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Abstract— Goal-conditioned policies, such as those learned
via imitation learning, provide an easy way for humans to
influence what tasks robots accomplish. However, these robot
policies are not guaranteed to execute safely or to succeed when
faced with out-of-distribution goal requests. In this work, we
enable robots to know when they can confidently execute a
user’s desired goal, and automatically suggest safe alternatives
when they cannot. Our approach is inspired by control-theoretic
safety filtering, wherein a safety filter minimally adjusts a
robot’s candidate action to be safe. Our key idea is to pose
alternative suggestion as a safe control problem in goal space,
rather than in action space. Offline, we use reachability analysis
to compute a goal-parameterized reach-avoid value network
which quantifies the safety and liveness of the robot’s pre-
trained policy. Online, our robot uses the reach-avoid value
network as a safety filter, monitoring the human’s given goal
and actively suggesting alternatives that are similar but meet
the safety specification. We demonstrate our Safe ALTernatives
(SALT) framework in simulation experiments with Franka
Panda tabletop manipulation. We find that SALT is able to learn
to predict successful and failed closed-loop executions, is a less
pessimistic monitor than open-loop uncertainty quantification,
and proposes alternatives that consistently align with those that
people find acceptable.

I. INTRODUCTION

Imagine that your friend asks you to grab a mug from the
top kitchen shelf. Intuitively, you know that trying to reach
it will be dangerous because you will drop the mug. Instead
of attempting the unsafe task or asking your friend to get it
for you, you may naturally suggest an alternative that you
can safely accomplish: “I can’t reach your mug, but are you
ok with this cup on the lower shelf instead?” How can we
get our robots to operate in same manner?

In this paper, we want to endow robots with the ability to
know when they can confidently execute a user’s desired goal
and propose safe alternatives when they cannot. Specifically,
we study goal-conditioned robot policies [1] such as those
obtained via imitation learning [2]. While this paradigm
has enabled robots to learn complex behaviors and adapt
to specified goals online [3], these learned policies can
degrade when faced with out-of-distribution goal requests
or states [4]. In other words, given a pre-trained goal-
conditioned policy, it is hard to ensure that the closed-loop
robot behavior will always be safe (e.g., doesn’t collide with
the environment) and performant (e.g., will successfully pick
up the cup) for any new user goal and initial state. Prior
works have quantified policy uncertainty [5] or developed
out-of-distribution input detectors [6], but these approaches
are only a monitoring mechanism; they don’t provide a way
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Figure 1: Safe ALTernatives (SALT). If a robot naively
executes a user’s request, it can fail for a variety of reasons.
For example, a request to pick up the red bowl leads the robot
to fail to grasp. Our SALT framework enables a robot to
detect if it can successfully accomplish a user’s original goal;
if it cannot, the robot automatically proposes an alternative
it can safely succeed at (e.g., get brown bowl). Videos on
the project website: https://cmu-intentlab.github.io/salt/.

for the robot to actively propose alternatives that it can
accomplish safely and effectively.

To close this gap, we propose that robots suggest safe
alternatives. Our approach is inspired by safety filtering
techniques from control theory [7]. Traditional safety filters
take a candidate robot action (e.g., generated by a pre-trained
policy) and minimally adjust (i.e., “filter”) it to be safe.
The filtering mechanism projects the candidate action onto
the safe and live (i.e. goal-reaching) control set, where the
control set is computed via methods like Control Barrier [8]
or Control Lyapunov Functions [9], Hamilton-Jacobi (HJ)
reachability analysis [10], or model predictive filters [11].
However, this action-space filtering does not enable the robot
to naturally suggest alternatives in a human-verifable way.
Our key idea is that an

alternative suggestion can be modeled as safe
control in goal space, rather than action space.

We leverage HJ reachability analysis to synthesize a goal-
conditioned reach-avoid value function that is used within
our safe control framework. This computation is performed
once offline and automatically quantifies how capable the
robot’s pre-trained policy is at accomplishing the task while
staying safe, for a suite of possible goal inputs. Due to the
dimensionality of the problem induced by goal parameteri-
zation, we leverage principled but approximate reachability
solvers rooted in reinforcement learning [12], and empirically
quantify the error of our learned value function. Online, the
reach-avoid value function takes in the current state and a
specified goal and determines whether the goal meets the
reach-avoid criteria (safe and live). If not, we perform safety
filtering over the goals to suggest alternatives.
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We call our overall framework for robots that suggest
Safe ALTernatives: SALT. We demonstrate SALT in sim-
ulation experiments grounded in tabletop manipulation with
a Franka Panda arm. We find that compared to baselines that
only consider open-loop uncertainty, SALT’s understanding
of closed-loop consequences of the robot’s policy detect
failures 25% more accurately, and the alternative goals that
SALT proposes consistently align with those that people find
acceptable.

II. RELATED WORK

Safety Filtering. Safety filters—which detect unsafe actions
and minimally modify them—are increasingly popular ways
to ensure closed-loop safety [13]. The most popular methods
are control barrier functions (CBFs) [8], Hamilton-Jacobi
(HJ) reachability [14], [15], and model predictive shielding
[16]. In this work we build off of HJ reachability due to
its ability to handle non-convex target and constraint sets,
control constraints and uncertainty in the system dynamics,
and its association with a suite of numerical tools including
recent neural approximations that scaled safe set synthesis to
15-200 dimensions [17], [18]. Our key idea is that by treating
the human’s goal as a virtual state, we can do safety value
function synthesis and safety filtering on the goal (instead of
on the actions). This enables the robot to minimally modify
the human’s desired goal and propose safe alternatives.

Uncertainty Quantification of Learned Robot Policies.
For modular robot policies that utilize an “upstream” goal or
intent estimator, prior works have quantified goal uncertainty
[19], calibrated task plans inferred from language commands
[20] and quantified their execution risk [21]. For end-to-end
behavior cloned policies, prior works have quantified their
generalizability via statistical bounds [22], and predicted
policy success rate via value estimation [23]. In contrast,
our work uses control-theoretic verification tools to analyze
the closed-loop success of a robot’s policy.

Robot Communication of Uncertainty & Capability. Prior
works in human-robot interaction have enabled robots to
communicate their task uncertainty via dialogue [24], their
objectives via motion or haptics [25], [26], express physical
capabilities [27], or explain their failures [28] to people.
Instead of having robots only explain what they are uncertain
about (or ask for help), we enable robots to actively suggest
alternatives they can safely accomplish.

III. METHOD: SUGGESTING SAFE ALTERNATIVES

We want robots to know when they can safely execute
a user’s given goal and propose safe alternatives when they
cannot. Our key idea is to formalize alternative suggestion as
a safe control problem in goal space. This goal-space filtering
enables the robot to automatically suggest alternatives in
a human-verifable way. By solving a goal-parameterized
reachability problem offline, we obtain a reach-avoid value
function that the robot uses online for filtering. We call our
overall framework for suggesting Safe ALTernatives, SALT
(summarized in Fig. 2).

Setup. Let the robot’s physical state be s ∈ S (e.g.,
positions, velocities, joint configuration) and the robot’s
action be a ∈ A. We model the robot’s state as evolving via
the deterministic discrete-time dynamics st+1 = f(st, at).
The human influences the robot’s behavior by specifying a
goal g ∈ G (e.g., an object a manipulator should pick up).
We assume that the robot interprets this goal and executes
its behavior based on a pre-trained goal-conditioned policy,
π(s; g). For example, this could be a behavior cloned policy1

trained on a demonstration dataset (s, a, g) ∼ D consisting
of state-action-goal tuples.

Offline: Reach-Avoid Analysis of Goal-Conditioned Robot
Policies. We use reachability analysis to automatically verify
for which initial states and desired goals can the robot’s
policy satisfy both safety and liveness constraints. Our core
idea is to treat the space of possible goals that the human
could ask about at deployment time (g ∈ G) as a virtual state
that has zero dynamics (i.e., ġ = 0) during the reachability
analysis. This approach, inspired by parameter-conditioned
reachability [29], enables us to quantify the safety and
liveness sensitivity of the robot’s policy as a function of all
possible goal inputs.

For offline analysis, we leverage Hamilton-Jacobi (HJ)
reachability. This verification technique is compatible with
nonlinear dynamical systems, arbitrary non-convex failure
and target set representations, and has a suite of associ-
ated numerical tools, from exact grid-based solvers [30] to
approximate but scalable techniques such as reinforcement
learning [12], [17] and self-supervised learning [18].

We encode our safety specification via a failure set F ⊂ S
(e.g., the object slipped from the gripper) and liveness via
a target set T ⊂ S (e.g., the object height must be above
the table). For computation, the target and failure sets are
encoded via Lipschitz continuous margin functions l(·) and
h(·) respectively: T := {s | l(s) ≤ 0} and F := {s |
h(s) > 0}. One such function is the signed distance to the
set boundary. Intuitively, these margin functions will measure
the “closest” the robot’s policy π(s; g) ever got to violating
safety and accomplishing the task given the specified goal
g. We introduce goal-conditioned target and failure sets, Tg
and Fg , as well as corresponding goal-conditioned margin
function, lg(s) and hg(s). With these in hand, we can define
the goal- and policy-conditioned safety value function as:

V π
∗ (s; g) = min

τ∈{0,1,...}
max

{
lg(ξ

π(·;g)
s (τ)),

max
κ∈{0,...,τ}

hg(ξ
π(·;g)
s (κ))

}
, (1)

where the robot’s trajectory starting from state s and applying
policy π(·; g) is denoted by ξ

π(·;g)
s . Intuitively, the outer

maximum acts as a mechanism to remember if the robot
has ever entered the failure set F up to this time (right-hand
side) and has satisfied the liveness property (left-hand side).
If ξπ(·;g)s enters F at any time, then the inner maximum will
be positive, and thus the overall value will also be positive.

1We assume that the policy is deterministic in this work.
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Figure 2: Robots that Suggest Safe Alternatives (SALT) Framework. (Left) Offline, a reach-avoid value network is
learned to estimate the safety and liveness properties of a pre-trained goal-conditioned robot policy. (Right) Online, a human
inputs a desired goal, which is first monitored by our reach-avoid value function. If the input goal satisfies both safety and
liveness, then the policy is executed. Otherwise, the robot solves a safe control problem over alternative goals (e.g., objects
in the scene) to propose an alternative. If the human accepts, then the robot confidently executes on the new goal.

In contrast, if the robot’s trajectory never enters F , then the
overall value will be negative if and only if the robot reaches
the target T (which is encoded via the subzero level set
of l). The outer minimum ensures that the value function
“remembers” these events over the entire time horizon. In
other words, the value can only be negative if the target
T is reached without ever violating the safety constraint F
along the way.

Following prior work [12], it can be shown that this value
function must satisfy the fixed-point reach-avoid Bellman
equation:

V π
∗ (s; g) = max

{
hg(s), min

{
lg(s), V

π
∗ (sπ+; g)

}}
. (2)

where sπ+ := f(s, π(s; g)) is the next state the robot reaches
after applying the control from the goal-conditioned policy
π(·; g) and the ∗ indicates optimality of the reach-avoid value
function, V π

∗ , computed with a perfect solver.
To scale reach-avoid analysis to higher dimensional state

and goal spaces, we leverage the principled time-discounted
formulation of Eq. 2 introduced in [12], rendering the
reach-avoid problem compatible with reinforcement learning
approximations (e.g., Q-learning, REINFORCE [17], [31]):

V π(s; g) = γmax
{
hg(s),min

{
lg(s), V

π(sπ+; g)
}}

+(1− γ)max
{
lg(s), hg(s)

}
. (3)

Here, γ ∈ [0, 1) represents the time discount factor, where
V π → V π

∗ as γ → 1. Note that V π is an over approximation
of V π

∗ , therefore it will always be more conservative than V π
∗

[12]. In the SALT framework, the reach-avoid value function
V π(s; g) is trained offline before deploying the robot policy,
but will be queried online given any new human goal g to
monitor the robot policy performance and to automatically
propose an alternative to the human.

Online: Alternative Suggestion as Safe Control in Goal
Space. Once V π is trained offline, we instantiate the
problem of suggesting alternatives online as a safe control
problem. Our key idea is to treat the goal as a virtual action
that the robot can minimally modify to ensure the policy will
be accomplished safely. Specifically, we formalize a “smooth

blending” safety filter inspired by control barrier functions
[8], but instead of filtering actions as is done typically, we
filter goals. Let the human’s original goal input be gH. The
robot seeks an alternative goal gR that satisfies:

gR = argmin
g∈G

d(E(g), E(gH); θ) (4)

s.t. V π(s; g) ≤ 0,

where d(·) is a similarity measure, and E(·) is an encoder that
maps goal representations to the goal space. The similarity
measure is parameterized by human intent θ, since the notion
of similarity can differ based on what the user intends to do
with a goal object or after a robot reaches a desired state. If
the human’s original goal gH and robot’s initial state s does
not satisfy safety and liveness (i.e., V π(s; gH) > 0), then the
optimization above will be solved to find an alternative goal
gR that’s similar to gH. We stress that the representation
of the goals g, and the corresponding similarity measure
d(·) are a key design decision, and one which we study in
Sec. V-C. In our experiments, we first start with pose-based
representations of g and an Euclidean distance function as a
similarity measure, and then explore semantic similarity and
goal representations (conditioned on intent).

IV. EXPERIMENTAL SETUP

Environment: Manipulation (20D). We study our SALT
framework in a high-dimensional manipulation task. A
tabletop manipulator has to lift a person’s desired ob-
ject: a red mug, a brown bowl, or a red bowl (Fig 1).
These comprise our discrete goal parameters: g ∈ G :=
{RedMug,BrownBowl,RedBowl}. We use the robosuite
simulation environment [32] and the Franka Panda manipu-
lator. For both the base policy and for reachability analysis,
we model the 20-dimensional robot state s ∈ R20 consisting
of robot end-effector (EE) pose (pEE ∈ R7, xyz position
and quaternion), gripper state (left and right gripper opened
or closed δL, δR ∈ {0, 1}), the pose of the person’s desired
object (pg ∈ R7), the relative position of the EE to the
object (prelEE,g ∈ R3). We augment the state space with the
1-dimensional desired object id (g ∈ G). The robot’s action
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space a ∈ R7 controls the EE linear (x,y,z) and angular
(roll, pitch, yaw) velocity and gripper open and close. All
control inputs are bounded to a magnitude of [−1, 1]. The
target margin function is lg(s) = ||pzg − 0.8||22 − ϵ, encoding
the z-distance of the object from the target height above the
table (0.8 m), and the failure margin function is hg(s) =
min{min(δL, δR) < 0.001, ||prelEE,g|| − 0.1}, which measures
if the robot is gripping without the object in hand.

Base Robot Policy (π). The robot’s base policy is trained via
behavior cloning (BC). We collected demonstrations in the
robomimic [33] environment via expert human teleoperation
and obtained 100 successful demonstrations per object. The
BC policy is a 2-layer MLP with 1024 neurons per layer
and ReLU nonlinearity. It is trained with the AdamW [34]
optimizer for 100 epochs. Every 5 epochs, we rollout the
policy 50 times and use the policy with highest success rate.

Reach-Avoid Value Learning (V π). We use the off-
the-shelf reach-avoid reinforcement learning (RARL) solver
from [12] to approximate the value function in Eq. (3). We
train on a single NVIDIA 4090ti GPU for 400k epochs total,
checkpointing at every 50k epochs. We anneal the discount
factor γ from 0.9 to 0.9999 throughout training, use a 3-
layer MLP with 512 neurons per layer and tanh nonlinearity,
and the AdamW optimizer. We warm-up the value network
for 50k iterations by sampling random points in the state
space to properly learn lg(s) and hg(s). 500 max episode
steps are set for the task. Note that the each episode step is
0.1 seconds, so the time horizons is 50 seconds. We use the
MuJoCo [35] simulation environment.

V. EXPERIMENTAL RESULTS

To understand each component of SALT, we study four
questions in simulation experiments: (1) how accurate is the
reach-avoid value function approximation?, (2) how does
SALT compare to alternative runtime monitoring schemes
(e.g., ensembles)?, (3) how should SALT measure “similar”
alternative goals?, and (4) how aligned are the alternatives
that SALT proposes with human-acceptable ones?

A. How Accurate is SALT’s Reach-Avoid Value Function?

Metrics. To evaluate the reliability of the learned value
network, we measure the true success rate (TSR: network
predicts the policy can safely accomplish the task and in
reality it can), true failure rate (TFR: network predicts the
policy cannot safely accomplish the task and in reality it
cannot), false success rate (FSR: network predicts the policy
can safely accomplish the task but in reality it cannot), and
false failure rate (FFR: network predicts the policy cannot
safely accomplish the task but in reality in can). F1-Score
represents the predictive performance of a binary classifier
(1.0 indicates perfect precision).

Evaluation Approach. Since exhaustive gridding of the
state space is not feasible for our high-dimensional manipu-
lation example, we randomly sample initial physical states s
and goals g, perform a rollout in our simulator, and check if

Environment TSR (%) TFR (%) FSR (%) FFR (%) F1-Score

Manipulation 59.98 (±2.10) 14.55 (±1.43) 12.64 (±1.28) 12.83 (±1.13) 0.82

TABLE I: Quality of the SALT’s value function approxi-
mation. Results from 1,000 initial conditions sampled near
the zero level boundary of the value network across 10
random seeds.

the value of the network accurately reflects policy execution
outcome (safe success, or not). We do this on 1,000 initial
(s, g) pairs sampled near the zero level set of the approximate
value network (V π(s, g) ≈ 0), since an accurate boundary
matters for monitoring, and across 10 random seeds.

Results. Table I shows accuracy metrics for manipulation.
We find that our value function has a 0.82 F1-score, indi-
cating that we have learned a non-trivial discrimination of
safe and unsafe initial states and goals. We hypothesize that
errors in the approximated value function come from the
high dimensionality of the system and task complexity of
the grasping and pickup task. Future work should investigate
post-hoc adjustment techniques to further minimize the FFR
and FSR (e.g., [36]).

B. What is the Benefit of SALT as a Runtime Monitor?

Method TNR % (↑) TPR % (↑) FPR % (↓) FNR % (↓) F1-Score (↑)

Ensemble 34.61 (±1.68) 27.45 (±1.96) 32.65 (±1.27) 5.26 (±0.89) 0.65
RewardSum 64.47 (±1.61) 4.67 (±0.68) 8.85 (±1.01) 22.01 (±1.21) 0.81
SALT (ours) 61.21 (±1.91) 13.23 (±1.56) 13.23 (±1.23) 12.33 (±0.85) 0.83

TABLE II: Evaluating Runtime Monitors. Confusion ma-
trix for 1,000 random initial states across 10 random seeds.

Baselines. We compare our reachability-based monitor to
two baselines: Ensemble and RewardSum safety monitors.
Following [37], we use an Ensemble of behavior cloned
policies as an open loop monitor: high ensemble disagree-
ment measures uncertainty in the robot’s action prediction.
If the disagreement exceeds a threshold, then the robot stops
and asks for help. We use M = 5 policies as ensemble
members, and take the variance σ2 of the action prediction
as the uncertainty measure; the robot stops when σ2 > ϵ.
We use ϵ = 0.0175, which are heuristically tuned for lowest
FSR and FFR. Similar to our approach, RewardSum is a
closed loop safety monitor whose value function captures
long-term outcomes of executing the base policy. However,
the two methods differ in their optimization objective: Re-
wardSum computes the value via the typical expected sum
of discounted rewards used in reinforcement learning, while
SALT uses the reach-avoid objective which remembers the
closest the robot ever gets to safety and liveness violations
(as in Eq. (3)).

Metrics. We measure the accuracy of each monitor stopping
to alert the human. We once again randomly sample (s, g)
pairs, roll our the policy to obtain the ground-truth success
or failure label, and then compare each monitor to this label.
We define a 2x2 confusion matrix of monitor predictions
(flag raised or not) and actual robot outcomes (success or
fail). True negative rate (TNR) is when the monitor does not
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Figure 3: Open Loop vs. Closed Loop Monitoring. En-
semble detects uncertainty before grasping and asks for help
unnecessarily. SALT’s closed loop monitoring first checks
the safety and liveness via the V π , then executes confidently.

raise a flag and the robot executes successfully, true positive
rate (TPR) is when the monitor raises a flag and the robot
would have actually failed, false positive rate (FPR) is when
the monitor raises a flag unnecessarily, and false negative
rate (FNR) is when when the monitor did not raise a flag
when it should have (robot failed). We also measure the F1

score as in Section V-A.

Results. Results are in Table II: Ensemble had the highest
TPR (27.45%) but also the highest FPR (32.65%), and
the lowest F1-score of 0.65. In total, Ensemble triggered
human help around 60% of the time, when it should have
been triggered less than half of the time. Figure 3 shows
an example of this pessimism: Ensemble asks for help
mid-execution even though the robot was capable of doing
the task safely. Since actions are being evaluated at every
timestep, Ensemble can only know that it is uncertain,
rather than describe a high-level alternative that would make
it confident. In contrast, ours checks pre-execution if the
closed-loop behavior is predicted to be safe and live, and
requires no human supervision during execution. Finally,
comparing closed loop monitors, SALT is consistently a
more reliable safety monitor compared to RewardSum,
having a high TPR+TNR of 74.44% (vs. 69.14%), a lower
FNR of 12.33% (vs. 22.01%), and higher F1-score of 0.83
(vs. F1-score of 0.81).

C. How Should SALT Reason About “Similar” Alternatives?

We hypothesize that suggesting similar alternatives may
require a semantic representation of the goals—capturing
visual or functional properties of the object—and a corre-
sponding similarity measure. In this section, we ablate the
encoder models E(·) and similarity measure d(·) used within
our SALT framework. We also study how similar alternatives
change as a function of human intent θ in Equation 5.

Methods: Encoders, Intents, and Similarity Measures.
We investigate three methods that leverage different goal
representations and similarity measures: CosineSim, LLM,
and SIRL. In our experiments, CosineSim uses a textual
description of the goal (e.g., as returned by a semantic object
detector) and measures similarity via the cosine similarity

between the textual embedding of the human’s original goal
(gH) and any alternative goal (g). We use the pre-trained
BERT [38] sentence-transformer model to obtain the textual
embedding. Mathematically, given a language description Lg

of a goal g and a textual description of the intent Lθ, our
encoder produces an embedding vector EBERT(Lg;Lθ) = w⃗g

and our similarity measure is d := w⃗g · w⃗gH/||w⃗g|| ||w⃗gH ||.
LLM Fuzzy Matching [39] also uses a textual represen-
tation of the goal and intent, but uses a pre-trained large
language model (LLM) to directly reason about the semantic
similarity (without looking at the embedding similarity).
In our experiments, we use GPT-4o [40] as our language
model. Mathematically, d := LLM(Lg,LgH ;Lθ,P), where
the prompt to the LLM is P = “The user intends to Lθ.
Given LgH , which item is the closest related to it?”.

Unlike LLM and CosineSim (which use pre-trained lan-
guage models), SIRL requires training a personalized rep-
resentation which explicitly learns an end-user’s notion of
similarity from their preference data, enabling us to study
how a personalized model of similarity influences our SALT
framework compared to pre-trained models that are not fine-
tuned on individual data. This model uses a privileged, hand-
engineered feature space Φg ∈ Rm as input based on any
given goal object g; for example, in our experiments, given
a g is a red cup, Φg would be a 20-dimensional vector
consisting of the object’s RGB color values and functional
and material properties. We train an intent-parameterized
encoder ESIRL(Φ(g); θ) = ϕθ

g via contrastive learning, which
returns an embedding vector ϕθ

g ∈ Rn, n < m that repre-
sents the most relevant features of a goal given the user’s
intent. Finally, SIRL measures similarity via L2 distance in
embedding space: d := ||ϕθ

g − ϕθ
gH ||2.

Implementation Details. SIRL learns relevant similarity
features by asking the end user to select the two most similar
goals given a triplet of goals. Throughout this section, we
use simulated human data for training SIRL and evaluation,
enabling us to have access to a ground-truth representa-
tion of the human’s notion of similarity given the intent.
SIRL is trained on triplets Dθ = {(Φi

g1 ,Φ
i
g2 ,Φ

i
g3)}

K
i=1,

which are feature spaces corresponding to three distinct
goals in the environment given a human intent θ. The
simulated human ranks the two most similar ones using their
ground-truth intent-relevant features. We train the encoder
ESIRL(Φ(g); θ) = ϕθ

g to minimize the loss from [41]:

L(ϕθ
g) =

|Dθ|∑
i=1

Ltrip(Φ
i
g,Φ

i
g+ ,Φ

i
g−) + Ltrip(Φ

i
g+ ,Φ

i
g,Φ

i
g−)

where Φi
g and Φi

g+ are ranked as most similar and Φi
g− is

most dissimilar. Ltrip(Φ
i
g,Φ

i
g+ ,Φ

i
g−) is the triplet loss [42]

that uses Φi
g as the anchor, Φi

g+ as the similar example and
Φi

g− as the dissimilar example. This loss function pushes
together embeddings for similar objects with respect to the
intent-relevant features while pushing apart embeddings for
dissimilar objects.

Evaluation Setup. We use 10 kitchen objects (e.g., cups,
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Figure 4: Accuracy of Different Similarity Measures. (Left Three Plots) RelRank scores for 5 aligned gH are scored
across baselines and intents. (Right Plot) TopRank scores for 5 aligned gH are scored across baselines and intents.

bowls, mugs, pitchers, teapots, ramekins) from the Google
Research dataset [43] and study three increasingly compli-
cated user intents: θ1 = Sorting Kitchen by the Same Color,
θ2 = Microwaving Soup, and θ3 = Serving Wine at Formal
Dinner. For each intent, we select 5 initial goal objects from
the dataset that make sense for the intent. Given one of
these five objects, we query each method for its similarity
score compared to all other 9 objects. We determine the
ground-truth similarity score using a simulated human with
privileged knowledge about their intent-relevant features.

Metrics. We want to measure how well the distance func-
tions in each method captures the relative distance between
any pairs of objects. We use two metrics: TopRank returns
one if the most similar item outputted by a similarity measure
is the most similar item for the simulated human (and zero
otherwise); RelRank returns a real-valued score (between
0 to 1) which measures how correctly a method ranks all
other goals relative to a given goal2 . Mathematically, let
gH be a given goal and let G∗

gH = {g1, g2, ...gn} be a
list of all other n goals ranked by how similar they are
to gH by the simulated human. We define Gω

gH to be a
list of all the n goals ranked by their similarity to gH by
any method, ω ∈ {SIRL,CosineSim,LLM}. Let rG∗

gH
(gi)

be the rank position of goal gi in the ordered list G∗
gH

and let RG∗
gH

(gi, gj) = sign[rG∗
gH

(gj) − rG∗
gH

(gi)]. Here,
RG∗

gH
(gi, gj) returns 1 if gi is more similar to gH than gj

and -1 for the converse (our lists assume no ties). Finally, we
define an indicator function 1[RG∗

gH
(gi, gj) = RGω

gH
(gi, gj)]

that returns 1 if the two lists have the same relative rankings
of the goals and 0 otherwise. The RelRank metric is then:

RelRank(G∗
gH ,Gω

gH) = (5)
1(
n
2

) ∑
1≤i<j≤n

1[RG∗
gH

(gi, gj) = RGω
gH

(gi, gj)].

2Our metric is inspired by from Kendall’s rank correlation coefficient [44].
However, while Kendall’s penalizes (with -1) for every incorrectly ordered
pair, our metric does not (assigns 0). This modification is appropriate for our
context, where the top rankings are of more practical importance (since we
want to return maximally similar alternatives). Thus, we should not punish
the method for having noisy bottom rankings since the differences may not
represent meaningful distinctions.

Results: Most Similar Goal Accuracy. In the right of
Figure 4 we show the TopRank results averaged across all
five goals per each intent. SIRL most consistently ranks
the human’s preferred goal as most similar (in total, 12)
compared to CosineSim and LLM (9 for both). Further-
more, the explicit training of SIRL makes it more robust
to intents while LLM and CosineSim (parameterized by
the intent) sometimes ignore critical intent features. (e.g.,
for θ1 =Sorting Kitchen by Color and gH = RedMug,
both methods return White Mug, neglecting color). We
hypothesize that this occurs because the models are only
approximately optimal in their rankings and selecting the
top-1 choice requires precision; for example, we observed
that the ground-truth top choice typically appeared within
the top-3 results of each method.

Results: Overall Similarity Measure Accuracy. We re-
port the RelRank metric (which quantifies the overall
performance of a similarity measure) in the three plots left
of Figure 4 for each intent θ1, θ2, θ3. Across all intents
and goals, SIRL’s similarity measure is more consistently
accurate compared to CosineSim and LLM, and is the
best performing measure for intent θ3. This is because
SIRL is optimized to solve a personalized metric learning
problem—identifying an embedding space that understands
similarity according to the user’s internal state—while the
other two approaches that use pre-trained models have an
implicit semantic understanding of similarity. As the intents
become increasingly complicated (e.g., θ3 =Serving Wine,
CosineSim and LLM’s pre-trained similarity struggle to
capture how the human evaluates these alternatives, while
SIRL maintains performance due to its privileged access
to human’s internal states. Between the two pre-trained ap-
proaches, LLM typically out-performs CosineSim in terms
of accuracy.

Our main takeaway is that personalized preference data
enables more accurate goal representations and better sim-
ilarity measures, particularly for complex intents. However,
off-the-shelf language models and LLM Fuzzy Matching can
still be valuable semantic similarity measures that require no
additional training data and provide a more naturalistic and
intuitive interface for people to specify their goals (e.g., via
language rather than explicit featurizations of the world).
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D. How Acceptable are SALT’s Proposed Alternatives?

Finally, we study SALT’s overall performance at detecting
when the robot can safely accomplish a desired goal and
suggesting a similar safe alternatives when it cannot.

Alternatives Dataset. To measure how acceptable are
SALT’s alternatives, we obtained a validation dataset of
initial goal (gH) and acceptable alternative pairs annotated
by 20 expert users from labs at Carnegie Mellon and UC
San Diego. In the manipulation setting, people were shown a
tabletop with three objects (as in Fig. 1) with two distinctive
intents: θ1 = Drinking Soup and θ2 = Sorting Kitchen by
the Same Color. These users were asked which alternative
objects would be acceptable given an initial object.

Approach. For each initial goal gH in the validation dataset,
we queried SALT to obtain our algorithm’s suggested alter-
natives. We perform this across a suite of initial robot states
s. We queried 1,000 random initial conditions for each goal
and saved our algorithm’s suggestion, gR. Note that SALT
returns the initial goal (i.e., gR = gH) if it is safe and live.

Metrics. We measure alternative alignment (%): given an
initial goal gH, if the alternative goal proposed by SALT
matches or if the input goal is safe and live, then alignment is
a success. We compute mean and standard deviation across
all users and initial s, and report results per initial goal.
We compare alignment across several distance measures:
Euclidean, CosineSim, SIRL, and LLM.

Results: Quantitative. Alternative alignment results are
shown in Figure 5. On aggregate, we find that SALT can
detect if the original goal was safe and suggest safe alter-
natives that strongly align with human preferences (align-
ment scores between 70%-100% when using the SIRL or
LLM objective functions. We note that when θ1 =Drinking
Soupand gH = RedMug, 35% of the users wanted neither
alternative, dropping the maximum possible alignment rate.

Furthermore, we break down our results into only those
scenarios where the human’s initial goal (gH) was not safe,
and thus the robot had to suggest an alternative. The align-
ment scores for these scenarios are shown in Figure 5 in a
cross-hatched pattern (called AltSuggest). Note that for gH =
BrownBowl, the robot is always capable of grabbing this
initial object safely, and thus it is not part of the AltSuggest
breakdown. First, we see that Euclidean has low alignment
for most of the AltSuggest scenarios, highlighting the need
for semantic similarity measures. For intent θ1 =Drinking
Soup and θ2 =Sorting by Color, CosineSim’s alignment rate
drops significantly (to 2.13% and 10% respectively) when
gH = RedBowl, indicating that this similarity measure is
not capable of making the closed-loop system suggest safe
and aligned alternatives. Consistent with Section V-C, we see
that when SALT uses SIRL and LLM, the overall system is
able to consistently return safe and similar alternatives that
align with an end-user’s notion of similarity.

Results: Qualitative. Figure 1 shows our algorithm in
manipulation where a user first asks for the red bowl to be

Figure 5: User Alignment Success Across 1,000 Initial
Conditions. Euclidean is in grey, CosineSim in green,
SIRL in pink, and LLM in blue. Scenarios where the initial
goal gH was not safe and thus the robot had to suggest
an alternative are denoted as AltSuggest. SIRL and LLM
consistently out-perform Euclidean and CosineSim when
it comes to guiding SALT to generate safe and aligned
alternatives.

picked up with the intent θ1 = Drinking Soup. Realizing
the it would likely mis-grasp the red bowl and fail, SALT
proposes to pick up the brown bowl with SIRL (right, Figure
1), and safely completes the task.

VI. CONCLUSION

In this work, we propose SALT: a framework for robots to
monitor if their goal-conditioned policies can safely accom-
plish a given goal, and automatically suggest safe alternatives
when they cannot. By actively proposing a safe alternative
pre-execution, we can not only minimize possible safety
violations, but also human intervention efforts. For safety,
we find that open loop monitors that interpret safety as
uncertainty cannot differentiate clearly between a safe and
unsafe state, while our closed-loop monitor reliably predicts
success and failure. One limitation of our work is that we
rely on privileged state information about the environment as
well as goal representations to quantify safety and suggest
alternatives. Another limitation is the use of a simulated
human during our similarity measure evaluation, since it
may not accurately model real user preferences. We are
excited about further verifying this with a rigorous user
study. In future work, we seek to investigate image-based
goal-conditioned policies, as well as image representations
of goals and similarity queries. One exciting future work is
reasoning about task-level alternatives, rather than high-level
alternatives like goals.
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