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Abstract

Vision Transformer (ViT) models have demonstrated a breakthrough in a wide range of computer 

vision tasks. However, compared to the Convolutional Neural Network (CNN) models, it has 

been observed that the ViT models struggle to capture high-frequency components of images, 

which can limit their ability to detect local textures and edge information. As abnormalities in 

human tissue, such as tumors and lesions, may greatly vary in structure, texture, and shape, 

high-frequency information such as texture is crucial for effective semantic segmentation tasks. 

To address this limitation in ViT models, we propose a new technique, Laplacian-Former, that 

enhances the self-attention map by adaptively re-calibrating the frequency information in a 

Laplacian pyramid. More specifically, our proposed method utilizes a dual attention mechanism 

via efficient attention and frequency attention while the efficient attention mechanism reduces the 

complexity of self-attention to linear while producing the same output, selectively intensifying 

the contribution of shape and texture features. Furthermore, we introduce a novel efficient 

enhancement multi-scale bridge that effectively transfers spatial information from the encoder to 

the decoder while preserving the fundamental features. We demonstrate the efficacy of Laplacian-

former on multi-organ and skin lesion segmentation tasks with +1.87% and +0.76% dice scores 

compared to SOTA approaches, respectively. Our implementation is publically available at 

GitHub.

Keywords

Deep Learning; Texture; Segmentation; Laplacian Transformer

azad@pc.rwth-aachen.de . 

HHS Public Access
Author manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 
January 31.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2023 October ; 14222: 736–746. 
doi:10.1007/978-3-031-43898-1_70.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

The recent advancements in Transformer-based models have revolutionized the field of 

natural language processing and have also shown great promise in a wide range of 

computer vision tasks [5,15]. As a notable example, the Vision Transformer (ViT) model 

utilizes Multi-head Self-Attention (MSA) blocks to globally model the interactions between 

semantic tokens created by treating local image patches as individual elements [7]. This 

approach stands in contrast to CNNs, which hierarchically increase their receptive field 

from local to global to capture a global semantic representation. Nevertheless, recent 

studies [25,3] have shown that ViT models struggle to capture high-frequency components 

of images, which can limit their ability to detect local textures and it is vital for many 

diagnostic and prognostic tasks. This weakness in local representation can be attributed to 

the way in which ViT models process images. ViT models split an image into a sequence 

of patches and model their dependencies using a self-attention mechanism, which may 

not be as effective as the convolution operation used in CNN models in extracting local 

features within receptive fields. This difference in how ViT and CNN process images may 

explain the superior performance of CNN models in local feature extraction [9,1]. Innovative 

approaches have been proposed in recent years to address the insufficient local texture 

representation within Transformer models. One such approach is the integration of CNN and 

ViT features through complementary methods, aimed at seamlessly blending the strengths of 

both in order to compensate for any shortcomings in local representation [5,16].

Transformers as a Complement to CNNs:

TransUNet [5] is one of the earliest approaches incorporating the Transformer layers into 

the CNN bottle-neck to model both local and global dependency using the combination 

of CNN and ViT models. Heidari et al. [12] proposed a novel solution called HiFormer, 

which leverages a Swin Transformer module and a CNN-based encoder to generate two 

multi-scale feature representations, which are then integrated via a Double-Level Fusion 

module. UNETR [11] used a Transformer to create a powerful encoder with a CNN decoder 

for 3D medical image segmentation. By bridging the CNN-based encoder and decoder 

with the Transformer, CoTr [31], and TransBTS [27], the segmentation performance in 

low-resolution stages was improved. Despite these advances, there remain some limitations 

in these methods such as computationally inefficiency (e.g., TransUNet model), the 

requirement of a heavy CNN backbone (e.g., HiFormer), and the lack of consideration for 

multi-scale information. These limitations have resulted in less effective network learning 

results in the field of medical image segmentation.

New Attention Models:

The redesign of the self-attention mechanism within pure Transformer models is another 

method aiming to augment feature representation to enhance the local feature representation 

ultimately [14]. In this direction, Swin-Unet [4] utilizes a linear computational complexity 

Swin Transformer [18] block in a U-shaped structure as a multi-scale backbone. MISS-

Former [13] besides exploring the Efficient Transformer [30] counterpart to diminish 

the parameter overflow of vision transformers, applies a non-invertible down-sampling 

operation on input blocks transformer to reduce the parameters. D-Former [29] is a pure 
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transformer-based pipeline that comprises a double attention module to capture locally 

fine-grained attention and interaction with different units in a dilated manner through its 

mechanism.

Drawbacks of Transformers:

Recent research has revealed that traditional self-attention mechanisms, while effective 

in addressing local feature discrepancies, have a tendency to overlook important high-

frequency information such as texture and edge details [26]. This is especially problematic 

for tasks like tumor detection, cancer-type identification through radiomics analysis, as well 

as treatment response assessment, where abnormalities often manifest in texture. Moreover, 

self-attention mechanisms have a quadratic computational complexity and may produce 

redundant features[23].

Our Contributions:

❶ We propose Laplacian-Former, a novel approach that includes new efficient attention 

(EF-ATT) consisting of two sub-attention mechanisms: efficient attention and frequency 
attention. The efficient attention mechanism reduces the complexity of self-attention to 

linear while producing the same output. The frequency attention mechanism is modeled 

using a Laplacian pyramid to emphasize each frequency information’s contribution 

selectively. Then, a parametric frequency attention fusion strategy to balance the importance 

of shape and texture features by recalibrating the frequency features. These two attention 

mechanisms work in parallel.

❷ We also introduce a novel efficient enhancement multi-scale bridge that effectively 

transfers spatial information from the encoder to the decoder while preserving the 

fundamental features.

❸ Our method not only alleviates the problem of the traditional self-attention mechanism 

mentioned above, but also it surpasses all its counterparts in terms of different evaluation 

metrics for the tasks of medical image segmentation.

2 Methods

In our proposed network, illustrated in Figure 1, taking an input image X ∈ RH × W × C

with spatial dimensions H and W , and C channels, it is first passed through a patch 

embedding module to obtain overlapping patch tokens of size 4×4 from the input image. The 

proposed model comprises four encoder blocks, each containing two efficient enhancement 

Transformer layers and a patch merging layer that downsamples the features by merging 

2×2 patch tokens and increasing the channel dimension. The decoder is composed of three 

efficient enhancement Transformer blocks and four patch-expanding blocks, followed by a 

segmentation head to retrieve the final segmentation map. Laplacian-Former then employs 

a novel efficient enhancement multi-scale bridge to capture local and global correlations of 

different scale features and effectively transfer the underlying features from the encoder to 

the decoder.
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2.1 Efficient Enhancement Transformer Block

In medical imaging, it is important to distinguish different structures and tissues, especially 

when tissue boundaries are ill-defined. This is often the case for accurate segmentation 

of small abnormalities, where high-frequency information plays a critical role in defining 

boundaries by capturing both textures and edges. Inspired by this, we propose an Efficient 

Enhancement Transformer Block that incorporates an Efficient Frequency Attention (EF-

ATT) mechanism to capture contextual information of an image while recalibrating the 

representation space within an attention mechanism and recovering high-frequency details.

Our efficient enhancement Transformer block first takes a LayerNorm (LN) from the 

input x. Then it applies the EF-ATT mechanism to capture contextual information and 

selectively include various types of frequency information while using the Laplacian 

pyramid to balance the importance of shape and texture features. Next, x and diversity-

enhanced shortcuts are added to the output of the attention mechanism to increase the 

diversity of features. It is proved in [24] that as Transformers become deeper, their features 

become less varied, which restrains their representation capacity and prevents them from 

attaining optimal performance. To address this issue, we have implemented an augmented 
shortcut method from [19], a Diversity-Enhanced Shortcut (DES), employing a Kronecker 

decomposition-based projection. This approach involves inserting additional paths with 

trainable parameters alongside the original shortcut x, which enhances feature diversity 

and improves performance while requiring minimal hardware resources. Finally, we apply 

LayerNorm and MiX-FFN [10] to the resuiting feature representation to enhance its power. 

This final step completes our efficient enhancement Transformer block, as illustrated in 

Figure 2.

2.2 Efficient Frequency Attention (EF-ATT)

The traditional self-attention block computes the attention score S using query (Q) and key 

(K) values, normalizes the result using Softmax, and then multiplies the normalized attention 

map with value (V):

S(Q, K, V) = Softmax QKT
dk

V,

(1)

where dk is the embedding dimension. One of the main limitations of the dot-

product mechanism is that it generates redundant information, resulting in unnecessary 

computational complexity. Shen et al. [23] proposed to represent the context more 

effectively by reducing the computational burden from O(n2) to linear form O(d2n):

E(Q, K, V) = ρq(Q) ρk(K)TV .

(2)
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Their approach involves applying the Softmax function (ρ) to the key and query vectors 

to obtain normalized scores and formulating the global context by multiplying the key 

and value matrix. They demonstrate that efficient attention E can provide an equivalent 

representation of self-attention while being computationally efficient. By adopting this 

approach, we can alleviate the issues of feature redundancy and computational complexity 

associated with self-attention.

Wang et al. [26] explored another major limitation of the self-attention mechanism, where 

they demonstrated through theoretical analysis that self-attention operates as a low-pass 

filter that erases high-frequency information, leading to a loss of feature expressiveness in 

the model’s deep layers. Authors found that the Softmax operation causes self-attention to 

keep low-frequency information and loses its fine details. Motivated by this, we propose a 

new frequency recalibration technique to address the limitations of self-attention, which only 

focuses on low-frequency information (which contains shape information) while ignoring 

the higher frequencies that carry texture and edge information. First, we construct a 

Laplacian pyramid to determine the different frequency levels of the feature maps. The 

process begins by extracting (L + 1) Gaussian representations from the encoded feature 

using different variance values of the Gaussian function:

Gl(X) = X ∗ 1
σl 2πe− i2 + j2

2σl
2 ,

(3)

where X refers to the input feature map, (i, j) corresponds to the spatial location within the 

encoded feature map, the variable σl denotes the variance of the Gaussian function for the 

l-th scale, and the symbol * represents the convolution operator. The pyramid is then built 

by subtracting the l-th Gaussian function (Gl) output from the (l + 1)-th output (Gl − Gl + 1) 

to encode frequency information at different scales. The Laplacian pyramid is composed of 

multiple levels, each level containing distinct types of information. To ensure a balanced 

distribution of low and high-frequency information in the model, it is necessary to efficiently 

aggregate the features from all levels of the frequency domain. Hence, we present frequency 

attention that involves multiplying the key and value of each level (Xl) to calculate the 

attention score and then fuses the resulting attention scores of all levels using a fusion 

module, which performs summation. The resulting attention score is multiplied by Query 

(Q) to obtain the final frequency attention result, which subsequently concatenates with 

the efficient attention result and applies the depth-wise convolution with the kernel size of 

2×1×1 in order to aggregate both information and recalibrate the feature map, thus allowing 

for the retrieval of high-frequency information.

2.3 Efficient Enhancement Multi-scale Bridge

It is widely known that effectively integrating multi-scale information can lead to improved 

performance [13]. Thus, we introduce the Efficient Enhancement Multi-scale Bridge as an 

alternative to simply concatenating the features from the encoder and decoder layers. The 

proposed bridge, depicted in Figure 1, delivers spatial information to each decoder layer, 
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enabling the recovery of intricate details while generating output segmentation masks. In 

this approach, we aim to calculate the efficient attention mechanism for each level and fuse 

the multi-scale information in their context; thus, it is important that all levels’ embedding 

dimension is of the same size. Therefore, in order to calculate the global context (Gi), we 

parametrize the query and value of each level using a convolution 1×1 where it gets the size 

of mC and outputs C, where m equals 1, 2, 5, and 8 for the first to fourth levels, respectively. 

We multiply the new key and value to each other to attain the global context. We then use 

a summation module to aggregate the global context of all levels and reshape the query for 

matrix multiplication with the augmented global context. Taking the second level with the 

dimension of H
8 × W

8 × 2C, the key and value are mapped to (H
8

W
8 ) × C, and the query to 

(2H
8

W
8 ) × C. The augmented global context with the shape of C × C is then multiplied by 

the query, resulting in an enriched feature map with the shape of (2H
8

W
8 ) × C. We reshape 

the obtained feature map into H
8 × W

8 × 2C and feed it through an LN and MiX-FFN module 

with a skip connection to empower the feature representations. The resulting output is 

combined with the expanded feature map, and then projected using a linear layer onto the 

same size as the encoder block corresponding to that level.

3 Results

Our proposed technique was developed using the PyTorch library and executed on a single 

RTX 3090 GPU. A batch size of 24 and a stochastic gradient descent algorithm with a base 

learning rate of 0.05, a momentum of 0.9, and a weight decay of 0.0001 was utilized during 

the training process, which was carried out for 400 epochs. For the loss function, we used 

both cross-entropy and Dice losses (Loss = γ ⋅ Ldice + (1 − γ) ⋅ Lce), γ set to 0.6 empirically.

Datasets:

We tested our model using the Synapse dataset [17], which comprises 30 cases of contrast-

enhanced abdominal clinical CT scans (a total of 3,779 axial slices). Each CT scan consists 

of 85 ~ 198 slices of the in-plane size of 512×512 and has annotations for eight different 

organs. We followed the same preferences for data preparation analogous to [5]. We also 

followed [2,8] experiments to evaluate our method on the ISIC 2018 skin lesion dataset [6] 

with 2,694 images.

Synapse Multi-Organ Segmentation:

Table 1 presents a comparison of our proposal with previous SOTA methods using the 

DSC and HD metrics across eight abdominal organs. Laplacian-Former clearly outperforms 

SOTA CNN-based methods. We extensively evaluated EfficientFormer (EffFormer) plus 

another drift of Laplacian-Former without utilizing the bridge connections to endorse 

the superiority of Laplacian-Former. Laplacian-Former exhibits superior learning ability 

on the Dice score metric compared to other transformer-based models, achieving an 

increase of +1.59% and +2.77% in Dice scores compared to HiFormer and Swin-Unet, 

respectively. Figure 3 illustrates a qualitative result of our method for different organ 

segmentation, specifically we can observe that the LalacianFormer produces a precise 
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boundary segmentation on Gallbladder, Liver, and Stomach organs. It is noteworthy to 

mention that our pipeline, as a pure transformer-based architecture trained from scratch 

without pretraining weights, outperforms all previously presented network architectures.

Skin Lesion Segmentation:

Table 2a shows the comparison results of our proposed method, Laplacian-Former, against 

leading methods on the skin lesion segmentation benchmark. Our approach outperforms 

other competitors across most evaluation metrics, indicating its excellent generalization 

ability across different datasets. In particular, our approach performs better than hybrid 

methods such as TMU-Net [19] and pure transformer-based methods such as Swin-Unet [4]. 

Our method achieves superior performance by utilizing the frequency attention in a pyramid 

scale to model local textures. Specifically, our frequency attention emphasizes the fine 

details and texture characteristics that are indicative of skin lesion structures and amplifies 

regions with significant intensity variations, thus accentuating the texture patterns present in 

the image and resulting in better performance. In addition, we provided the spectral response 

of LaplacianFormer vs. Standard Transformer in identical layers in Table 2b. It is evident 

Standard design frequency response in deep layers of structure attenuates more than the 

LaplacianFormer, which is a visual endorsement of the capability of LaplacianFormer for 

its ability to preserve high-frequency details. The supplementary provides more visualization 

results.

4 Conclusion

In this paper, we introduce Laplacian-Former, a novel standalone transformer-based U-

shaped architecture for medical image analysis. Specifically, we address the transformer’s 

inability to capture local context as high-frequency details, e.g., edges and boundaries, by 

developing a new design within a scaled dot attention block. Our pipeline benefits the 

multi-resolution Laplacian module to compensate for the lack of frequency attention in 

transformers. Moreover, while our design takes advantage of the efficiency of transformer 

architectures, it keeps the parameter numbers low.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Architecture of our proposed Laplacian-Former.
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Fig. 2: 
The structure of our frequency enhancement Transformer block.
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Fig. 3: 
Segmentation results of the proposed method on the Synapse dataset. Our Laplacian-Former 

shows finer boundaries (high-frequency details) for the region of the stomach and less false 

positive prediction for the pancreas.
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Azad et al. Page 13

Table 1:

Comparison results of the proposed method on the Synapse dataset. Blue indicates the best result, and red 

indicates the second-best.

Methods # 
Params 

(M)

DSC 
↑

HD ↓ Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

R50 U-Net [5] 30.42 74.68 36.87 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16

U-Net [20] 14.8 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

Att-UNet [22] 34.9 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75

TransUNet [5] 105.28 77.48 31.69 87.23 63.13 81.87 77.02 94.08 85.86 85.08 75.62

Swin-Unet [4] 27.17 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

LeVit-Unet [32] 52.17 78.53 16.84 78.53 62.23 84.61 80.25 93.11 59.07 88.86 72.76

TransDeepLab [2] 21.14 80.16 21.25 86.04 69.16 84.08 79.88 93.53 61.19 89.00 78.40

HiFormer [12] 25.51 80.39 14.70 86.21 65.69 85.23 79.77 94.61 59.52 90.99 81.08

EffFormer 22.31 80.79 17.00 85.81 66.89 84.10 81.81 94.80 62.25 91.05 79.58

LaplacianFormer 
(without bridge)

23.87 81.59 17.31 87.41 69.57 85.22 80.46 94.68 63.71 91.47 78.23

LaplacianFormer 27.54 81.90 18.66 86.55 71.19 84.23 80.52 94.90 64.75 91.91 81.14
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Table 2:

(a) Performance comparison of Laplacian-Former against the SOTA approaches on ISIC 2018 skin lesion 

datset. Blue and red indicates the best and the second-best results. (b) Frequency response analysis on the 

LaplacianFormer (up) vs. Standard Transformer (down).
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