt-optimized
agent, we observe an improved scaling performance on the
token cost, whereas standard approaches in scaling the num-
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Figure 3. The performance of different topologies with Gemini 1.5
Pro compared to the base agent with each topology being optimized
with APO, where Sum. (Summarize) and Exe. (Executor) are task-
specific topologies as illustrated in Fig. 4. We observe that not all
topologies have a positive influence on the MAS design.

ber of agents (e.g. SC, or Reflect) saturate much earlier.
This empirical observation sheds light on the importance
of prompting while providing early evidence for designing
effective MAS – optimize agents locally before scaling their
topology.

2.2. Workflow-level Search Space Design

At the workflow level, the primary focus is on orchestrating
agents to achieve the best performance effectively. As a
relatively new concept specific to MAS, topology optimiza-
tion has recently garnered significant attention (Li et al.,
2024c; Zhang et al., 2024b). However, while much of the
existing research emphasizes search methods—such as dis-
covering the most efficient and effective way to identify the
optimal configuration—there has been less focus on the de-
sign of search spaces, which determines the perimeter and
the scope of any search algorithm. This imbalance draws a
parallel to the historical development of neural architecture
search (NAS) (White et al., 2023). Initially, the field con-
centrated on sophisticated search methods, such as Bayesian
optimization (Kandasamy et al., 2018; Ru et al., 2021) and
differentiable search (Liu et al., 2018). Follow-up works
have highlighted the often-overlooked importance of search
space design, arguing that it can be equally, if not more, crit-
ical (Wan et al., 2022; Zhou et al., 2023). Inspired by this
insight, we hypothesize that manually crafted topologies
might be sub-optimal, and automatic topology optimization
(potentially framed as a rigorous optimization problem) can
play a similarly pivotal role via judiciously designing search
space for MAS. To achieve so, we first define an expressive
search space, similar to prior works, that consists of the
connections between the following building blocks:

• Aggregate: Agents can collaborate in parallel with diversi-
fied predictions, which is then followed by an aggregation
operator that obtains the most consistent prediction. The
aggregate block can be parameterized by Na agents

3
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Figure 4. Illustration of the MASS framework with its search space and the multi-stage optimization. The search space combines both
prompts (Instruction, Demo) and configurable agentic building blocks (Aggregate, Reflect, Debate, Summarize, and
Tool-use). 1) Block-level Prompt Optimization: we conduct block-level prompt optimization for each agentic module individually
(denoted by </>); 2) Workflow Topology Optimization: conditioned on the best prompts found in Stage 1 on each agent block,
MASS samples valid configurations from an influence-weighted design space while fusing the prompts of each building block from Stage
1; 3) Workflow-level Prompt Optimization: conditioned on the best workflow found in the Stage 2, we again conduct workflow-level
prompt optimization on the best-found MAS (topologies visualized for illustration only).

acting in parallel. Majority vote (Li et al., 2024a) and self-
consistency (Chen et al., 2024c) sits within this topology.

• Reflect: Agents can act as verifiers, providing critics and
improvement suggestions based on former predictions. The
feedback is then fed into the predictor or the reflector itself
for an iterative improvement. Similarly, reflect can be
parameterized by Nr that defines the number of rounds for
self-reflection. The self-refine (Madaan et al., 2024) and
Reflexion (Shinn et al., 2024) represent this block.

• Debate: Agents in debate can elicit more truthful predic-
tions than single-agent prediction (Du et al., 2024; Liang
et al., 2024), where each debating agent would collect opin-
ions from all other agents and provides an updated response.
This topology would involve a mixture of agents, and Nd

defines the number of rounds for debating.

• Custom Agents: While the former three forms of agents
represent the vast majority of agent topologies constructed
as multiple parallel, serial, and mixture of agents, more
versatile definitions of agents can be inserted into the MAS
design space. For example, for task-specific use cases, we
introduce an agent as summarize to improve the long-
context capability in the customizable design space.

• Tool-use: Building towards an effective MAS, enabling
agents to leverage tools to access external information is
critical for system performance, such as using retriever for
RAG (Lewis et al., 2020) and executor with test cases in
coding (Chen et al., 2024d). We introduce tool-use as an

optimizable binary ‘insertion’ decision NT ∈ {0, 1}.

To understand the influence of individual topology, we re-
port the performance of various topologies in Fig. 3. It is no-
ticeable that not all topologies are beneficial to MAS design,
whereas positively influenced topologies only represent a
small fraction of the overall set, such that, in HotpotQA
(Yang et al., 2018), only debate brings 3% gain while oth-
ers fail to improve or even degrade systematic performance.
We again observe similar trends in the test-output-prediction
subtask of LiveCodeBench (Jain et al., 2024). It highlights
the importance of searching in the influential set of search
space, whereas including decremental building blocks may
not only result in higher search complexity but also degrade
the performance.

3. MASS: Multi-Agent System Search
Our analyses in Sec. 2 underscore the importance of well-
designed prompts for individual agents and the careful defi-
nition of the search space to achieve effective MAS perfor-
mance. Building on these, we propose a multistage optimiza-
tion algorithm, Multi-Agent System Search (MASS), that
surpasses prior arts that focused solely on optimizing work-
flow topology without appropriate prompt designs. Instead,
our approach demonstrates the greater effectiveness of MAS
design with properly optimized prompts and thoughtfully
designed search spaces. MASS framework is illustrated in
Algorithm 1 and Fig. 4, following an intuition from local to
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global, from block-level to workflow-level, that conquers
the complexity of combinatorial optimization with effective
per-stage optimization detailed below.

1) Block-level prompt optimization. Before composing
agents, we first ensure that individual agents are thoroughly
optimized at the block level, as highlighted in Sec. 2.1 and
Fig. 2 – this step ensures that each agent is primed for its
role with the most effective instructions in the most man-
ageable computation budget. To further overcome the com-
plexity of joint optimization on a large MAS space, we
first warm up the initial predictor with single-agent APO,
a∗0 ← OD(a0), where both instruction and exemplars are
jointly optimized with the modular prompt optimizer O.
Followed by conditioning on the warmed predictor, we con-
tinue optimizing each topology with a minimum number of
agents, a∗i ← OD(ai|a∗0), such that, 2 predictors paired with
1 debator form the minimum building block as the debate
topology, thereby lowering the complexity for optimization,
and this topology can be scaled up later with more predictors
and debators but all equipped with optimized prompts. To
measure the influence of each building block, we store the
validation performance once the optimization is completed.
It is important that though Stage (1) serves as the warm-
up stage per building block, it is still a critical stage that
guarantees the follow-up topology optimization is searching
in an effective space, composing well-performing agents
instead of suffering from the compounding impact from any
ill-formed agents with manual prompts.

2) Workflow topology optimization. In this stage, we focus
on optimizing the overall MAS structure, determining the
most effective arrangement and connectivity between agents.
The analysis in Fig. 3 shows that beneficial topologies only
represent a small fraction of the full design space. Therefore,
we aim to distill the essence of strong-performing topolo-
gies into a pruned space, thereby making the workflow-level
topology search more efficient. Here, we propose to measure
the incremental influence Iai = E(a∗i )/E(a∗0) that quanti-
fies the relative gain for integrating the topology ai over
the initial agent a0. Following the intuition that influential
dimension comes with higher selection probability, we ac-
tivate the corresponding topology dimension a if u > pa,
given u ∼ U(0, 1) and pa = Softmax(Ia, t). To compose
diverse topologies into a unified space, we constrain the
workflow with a rule-based order to reduce the optimiza-
tion complexity, following a predefined sequence, such that
[summarize, reflect, debate, aggregate]. We
integrate rejection sampling over the pre-defined design
space that rejects any deactivated dimension, or invalid
topology compositions exceeding a maximum budget B
on the number of agents. We refer to App. §B for the
detailed search space per task.

3) Workflow-level prompt optimization. As a final step,

Algorithm 1 MASS: Multi-Agent System Search
1: Input: Agentic modules in the search space ai ∈ A, workflow

of agentsW(a), prompt optimizer O, evaluator E , validation
set D, temperature t, number of candidates N , budget B.

2: Output: Optimized multi-agent systemW∗.
3: [Block-level Prompt Optimization]
4: Prompt optimization for the initial agent a∗

0 ← OD(a0).
5: for ai in A \ {a0} do
6: Local prompt optimization for each building block in the

design space: a∗
i ← OD(ai|a∗

0)
7: Obtain incremental Influence Iai ← E(a∗

i )/E(a∗
0).

8: end for
9: [Workflow Topology Optimization]

10: Obtain the selection probability pa ← Softmax(Ia, t)
11: while n < N do
12: Reject invalid configurations c and cap a budget B. The

design space is pruned by the selection probability pa,
Wc ← (a∗

i (·), a∗
i+1(·), . . .) with optimized prompts.

13: Store evaluations ED(Wc) and propose new workflows.
14: end while
15: Obtain the best-performingW∗

c ← argmaxc∈C ED(Wc).
16: [Workflow-level Prompt Optimization]
17: Workflow-level prompt optimization for the best-performing

topology: W∗ ← OD(W∗
c ).

18: Return optimized multi-agent systemW∗.

we treat the entire MAS design as an integrated entity
and run an additional round of prompt optimization, con-
ditioned on the best topology discovered in Stage (2),
W∗ = OD(W∗

c ). It is worth noting that although prompts
were optimized at the individual level in Stage (1), this stage
acts as an adaptation or fine-tuning process, ensuring that
prompts are tailored for orchestration within the MAS and
that the interdependence between agents is optimized appro-
priately. Our experiments (Fig. 5 & 6) demonstrate that this
stage often yields practical benefits.

4. Related Work
Forms of LLM-based agentic systems. The simplest form
of an LLM-based agentic system involves a single agent
that can dynamically interact and respond to the environ-
ment (Yao et al., 2023). Recent advances endow agents with
diverse roles and tools (Wu et al., 2023), orchestrating multi-
ple agents to cooperate with each other (Chen et al., 2024b).
Standard forms of agent cooperation (i.e., topology) often
involve parallel and serial flows of information. The par-
allel form usually diversifies the exploration among many
agents in parallel (Li et al., 2024a), and self-consistency
(SC) (Wang et al., 2023) is a representative way for scal-
ing agents in parallel. The serial form aims to advance the
exploitation of a task via a chain of agents, where LLMs
can serve as reflective agents to self-justify and refine for-
mer predictions (Madaan et al., 2024; Shinn et al., 2024).
Later, the opinions from multiple agents can be summarized
to retrieve the most consistent answer by an aggregation
agent (Chen et al., 2024c; Lin et al., 2024). Moreover,
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multi-agent debate consists of a more complex flow of in-
formation (Chen et al., 2024a; Wang et al., 2024c; Zhang
et al., 2024c), and recent research shows that debating can
elicit more truthful predictions (Khan et al., 2024; Du et al.,
2024). Recent agent topology extends beyond the above
connections (Wang et al., 2024b; Qian et al., 2024), and
MASS can automatically search the best topology among
the aforementioned spaces.

Automatic optimization for MAS. Recent research starts
automating agent design by interpreting agent functions
as learnable policies (Zhang et al., 2024d;e) and synthe-
sizing trajectories for agent fine-tuning (Qiao et al., 2024).
Going further from a single agent, automatic multi-agent
optimization faces a higher level of complexity, thereby re-
quiring a more sophisticated design of search space and algo-
rithms. Among all recent advances in multi-agent optimiza-
tion, the optimization space has spanned prompts (Khattab
et al., 2024), tools (Zhou et al., 2024c), workflows (Li et al.,
2024c), and thinking strategies (Shang et al., 2024). Align-
ing closer to our topology search space, DyLAN (Liu et al.,
2024b) dynamically activates the composition of agents, and
Archon (Saad-Falcon et al., 2024) frames MAS as a hyper-
parameter optimization problem. Neither of them has taken
the important prompt space into account, where we demon-
strated the importance of prompt optimization in Sec. 2.1.
In addition, GPTSwarm (Zhuge et al., 2024) optimizes the
connections between agentic nodes using a policy gradient
algorithm. State-of-the-art automatic agent design methods,
ADAS (Hu et al., 2024a) and AFlow (Zhang et al., 2024b),
also attempt to optimize agentic workflows with advanced
search algorithms and LLM as optimizers. However, we
observe that the importance of proper prompt designs has
been relatively under-studied in these prior works.

5. Experiments
Models and evaluation data. Aside from the common
benchmarks used for automating MAS (Hu et al., 2024a;
Zhang et al., 2024b), we conduct experiments on an exten-
sive collection of tasks: 1) Hendryck’s MATH (Hendrycks
et al., 2021) and DROP (Dua et al., 2019) for reasoning;
HotpotQA (Yang et al., 2018), MuSiQue (Trivedi et al.,
2022), 2WikiMultiHopQA (Ho et al., 2020) from Long-
Bench (Bai et al., 2024) for long-context understanding; 3)
MBPP (Austin et al., 2021), HumanEval (Chen et al., 2021),
and LiveCodeBench (LCB) ‘test output prediction’ (Jain
et al., 2024) for coding. We refer to App. §B & §D for
details on data splits and prompt templates. We run all ex-
periments primarily on two Gemini 1.5 model sizes (Reid
et al., 2024) (gemini-1.5-{pro,flash}-002) and
further validate key findings on Claude 3.5 Son-
net (claude-3-5-sonnet@20240620) (Anthropic,
2024).

Baselines. We consider the following baselines: 1) CoT
(Kojima et al., 2022): direct chain-of-thought reasoning via
zero-shot prompting; 2) CoT-SC (Wang et al., 2023): with
self-consistency to find the most consistent answers from
diversified reasoning traces; 3) Self-Refine (Madaan et al.,
2024; Shinn et al., 2024): reflective agents to verify and
self-refine predictions; 4) Multi-Agent Debate (Du et al.,
2024; Liang et al., 2024): with agent justifying answers and
aggregating information from other agents; 5) ADAS (Hu
et al., 2024a): an automatic agent design framework, where
an LLM-based meta-agent iteratively proposes new agents
based on former evaluations; 6) AFlow (Zhang et al., 2024b):
automatic workflow design via Monte-Carto Tree Search
over a set of pre-defined operators. We fairly compare all
baselines by limiting the maximum number of agents to 10.
We refer to App. §B for all specifications.

Setup. MASS integrates the state-of-the-art prompt opti-
mizer, MIPRO (Opsahl-Ong et al., 2024), which optimizes
both instructions and demonstrations for each agent via a
Bayesian surrogate model. We limit the number of boot-
strapped demonstrations to 3 and instruction candidates to
10, per agent in 10 rounds. In topology optimization for
all tasks, we search for 10 different topologies via rejection
sampling. Along with topology optimization, each topology
is evaluated on the validation set 3 times to stabilize the
prediction. The optimized MAS is then reported on the held-
out test set over three runs. We set model temperature T at
0.7, maximum output tokens at 4096, and the t in Softmax
at 0.05 for sharpening the selection probability pa for each
search dimension. We implement the same LLM backbone
as both evaluator and optimizer in all phases.

Main results. We present the main results of MASS com-
pared to the baselines on the evaluation set in Table 1.
MASS yields substantial gains over common forms of multi-
agent systems, (e.g. self-consistency, self-refine, and multi-
agent debate), that scale up without optimizing prompts for
agents in collaboration. MASS leads to high-performing
MAS: 78.8% and 74.3% on average on Gemini 1.5 Pro and
Flash, respectively, where we observe consistent improve-
ments on Claude 3.5 Sonnet as reported in Table 4. By com-
paring MASS with state-of-the-art automatic agent design
baselines, ADAS and AFlow, we first notice that ADAS only
brings subtle gains even by already conditioning its meta-
agent generation based on the common forms of agents.
The meta-agent keeps proposing complex topologies but
without optimizing the prompt design. AFlow, on the other
hand, demonstrates a competitive performance to MASS,
especially on 2WikiMQA and HumanEval. We attribute
the performance of AFlow to: 1) its ‘expansion’ phase that
generates new nodes based on an error log that contrasts the
predictions with the ground truth, which provides implicit
textual gradients (Pryzant et al., 2023) to reflect on any for-
matting errors in prompt design; 2) a more refined search
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Table 1. Results on the evaluation set with Gemini 1.5 Pro and Gemini 1.5 Flash. We report the mean and standard deviation for all results
with 3 runs of evaluations. We report the accuracy (%) for MATH and the test-output-prediction subtask of LiveCodeBench (LCB),
F1 score for DROP, HotpotQA, MuSiQue, and 2WikiMQA, and pass@1 for MBPP and HumanEval. We note that the meta-prompt of
AFlow* only works properly with Claude 3.5 Sonnet. Therefore, we reproduce AFlow with Gemini 1.5 Pro as the executor and Claude 3.5
Sonnet as the optimizer, where * indicates the results are only for reference. Number of agents in inference for all methods are below 10.

Gemini-1.5-pro-002

Task Reasoning Multi-hop Long-context Coding
Method MATH DROP HotpotQA MuSiQue 2WikiMQA MBPP HumanEval LCB Avg.

CoT 71.673.30 70.591.67 57.430.52 37.811.43 63.391.12 68.330.47 86.670.94 66.330.62 65.28
Self-Consistency 77.331.25 74.060.90 58.602.19 41.811.00 67.791.19 69.500.71 86.000.82 70.330.94 68.18
Self-Refine 79.672.36 71.031.31 60.623.33 42.151.34 66.742.43 63.670.24 84.001.63 67.331.31 66.90
Multi-Agent Debate 78.670.94 71.780.71 64.870.23 46.000.80 71.780.63 68.670.85 86.671.25 73.671.65 70.26
ADAS 80.000.82 72.960.90 65.881.29 41.951.24 71.140.66 73.001.08 87.671.70 65.171.25 69.72
AFlow* 76.000.82 88.920.63 68.620.47 32.051.29 76.511.05 - 88.000.00 - -

MASS (Ours) 84.670.47 90.520.64 69.911.11 51.400.42 73.340.67 86.500.41 91.670.47 82.330.85 78.79

Gemini-1.5-flash-002

CoT 66.672.36 71.790.69 57.821.10 37.101.35 63.400.68 63.331.25 75.671.89 51.170.24 60.87
Self-Consistency 69.331.25 73.420.19 60.191.01 41.940.93 67.980.72 63.670.62 77.671.89 53.831.18 63.50
Self-Refine 71.330.94 73.711.09 58.843.04 41.211.99 65.561.57 63.331.25 81.671.89 52.001.41 63.46
Multi-Agent Debate 71.670.94 74.790.87 64.171.69 46.271.33 72.190.54 63.000.71 79.671.25 55.500.41 65.91
ADAS 68.001.41 75.951.18 61.362.89 48.811.03 66.901.00 65.830.24 80.672.49 50.501.63 64.75

MASS (Ours) 81.002.45 91.680.14 66.530.38 43.671.21 76.690.50 78.000.82 84.670.47 72.170.85 74.30
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Figure 5. Left: average performance per optimization stage of
MASS over 8 evaluation tasks on Gemini 1.5 Pro. We compare
MASS with a single agent (CoT) starting point as the reference
and an APO baseline that optimizes over the single agent by
MIPROv2 (Opsahl-Ong et al., 2024). Refer to App. §C for the
detailed ablation per task. Right: a comparative ablation study on
topology optimization (2TO) without pruning and without the for-
mer stage of prompt optimization (1PO) evaluated on HotpotQA.

space within a pre-defined set of operators. Though AFlow
draws similar inspirations on the importance of search space
design as MASS, it still lacks a phase of prompt optimization
to optimize its pre-defined operators properly, resulting in
under-performance for MAS search results at MATH and
MuSiQue. Different from these baselines, the consistent
improvements brought by MASS highlight the importance

0 10 20 30 40 50 60 70 80
Round

65
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85

90

95

F1
 (%

) Better Prompt

1PO: Aggregate
1PO: Debate

2TO: More parallel agents involved
3PO: Workflow-level POADAS

AFlow
MASS (Ours)

Figure 6. The optimization trajectories of MASS compared to au-
tomatic agent design baselines per validation round on DROP. We
note that, as a distinct advantage of MASS, the optimization within
stages (1) & (2) of MASS can be completely parallelized, whereas
ADAS and AFlow are iterative algorithms that have to wait to
propose new agents until finishing earlier trajectories.

of searching in both prompt and topology design space.

Ablating optimization stages. To understand the incre-
mental gain per MASS optimization stage, we provide a
stage-by-stage ablation study in Fig. 5. We list the aver-
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Predictor:

Let's think step by step to solve the
given problem. Clearly explain your
reasoning process, showing all

intermediate calculations and
justifications.  Express your final

answer as a single numerical value or
simplified expression enclosed within
<answer></answer> tags.  Avoid

extraneous text or explanations outside
of the core reasoning and final answer.
<Task Demo: Exemplar_1>

Debator:

You are a seasoned math professor specializing in clear and concise
explanations.  You are reviewing student solutions to math problems.
Below, you will find the problem, followed by solutions from several

students.  Carefully examine each student's solution, identifying any
errors in their logic or calculations. Provide a comprehensive

rationale explaining your analysis of each student's work, clearly
stating whether their final answer is correct or incorrect and why. 
Finally, provide your own definitive and simplified solution to the

problem, ensuring its accuracy and clarity. Present your final answer
bracketed between <answer> and </answer> at the end.

Question: Compute $17^{-1}\\pmod{83}$. 
Solutions: Agent 0: 44\nAgent 1: 74

Rationale: <Rationale>
Answer: 44

<Task Demo: Exemplar_2>
<Task Demo: Examplar_3>

1 Block-level Prompt Optimization  ( 62% → 79% )

Work�ow-level Prompt Optimization ( 83% → 85% )3

2 Work�ow Topology Optimization ( 79% → 83% )

P
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Figure 7. A demonstration of the optimization trajectory of MASS on MATH. In (1) block-level optimization: multi-agent debate serves as
the best-performing topology. In (2) workflow topology optimization, aggregating with more parallel agents outweighs the performance
of agents in debate. Lastly, (3) workflow-level optimization discovers the optimal prompt conditioned on the best topology.

age performance of MASS from block-level to workflow-
level optimization and compare it with a single agent APO
baseline, where the block-level optimization performance
indicates the best-performing building block a ∈ A af-
ter APO. First, we notice that there is a large gain, 6%
on average, between block-level optimization and single-
agent optimization, showing that MAS benefits substantially
from having its agents optimized inside the building block.
In addition, going from Stage (1) to (2), another 3% gain
can be achieved by composing influential topologies while
searching the optimal configurations. Here, we provide an
additional ablation on conducting Stage (2) without prompt
optimization beforehand or without search space pruning.
Fig. 5 (right) shows that both of them are critical for effec-
tive search space exploration. Lastly, MASS obtains further
gains (∼2%) by conducting workflow-level prompt opti-
mization on the best-found topology, which indicates that
optimizing the prompts towards modeling the interdepen-
dence of agents is beneficial in the MAS design.

Cost-effectiveness of MASS. We conduct analysis on the
cost-effectiveness of MASS. In particular, we visualize
the optimization trajectory of MASS as shown in Fig. 6.
MASS’s trajectory demonstrates a steady trend of optimiza-
tion that gradually improves the validation performance via
interleaving the search towards better prompts and topolo-
gies. However, when it comes to automatic design baselines
without explicit prompt optimization stages, AFlow is ex-
posed to a larger variance in its optimization due to the
nature of MCTS, whereas ADAS gets trapped in discover-
ing over-complex topologies that appear to be less effective
than the prompt design space. Overall, the optimization
trajectory of MASS highlights the importance of optimizing
in an effective design space, where interleaved optimiza-
tion further resolves the complexity with more consecutive

rewards. Following Sec. 2.1, MASS also demonstrated ad-
vanced token-effectiveness, which we refer to Fig. 9.

Best-found MAS architectures & Design principles. We
further inspect an example of optimized prompts and the tra-
jectory of MASS in discovering more effective topologies in
Fig. 7. The optimization starts from a zero-shot CoT agent,
and soon MASS in Stage (1) identifies the high-performing
topology in debate with its optimized prompt. However, as
found in Stage (2), aggregating with more parallel agents
actually outweighs the multi-agent debate. Workflow-level
prompt optimization then leads to the best-performing pre-
dictor for aggregation. The overall optimization flow sheds
light on our guidelines for building effective MAS: 1) opti-
mizing individual agents properly is important before com-
posing them into an MAS; 2) more effective MAS can be
built by composing influential topologies; and 3) modeling
the interdependence between agents is beneficial, and can
be achieved via workflow-level joint optimization.

6. Conclusion
We approach designing effective MAS by first conducting
a thorough analysis of the massive design space, revealing
the crucial role of prompts, and identifying an influential
subset of search space. Building on these findings, we in-
troduce MASS, a novel multi-stage optimization framework
that searches within a pruned design space, interleaving
prompt and topology optimization to efficiently generate
high-performing MAS. Our experiments demonstrate that
MASS-optimized MAS significantly outperforms existing
manual and automated approaches across an extensive set
of tasks. Finally, based on the optimized systems discovered
by MASS, we extract valuable design principles to guide the
development of future effective LLM-based MAS.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
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A. Limitations and future work
MASS is a multi-agent design meta-framework also orthogonal to prompt and topology optimizers. MASS has brought
substantial improvements over a single agent design by searching in a customizable topology space. Though our proposed
topology space has covered the vast majority of effective MAS designs, including serial, parallel, and mixture of connections,
it is still likely that incorporating other topologies may further improve the final performance of MASS, which is complemen-
tary to the development of MASS. For instance, the debate topology proposed in MASS involves a fully-connected topology
across agents. Recent work has been identifying the sparsity of agent communications (Li et al., 2024b; Zhang et al., 2024a),
and pruning redundant communications may further enhance the overall efficiency of the strongest MASS-found design.
Though the topology optimizer in MASS already traverses efficiently in the proposed topology space, incorporating more
advanced search algorithms, such as the Bayes optimizer (Kandasamy et al., 2018; Ru et al., 2021), may further improve
the sample efficiency of MASS when faces a more complex design space. Similarly, the sample efficiency of the prompt
optimizer may be further enhanced by conditioning on textual feedback from error logs (Pryzant et al., 2023; Wan et al.,
2024), which we will endeavor to explore in future work.

B. Implementation details
B.1. Datasets

In this work, we included the following dataset: 1) Hendryck’s MATH (Hendrycks et al., 2021) consisting challenging
competition-level mathematics problems, and DROP (Dua et al., 2019) requires discrete and symbolic reasoning over
paragraphs; 2) HotpotQA (Yang et al., 2018), MuSiQue (Trivedi et al., 2022), and 2WikiMultiHopQA (Ho et al., 2020) to
evaluate on information seeking from long-context with agentic systems, which we report from standardized versions in
LongBench (Bai et al., 2024); 3) MBPP (Austin et al., 2021), HumanEval (Chen et al., 2021), and LiveCodeBench (Jain
et al., 2024) as well-established coding benchmarks. Regarding LiveCodeBench, we use the ‘test output prediction’ task as
an agent cooperative task. In line with AFlow (Zhang et al., 2024b), we use the public test cases of MBPP and HumanEval
for the executor to retrieve reliable external feedback signals.

To save computation resources, we randomly sample a subset of the original validation and test splits to conduct all the
experiments, where the specifications are reported in Table 2.

Table 2. The specification of evaluation tasks: dataset split, topology search space, and the MASS-optimized MAS (on Gemini 1.5 Pro)

Task Type |Val| |Test| Topology Search Space MASS

MATH Mathematical Reasoning 60 100 {Aggregate, Reflect, Debate} {9, 0, 0}
DROP Discrete Reasoning 60 200 {Aggregate, Reflect, Debate} {5, 0, 0}
HotpotQA Long-context Understanding 50 100 {Summarize, Aggregate, Reflect, Debate} {0, 5, 0, 1}
MuSiQue Long-context Understanding 50 100 {Summarize, Aggregate, Reflect, Debate} {0, 3, 0, 2}
2WikiMQA Long-context Understanding 50 100 {Summarize, Aggregate, Reflect, Debate} {0, 3, 0, 1}
MBPP Coding 60 200 {Aggregate, Reflect, Debate, Executor} {1, 4, 0, 1}
HumanEval Coding 50 100 {Aggregate, Reflect, Debate, Executor} {1, 3, 0, 1}
LiveCodeBench Coding: test output prediction 100 200 {Aggregate, Reflect, Debate, Executor} {3, 1, 1, 1}

Table 3. The search dimension for each topology. The minimum topology defines the building block that MASS Stage (1) optimized.

Topology Search Space Minimum Topology Building Block Specification

Summarize {0, 1, 2, 3, 4} {Summarizer, Predictor} {1, 1}
Aggregate {1, 3, 5, 7, 9} {Predictor, Aggregator} {3, 1}
Reflect {0, 1, 2, 3, 4} {Predictor, Reflector} {1, 1}
Debate {0, 1, 2, 3, 4} {Predictor, Debator} {2, 1}
Execute {0, 1} {Predictor, Executor, Reflector} {1, 1, 1}
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Figure 8. Visualization of the topology building blocks and best MASS-discovered topologies from Gemini 1.5 Pro.

B.2. Baselines

In this section, we report the specifications of all our baselines. We note that for the baselines: CoT, SC, Self-Refine, and
Multi-Agent Debate, we follow the prompts given in ADAS (Hu et al., 2024a).

1) Chain-of-Thought (CoT) (Kojima et al., 2022). Direct chain-of-thought reasoning via zero-shot prompting: “Please think
step by step and then solve the task.”

2) Self-Consistency (SC) (Wang et al., 2023). In self-consistency, we generate diverse chain-of-thought reasoning traces
with a temperature of 0.8, followed by a rule-based majority vote that collects the most consistent answer. In Table 1, we
report SC@9 to provide a fair comparison across baselines.

3) Self-Refine (Madaan et al., 2024): This baseline consists of one predictor that constantly takes feedback and a self-reflector
that provides criticism. It involves a stop criterion whenever the self-reflector outputs “correct” in its prediction. We set the
maximum number of rounds of reflections to 5, such that the worst case will involve 11 (1 + 2× 5) calls.

4) Multi-Agent Debate (Du et al., 2024; Liang et al., 2024). In this baseline, it involves 3 agents that conduct reasoning and
debating for 3 rounds. The opinions along the rounds of debating are finally judged by an aggregator that makes the final
prediction. Hence, it contains 10 (3× 3 + 1) agents.

5) Automated Design of Agentic Systems (ADAS) (Hu et al., 2024a). Consistent with our main experimental setups. We use
Gemini 1.5 as both LLM optimizer and evaluator for reproducing all ADAS results. The generation of ADAS is conditioned
on former evaluations of baselines, including CoT, SC, Self-Refine, and Multi-Agent Debate. We report ADAS with 30
rounds of search, and each round is evaluated on the validation set 3 times to stablize the prediction.

6) AFlow (Zhang et al., 2024b). Automatic workflow design via Monte-Carto Tree Search over a set of pre-defined operators.
Similar to ADAS, AFlow also relies on an LLM optimizer to generate new nodes and topologies expressed in codes.
However, we find the meta-prompt of AFlow does not generalize to other LLM backbones. Consequently, we report AFlow
with its original LLM optimizer by Claude 3.5 Sonnet, and reproduce experiments with Gemini 1.5 Pro as the LLM executor.
Therefore, the comparison is not completely fair, and we treat the results from AFlow as a good reference. We note that
the ‘-’ in Table 1 refers to out-of-time errors, where the LLM executor has been trapped in executing accidental scripts
with infinite loops. We still endeavored to report most results from AFlow as shown in Table 1 & Fig. 6 with the default
experimental setup from AFlow: 20 rounds, 5 runs of validation per round, and k at 3.

B.3. MASS: Multi-Agent System Search

In this section, we provide additional details for MASS. The topology search space for each task is defined in Table 2. In
addition, for Stage (1) block-level prompt optimization, the specification of the building block is defined in Table 3. We
provide the visualization of both the minimum building blocks and the optimized topology in Fig. 8. We refer the reader to
App. §D & §E for the prompt templates we used to define each type of agent and the best prompts discovered.
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C. Additional experiments

Table 4. Results on the evaluation set with Claude 3.5 Sonnet. We keep the same experimental setup as Table 1. Since Claude 3.5 Sonnet
does not support the same context window as Gemini, we report the standard HotpotQA instead of the LongBench. As we transfer
the prompt template for each agent from Gemini to Claude, it is noticeable that the basic topology on some tasks may result in severe
degradation of performance, and MASS successfully recovers the performance and brings significant improvements over the initial agent.

Claude-3.5-Sonnet

Task Reasoning Multi-hop Coding
Method MATH DROP HotpotQA MBPP HumanEval LCB Avg.

CoT 57.330.94 55.520.42 23.561.52 67.501.47 88.671.70 72.672.39 60.21
Self-Consistency 61.671.89 57.860.45 25.690.44 69.170.62 90.000.82 72.672.39 62.84
Self-Refine 57.001.63 56.260.56 23.572.56 68.000.82 87.001.41 49.331.65 56.86
Multi-Agent Debate 45.003.74 26.620.11 31.413.30 00.000.00 84.333.30 72.821.84 43.36

MASS 63.000.00 68.930.38 66.980.99 68.830.62 93.000.82 73.731.43 72.43

Table 5. The detailed ablation results per optimization stage of MASS. Practical gains can be obtained by further conducting workflow-level
prompt optimization (3PO) on the best-found topology.

Gemini-1.5-pro-002

Task Reasoning Multi-hop Long-context Coding
Method MATH DROP HotpotQA MuSiQue 2WikiMQA MBPP HumanEval LCB Avg.

Base Agent 62.330.94 71.650.61 56.961.26 43.320.13 49.200.61 68.830.85 89.331.70 66.332.09 63.54
+ APO 79.331.89 77.510.38 59.720.00 43.970.00 61.490.24 67.001.08 86.331.25 68.501.22 67.44
+ 1PO 80.000.00 86.450.90 62.521.86 48.860.61 67.400.58 80.331.25 91.671.25 76.000.00 74.56
+ 2TO 83.001.63 86.751.32 65.221.34 52.610.52 72.820.86 85.001.08 92.000.82 81.330.00 77.55
+ 3PO 84.670.47 90.520.64 69.911.11 51.400.42 73.340.67 86.500.41 91.670.47 82.330.85 78.40
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D. Prompt template
We provide all prompt templates we used for defining the MASS search space. We use <> to enclose texts that have been
skipped for presentation purposes. We follow the DSPy (Khattab et al., 2024) in constructing these agentic templates.

The general template for instruction, exemplar, and input/output fields:

<Instruction>

---

Follow the following format.

Input: ${Input}
...
Output: ${output}

---

<example_1>

---

Input: <Input>
...
Output: <output>

MATH:
Predictor:

Let’s think step by step.
---
Question: ${question}
Reasoning: Let’s think step by step in order to ${produce the answer}. We ...
Answer: ${answer}

------------
Reflector:

Please review the answer above and criticize on where might be wrong. If you are absolutely sure it is correct,
output ’True’ in ’correctness’.

---
Question: ${question}
Text: ${text}
Reasoning: Let’s think step by step in order to ${produce the correctness}. We ...
Feedback: ${feedback}
Correctness: True/False indicating if answer is correct given the question.

------------
Refiner:

Given previous attempts and feedback, carefully consider where you could go wrong in your latest attempt. Using
insights from previous attempts, try to solve the task better. Show your final answer bracketed between <answer
> and </answer> at the end.

---
Question: ${question}
Previous answer: ${previous_answer}
Reflection: ${reflection}
Correctness: ${correctness}
Thinking: ${thinking}
Answer: ${answer}

------------

Debator:

These are the solutions to the question from other agents. Examine the solutions from other agents in your rationale
, finish by giving an updated answer. Show your final answer bracketed between <answer> and </answer> at the
end.

---
Question: ${question}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We ...
Answer: The updated answer for the question. Do not repeat Answer:
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DROP:
Predictor:

Please think step by step and then solve the task. # Your Task:
Please answer the following question based on the given context.
---
Question: ${question}
Context: ${context}
Thinking: ${thinking}
Answer: Directly answer the question. Keep it very concise.

------------
Reflector:

Verify that the answer is based on the provided context. Give your reflection in the rationale.

---
Question: ${question}
Context: ${context}
Text: ${text}
Reasoning: Let’s think step by step in order to ${produce the correctness}. We ...
Correctness: True/False indicating if answer is correct given the observations and question.

------------
Refiner:

Please think step by step and then solve the task. # Your Task:
Based on the reflection, correctness of the previous answer, and the context again, give an updated answer.

---
Question: ${question}
Context: ${context}
Previous answer: ${previous_answer}
Reflection: ${reflection}
Correctness: ${correctness}
Thinking: ${thinking}
Answer: Directly answer the question. Keep it very concise.

------------

Debator:

These are the solutions to the question from other agents. Based on the context, examine the solutions from other
agents in your rationale, finish by giving an updated answer.

---
Question: ${question}
Context: ${context}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We ...
Answer: The updated answer for the question. Do not repeat Answer:

HotpotQA, MuSiQue, and 2WikiMQA:
Predictor:

Answer the question with information based on the context. Only return the answer as your output.
---
Question: ${question}
Context: ${context}
Answer: Only give me the answer. Do not output any other words.

------------
Summarizer:

Based on the question, retrieve relevant information from context that is ONLY helpful in answering the question.
Include all key information. Do not repeat context.

---
Question: ${question}
Context: ${context}
Summary: Only generate the summary. Start with Summary:

------------
Reflector:

Verify that the answer is based on the provided context.

---
Question: ${question}
Context: ${context}
Text: ${text}
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Reasoning: Let’s think step by step in order to ${produce the correctness}. We ...
Correctness: True/False indicating if answer is correct given the observations and question.

------------

Debator:

These are the solutions to the question from other agents. Based on the context, examine the solutions from other
agents in your rationale, finish by giving an updated answer.

---
Question: ${question}
Context: ${context}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We ...
Answer: The updated answer for the question. Do not repeat Answer:

MBPP:
Predictor:

Let’s think step by step. Provide a complete and correct code implementation in python.
---
Question: ${question}
Thinking: ${thinking}
Answer: Only the code implementation. Do not include example usage or explainations.

------------
Reflector:

Please determine the correctness of the solution in passing all test cases. If it fails, based on the error message
and trackback, think step by step, carefully propose an updated solution in the answer output with a correct
code implementation in python.

---
Question: ${question}
Previous solution: ${previous_solution}
Traceback: It contains the test cases, execution results, and ground truth. If there is an error, the relevant

traceback is given.
Correctness: ’True/False’ based on the correctness of executive feedback. If there is an error message, output ’

False’
Thinking: ${thinking}
Answer: ${answer}

------------

Debator:

These are the solutions to the question from other agents. Examine the solutions from other agents in your rationale
, finish by giving an updated answer. Let’s think step by step. Provide a complete and correct code
implementation in python.

---
Question: ${question}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We ...
Answer: ${answer}

HumanEval:
Predictor:

Let’s think step by step. Provide a complete and correct code implementation in python.
---
Question: ${question}
Thinking: ${thinking}
Answer: ${answer}

------------
Reflector:

Please determine the correctness of the solution in passing all test cases. If it fails, based on the error message
and trackback, think step by step, carefully propose an updated solution in the answer output with a correct
code implementation in python.

---
Question: ${question}
Previous solution: ${previous_solution}
Traceback: ${traceback}
Thinking: ${thinking}
Answer: ${answer}
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------------

Debator:

These are the solutions to the question from other agents. Examine the solutions from other agents in your rationale
, finish by giving an updated answer. Let’s think step by step. Provide a complete and correct code
implementation in python.

---
Question: ${question}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We ...
Answer: ${answer}

LiveCodeBench:
Predictor:

You are a helpful programming assistant and an expert Python programmer. The user has written a input for the
testcase. Think step by step. You will generate the code based on the problem requirepement. You will calculate
the output of the testcase and write the whole assertion statement in the markdown code block with the correct
output.

---
Question: ${question}
Thinking: ${thinking}
Code: ${code}
Answer: complete the testcase with assertion.

------------
Reflector:

If there is an executive output in the traceback, parse the output into an assertion in the answer given the
executive output.

---
Question: ${question}
Previous solution: ${previous_solution}
Traceback: It contains the test cases, execution results, and ground truth. If there is an error, the relevant

traceback is given.
Correctness: ’True/False’ based on the correctness of executive feedback. If there is an error message, output ’

False’
Thinking: ${thinking}
Answer: ${answer}

------------

Debator:

These are the solutions to the question from other agents. Examine the solutions from other agents in your rationale
, finish by giving an updated answer.

---
Question: ${question}
Solutions: the solutions to the question from other agents
Reasoning: Let’s think step by step in order to ${Examine the solutions from other agents}. We ...
Answer: assert ${function(input)} == {executive_output}

E. Best Prompts Discovered
In this section, we show a few typical prompts that have been discovered by MASS. Similarly, we indicate <> that skips
some comments.

MATH:
Predictor:

Let’s think step by step to solve the given problem. Clearly explain your reasoning process, showing all
intermediate calculations and justifications. Express your final answer as a single numerical value or
simplified expression enclosed within <answer></answer> tags. Avoid extraneous text or explanations outside of
the core reasoning and final answer.

---

Follow the following format.

Question: ${question}
Reasoning: Let’s think step by step in order to ${produce the answer}. We ...
Answer: ${answer}
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---

Question: What is the average of the two smallest positive integer solutions to the congruence $$14u \\equiv 46 \\
pmod{100}˜?$$

Reasoning: Let’s think step by step in order to find the average of the two smallest positive integer solutions to
the congruence $14u \\equiv 46 \\pmod{100}$. We are looking for solutions to $14u \\equiv 46 \\pmod{100}$. We
can divide the congruence by 2 to get $7u \\equiv 23 \\pmod{50}$. We want to find the inverse of 7 modulo 50.
We use the Euclidean Algorithm: \\begin{align*} 50 &= 7 \\cdot 7 + 1 \\\\ 1 &= 50 - 7 \\cdot 7 \\end{align*}
Thus, $7(-7) \\equiv 1 \\pmod{50}$, so $7ˆ{-1} \\equiv -7 \\equiv 43 \\pmod{50}$. Multiplying $7u \\equiv 23 \\
pmod{50}$ by 43 gives $u \\equiv 23 \\cdot 43 \\pmod{50}$. $23 \\cdot 43 = 989 = 50 \\cdot 19 + 39$, so $23 \\
cdot 43 \\equiv 39 \\pmod{50}$. Therefore, $u \\equiv 39 \\pmod{50}$. The two smallest positive integer
solutions are $u = 39$ and $u = 39+50=89$. The average of these two solutions is $\\frac{39+89}{2} = \\frac
{128}{2} = 64$.

Answer: 64

---

In the following prompts, interestingly, we observe that including the data summary, task demonstrations, and past
instructions that have been used in MIPRO (Opsahl-Ong et al., 2024) to propose new candidates actually improves the final
performance. Hence, we keep these prompts that lead to strong task performance.

DROP:
Predictor:

This dataset is designed for extractive question answering, focusing on retrieving concise, factual answers from
short texts. Many questions involve extracting numerical information and performing simple calculations,
suggesting applications in areas like sports analytics or financial data analysis. However, the dataset’s
Western cultural bias and lack of complex reasoning questions limit its generalizability and real-world
applicability.

TASK DEMO(S):
<example_1>
Question: How many more points did the Spurs win by in Game 4 against the Mavericks?

Context:
The Mavericks finished 49-33, one game ahead of Phoenix for the eighth and final playoff spot, which meant that they

would once again have to face their in-state rivals, the San Antonio Spurs, who were the top seed in the
Western Conference with a 62-20 record. In Game 1 in San Antonio, Dallas had an 81-71 lead in the fourth
quarter, but the Spurs rallied back and took Game 1, 85-90. However, the Mavs forced 22 turnovers in Game 2 to
rout the Spurs 113-92, splitting the first two games before the series went to Dallas. In Game 3, Manu Gin\
u00f3bili hit a shot that put the Spurs up 108-106 with 1.7 seconds left, but a buzzer-beater by Vince Carter
gave the Mavs the victory, putting them up 2-1 in the series. The Spurs took Game 4 in Dallas 93-89 despite a
late Dallas comeback after the Spurs at one point had a 20-point lead and later won Game 5 at home, 109-103,
giving them a 3-2 series lead. The Mavs avoided elimination in Game 6 at home by rallying in the fourth quarter
, winning 111-113. Game 7 was on the Spurs home court, and the Spurs beat the Mavericks 119-96, putting an end
to the Mavericks season.

Thinking:
The Spurs scored 93 points in Game 4. The Mavericks scored 89 points in Game 4. The difference is 93 - 89 = 4.
Answer: 4

BASIC INSTRUCTION:
‘‘‘
You are a highly specialized AI tasked with extracting critical numerical information for an urgent news report. A

live broadcast is relying on your accuracy and speed. Think step-by-step, focusing on the numerical information
provided in the context. Then, answer the question concisely with the extracted numerical answer. Failure to
provide the correct numerical information will result in the broadcast being interrupted.

Question: {question}
Context: {context}
‘‘‘

TIP: Keep the instruction clear and concise.

PROPOSED INSTRUCTION:

‘‘‘
Extract the numerical answer to the following question. Show your reasoning by identifying the relevant numbers from

the provided context and performing any necessary calculations. Respond with only the final numerical answer.

Question: {question}
Context: {context}
‘‘‘

HotpotQA:
Predictor:
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This multi-passage question answering dataset focuses on complex questions requiring synthesis of information from
multiple Wikipedia-like sources, often involving named entities and temporal reasoning. It emphasizes
integrating information, handling ambiguity, and leveraging real-world knowledge, posing a significant
challenge for models relying solely on provided text. The dataset appears well-suited for evaluating advanced
language models’ reasoning abilities across diverse domains and varying complexity levels.

TASK DEMO(S):
Question: The actor that plays Phileas Fogg in \"Around the World in 80 Days\", co-starred with Gary Cooper in a

1939 Goldwyn Productions film based on a novel by what author?
Context: Provided in prompt
Answer: Charles L. Clifford

BASIC INSTRUCTION: From the provided text, extract the answer to the question. Output *only* the answer.

TIP: Keep the instruction clear and concise. Emphasize reliance *only* on the provided text.

PROPOSED INSTRUCTION: Answer the question using only the provided context. Do not use external knowledge.

---
<example_1>

------

Debator:

This multi-passage question answering dataset focuses on complex questions requiring synthesis of information from
multiple Wikipedia-like sources, often involving named entities and temporal reasoning. It emphasizes
integrating information, handling ambiguity, and leveraging real-world knowledge, posing a significant
challenge for models relying solely on provided text. The dataset appears well-suited for evaluating advanced
language models’ reasoning abilities across diverse domains and varying complexity levels.

TASK DEMO(S):
Provided above.

BASIC INSTRUCTION: These are the solutions to the question from other agents. Based on the context, examine the
solutions from other agents in your rationale, finish by giving an updated answer.

TIP: Don’t be afraid to be creative when creating the new instruction!

PROPOSED INSTRUCTION: You are an expert fact-checker for a major publication. Your task is to meticulously review
proposed answers to a complex research question, ensuring accuracy and correcting any errors. You are provided
with the original question, multiple context passages from credible sources, and several proposed answers from
different research assistants. Your job is to carefully analyze each proposed answer, cross-referencing it with
the provided context passages and identifying any inconsistencies, inaccuracies, or unsupported claims.

**Question:** [Insert Question Here]

**Context Passages:**
[Insert Passages Here]

**Proposed Answers:**
* Assistant 1: [Insert Assistant 1’s Answer]

* Assistant 2: [Insert Assistant 2’s Answer]
...

* Assistant N: [Insert Assistant N’s Answer]

**Instructions:**

1. **Fact-Check & Analyze:** Evaluate each proposed answer individually. For each answer:

* **Verdict:** Indicate whether the answer is \"Correct,\" \"Incorrect,\" \"Partially Correct,\" or \"Not Supported
by Context.\"

* **Evidence:** Provide specific quotes and passage numbers from the context to support your verdict. Explain how
the evidence supports or refutes the proposed answer. Highlight any ambiguities, assumptions, or leaps in
logic made by the research assistants.

* **Corrections\/Improvements (if applicable):** Suggest specific corrections or improvements to partially correct
or incorrect answers. Explain how these changes align with the context.

2. **Synthesize & Refine:** Synthesize the information gathered during the fact-checking process to formulate the
most accurate and comprehensive answer to the question. This may involve:

* Selecting the most accurate proposed answer.

* Combining elements from multiple proposed answers.

* Developing a completely new answer based on your analysis of the evidence.

3. **Final Answer:** Clearly state your final, verified answer to the question.

4. **Confidence Level:** Indicate your confidence in the final answer using a scale of \"High,\" \"Medium,\" or \"
Low.\" Briefly explain the factors influencing your confidence level.
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This revised instruction emphasizes a more rigorous fact-checking process, encouraging the LM to critically evaluate
each proposed answer and provide detailed justifications for its assessments. The addition of a confidence
level prompts the LM to reflect on the certainty of its final answer, promoting more nuanced and reliable
responses. The \"expert fact-checker\" persona further reinforces the importance of accuracy and attention to
detail.

---
<example_1>
<example_2>

MBPP:
Predictor:

You are a highly skilled Python programmer tasked with generating a correct and efficient Python function based on
the given natural language problem description. Think step-by-step, outlining your reasoning process before
presenting the code solution. Your response should adhere to the following structure:

**Thinking:** Provide a clear and concise breakdown of your thought process, including the steps you’ll take to
solve the problem. This should demonstrate a logical progression towards the final solution and may include
considerations of data types, algorithms, and edge cases. For example:

1. Identify the input data type and expected output.
2. Determine the core logic or algorithm required.
3. Consider potential edge cases or special scenarios.
4. Outline the steps for implementing the solution in Python.

**Answer:** Present your complete and correct Python code implementation within a code block (using triple
backticks). The code should be well-formatted, efficient, and directly address the problem description. Ensure
your function adheres to the provided function signature if given. For example:

‘‘‘python
def function_name(input_arguments):
# Code implementation here
# ...
return output
‘‘‘

Focus on producing functional code that accurately solves the problem. Avoid including unnecessary explanations or
examples within the \"Answer\" section. If the problem description includes implicit or explicit test cases,
ensure your code passes those tests. Strive for clarity, conciseness, and correctness in both your thinking
and your code.

---
<example_1>
<example_2>
<example_3>

------
Reflector:

This dataset is designed for Python code generation, translating natural language problem descriptions into simple
functions and their corresponding test cases. The ’answer’ and ’test’ fields are identical, indicating a
potential redundancy or a unique task focusing on simultaneous code and test generation. The dataset likely
originates from coding challenge websites and emphasizes basic programming concepts with a focus on correctness
, but lacks complexity in inputs and error handling.

TASK DEMO(S):
Question: Write a function that takes in two numbers and returns a tuple with the second number and then the first

number.

def swap_numbers(a,b):
Previous Solution: def swap_numbers(a,b):

return (b, a)

Traceback: Test case: print(swap_numbers(10,20))
Output: (20, 10)
Ground Truth: (20,10)
Correctness: True
Thinking: The provided solution correctly swaps the order of the two input numbers and returns them as a tuple. The

test case demonstrates this functionality, and the output matches the ground truth. Therefore, no changes are
required.

Answer: ‘‘‘python
def swap_numbers(a,b):

return (b, a)
‘‘‘
<example_2>
<example_3>

BASIC INSTRUCTION: Please determine the correctness of the solution in passing all test cases. If it fails, based on
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the error message and trackback, think step by step, carefully propose an updated solution in the answer
output with a correct code implementation in python.

TIP: The instruction should include a high stakes scenario in which the LM must solve the task!

PROPOSED INSTRUCTION:

You are an automated code reviewer for a mission-critical satellite control system. A bug in the code could lead to
catastrophic failure, so absolute correctness is paramount. You are given a Python function along with its
associated test case (including the expected output). Analyze the provided

<example_1>
<example_2>
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