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Abstract

The rise of large reasoning models has demonstrated impressive capabilities in
tackling increasingly complex tasks that often require generating long chains
of thought. However, such capability also comes with a substantial increase
in inference cost. Despite this growing trend, existing evaluations of efficient
long-context inference techniques have primarily focused on preserving model
performance for long inputs. We argue that this focus overlooks two crucial
aspects of reasoning models: (1) their ability to generate long outputs, and (2) their
ability to synthesize dispersed information – to reason over information distributed
across both the input context and previously generated outputs. In this work,
we systematically evaluate an array of efficient inference techniques across 12
tasks that differ in their requirements for long-output generation and information
synthesis, on both instruction-tuned and reasoning models. We find that NF4 and
Int8 weight quantization strongly outperform baselines and key-value (KV) cache
token eviction methods on Pareto-optimality in both memory and performance
across evaluated models, tasks, and context lengths. We observe that existing long-
context efficient inference techniques perform especially poorly on tasks with long
outputs and high token dispersion, which are critical for reasoning. Specifically,
our experiments suggest that token eviction methods struggle in these settings
because they cannot reliably perform exact string retrieval, likely because they
tend to eject critical tokens during decoding. Finally, we find that using reasoning
models can partially mitigate this degradation, recovering performance close to
the full-cache baseline even at smaller cache sizes, thereby advancing the Pareto
frontier of memory efficiency and long-context performance.

1 Introduction

Large Language Models (LLMs) that can process extensive context windows have unlocked new
frontiers in complex reasoning [Bai et al., 2023]. In this landscape, reasoning models are particularly
effective, as they articulate their process to deconstruct problems and use information distributed
throughout a long context [Wei et al., 2022]. However, this advantage creates a practical tension: a
model’s verbose chain-of-thought (CoT), the source of its strength, can also cause context length
explosion [Jaech et al., 2024]. This explosion directly inflates the size of the KV cache, which in turn
increases peak memory usage, operational costs, and limits deployment at scale [Shazeer, 2019].

This paper investigates: can techniques like quantization and KV cache compression improve the
Pareto efficiency (balancing performance and memory) for long-context reasoning tasks? How do
different techniques, like quantization and token eviction, compare against each other? Finally,
what are the failure modes of these techniques, and can reasoning models overcome them? To
answer these questions, we evaluate 6 efficient inference techniques: weight quantization (NF4
and Int8) and token eviction for KV cache compression (DuoAttention, PyramidKV, SnapKV, and
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StreamingLLM) [Dettmers et al., 2023, 2022, Xiao et al., 2024a, Li et al., 2024b, Xiao et al.,
2024b]. These techniques are evaluated across 12 tasks that specifically test models’ abilities in
long-output generation and dispersed information synthesis [Ye et al., 2025, Goldman et al., 2024].
The contributions in our paper are as follows:

• We explore the performance-efficiency tradeoff among KV cache compressions methods.
We benchmark methods by looking at the Pareto Frontier curve of performance (measured
in accuracy) and efficiency (measured in peak memory usage). We find that both NF4 and
Int8 quantization strongly outperform baseline models and token eviction methods on Pareto
efficiency across both reasoning and instruct models.

• We evaluate not only standard long-input tasks but also those with long outputs and high
token dispersion, settings that are crucial for reasoning. We empirically observe that current
methods struggle in this regime.

• We find that the performance degradation of token eviction techniques are fundamentally
due to brittleness on tasks that depend on exact string retrieval. Additionally, we demonstrate
that reasoning models show promise in recovering this performance loss, achieving full
performance even with smaller cache sizes and thereby advancing the Pareto frontier.

2 Evaluation Setup

2.1 Tasks

Past long-context evaluations of efficient inference techniques only consider the dimension of
input context length, but we provide more comprehensive analysis by considering two additional
dimensions: information dispersion and output generation length [Goldman et al., 2024].

We evaluate on 9 tasks from HELMET at the 16K and 32K context lengths and 3 tasks from Long-
Proc at the 0.5K and 2K output lengths [Yen et al., 2025, Ye et al., 2025]. From HELMET, we
choose a range of tasks that cover recall (NIAH and JSON KV), retrieval (HotpotQA and Natural
Questions), citation generation (ASQA Cite), document reranking (MS MARCO), in-context learning
(BANKING77 and CLINC150), and summarization (Multi-LexSum) because they encapsulate base-
lines like needle-in-a-haystack while also testing challenging reasoning tasks with high information
dispersion [Kamradt, 2023, Yang et al., 2018, Liu et al., 2023, Kwiatkowski et al., 2019, Stelmakh
et al., 2022, Gao et al., 2023, Bajaj et al., 2018, Casanueva et al., 2020, Larson et al., 2019]. From
LongProc, we focus on tasks such as HTML-to-TSV, Pseudocode-to-Code, and Travel Planning, for
assessing dispersed retrieval, procedural generation, and long-range reasoning capabilities [Li et al.,
2024a, Kulal et al., 2019, Zheng et al., 2024]. Table 1 summarizes the dispersion and output length
breakdown for each task.

Table 1: Task Categorization by Output Length and Dispersion
Output Dispersion Tasks Description

Short Low

NIAH Retrieving a number within essays
Recall JSON KV Retrieve a key in JSON dictionary
RAG HotpotQA Multi-hop question answering

RAG Natural Questions Factoid question answering

Short High

Cite Answer ambiguous questions with citations
Rerank Rerank passage for a query

ICL BANKING77 Banking intent classification, 77 labels
ICL CLINC150 Intent classification, 151 labels
Multi-LexSum Summarizing multiple legal documents

Long High
Pseudocode to Code Translate pseudocode into C++ code

HTML to TSV Extract info from HTML into TSV
Travel Planning Craft a trip plan based on constraints
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2.2 Efficient Inference Techniques

We analyze both input-independent and input-dependent methods to provide more robust coverage of
reasoning and instruct model performance on efficient inference techniques. We choose Int8 and 4-bit
NormalFloat (NF4) as our input-independent weight quantization techniques because they are leading
standards for 8-bit and 4-bit quantization [Dettmers et al., 2022]. NF4 is an information-theoretically
optimal quantization data type for normally distributed weights and empirically yields better results
than 4-bit Integers and 4-bit Floats [Dettmers et al., 2023]. Additionally, for input-dependent methods,
we evaluate on DuoAttention, which is the current state-of-the-art token eviction method, as well as
SnapKV, PyramidKV, and StreamingLLM, to provide comprehensive coverage of the most canonical
token eviction techniques [Xiao et al., 2024a, Li et al., 2024b, Cai et al., 2024, Xiao et al., 2024b].

2.3 Models

We choose to evaluate on the 8B parameter scale due to academic compute constraints and also
because we aim to investigate the performance of smaller reasoning models on long-context reasoning
tasks. We evaluate on Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct as our non-reasoning instruct
models, which both have context lengths of 128K [Grattafiori et al., 2024, Team, 2024]. Additionally,
we evaluate on DeepSeek-R1-Distill-Llama-8B and DeepSeek-R1-Distill-Qwen-7B for our reasoning
models [Guo et al., 2025]. R1-Distill-Llama is distilled from the non-instruction-tuned base model of
Llama-3.1-8B, which has a 128K context length, and R1-Distill-Qwen is distilled from Qwen2.5-
Math-7B, which has an original maximum context window of 4K [DeepSeek-AI, 2025]. We report
results from the R1-Distill models because they are distilled from the same model families and
parameter scales as our baseline models, which helps to isolate the effect of reasoning on memory
and performance.

3 Experiment Results

In this section, we discuss our experiment results and aim to investigate how different techniques, like
quantization and token eviction, compare against each other in terms of Pareto efficiency (balancing
performance and memory).

Our experimental results will be delivered in the following order: (1) Section 3.1 explores which
efficient inference method has the overall strongest performance, aggregated across all evaluated
tasks; (2) Section 3.2 analyzes how performance differs on tasks based on degree of information
dispersion and output length; (3) Section 3.3 takes a closer look at performance on a task-by-task
level; (4) Section 3.4 determines correlations between tasks; and (5) Section 3.5 and Section 3.6
contains case studies for qualitative and quantitative analysis of individual experiments.

3.1 Comparing Different Techniques

In Figure 1, we compare the average performance and peak memory usage of the baseline and six
different methods on four models, averaged across all tasks from both HELMET (16K context)
and LongProc (2K context) benchmarks. NF4 and Int8 achieve substantial memory savings of
-48.46% ± 0.91% and -23.49% ± 3.73% respectively, with minimal performance degradation of
only -2.46% ± 5.99% and -4.08% ± 6.13%. DuoAttention achieves near-baseline performance
(-0.71% ± 2.82%) with minimal memory savings (-1.92% ± 0.04%). In contrast, token eviction
methods (SnapKV, PyramidKV, StreamingLLM), averaged across multiple cache configurations,
show substantial memory overhead (+29.53% ± 12.08%) with severe performance degradation (-
22.85% ± 13.80%). When examining individual cache sizes for SnapKV and PyramidKV, we observe
that smaller caches (w256, c2048) result in modest memory overhead (+8.45% ± 0.99%) but severe
performance degradation (-24.92% ± 16.83%), while larger caches (w2048, c8192) substantially
increase memory consumption (+67.47% ± 3.44%) and improve performance to -6.94% ± 8.83%.
Specifically, increasing cache size from 2048 to 8192 improves performance by +32.93%, but requires
+54.49% more memory. Thus, token eviction methods fail to achieve Pareto optimality: small caches
sacrifice too much performance, while large caches consume substantially more memory than baseline
while still underperforming it.
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Figure 1: Weight quantization is more Pareto-optimal than baseline and token eviction. Perfor-
mance–memory tradeoffs are presented for Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, DeepSeek-
R1-Distill-Llama-8B, and DeepSeek-R1-Distill-Qwen-7B on 6 efficient inference techniques and
baseline. Results are averaged across all 12 tasks evaluated in this paper (9 HELMET tasks at 16K
and 32K input and 3 LongProc tasks at 0.5K and 2K output). Note that DuoAttention results are
limited to Llama-3.1-8B-Instruct and DeepSeek-R1-Distill-Llama-8B at 16K.

3.2 Comparing Different Tasks

In Figure 2, we examine the average performance of baseline and six different methods across three
difficulty levels: Easy (Short Output, Low Dispersion), Medium (Short Output, High Dispersion), and
Hard (Long Output, High Dispersion). The baseline model exhibits natural performance degradation
as task difficulty increases, declining 45.3% from Easy to Medium tasks and an additional 23.9%
from Medium to Hard tasks, representing an overall 58.4% drop across the difficulty spectrum.
NF4 and Int8 demonstrate minimal performance degradation of -1.69% ± 2.18% and +0.48% ±
1.41% respectively, maintaining near-baseline performance across all difficulty levels. DuoAttention
represents a notable exception among KV cache methods, achieving improved performance of
+10.10% ± 4.74% across all difficulty levels, with particularly strong gains on Easy tasks (+18.6%)
that diminish but remain positive on Medium (+9.4%) and Hard (+2.3%) tasks. In contrast, token
eviction methods (SnapKV, PyramidKV, StreamingLLM) show substantial performance degradation
averaging -25.62% ± 3.56% across all difficulty levels. StreamingLLM exhibits the most severe
degradation at -34.14% ± 7.33%, particularly struggling on Easy tasks (-48.5%), while SnapKV and
PyramidKV show more uniform degradation patterns at -19.24% ± 4.47% and -23.49% ± 4.38%
respectively. Notably, token eviction methods exhibit substantial internal degradation as difficulty
increases, with SnapKV and PyramidKV dropping 63.1% from Easy to Hard tasks, exacerbating the
58.4% baseline degradation. Thus, quantization methods maintain near-baseline performance with
minimal variation across difficulty levels, DuoAttention consistently improves performance, while
token eviction methods fail to achieve competitive performance across the difficulty spectrum.

We observe that DuoAttention performs exceptionally well on passkey-style long-input tasks, which
happens to be the most common failure mode of other token eviction methods. We hypothesize this
behavior occurs because the DuoAttention method identifies “retrieval heads” based on the attention
heads that significantly alter model outputs when restricted to recent tokens and attention sinks from
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Figure 2: Performance varies by task difficulty. We categorize task difficulty along the dimensions
of output length and dispersion: Easy (Short Output, Low Dispersion), Medium (Short Output, High
Dispersion), Hard (Long Output, High Dispersion). Consistently, we find that quantization (NF4,
Int8) outperforms token eviction methods across all difficulties, with the exception of DuoAttention.
Notably, quantization methods exhibit minimal degradation relative to the baseline, maintaining
comparable performance overall.

a passkey retrieval experiment [Xiao et al., 2024a]. In other words, DuoAttention faithfully produces
the document IDs necessary for Re-rank because they are the type of passkey that DuoAttention’s
retrieval heads are designed to get right. However, it’s also worth noting that DuoAttention is not
perfect; it still experiences performance degradation compared to baseline on long-output tasks that
require truly global context (Cite, Pseudocode to Code, HTML to TSV, and Travel Planning).

3.3 Task-by-Task Failure Mode Analysis

To better understand the failure modes of the evaluated methods, we examine in Figure 3 the
performance degradation of each method relative to the baseline across all tasks. We find that token
eviction methods exhibit the greatest performance degradation, particularly on the NIAH, Recall, and
Re-rank tasks. These tasks share a common characteristic: they require precise string retrieval, both in
low-dispersion settings (NIAH, Recall) and high-dispersion settings (Re-rank). This pattern suggests
that the degradation of token eviction methods emerges from their inability to reliably perform exact
string retrieval, likely because these methods tend to discard critical tokens during decoding. In one
of our case studies in Section 3.5, we illustrate this phenomenon using the Re-rank task as an example.
In this task, the model is required to rank documents by relevance, where each document ID consists
of seven digits. However, due to token eviction, the model outputs only three digits, demonstrating
how token eviction disrupts the model’s ability to handle long-context tasks requiring precise string
retrieval.

3.4 Calculating Correlations Between Tasks

To assess whether low-dispersion tasks can predict performance on high-dispersion and long-output
tasks, we calculate the R2 correlation on pairwise task performance for all model, context length, and
efficient inference configurations. Figure 4 shows that synthetic, short-output low-dispersion tasks
(NIAH, Recall, and RAG) may have some correlation with short-output high-dispersion tasks (ICL,
Cite, Re-rank, and Summ) but low-dispersion tasks do not have strong correlation with long-output
high-dispersion tasks (Pseudocode to Code, HTML to TSV, and Travel Planning) demonstrating
the importance of evaluating along the axes of both output length and dispersion to capture a more
comprehensive snapshot of long-context model performance.

3.5 Case Study: Why does token eviction perform poorly on ICL tasks? An analysis on
Re-rank

To understand the performance degradation shown in Figure 2, we conduct a qualitative analysis of
failure modes from the HELMET Re-rank task. We present here 4 representative examples where the
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Figure 3: Task-wise performance degradations relative to full-precision baseline. Each subplot
shows ∆Performance (efficient technique minus baseline) for a different method, with positive values
(green) indicating improvement and negative values (red) indicating degradation. DuoAttention
shows minimal degradation on easy retrieval tasks but degrades on complex tasks. KV cache eviction
methods (SnapKV, PyramidKV, StreamingLLM) exhibit severe degradation on recall and reranking
tasks, with PyramidKV showing the largest drops. Quantization methods (NF4, Int8) maintain
near-zero deltas across most tasks, preserving baseline performance. The performance deltas are the
averaged results across models, context lengths, and cache configurations where applicable.

SnapKV token eviction method was used with the Llama-3.1-8B-Instruct model, with a window size
of 32 tokens and a cache size of 256 tokens.

For the Re-rank task, the document IDs are typically 7 digits long. Across different queries, the
model’s output becomes decoupled from the semantic content of the query and documents. The
model is not performing ranking based on relevance, instead generating arbitrary numerical patterns.

Moreover, sequentially decreasing and heavily repeating IDs suggest that SnapKV may have evicted
in-context learning examples from its cache, thereby corrupting the model’s internal representation of
the documents in the context and returning the incorrect strings at test-time. By removing tokens
that are critical for distinguishing between documents, the technique effectively blurs the available
information. The model’s outputs do not match the expected number of digits in the document IDs,
thus failing the underlying task. These four failure modes demonstrate how token eviction methods
are particularly sensitive to performance degradation on tasks that require perfect string retrieval.

3.6 Case Study: Reasoning Models are Better at Recovering Performance Degradation from
Token Eviction Compared to Instruct Baselines on In-Context Learning Tasks

As discussed in Section 3.1, token eviction methods struggle more than baseline and quantization
methods due to difficulty with in-context learning. What if reasoning models’ strengths in in-context
learning could be used to mitigate the performance degradation from token eviction methods?

Figure 6 shows the performance versus memory and latency of the 2 baseline models and 1 reasoning
model on BANKING77 and CLINC150, two datasets that evaluate fine-grained intent classification.
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Figure 4: Task-wise performance correlations across dispersion and output length. We compute
pairwise R2 correlations between all tasks across model, context length, and efficient inference
configurations to examine whether performance on low-dispersion tasks can predict that on more
complex ones. Synthetic, short-output low-dispersion tasks (NIAH, Recall, RAG) show moderate
correlation with short-output high-dispersion tasks (ICL, Cite, Re-rank, Summ). However, they exhibit
weak or no correlation with long-output high-dispersion tasks (Pseudocode→Code, HTML→TSV,
Travel Planning). These results highlight that evaluating only low-dispersion or short-output tasks
provides an incomplete picture of long-context model performance, underscoring the need to assess
along both dispersion and output-length axes.

Pattern 1 Sequential Numbers

Question: What types of food can you cook sous vide?

Answer ranking: 353 ≻ 352 ≻ 351 ≻ 350 ≻ 349 ≻ ...

Pattern 2 Repeated ID

Question: Exons definition biology?

Answer ranking: 128 ≻ 128 ≻ 128 ≻ 128 ≻ 128 ≻ ...

Pattern 3 Suspiciously Short IDs

Question: Causes of military suicide?

Answer ranking: 301 ≻ 528 ≻ 424 ≻ 102 ≻ 460 ≻ ...

Pattern 4 Dominated by One ID

Question: Causes of military suicide?

Answer ranking: 220 ≻ 152 ≻ 220 ≻ 220 ≻ 220 ≻ ...

Figure 5: Qualitative Failure Modes of SnapKV on Re-rank. Instead of returning 7-digit document
IDs that correspond to the most relevant webpages that answer the user query, SnapKV is returning 3-
digit IDs, suggesting that the critical tokens corresponding to the document IDs have been evicted from
the cache. Moreover, the failure mode of sequentially decreasing and heavily repeating IDs suggests
that SnapKV may have evicted in-context learning examples from its cache, thereby forgetting how
to correctly complete the task.

Firstly, this ICL task is unique because it is one of the only three tasks where R1-Distill-Llama’s
baseline outperforms Llama-3.1-8B-Instruct’s baseline. This finding suggests that perhaps, even at
the 8B scale, reasoning models are able to take advantage of their long CoT planning capabilities to
better learn from in-context examples.

Secondly, the most interesting finding is that the DeepSeek-R1-Distill-Llama-8B reasoning model
demonstrates substantially greater resilience to token eviction techniques compared to the Llama-3.1-
8B-Instruct model. Specifically, when subjected to aggressive token eviction with SnapKV at window
size = 256 and cache size = 2048, Llama-Instruct experiences a 5.7 percentage point decrease (from
85.4% to 79.7%), while R1-Distill-Llama shows only a 0.8 percentage point decrease (from 87.1%
to 86.3%). Similarly, with PyramidKV at the same cache configuration, Llama-Instruct drops 9.0
percentage points (from 85.4% to 76.4%), while R1-Distill-Llama drops only 2.2 percentage points
(from 87.1% to 84.9%). The reasoning model thus exhibits 5.9 percentage points less degradation on
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Figure 6: Reasoning models mitigate performance degradation on ICL tasks. Perfor-
mance–memory tradeoffs are shown for one reasoning model and one non-reasoning model across
five efficient inference techniques and a baseline on the ICL Banking and Clinc tasks. Baseline models
exhibit moderate peak memory usage and low latency. Notably, DeepSeek-R1-Distill-Llama-8B
(reasoning) mitigates performance degradation under token eviction methods, while Llama-3.1-8B-
Instruct (non-reasoning) experiences greater drops at comparable cache sizes.

average than the instruct model even when subjected to the more ambitious token eviction setting.
This superior resilience suggests that reasoning models may structure information more redundantly
across their context, making them more robust to the loss of individual tokens during eviction.

In other words, reasoning models can help recover the performance degradation of token eviction
methods for ICL tasks, which are precisely the tasks that token eviction methods struggle the most on.
In this way, reasoning models can achieve nearly full performance on ICL even with smaller cache
sizes, thus advancing the Pareto frontier. This finding is significant because model developers may be
interested in using efficient inference techniques like token eviction to cut costs, but to mitigate the
performance degradation of token eviction, they might consider using a small reasoning model for
applications that require token eviction for less overall memory consumption.

4 Related Work

Long-Context Efficiency Techniques Efficient inference techniques for long-context models can
be broadly divided into two categories: input-dependent and input-independent methods. Token
eviction is a popular category of input-dependent methods that compress the KV cache via selective
pruning and can be content-aware [Xiao et al., 2024b, Li et al., 2024b, Cai et al., 2024]. On the
other hand, weight quantization is an input-independent method for optimizing the model’s memory
and latency, which means the performance gains are fixed and the method’s performance is content-
agnostic [Dettmers et al., 2022, 2023]. Positional interpolation is another input-independent method
for extending the context windows of language models without incurring greater memory costs [Peng
et al., 2024]. Existing evaluations are not assessing whether input-dependent or input-independent
methods are more suitable for reasoning-intensive, long generation tasks for 8B-scaled models. This
paper seeks to fill that gap, in addition to assessing how these different efficient inference methods
interact with the long CoTs in reasoning models.

Long-Context Benchmarks While early studies of long-context models relied on synthetic tasks
like "needle-in-a-haystack" retrieval, there has been an increased emphasis on real-world tasks
involving multi-hop reasoning, long-input understanding, and long-output generation [Kamradt, 2023,
Bai et al., 2023, Hsieh et al., 2024, Wu et al., 2025]. However, these datasets either focus primarily on
retrieval without challenging reasoning or involve outputs too short to meaningfully test long-output
generation. In this work, we evaluate on two benchmarks that represent more comprehensive tests
of long-context reasoning capabilities. HELMET evaluates models on structured tasks including
summarization, multi-hop QA, and logical reasoning over large inputs, thereby revealing retrieval
and reasoning failures [Yen et al., 2025]. LongProc challenges models with complex, multi-step
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operations over sequences of up to 8K in length, stress-testing both memory retention and the ability
to maintain coherent chains-of-thought in long reasoning traces [Ye et al., 2025].

Efficient Inference in Reasoning Models Ever since the release of reasoning models, there has
been strong interest in improving the efficiency of sampling and decrease the length of reasoning
CoTs [Liu et al., 2025]. However, using KV cache compression for this task is largely overlooked.
Song et al. [2025] explores this gap, but their paper only evaluates on AIME, which is reasoning-
intensive but does not involve long-form generation, thus limiting the scope of the paper.

5 Conclusion

This work evaluates KV cache compression and quantization methods on long-input, long-output
benchmarks, revealing critical performance gaps that are overlooked by simpler evaluations like
NIAH. Our findings demonstrate that NF4 quantization consistently provides a Pareto-optimal
balance of performance and memory efficiency, often surpassing more complex KV cache methods.
We identify a key failure mode for token eviction strategies, which struggle significantly on tasks
requiring precise recall of identifiers, as they are prone to discarding vital information. Furthermore,
specialized methods like DuoAttention show limitations on tasks that do not align with their passkey-
retrieval-focused fine-tuning.

Ultimately, our results underscore that the effectiveness of a long-context inference technique is
highly task-dependent. Benchmarks that test both long-range information synthesis and extended
generation, such as HELMET and LongProc, are essential for developing robust and practical LLMs.
The widespread success on NIAH alongside struggles on these more complex tasks confirms that the
field must move toward more realistic benchmarks to drive meaningful progress.

Looking ahead, several promising research directions emerge from this work. First, future efforts
could focus on hybrid methods, combining the raw efficiency of quantization with more sophisticated,
content-aware KV cache eviction strategies to potentially push the Pareto frontier further. Second,
developing adaptive inference techniques that can dynamically adjust their cache management policy
based on the inferred task type (e.g., retrieval-heavy vs. generation-heavy) could yield significant
performance gains. Finally, extending this evaluation methodology to a wider range of models,
including but not limited to reasoning models, would be crucial to understanding how these efficiency
techniques interact with models with different capabilities.

6 Limitations

While our findings provide valuable insights into the trade-offs between reasoning models and
efficient inference techniques, it is worth acknowledging our study’s limitations.

First, our analysis is focused on models at the 7B and 8B parameter scale due to academic compute
constraints. The dynamics of CoT verbosity, context length explosion, and the effectiveness of
inference techniques may differ substantially in much larger models (e.g., 70B+), where reasoning
capabilities are more pronounced. Consequently, our conclusions about the Pareto efficiency of
smaller reasoning models may not generalize to their larger counterparts.

Second, the selection of tasks, while intentionally broad, is not exhaustive. Our key finding—that
reasoning models can rescue the performance of token eviction—was most evident on in-context
learning (ICL) tasks. This benefit did not extend to tasks like document reranking, which are highly
sensitive to information loss. The trade-offs between model type and efficiency technique are highly
task-dependent, and other long-context domains such as creative writing or complex code repository
analysis may present these trade-offs differently.
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A Extended Related Work

A.1 Long-Context Efficiency Techniques

Efficient inference techniques for long-context models can be broadly divided into two categories:
direct KV cache optimizations and auxiliary scaling techniques. KV cache techniques primarily alter
memory handling by restructuring, compressing, retrieving, or dynamically loading key-value pairs
during inference, while auxiliary techniques target scaling efficiency more broadly without directly
modifying the KV cache.

Recent research has identified four primary strategies for KV cache optimization: [Jiang et al., 2024]

1. KV Cache Generation: Techniques that proactively design the structure of the KV cache
to reduce memory or computational demands during prefill and decoding.
Examples: MInference [Jiang et al., 2024], FlexPrefill [Lai et al., 2025], A-shape [Xiao
et al., 2024b], Tri-shape [Li et al., 2025], Dilated Attention [Beltagy et al., 2020].

2. KV Cache Compression: Techniques that selectively prune, merge, or compress KV entries
during decoding to maintain a manageable memory footprint even as context grows.
Examples: StreamingLLM [Xiao et al., 2024b], SnapKV [Li et al., 2024b], PyramidKV [Cai
et al., 2024], KIVI [Zirui Liu et al., 2023].

3. KV Cache Retrieval: Techniques that store large external KV memories and dynamically
retrieve only the most relevant tokens when needed, reducing active memory load.
Examples: CacheBlend [Yao et al., 2025].

4. KV Cache Loading: Techniques that manage offloading and re-loading of KV cache chunks
(e.g., from disk or remote storage) during decoding, enabling arbitrarily long contexts
without linear memory growth.
Examples: Quest [Tang et al., 2024], RetrievalAttention [Liu et al., 2024a].

A.2 Auxiliary Efficiency Techniques

In addition to direct KV cache optimizations, several auxiliary techniques have emerged to support
scaling to longer contexts and reducing inference costs, even though they are not specifically designed
for KV cache handling.

One important auxiliary technique is positional interpolation, exemplified by methods like
YaRN [Peng et al., 2024]. Positional interpolation modifies the way positional encodings are
calculated for input tokens. Rather than using absolute or fixed positional embeddings, interpolation
allows the model to flexibly re-map positions across very long sequences. This enables models trained
on shorter contexts to extrapolate to longer ones without significant degradation in performance.

Another critical auxiliary technique is quantization, which reduces the memory footprint and
computational cost by decreasing the precision of model activations and weights. In standard training
and inference, models often operate using bf16 (Brain Floating-Point 16) precision, which uses 16
bits to represent floating-point numbers with high dynamic range and some precision trade-offs.

By contrast, int8 and int4 quantization compress model weights and activations into 8-bit or 4-
bit integers, respectively. This drastic reduction in precision significantly decreases both memory
bandwidth and storage requirements, enabling faster and more efficient inference, especially important
for resource-constrained deployment. However, aggressive quantization (like int4) can introduce
noticeable performance degradation if not handled carefully with quantization-aware techniques.

Together, positional interpolation and quantization serve as complementary tools to core KV cache
optimizations, broadening the model’s ability to scale efficiently to longer inputs while mitigating
hardware and memory bottlenecks.

A.3 Long-Context Benchmarking Techniques

Despite significant advances in efficient inference methods, many recent papers continue to rely
heavily on perplexity as the primary evaluation metric. While perplexity offers a coarse measure
of language modeling ability, it often fails to capture failures in long-range reasoning, information
retention, and multi-step computation that are critical for practical applications of long-context
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models. Especially in the context of techniques like KV cache compression or retrieval-augmented
inference, perplexity can mask deeper degradation in reasoning chains or factual consistency, leading
to an incomplete assessment of model robustness.

While early studies of long-context models relied on synthetic tasks—such as “needle-in-a-haystack”
retrieval—there has been increasing recognition that real-world tasks demand deeper multi-hop rea-
soning, long input understanding, and long output generation. Consequently, a range of benchmarks
have emerged to stress-test these abilities, ZeroSCROLLS [Shaham et al., 2023], LongBench [Bai
et al., 2023], L-Eval [Yang et al., 2024], RULER [Hsieh et al., 2024], ∞ BENCH [Zhang et al., 2024],
LongGenBench1 [Wu et al., 2025], and LongGenBench2 [Liu et al., 2024b].

However, not all benchmarks equally capture the complex interaction between memory and reasoning.
Many datasets either focus primarily on retrieval (without challenging reasoning chains) or involve
outputs that are too short to meaningfully test long-output generation.

In this work, we focus on two benchmarks that represent some of the most comprehensive tests for
long-context capabilities:

• LongProc: Focused on procedural reasoning, LongProc challenges models to perform
complex, multi-step operations over very long input sequences. This benchmark stresses
not only memory retention but also the ability to maintain coherent logical chains while
processing and generating thousands of tokens.

• HELMET: Designed to systematically probe long-context abilities across a wide range of
tasks, HELMET evaluates models on structured tasks involving summarization, multi-hop
QA, and logical reasoning over large textual inputs. Its diverse task types and careful
construction make it an ideal choice for diagnosing both retrieval and reasoning failures.

Together, LongProc and HELMET provide a robust evaluation landscape for our study. By relying on
these benchmarks, we can rigorously test how well efficient inference techniques preserve multi-hop
reasoning ability and context fidelity across both long-input and long-output use cases.

B Additional Experimental Results

B.1 Hyperparameter Selection for PyramidKV.
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Figure 7: Hyperparameter sweep for PyramidKV. In order to pick the optimal hyperparameters
for PyramidKV, we ran a sweep over the window size and KV cache size given kernel size equals 5
using the Cite String Exact Match metric. We find that increasing the cache size too much yields
diminishing returns in performance while increasing memory consumption. We also observe that a
window size equals 256 gives the optimal curve on the Pareto frontier.
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B.2 Full Pair-wise Task Correlations
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Figure 8: Comprehensive pairwise correlations between all evaluated tasks. Each cell represents
the coefficient of determination (R2) between task performance scores, capturing how strongly
performance on one task predicts performance on another. Higher values indicate stronger alignment
in method behavior across tasks, while lower values highlight task-specific divergences.
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