

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 D-CHOPT: DISCOVERING CLOSED-FORM HIGH-DIMENSIONAL ODES FROM PARTIAL OBSERVED TRAJECTORIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Machine learning algorithms have become a new paradigm for automatically discovering closed-form ordinary differential equations (ODEs) from observed trajectories. Although significant breakthroughs have been made in this field, such as symbolic regression and sparse identification of nonlinear dynamics (SINDy), existing approaches primarily perform well for low-dimensional ODEs. This limitation arises due to the lack of understanding of observability limitations in partially observed trajectories, and the additional challenges introduced by complex topological properties. In this work, we propose a method for discovering closed-form high-dimensional ODEs from partially observed trajectories, called D-CHOPT, which advances ODE discovery methods beyond the natural limitations of high-dimensional ODEs. D-CHOPT uses an invertible neural network as the backbone to find the optimal solution within the diffeomorphic equivariant group of the reconstructed dynamical systems, while preserving topological properties and integrating a variable selection method. We provide a formal analysis of observability and the learning limitations of partial trajectories, and explain the enhancements in a manner consistent with the theoretical results. In experiments, D-CHOPT successfully discovered the governing equations for a wide range of dynamical systems, both low and high dimensional.

1 INTRODUCTION

An ordinary differential equation (ODE) is a significant research object in scientific fields, where the solution is a high-dimensional curve that evolves over time. The mathematical expression of ODE is the one that builds the bridge between the continuous state $\mathbf{x}(t)$ of the system and its time derivative $\dot{\mathbf{x}}(t)$ via a function f as $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), t)$. Closed-form of the ODE if f has a concise and analytic expression. Closed-form plays an important role both in engineering applications and scientific research because it provides explicit information that can be used to explain how factors interact and influence the evolution of the entire system (Shakeel et al. (2018); Kacprzyk et al. (2024)). Also, the concrete expression of the ODE facilitates the analysis of the whole system, e.g. (Banerjee (2021)), and helps to reveal the physical rules.

Identifying and discovering the closed-form of ODEs based on a human expert is a time-consuming process. However, automatically discovering closed-form of ODEs has gained interest for the machine learning community and has become one of the important topics of AI for science (Wang et al. (2023)). Several methods have been proposed for this task. Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton et al. (2016)) is an established approach to discover a closed-form function of an ODE model. The central idea is to use sparse linear regression to uncover parsimonious governing equations from a dictionary of basis functions constructed by data, where the sparsity is promoted by pruning out redundant terms based on certain specified thresholds. In the past few years, the SINDy framework has been further improved in various aspects to address these challenges (Hirsh et al. (2022)), e.g., enhancing the library or using deep learning for denoising and derivative computation by fitting the noisy data in a decoupled or coupled manner, for instance, filter techniques such as Savitzky-Golay filter can both reduce noise and compute numerical derivatives (Egan et al. (2024)). For uncertainty quantification, the dictionary-based equation discovery algorithms have been recently extended to Bayesian settings, based on the idea of sparse Bayesian

learning pioneered by Tipping and co-workers (Fasel et al. (2022), Champneys & Rogers (2025)). Another popular method is the symbolic regression method, which estimates the time derivatives as the label and employs the symbolic regression method combined with a certain optimization method to search for the optimal function and possible functional form (Brunton et al. (2016)).

However, both methods are not applicable to partially observed ODEs, because we typically do *not* observe the full state \mathbf{x}_t . Consequently, we only obtain ODE expressions corresponding to the dimensions of the low-dimensional observations, rather than expressions for the full set of state variables. We refer to this problem as the *attractor-dimension mismatch*.

A simple way to resolve this mismatch is to recover the full state \mathbf{x}_t from partially observed data. The delay-coordinate mapping technique bridges this gap, and under certain conditions given by Takens' embedding theorem (Takens (2006)), which yields an attractor that is diffeomorphic to the hidden full-state attractor. Based on this embedding, neural networks can be trained to approximate the inverse mapping, thereby transforming the reconstructed dynamics back to the original system. Once this is achieved, closed-form governing equations can be discovered using SINDy (Bakarji et al. (2023), Champion et al. (2019)).

Although delay-coordinate embedding for high-dimensional hidden attractor embedding has a rich history in data science, especially in time series prediction, causal discovery (Sugihara et al. (2012)), and data-driven modeling (Kim et al. (1999)), due to an insufficient understanding of the theorem and consideration of the properties of ODEs, i.e. the observability of variables which naturally limits the learning ability of the learning framework, the current learning framework has not organically integrated the neural network within the corresponding theoretical foundations and lacks sufficient constraints, merely allowing the network to pick a solution from the solution space and limit its utility for low-dimensional ODEs.

In this work, we develop the Discovery of Closed-form High-dimensional ODE from Partially Observed Trajectories framework (D-CHOPT), which improves the learning accuracy for SINDy-AE and extends it beyond the limitation of low-dimensional settings. The key insight behind D-CHOPT lies in the observability of variables (Letellier & Aguirre (2002)), and the local diffeomorphism property of delay-coordinate mapping (Cross & Gilmore (2010b)), which establish direct links between the partial observation and the ODE f . This approach overcomes limitations of partial trajectories and provides a rigorous and practical solution for the discovery of the true (but unknown) ODE using partially observed trajectories. We establish a framework to address this limitation and propose an algorithm to select the optimal measurements among multiple partially observed trajectories. Under this framework, we propose the topology preserving invertible flow neural networks. We demonstrate via extensive experiments that D-CHOPT can uncover the governing equations for a wide range of dynamical systems while being more accurate and successfully discovering higher-dimensional systems than the alternative methods. Finally, D-CHOPT highlights the importance of topology and observability in partially observed trajectories for the representation learning community when dealing with time series data observed from dynamic systems.

2 BACKGROUND AND PROBLEM SETTING

Dataset consisting of trajectories for partial ODE discovery, especially under the partially observed trajectories with delay-coordinate mapping, involves many decisions, e.g., how to choose the optimal embedding parameters? When and for how long to take measurements? (we discuss these questions in Appendix B.) In this work, we aim to solve the most important question under the partially observed trajectories case: how to select the optimal measurement for Takens' embedding theorem (when the observed trajectories are over two) and how to discover the latent dynamic system under a scenario with incomplete information. We assume that the dataset is *given* for which the variables can be modeled by a system of first-order autonomous ODEs Ginoux (2009) because higher-order ODEs and non-autonomous ODEs can be translated into this form by using D'Alembert transformation or adding additional variables, separately. A dynamical system is defined as

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{f}(\mathbf{x}(t); \mu), \quad (1)$$

where $\mathbf{x} \in \mathcal{M}$ is a m -dimensional time-dependent state vector defined on a smooth compact submanifold of \mathbb{R}^J , with $m > 0$ and $t > 0$. \mathbf{f} is a smooth and nonlinear function and μ is a vector of

108 parameters of the system. Further, in the case with noise, the noisy states $\mathbf{y}(t)$ are given by
 109

$$\mathbf{y}(t) = \mathbf{x}(t) + \epsilon(t) \quad (2)$$

110 where $\epsilon(t)$ denotes the noise process. Our goal is to learn an approximate dynamic system from the
 111 noisy measurements. Usually, in order to observe the values of a dynamic system, we need some
 112 observers, i.e. a function $h : \mathbb{R}^m \mapsto \mathbb{R}^d$ to access the measurements of the dynamic system.
 113

114 In this work, we consider the measurement function h of the ODEs as the coordinate projection
 115 function at discrete times, that is, $h(\mathbf{x}(t)) = \mathbf{y}(t)$. If the observation data for the full state $\mathbf{x}(t)$
 116 are available, that is $h(\mathbf{x}(t)) \in \mathbb{R}^m$, i.e. $(d = m)$, the approximation of \mathbf{f} and derivative $\dot{\mathbf{f}}$ can be
 117 inferred using various existing methods (Qian et al. (2022)). However, in many applications, only
 118 partial measurements are available, which means the dimension of $h(\mathbf{x}(t))$ d is less than m . In this
 119 situation, direct approaches like SINDy, symbolic regression, or other universal models that rely on
 120 the full-state information do not generalize well.

121 **Delay Embedding.** In order to address the issue caused by partial observation, several embedding
 122 techniques have been proposed to enrich the information (Sauer et al. (1991)). One of the
 123 popular techniques is the delay-coordinate mapping based on Takens' embedding theorem. The
 124 delay-coordinate mapping $\phi(t; n, \tau) = [y(t), y(t + \tau), y(t + 2\tau), \dots, y(t + (m - 1)\tau)]$, where n and
 125 τ are the embedding dimension and the time delay, and $y(t)$ is a single coordinate from $\mathbf{y}(t)$. Here,
 126 we assume the embedding dimension of the reconstructed dynamic system is the same as the original
 127 one. We give a further discussion about the parameter selection of delay-coordinate mapping in
 128 Appendix B. The reconstructed system can be assembled into a Hankel matrix (Hirsh et al. (2021)):

$$129 \quad \mathbf{H} = \begin{bmatrix} y(t) & y(t + \tau) & \cdots & y(t + q\tau) \\ y(t + \tau) & y(t + 2\tau) & \cdots & y(t + (q + 1)\tau) \\ \vdots & \vdots & \ddots & \vdots \\ y(t + (m - 1)\tau) & y(t + m\tau) & \cdots & y(t + (m + q - 1)\tau) \end{bmatrix} := [\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_q], \quad (3)$$

130 where m denotes the embedding dimension, q is the number of discrete samples, and τ is the time
 131 delay. Takens' embedding theorem provides theoretical conditions for when time-delay embedding
 132 results in an attractor that is diffeomorphic to the original system, which means the embedding
 133 mapping ϕ is differentiable and invertible *almost everywhere*. Consequently, a natural idea is approximating
 134 the inverse of the delay-coordinate mapping ψ using a Neural Network and then we can recover the original dynamic system.

135 **Subtleties of Takens' Embedding Theorem for closed-form discovery.** Unfortunately, there is
 136 quite a significant misunderstanding of Takens' theorem in previous work. The existence of embedding
 137 is guaranteed by the Whitney Embedding theorem (Whitney (1944)), which states that any smooth
 138 real m -dimensional manifold can be smoothly embedded in the space with dimension larger
 139 than $2m$ without any hint about how to find such embedding. And Takens' embedding theorem
 140 provides a concrete construction that under certain conditions (generic choice of \mathbf{f} and h), the delay-
 141 coordinate mapping is an embedding.

142 Ideally, an embedding of an m -dimensional dynamic system is m -dimensional, which aligns with
 143 our goal of closed-form discovery since we want to recover the function forms of the original system
 144 rather than learning the function forms of its diffeomorphic system. However, in reality, achieving
 145 this goal is challenging. For example, in the case of the Lorenz63 system, it has been proven
 146 that the minimum dimension required for embedding this system is four, and no three-dimensional
 147 embedding exists for the Lorenz63 system (Cross & Gilmore (2010a)). And the same issue exists
 148 for the delay-coordinate mapping, which we use to reconstruct the dynamical attractor manifold.

149 In order to investigate this problem, we start from the continuous form of the delay-coordinate
 150 mapping, i.e. the differential mapping, which has a better analytic property. And the approximation
 151 error is guaranteed by the following Theorem 5. We observe that the differential mapping, is **not** an
 152 (global) embedding, as the Jacobian matrix degenerates in certain regions of the attractor, which we
 153 call it as the *singular manifold* of the ODE system, denoted as \mathcal{M}_s . The most intuitive manifestation
 154 of this is that, for variables with low observability, the trajectory of the reconstructed dynamic system
 155 obtained through delay coordinate mapping no longer remains smooth. In regions near the singular
 156 manifold, it can exhibit sharp fluctuations or even self-intersections, as illustrated in Fig. 1. For
 157 explanation and fully uncover \mathbf{f} , we start from the following definition of observability for $\{\mathbf{f}, \mathbf{h}\}$.

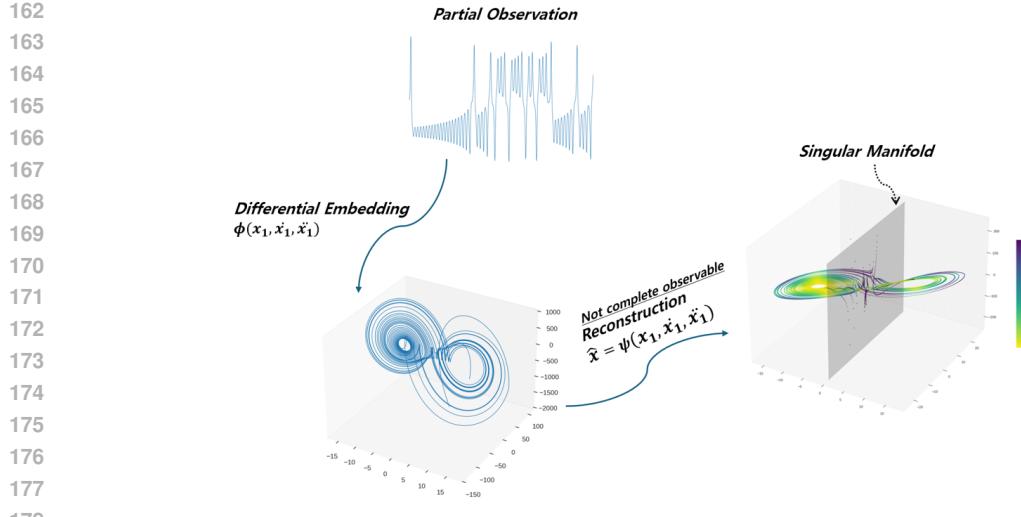


Figure 1: Reconstruction of the original coordinates of the Lorenz system from the differential embedding under the partial observation $h(\mathbf{x}) = x_1$. The system is unobservable at the intersection of the singular manifold and the Lorenz attractor ($x_1 = 0$). As a result, the reconstructed dynamic system shows a large error closer to this region.

Definition 1. The observable space $\mathcal{O}(\mathbf{x})$ of ODE system is the linear space of functions over the field \mathbb{R} spanned by the following functions (Sendiña-Nadal & Letellier (2022)):

$$\mathcal{L}_{\mathbf{f}}^v \mathbf{h}(\mathbf{x}) := [\mathcal{L}_{\mathbf{f}}^v h_1(\mathbf{x}) \dots \mathcal{L}_{\mathbf{f}}^v h_q(\mathbf{x})]^T, 0 \leq v \leq s, \quad 1 \leq j \leq q \quad (4)$$

where $\mathcal{L}_{\mathbf{f}}^v h_j(\mathbf{x})$ denotes the v -th Lie derivative of the j -th component of $\mathbf{h}(\mathbf{x})$ along \mathbf{f} , and s is the smallest integer such that $\nabla \mathcal{L}_{\mathbf{f}}^k \mathbf{h}(\mathbf{x})$ belongs to the span formed by the ODE for all $k > s$.

Due to the nonlinearity, the definition of observability is local, depending on the point \mathbf{x} in the state space where the attractor manifold resides. To quantify observability, we present the following theorem and proposition (Montanari et al. (2022)).

Theorem 2. *If the ODE system in Eq. (1) together with observable function \mathbf{h} is locally observable at \mathbf{x}_0 , then there exists a neighborhood of \mathbf{x}_0 such that*

$$\dim\{\nabla \mathcal{O}(\mathbf{x})\} = m. \quad (5)$$

Proposition 3. *Given some measurement $\mathbf{h}(\mathbf{x})$, a differential embedding between $\mathcal{O}(\mathbf{x})$ and the original space can be constructed using higher-order derivatives of $\mathbf{h}(\mathbf{x})$ as coordinates:*

$$\Phi(\mathbf{x}) = \begin{bmatrix} \mathbf{y} \\ \dot{\mathbf{y}} \\ \vdots \\ \mathbf{y}^{(v)} \end{bmatrix} = \begin{bmatrix} \mathbf{h}(\mathbf{x}) \\ \frac{d\mathbf{h}(\mathbf{x})}{dt} \\ \vdots \\ \frac{d^v \mathbf{h}(\mathbf{x})}{dt^v} \end{bmatrix} = \begin{bmatrix} \mathcal{L}_{\mathbf{f}}^0 \mathbf{h}(\mathbf{x})^\top \\ \mathcal{L}_{\mathbf{f}}^1 \mathbf{h}(\mathbf{x})^\top \\ \vdots \\ \mathcal{L}_{\mathbf{f}}^v \mathbf{h}(\mathbf{x})^\top \end{bmatrix}, \quad (6)$$

If the pair $\{\mathbf{f}, \mathbf{h}\}$ is observable, then such a differential embedding map is left invertible. Following the inverse function theorem, Φ is invertible if its Jacobian matrix has full rank.

In this paper, we only focus on the case where the dimension of $\mathbf{h}(\mathbf{x})$ is one. Here, we reveal the relationship between the delay-embedding mapping and the differential embedding mapping.

Remark 4. In the limit of the discretization step $\Delta t \rightarrow 0$, the column space of the Hankel matrix obtained by the delay-embedding mapping is linearly isomorphic to the differential mapping up to m -dimensional higher-order infinitesimals.

Theorem 5. (Beckermann & Townsend (2019)) *Let $\mathbf{H}_n \in \mathbb{R}^{n \times n}$ be a positive definite Hankel matrix, with singular values $\sigma_1 \geq \dots \geq \sigma_n$. Then $\sigma_i \leq C \rho^{-j/\log n} \sigma_1$ for some constants C and ρ for $i = 1, \dots, n$.*

216 A direct result is that the observable space $\mathcal{O}(\mathbf{x})$ of the reconstructed dynamic system for both dif-
 217 ferential embedding and delay-coordinate mapping is the same. And the Theorem 5 reveals that the
 218 differential mapping can be approximated up to an accuracy of $\epsilon \|\mathbf{H}\|_2$ by a rank of $\mathcal{O}(\log n \log 1/\epsilon)$
 219 matrix which provided the error upper bound for our approximation. We can analyze the dynamic
 220 system reconstructed from the delay-coordinate mapping by analyzing the differential mapping. For
 221 example, we can consider the differential embedding $\phi = (x_1, \dot{x}_1, \ddot{x}_1)$ for the reconstruction of the
 222 Lorenz attractor, which we can observe in Figure 1.

223

224 3 MODEL AND ALGORITHM

225

226 In this paper, we first propose a variable selection algorithm to solve the problem we proposed in
 227 the last section. Moreover, based on the variable with optimal observability, we propose a learning
 228 framework called D-CHOPT, which is an end-to-end interpretable learning framework for *system*
 229 *identification* that provides a closed form for dynamic systems with partially observed trajectories.
 230 In the sequel, we first recall some preliminaries and notations on system identification. Then we
 231 continue with the model architecture and techniques.

232

233

234 3.1 SYSTEM IDENTIFICATION

235

236 System identification aims to uncover a closed-form representation of the unknown ordinary differ-
 237 ential equations. Existing methods can be broadly categorized into two groups: sparse regression
 238 and symbolic regression (Chiuso & Pillonetto (2019)). Both approaches use regression techniques
 239 combined with optimization to select the most probable basis functions from a set of candidates.
 240 The key difference lies in their assumptions: sparse regression assumes that the true ODEs can be
 241 expressed as a linear combination of these candidate basis functions, whereas symbolic regression
 242 lifts this linearity constraint and allows for discovering closed-form expressions in a more flexible,
 243 potentially nonlinear form. The main challenge in system identification is the time derivative, which
 244 is often unobserved due to difficulties in direct measurement, especially in cases with infrequent or
 245 noisy observations. Moreover, the symbolic regression suffers more because of the larger search
 246 space. Most existing work addresses this issue by employing robust derivative estimation methods
 247 (Rosafalco et al. (2025)) or bypassing the unobserved time derivatives through a variational formu-
 248 lation of ODEs (Qian et al. (2022)).

249

250

251 3.2 LEARNING PARTIAL OBSERVED DYNAMICS

252

253

254 Partial observed trajectories are the norm for practical applications and become a key problem for
 255 discovering closed-form dynamics, and several efforts have been made in this field, such as a neural
 256 operator for solving the attractor dimension mismatch or a delay-coordinate mapping as the bridge
 257 for the gap Young & Graham (2023). It utilize the low-dimensional observations for reconstructing
 258 the attractor with the same dimension as the original ones and then applying regression technique
 259 (sparse regression/symbolic regression) to obtain the closed form of the original system, for exam-
 260 ple, the Neural-ODE based Neural Delay Differential Equations (Chen et al. (2018)) which models
 261 the latent original dynamic system based on the time-delay reconstruction of the observed system.
 262 Importantly, these types of neural methods do not provide a concise closed-form expression for the
 263 latent dynamics, and moreover, these types of models do not deeply investigate the nature properties
 264 of dynamic systems, for example, the observability of dynamic variables. Using an inappropriate
 265 set of observed trajectories for reconstructing the original attractor may cause failure of the system
 266 with complex coupling, e.g., chaotic systems, which act as the starting point for our work.

267

268

269 4 METHOD AND ALGORITHMS

270

271

272 4.1 VARIABLE SELECTION ALGORITHM

273

274

275 A pressing question is how to select the optimal measurement to achieve the goal for embedding if
 276 we have multiple measurements, for example, $h(\mathbf{x}) = x_1$, or $h(\mathbf{x}) = x_2$, since observability greatly
 277 influences the quality of embedding.

270	System	observability order	Order of Singular manifold	Percentage of the first component
271	Rössler	$y \approx x \triangleright z$	$\dim(\mathcal{M}_y) = 0$	79.30366 ± 1.40010
272			$\dim(\mathcal{M}_x) = 1$	79.14888 ± 1.46845
273			$\dim(\mathcal{M}_z) = 2$	47.82087 ± 0.66325
274	Lorenz'84	$x \triangleright y \approx z$	$\dim(\mathcal{M}_x) = 1$	78.65237 ± 1.35443
275			$\dim(\mathcal{M}_y) = 3$	71.81645 ± 1.40565
276			$\dim(\mathcal{M}_z) = 3$	70.03762 ± 0.94000
277	Lorenz	$x \triangleright y \triangleright z$	$\dim(\mathcal{M}_x) = 1$	54.38915 ± 0.74183
278			$\dim(\mathcal{M}_y) = 3$	53.81355 ± 0.71960
279			$\dim(\mathcal{M}_z) = 2$	52.67460 ± 0.57763

Table 1: Results for the benchmark models from variable selection algorithm.

Theoretically, we can calculate the differential embedding of the dynamical variable to evaluate the observability of the reconstructed space through the degree of the singular manifold. For example, the algebraic order of the singular manifold of the Rössler system with $h(\mathbf{x}) = x_3$ is two, and the algebraic order of the singular manifold of the Lorenz system with $h(\mathbf{x}) = x_1$ is one. However, for most applications, we don't know the exact form of the latent dynamical system, and the only practical way is to use the delay-coordinate mapping, which obscures our selection task. The degree of singular manifold can somehow reflect the extent of a variable' observability. Theoretically, the higher the order of singular manifold \mathcal{M}_s , the lower the observability.

Here, we propose the variable selection algorithm to select the best measurement for embedding. The basic idea is to quantify the complexity of the geometry in each local neighborhood centered at each data point. If the dynamics are well-reconstructed in such a neighborhood, the local geometry is quite simple, which means that the leading singular value σ_1 of a Hankel matrix resulting from the delay-coordinate mapping holds a relatively large percentage. The details of our variable selection algorithm is shown in Appendix B. We evaluate the performance of our method on several benchmark dynamic systems, and the results are shown in Table 1. Our algorithm can select the reconstruction with the best observability. However, other factors like the symmetry properties of the dynamical system, i.e, the x_3 -projection of Lorenz system also influence the final result (Duan et al. (2025)).

4.2 THE D-CHOPT ALGORITHM

We now propose our method D-CHOPT, which leverage the ODE discovery framework together with the invertible residual networks (iResFlow) Behrmann et al. (2019), an invertible neural network, to learn the diffeomorphism between the Hankel embedded matrix and original state space from the optimal partial observed trajectories selected from the Algorithm 1. Moreover, we add additional losses by taking derivative operation based on the automatic differentiation operator in Pytorch. Our method relies on the approximation ability of Neural Networks to approximate the local diffeomorphism of nonlinear dynamic system on the part of domain $\mathcal{M}_o = \mathcal{M} - \mathcal{M}_s$. The goal is to design the loss function to optimize the sparse analytic form, which serves as the closed-form of ODE system. The structure of our Neural Network is shown in the following Figure 2. There are four types of loss in our network structure, which is shown as follows:

- Loss of ODE: $\mathcal{L}_z = \left\| \nabla_{\mathbf{h}} \phi(\mathbf{h}) \dot{\mathbf{h}} - \Theta(\phi(\mathbf{h})) \Xi \right\|_2^2$
- Reconstruction loss of derivative: $\mathcal{L}_h = \left\| \dot{\mathbf{h}} - \nabla_{\mathbf{z}} \psi(\phi(\mathbf{h})) \Theta(\phi(\mathbf{h})) \Xi \right\|_2^2$
- First component Loss: $\mathcal{L}_{z_1} = \|h_{i_1} - z_{i_1}\|_2^2$
- Topology Loss: $\mathcal{L}_{\text{topo}} = \text{RTDL}(\mathbf{H}, \mathbf{Z})$
- Consistency Loss: $\mathcal{L}_{\text{cons}} = \sum_{j=1}^n \left\| h_{ij} - \left(\int_{t_1}^{t_j} \Theta(\phi(\mathbf{h}_i)) \Xi dt \right)_1 \right\|_2^2$
- Sparsity regularization: $\mathcal{L}_{\text{reg}} = \|\Xi\|_1$

where \mathbf{z} is the target ODE system to be learned. Its j -th time realization of i -th component is z_{ij} . The governing equation of the target system is approximated using r basis functions

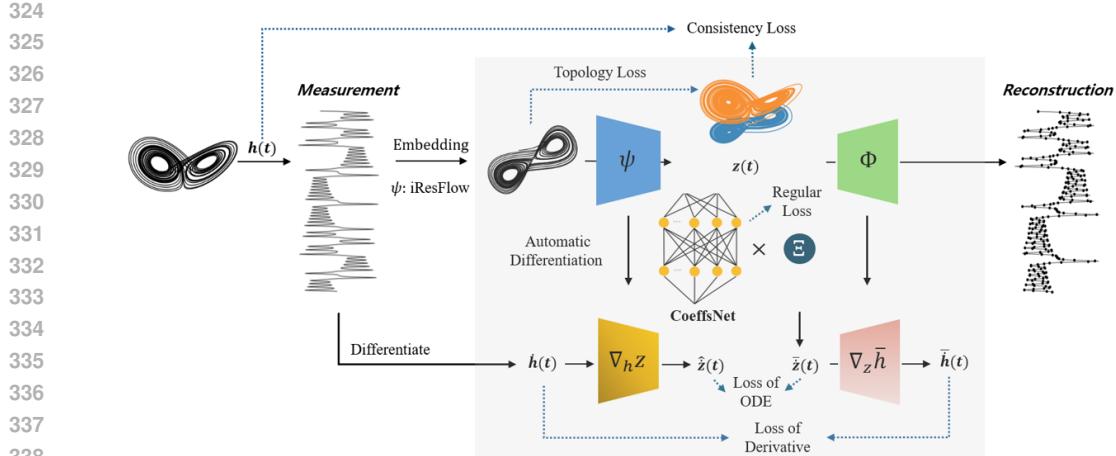


Figure 2: Summary of the network structure of D-CHOPT.

$\theta_1, \theta_2, \dots, \theta_r$, say polynomials. $\mathcal{L}_{\dot{z}}$ and $\mathcal{L}_{\dot{h}}$ are loss derived from derivatives for providing physical information for the dynamic system, where ϕ represents the mapping from the embedded attractor to the original one while ψ denotes the inversion and we use $\nabla_{\mathbf{h}}\phi(\mathbf{h})\dot{\mathbf{h}} = \dot{\mathbf{z}}$ in the formula. $\Theta(\mathbf{z}) = [\theta_1(\mathbf{z}), \theta_2(\mathbf{z}), \dots, \theta_r(\mathbf{z})] \in \mathbb{R}^{m \times r}$ is to form the data matrix, and it works with the coefficient matrix $\Xi = [\xi_1, \xi_2, \dots, \xi_r] \in \mathbb{R}^{r \times m}$ for the estimated ODE. Ξ is chosen to be sparse to simplify the system. $\mathcal{L}_{\dot{z}}$ and $\mathcal{L}_{\dot{h}}$ terms play the main role for the ODE estimation. Additionally, to ensure that the attractor manifold of \mathbf{z} preserves topological features of \mathbf{h} , we employ the RTD-Lite algorithm (Tulchinskii et al. (2025)) in $\mathcal{L}_{\text{topo}}$, a scalable topological analysis algorithm for manifold matching. The loss term \mathcal{L}_{z_1} requires that the first component of the discovered system equals the observed. Moreover, if the constraint of the first component is satisfied, the integration of the first dimension of time series of \mathbf{z} using the closed-form we learned should follow that of \mathbf{h} . The last term \mathcal{L}_{reg} is designed to make the candidate matrix Ξ sparse. Then the total losses are combined as:

$$\mathcal{L} = \lambda_1 \mathcal{L}_{\dot{z}} + \lambda_2 \mathcal{L}_{\dot{h}} + \lambda_3 \mathcal{L}_{z_1} + \lambda_4 \mathcal{L}_{\text{topo}} + \lambda_5 \mathcal{L}_{\text{cons}} + \lambda_6 \mathcal{L}_{\text{reg}}, \quad (7)$$

where weighting coefficients $\lambda = [\lambda_1, \dots, \lambda_6]$ are hyperparameters to be tuned.

The proposed structure relies on the invertibility of the fixed point iteration structure of iResFlow and these loss functions constrain the hypothesis class, driving towards a sparse identification. We put the implementation details and the experiment results in Appendix C. Theoretically, if the original dynamic system is n -dimensional, it is possible to take the n -th derivative into the loss function that aligns with the highest order term of the differential mapping and this network structure can also be transferred to other full-state dynamic system discovery frameworks.

5 EXPERIMENT RESULTS

In this section, we demonstrate the ability of the proposed D-CHOPT network to discover governing equations from partially observed trajectories for several canonical dynamic systems. We highlight several key points from our experiments. Figure 3 presents a comparison between SINDy-AE and D-CHOPT. A notable improvement of D-CHOPT is its enhanced ability to discover governing equations by preserving the topological structure.

Choice of dynamical systems. In this section, we select four dynamic systems governed by closed-form ODEs. The selected systems exhibit highly nonlinear properties and show complex trajectories. We select multiple ODE systems, including simple linear oscillator, cubic nonlinear oscillator which contains two nonlinearly interacting variables, high-dimensional chaotic Lorenz system and Rossler system which involves three variables forming a strange attractor.

Measurement and data generating Settings. For each dynamic system, we sample the ODE system at regular intervals $T = \Delta t, 2\Delta t, \dots, n\Delta$. Additionally, we add Gaussian noise ($\text{std} = 0.01$) to the partially observed trajectory of the dynamic system. For each trajectory, we generate each

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

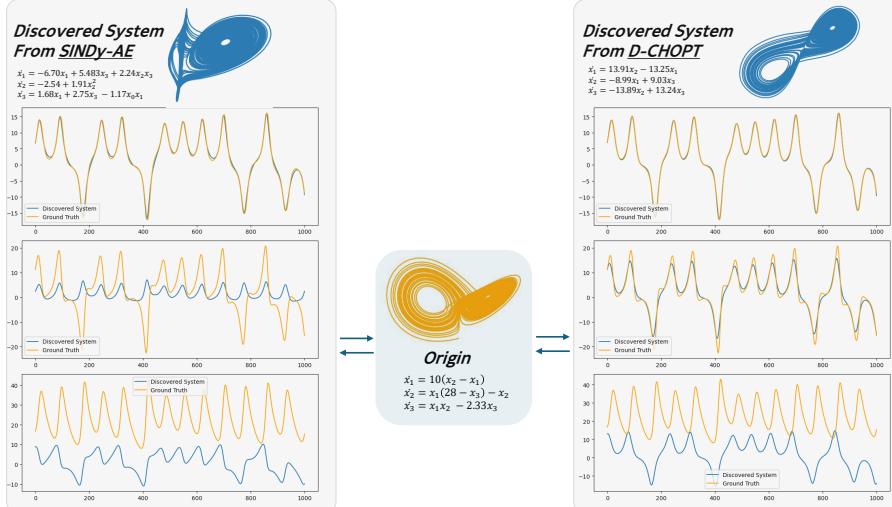


Figure 3: Results for the Lorenz system with measurements given by the coordinate projection of x_1 . D-CHOPT successfully discovers the closed-form representation while preserving the underlying topological structure.

component of the initial condition \mathbf{x}_0 from a uniform distribution of $[-0.5, -0.5]$. Then we obtain the trajectory of the ODE system by solving the initial value problem. The final measurements are contaminated by adding independent Gaussian noise with discrete samples.

Evaluation Matrices

In order to make fair comparison, we use three metrics comes from the previous work (Qian et al. (2022)) to evaluate methods. **(1) Success probability (Success Prob.):** the probability that the **functional form** is correctly recovered from partially observed trajectories. **(2) Distance (Dist.):** between the ground truth \mathbf{f}^* and the learned system \mathbf{f} , defined as $d_{\mathbf{x}}(\mathbf{f}, \mathbf{f}^*) := \|\mathbf{f} \circ \mathbf{x} - \mathbf{f}^* \circ \mathbf{x}\|_2 = \|(\mathbf{f} - \mathbf{f}^*) \circ \mathbf{x}\|_2$, where \circ denotes the composition operation and \mathbf{x} represents the noisy full-state measurements obtained from the original system. Note that an incorrect functional term can still yield a small distance. **(3) Sparsity:** the difference in the number of functional terms relative to the ground-truth model (e.g., +1 indicates one extra term; -1 indicates one missing term).

Although many closed-form discovery methods exist, there is only one established framework for partially observed trajectories: the SINDy-Autoencoder (SINDy-AE). It is worth noting that while several other methods can also be applied to discover closed-form systems under incomplete data scenarios, they are all based on SINDy-AE structure. Additional implementation details for the following numerical results are provided in Appendix C.

5.1 NUMERICAL RESULTS

We make fair comparison between the SINDy-AE and our D-CHOPT method based on the following benchmark models.

The linear oscillator is a two-dimensional dissipative ODE system, which is defined as:

$$\dot{x}_1 = \theta_1 x_1 + \theta_2 x_2 \quad \dot{x}_2 = \theta_3 x_1 + \theta_4 x_2, \quad (8)$$

where $\theta_1 = -0.1, \theta_2 = 2.0, \theta_3 = -2.0, \theta_4 = -0.1$. It is easy to check that both measurements provide full observability of the original space.

The nonlinear oscillator consists of two ODEs:

$$\dot{x}_1 = \theta_1 x_1^3 + \theta_2 x_2^3 \quad \dot{x}_2 = \theta_3 x_1^3 + \theta_4 x_2^3, \quad (9)$$

432 where $\theta_1 = -0.1, \theta_2 = 2.0, \theta_3 = -2.0, \theta_4 = -0.1$. Compared with the linear one, the singular
 433 manifold generated by both two measured variables is order-two, which brings difficulties to the
 434 discovery of the dynamic system.

435 The Lorenz63 system is a common test case for chaotic systems, which is defined as:

437 $x_1(t) = \theta_1(x_2(t) - x_1(t)); \quad x_2(t) = x_1(t)(\theta_2 - x_3(t)) - x_2(t); \quad x_3(t) = x_1(t)x_2(t) - \theta_3x_3(t),$

439 where $\theta_1 = 10, \theta_2 = 28, \theta_3 = 8/3$. We show the results in Table 2. D-CHOPT achieves comparable
 440 and stable performance on both the linear oscillator and the Lorenz63 system. For the Rössler system
 441 and nonlinear oscillator case, however, the success probability is lower than that of the SINDy-AE
 442 method, since SINDy-AE employs less sparsity, which increases the success probability. Figure 3
 443 illustrates the reason for the performance gain in the Lorenz63 case. When the dimensionality of the
 444 dynamical system increases, the attractor manifold undergoes greater deformation, thus making the
 445 preservation of its topological structure increasingly important. With the aid of the topology loss, we
 446 are able to reduce the degrees of freedom of the dynamical system while simultaneously narrowing
 447 the search space of the final solution, thereby accelerating convergence.

Equation	Method	Success Prob	Dist	Sparsity
Linear Oscillator	SINDy-AE	0.9 (0.2)	4.53 (4.92)	(+1.3) (0.74)
	D-CHOPT	0.9 (0.12)	0.78 (2.2e-03)	(+1.5) (0.5)
Nonlinear Oscillator	SINDy-AE	0.6 (0.2)	4.42 (1.25e-03)	(+7.4) (2.15)
	D-CHOPT	0.5 (0.27)	4.41 (2.50e-02)	(+5.8) (1.94)
Lorenz63 System	SINDy-AE	0.33 (0.13)	9.40e+03 (1e+04)	(-2.33) (2.49)
	D-CHOPT	0.57 (0.00)	4.77e+03 (4.99e+02)	(-0.6) (0.49)
Rössler System	SINDy-AE	0.51 (0.07)	2.13e+02 (2.88e-02)	(1.4) (3.72)
	D-CHOPT	0.43 (0.00)	2.12e+02 (6.78e+01)	(-1) (0.00)

457 Table 2: Three measures Success Prob, the Dist and Sparsity are reported for the four equations.
 458 Standard deviations are shown in the brackets.

461 6 DISCUSSION ON FAILURE MODES AND OPEN CHALLENGES

464 In this work, we explored how the observability of measured variables influences the discovery of
 465 ODE systems and we proposed a variable selection algorithm and learning framework. However,
 466 discovering latent ODE systems in its closed form is very challenging, and several factors may lead
 467 to the failure of the model and present opportunities for future work.

468 Extreme observability for high dimensional systems

469 For very high-dimensional systems, for example, the nine-dimensional Lorenz system (Reiterer et al.
 470 (1998)), at least six dimensions of information are needed to recover a full-observed space, that is,
 471 a combination of variables and their derivatives, which suffers the curse of dimensionality in high-
 472 dimensional cases. We give a further discussion in Appendix C.

473 **Candidate Assumptions** One typical feature in our closed-form discovery algorithms for ODE
 474 systems is the sparsity on over-supply of the basis candidate functions, meaning that the learning
 475 algorithm automatically selects suitable functional terms from the library of candidate functions
 476 that determine terms in the estimated ODE \hat{f} . One inevitable problem is that when the order is
 477 high when using polynomials (the highest order of polynoial combination), the number of possible
 478 candidates becomes large, increasing the searching space dramatically and increase the numerical
 479 burden of the discovering procedure. Another obvious problem is if the mathematical expression of
 480 the ODE system is complicated, i.e., containing delay terms or fractal terms that are not covered by
 481 the candidate functions, the accuracy of the discovered algorithm is limited.

482 Noise and slow sampling

484 Our algorithm, even the measurement selection algorithm, may fail under large measurement noise
 485 or slow sampling cases since the quality of the reconstructed dynamic system relies heavily on the
 delay-coordinate embedding map, which works well when we have dense and clean samples.

486 REFERENCES
487

488 Joseph Bakarji, Kathleen Champion, J Nathan Kutz, and Steven L Brunton. Discovering governing
489 equations from partial measurements with deep delay autoencoders. *Proceedings of the Royal
490 Society A*, 479(2276):20230422, 2023.

491 Sandip Banerjee. *Mathematical modeling: models, analysis and applications*. Chapman and
492 Hall/CRC, 2021.

493 Bernhard Beckermann and Alex Townsend. Bounds on the singular values of matrices with dis-
494 placement structure. *SIAM Review*, 61(2):319–344, 2019.

495

496 Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
497 Invertible residual networks. In *International conference on machine learning*, pp. 573–582.
498 PMLR, 2019.

499

500 Tobias Braun, Cinthya N Fernandez, Deniz Eroglu, Adam Hartland, Sebastian FM Breitenbach, and
501 Norbert Marwan. Sampling rate-corrected analysis of irregularly sampled time series. *Physical
502 Review E*, 105(2):024206, 2022.

503

504 Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
505 by sparse identification of nonlinear dynamical systems. *Proceedings of the national academy of
506 sciences*, 113(15):3932–3937, 2016.

507

508 John Butcher. Runge-kutta methods. *Scholarpedia*, 2(9):3147, 2007.

509

510 Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-driven discovery
511 of coordinates and governing equations. *Proceedings of the National Academy of Sciences*, 116
512 (45):22445–22451, 2019.

513

514 Max D Champneys and Timothy J Rogers. Bindy: Bayesian identification of nonlinear dynamics
515 with reversible-jump markov-chain monte carlo. *Proceedings of the Royal Society A*, 481(2319):
516 20240620, 2025.

517

518 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
519 differential equations. *Advances in neural information processing systems*, 31, 2018.

520

521 Alessandro Chiuso and Gianluigi Pillonetto. System identification: A machine learning perspective.
522 *Annual Review of Control, Robotics, and Autonomous Systems*, 2(1):281–304, 2019.

523

524 Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
525 learning by exponential linear units (elus). *arXiv preprint arXiv:1511.07289*, 4(5):11, 2015.

526

527 Daniel J Cross and R Gilmore. Differential embedding of the lorenz attractor. *Physical Review
528 E—Statistical, Nonlinear, and Soft Matter Physics*, 81(6):066220, 2010a.

529

530 Daniel J Cross and R Gilmore. Equivariant differential embeddings. *Journal of mathematical
531 physics*, 51(9), 2010b.

532

533 Yiting Duan, Yi Guo, Jack Yang, and Ming Yin. Causal discovery in symmetric dynamic systems
534 with convergent cross mapping. *arXiv preprint arXiv:2505.04815*, 2025.

535

536 Kevin Egan, Weizhen Li, and Rui Carvalho. Automatically discovering ordinary differential equa-
537 tions from data with sparse regression. *Communications Physics*, 7(1):20, 2024.

538

539 Urban Fasel, J Nathan Kutz, Bingni W Brunton, and Steven L Brunton. Ensemble-sindy: Robust
540 sparse model discovery in the low-data, high-noise limit, with active learning and control. *Pro-
ceedings of the Royal Society A*, 478(2260):20210904, 2022.

540

541 Jean-Marc Ginoux. *Differential geometry applied to dynamical systems*, volume 66. World Scien-
542 tific, 2009.

543

544 Seth M Hirsh, Sara M Ichinaga, Steven L Brunton, J Nathan Kutz, and Bingni W Brunton. Structured
545 time-delay models for dynamical systems with connections to frenet–serret frame. *Proceedings
546 of the Royal Society A*, 477(2254):20210097, 2021.

540 Seth M Hirsh, David A Barajas-Solano, and J Nathan Kutz. Sparsifying priors for bayesian uncer-
 541 tainty quantification in model discovery. *Royal Society open science*, 9(2):211823, 2022.
 542

543 Krzysztof Kacprzyk, Samuel Holt, Jeroen Berrevoets, Zhaozhi Qian, and Mihaela van der Schaar.
 544 Ode discovery for longitudinal heterogeneous treatment effects inference. *arXiv preprint*
 545 *arXiv:2403.10766*, 2024.

546 H.S Kim, R Eykholt, and JD Salas. Nonlinear dynamics, delay times, and embedding windows.
 547 *Physica D: Nonlinear Phenomena*, 127(1-2):48–60, 1999.
 548

549 Christophe Letellier and Luis A Aguirre. Investigating nonlinear dynamics from time series: The
 550 influence of symmetries and the choice of observables. *Chaos: An Interdisciplinary Journal of*
 551 *Nonlinear Science*, 12(3):549–558, 2002.

552 RS Martin, CM Greve, CE Huerta, AS Wong, JW Koo, and DQ Eckhardt. A robust time-delay
 553 selection criterion applied to convergent cross mapping. *Chaos: An Interdisciplinary Journal of*
 554 *Nonlinear Science*, 34(9), 2024.

555 Arthur N Montanari, Leandro Freitas, Daniele Proverbio, and Jorge Gonçalves. Functional observ-
 556 ability and subspace reconstruction in nonlinear systems. *Physical Review Research*, 4(4):043195,
 557 2022.

558 Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
 559 Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
 560 pytorch. 2017.

561 Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-code: Discovering closed-form
 562 odes from observed trajectories. In *International Conference on Learning Representations*, 2022.

563 Peter Reiterer, Claudia Lainscsek, Ferdinand Schürrer, Christophe Letellier, and Jean Maquet. A
 564 nine-dimensional lorenz system to study high-dimensional chaos. *Journal of Physics A: Mathe-
 565 matical and General*, 31(34):7121, 1998.

566 Carl Rhodes and Manfred Morari. The false nearest neighbors algorithm: An overview. *Computers
 567 & Chemical Engineering*, 21:S1149–S1154, 1997.

568 Luca Rosafalco, Paolo Conti, Andrea Manzoni, Stefano Mariani, and Attilio Frangi. Online learning
 569 in bifurcating dynamic systems via sindy and kalman filtering. *Nonlinear Dynamics*, pp. 1–21,
 570 2025.

571 Otto E Rössler. An equation for continuous chaos. *Physics Letters A*, 57(5):397–398, 1976.

572 Tim Sauer, James A Yorke, and Martin Casdagli. Embedology. *Journal of statistical Physics*, 65(3):
 573 579–616, 1991.

574 Irene Sendiña-Nadal and Christophe Letellier. Observability analysis and state reconstruction for
 575 networks of nonlinear systems. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 32(8),
 576 2022.

577 Muhammad Shakeel, Muhammad Asad Iqbal, and Syed Tauseef Mohyud-Din. Closed form solu-
 578 tions for nonlinear biological population model. *Journal of Biological Systems*, 26(01):207–223,
 579 2018.

580 George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, and Stephan
 581 Munch. Detecting causality in complex ecosystems. *science*, 338(6106):496–500, 2012.

582 Floris Takens. Detecting strange attractors in turbulence. In *Dynamical Systems and Turbulence,
 583 Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80*, pp. 366–
 584 381. Springer, 2006.

585 Eugene Tan, Shannon Algar, Débora Corrêa, Michael Small, Thomas Stemler, and David Walker.
 586 Selecting embedding delays: An overview of embedding techniques and a new method using
 587 persistent homology. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 33(3), 2023.

594 Eduard Tulchinskii, Daria Voronkova, Ilya Trofimov, Evgeny Burnaev, and Serguei Barannikov.
 595 Rtd-lite: Scalable topological analysis for comparing weighted graphs in learning tasks. *arXiv*
 596 *preprint arXiv:2503.11910*, 2025.

597 Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
 598 Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
 599 intelligence. *Nature*, 620(7972):47–60, 2023.

600 601 Hassler Whitney. The self-intersections of a smooth n-manifold in 2n-space. *Annals of Mathematics*,
 602 45(2):220–246, 1944.

603 604 Charles D Young and Michael D Graham. Deep learning delay coordinate dynamics for chaotic
 605 attractors from partial observable data. *Physical Review E*, 107(3):034215, 2023.

606 607 A DISCUSSION OF IMPLEMENTATION OF TAKENS’ EMBEDDING THEOREM

608 609 Here, we provide a detailed discussion of Takens’ Embedding Theorem, with particular attention to
 610 the selection of embedding parameters such as the time delay and embedding dimension. Before
 611 beginning, we make the following assumption that for attractive nonlinear dynamical systems, a
 612 universal property is that trajectories converge rapidly to the attractor manifold regardless of their
 613 initial conditions. Thus, our discussion will focus on the attractor manifold itself and on how Takens’
 614 Embedding Theorem can be applied to reconstruct this manifold.

615 616 For a time-continuous dynamic system, practical constraints necessitate that measurements are taken
 617 at a regular sampling interval T . Given this sampling rate, the discrete flow denoted as $\xi_T : M \rightarrow$
 618 M , can be defined and characterized by the equations $\xi_T(\mathbf{x}_t) = \mathbf{x}_{t+T}$ and $\xi_T^{-1}(\mathbf{x}_t) = \mathbf{x}_{t-T}$ which
 619 associate each point state $\mathbf{x} \in M$ the vector $\xi_T(\mathbf{x})$. The sampling rate T represents an integer
 620 multiple of the iteration step for discrete dynamic systems.

621 622 Direct observation of the full state of the dynamic system is often infeasible. Instead, we have access
 623 to observations via a real-valued measurement function $h : \mathbb{A} \rightarrow \mathbb{R}$, producing the signals $\{s_i\}_{i \in \mathbb{N}} =$
 624 $\{h(\mathbf{x}_{i \cdot T})\}_i$, for $i = 0, 1, 2, \dots$, where \mathbf{x}_0 is the initial state and \mathbb{A} represents the attractor manifold.
 625 A *homeomorphism* between two manifolds M_1 and M_2 is a continuous bijection $f : M_1 \rightarrow M_2$,
 626 where its inverse function $f^{-1} : M_2 \rightarrow M_1$ is also continuous. Moreover, if the homeomorphism
 627 and its inverse are smooth, it is a diffeomorphism. An *embedding* is a diffeomorphism from a
 628 manifold M_1 into another manifold M_2 , defined as $f : M_1 \rightarrow f(M_1) \subset M_2$. An important point
 629 is that embeddings are always injective and without self-intersections. Moreover, our goal is to find
 630 an embedding to reconstruct the attractor \mathbb{A} from the signal $\{s_i\}_i$. Given the certain measurement
 631 function h , the following theorem forms the theoretical foundation for attractor reconstruction.

632 633 **Theorem 6** (Takens). *Takens (2006) Let M be an n -dimensional smooth manifold. If v is a vector*
634 635 field on M with flow ψ_t and h is a measurement function on M , then for generic choices of v and h ,
636 637 the differential mapping $F_{h,m} : M \rightarrow \mathbb{R}^m$ of the continuous dynamic system into \mathbb{R}^m is given by:

$$638 \quad F_{h,m}(\mathbf{x}) = (h(\mathbf{x}), \frac{d}{dt} \Big|_0 h(\psi_t(\mathbf{x})), \dots, \frac{d^{m-1}}{dt^{m-1}} \Big|_0 h(\psi_t(\mathbf{x}))) \quad (10)$$

639 640 which is an embedding when $m = 2n + 1$, where m is the embedding dimension, $\frac{d}{dt} \Big|_0$ means the
 641 derivatives are evaluated at $t = 0$ and the flow ψ satisfies

$$642 \quad \frac{d}{dt} \Big|_0 \psi_t(\mathbf{x}) = v(\psi_0(\mathbf{x})) \quad (11)$$

643 644 for every time $t \in \mathbb{R}$.

645 646 The above theorem also holds for discrete dynamic systems with a diffeomorphism ψ on a compact
 647 n -dimensional manifold M and a measurement function h , for which the embedding is defined as
 648 Equation (12), where the value of the lag value τ is an integer multiple of the iteration size. The
 649 generic in this theory means that the differential mapping $F_{h,m}$ is an open and dense embedding in
 650 the set of all mappings under the measurement function h and the flow ψ_t . The best way to under-
 651 stand this is regarding this theorem as a generalization of the Weak Whitney Embedding Theorem
 652 Whitney (1944).

648 **Theorem 7** (Weak Whitney Embedding). *Every n -dimensional manifold M embeds in \mathbb{R}^{2n+1} .*
 649

650 This theorem states that any manifold M can be embedded in \mathbb{R}^{2n+1} without self-intersections given
 651 an arbitrary mapping. Whitney proves that the optimal linear bound for the minimum embedding
 652 dimension is $2n$. Takens theorem demonstrates that the differential mapping (10) satisfies this condition,
 653 embedding the compact n -dimensional manifold M into the reconstructed space \mathbb{R}^{2n+1} , even
 654 when considering finite discrete samples.

655 For practical use, discrete versions of the differential mapping (10) are required when working with
 656 signals $\{s_i\}_i$ generated by the discrete flow ξ_T with a specific sampling interval T . The most
 657 common approach is the delay-coordinate mapping $F_{h,\tau,m}(\mathbf{x}_{i\cdot\tau}) : M \rightarrow \mathbb{R}^m$, which is defined as:

$$658 \quad F_{h,\tau,m}(\mathbf{x}_{i\cdot\tau}) = \begin{bmatrix} h(\mathbf{x}_{i\cdot\tau}) \\ h(\mathbf{x}_{(i-1)\cdot\tau}) \\ \vdots \\ h(\mathbf{x}_{(i-m+1)\cdot\tau}) \end{bmatrix} = \begin{bmatrix} h(\mathbf{x}_{i\cdot\tau}) \\ h(\xi_{\tau}^{-1}(\mathbf{x}_{i\cdot\tau})) \\ \vdots \\ h(\xi_{\tau}^{-m+1}(\mathbf{x}_{i\cdot\tau})) \end{bmatrix} \quad (12)$$

663 where the parameter $\tau = k \cdot T$, for $k \in \mathbb{Z}$ is the lag value, and m is the embedding dimension.
 664 Theoretically, for minimal time delay τ , a linear combination of coordinates can approximate the
 665 derivative such that the delay-coordinate mapping plays the same role as the differential mapping.
 666 The well-defined differential mapping is suitable for analytical purposes. This paper explores the
 667 properties of shadow manifolds reconstructed through differential mappings while implementing
 668 experiments using delay-coordinate mappings.

669 In practical scenarios, the sampling rate T of signals often cannot be small enough to accurately ap-
 670 proximate the differential and higher-order differentials at the given point. However, by selecting an
 671 appropriate lag value τ , the delay-coordinate mapping method can obtain the same result in recon-
 672 structing the shadow manifold using a sufficiently small τ . Since chaotic dynamic systems consist
 673 of highly nonlinear and coupled variables, the signal obtained from the projection function, which
 674 serves as the measurement function, has the potential to recover information from other dimen-
 675 sions. The differential mapping method works by separating coupled information and projecting the
 676 observed data—via differentiation—in the direction of maximum linear independence, thereby iso-
 677 lating information about variables that are not directly observed. The critical part lies in accurately
 678 recovering information from the unknown dimensions using the observed data.

679 Thus, selecting the lag value τ plays a critical role in reconstructing the shadow manifold. If the lag
 680 value is suitable, the delay-coordinate mapping $F_{h,\tau,n}(\mathbf{x}(t))$ is equivalent to the differential map-
 681 ping $F_{h,n}(\mathbf{x})$ under an affine transformation, and plays as a diffeomorphism between the shadow
 682 manifold and the original attractor. However, the selection of the lag value is not only restricted
 683 by external factors like the sampling rate T but also its intrinsic properties. For a continuous-time
 684 dynamic system with discrete flow, if τ is too small, the resulting vectors may be highly linear depen-
 685 dent and redundant, leading to a "squeezed" shadow manifold. Conversely, if τ is excessively large,
 686 the new coordinates may become essentially unrelated, causing the shadow manifold to collapse.
 687 Based on the above analysis, we can observe that as τ increases, the shadow manifold undergoes a
 688 "stretch-and-fold" process, as depicted in Fig. 4.

689 For convenience, we omit the sampling interval T for τ such that the number of τ shown in this
 690 paper refers to the k in the definition, indicating the number of times the sampling interval T , for
 691 example, $\tau = 5$ means $\tau = 5T$, where T is the sampling rate or the iteration steps for the discrete
 692 dynamic system.

693 Although the selection of lag value for delay-coordinate mapping is an open problem, several works
 694 have been done in this field (Tan et al. (2023); Martin et al. (2024)). The most widely-used method
 695 to choose the suitable lag value τ is the mutual information method (Kim et al. (1999)). The basic
 696 idea is to calculate the mutual information between the system's observed values at different lag val-
 697 ues and the original observed data and then select the first lag value at which the mutual information
 698 transitions from decreasing to increasing as the optimal τ since this represents the lag value that
 699 contains sufficient new information while still maintaining some correlation with the original data.
 700 This information-based method is theoretically intuitive, but the resulting values often do not corre-
 701 spond to the points at which the shadow manifold is fully stretched before collapsing. Furthermore,
 702 in cases where mutual information monotonically decreases with increasing lag value, this method
 703 does not work.

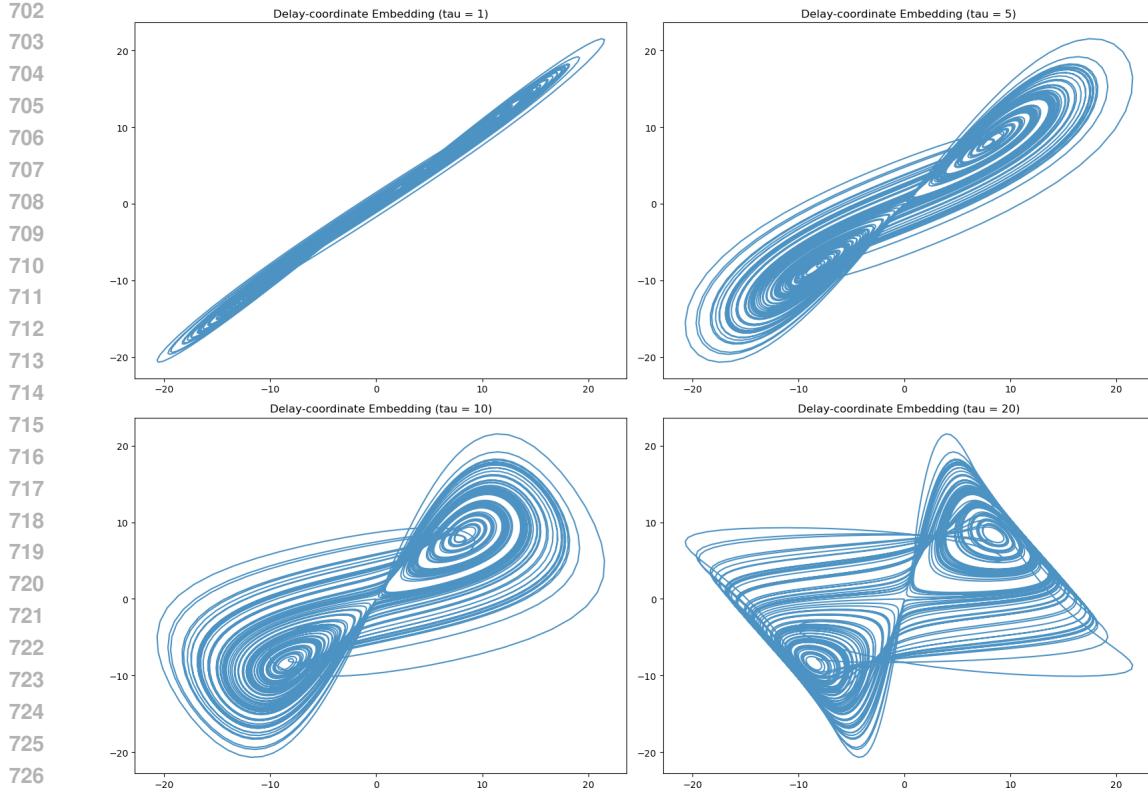


Figure 4: Sequential figures representing the changes in reconstructed shadow manifold \mathcal{M}_x of Lorenz63 system with increasing lag value τ .

According to Takens' theorem, a dynamic system can be embedded in an Euclidean space without self-intersection through any mapping. However, it should be noted that the ideal dimension for embedding an n -dimensional dynamic system is n . In many cases, the optimal dimension for the shadow manifold generated by differential embedding is also n . However, embedding an n -dimensional dynamic system into a higher dimension (greater than n) does not significantly increase the natural information of the original system, which can be demonstrate using false nearest neighbors Rhodes & Morari (1997), as the redundant information introduced by the extra dimensions does not provide extra information about the original dynamic system and, therefore, does not impact the prediction. Therefore, when the dimension of the original dynamic system is known, the differential embedding method can be directly used to obtain a shadow manifold of the same dimension. In cases where information about the dimensions of the original dynamic system is lacking, false nearest neighbors are a practical approach for dimension selection. In our experiments, we assume that the suitable embedding parameters are selected by brute force selection.

Another important property we need to concern is when the attractor manifold exhibits a symmetric property since the reconstructed attractor manifold may lose the symmetry property of the original attractor. This is because the embedding mods out the symmetry of the attractor manifold, i.e., the attractor manifold reconstructed using the x_3 measurement of Lorenz63 system lose the original two-fold rotational symmetry.

B DETAILS OF OBSERVABILITY AND VARIABLE SELECTION ALGORITHM

Here, we use a concrete example to show the existence of singular manifold \mathcal{M}_s by calculation. We take the Rössler and illustrate why the projection of x_2 provides the best observability among all three measurements.

756 The expression of Rössler system (Rössler (1976)) is:
 757

$$\begin{aligned} \dot{x} &= -y - z \\ \dot{y} &= x + ay \\ \dot{z} &= b + x(z - c) \end{aligned} \quad (13)$$

761 where $a = 0.2, b = 0.2, c = 5.7$. In case when the measurement is $h(\mathbf{x}) = x_1$, the embedding Φ_{x_1}
 762 is:
 763

$$\begin{aligned} u &= x \\ v &= \dot{x} = -y - z \\ w &= \ddot{x} = -x - ay - b - z(x - c). \end{aligned} \quad (14)$$

766 The Jacobian matrix of Φ_{x_1} is
 767

$$J(\Phi_{x_1}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ -1 - z & -a & -(x - c) \end{bmatrix}. \quad (15)$$

770 Clearly, the Jacobian matrix $J(\Phi_{x_1}) = x - c - a$ vanishes for the plane $x = c + a$. That means
 771 points located on the plane $x = a + c$ can not be observed from the new coordinate system (u, v, w)
 772 through the measurement $h(\mathbf{x}) = x_1$, which is shown in the following figure 5. Although the
 773

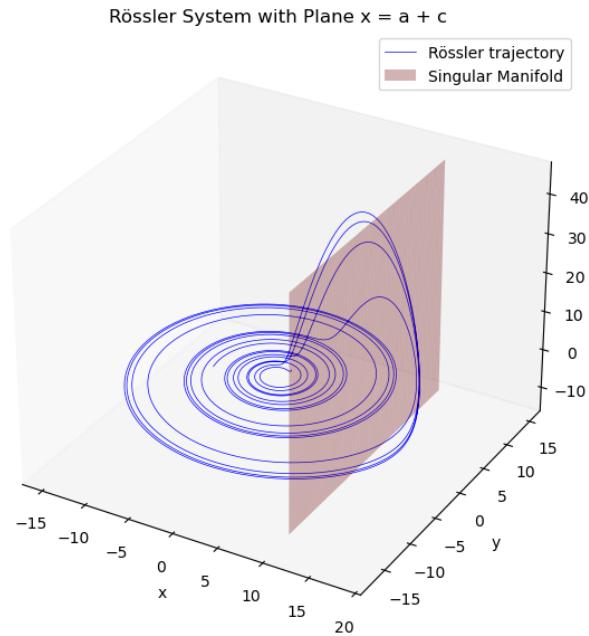


Figure 5: An illustration of Rössler system and the plane $x = a + c$.

797 Lebesgue measure of the singular manifold which is the intersection part of the Rössler attractor
 798 with the plane affects the observability of the attractor but not too much cause it is close to the
 799 boundary of the attractor. Similarly, we can calculate the coordinate transformation of projection
 800 mapping $h(\mathbf{x}) = x_2$ and $h(\mathbf{x}) = x_3$ using the same procedure. The coordinate transformation Φ_{x_2}
 801 is:
 802

$$J(\Phi_{x_2}) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & a & 0 \\ a & a^2 - 1 & -1 \end{bmatrix}. \quad (16)$$

805 The determinant of the Jacobian matrix never vanishes. In other words, Φ_{x_2} defines a global diffeo-
 806 morphism between the original attractor manifold and the new attractor manifold. As a result, the
 807 $h(\mathbf{x}) = x_2$ provides the best observability of the original system. Similarly, Φ_{x_3} is:
 808

$$J(\Phi_{x_3}) = \begin{bmatrix} 0 & 0 & 1 \\ z & 0 & (x - c) \\ b + 2z(x - c) & -z & (x - c)^2 - y - 2z \end{bmatrix}. \quad (17)$$

810 The determinant of the Jacobian matrix Φ_{x_3} vanishes for the surface $x^2 = 0$ which is shown in the
 811 following figure 6. As a result, the reconstructed attractor manifold \mathcal{M}_z suffers a large shape dis-
 812 tortion and collapse near the region of the singular manifold, thus providing the worst observability.
 813
 814
 815

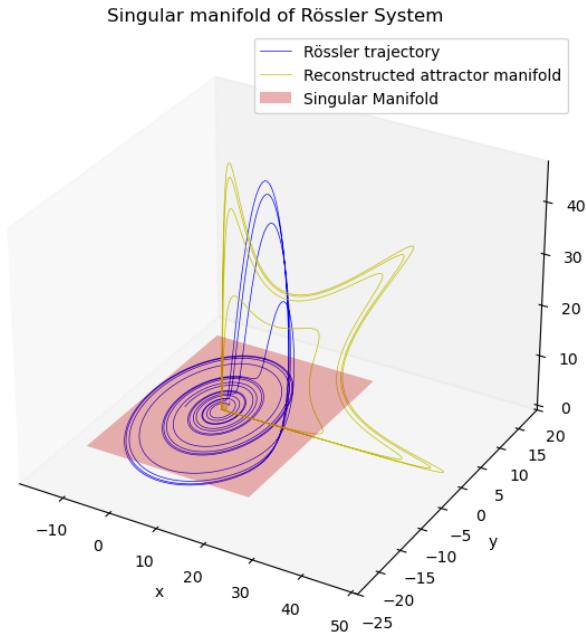


Figure 6: An illustration of Rössler system, reconstructed shadow manifold \mathcal{M}_z and the singular manifold.

840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 The pseudocode of the variable selection algorithm is shown in Algorithm 1.

C IMPLEMENTATION DETAILS OF THE EXPERIMENTS

C.1 DETAILED SETTINGS OF DATASET CURATION

850 As we discussed in Section 6, the success of the ODE discovery task is highly dependent on the
 851 dataset. Instead of only selecting the measurement that provide the best observability through the
 852 variable selection algorithm, the measurement settings are also constrained by practical factors such
 853 as the sampling rate. The sampling rate directly influences the choice of time delay, for example,
 854 if the sampling rate is too low or the data are sampled irregularly, selecting an optimal time delay
 855 becomes infeasible. This issue is also an important topic in the time series analysis (Braun et al.
 856 (2022)).

857 Also, the selection of measurement function h is also crucial. In our paper, we restrict the discussion
 858 to the case where the measurement function is the coordinate projection of the original system, which
 859 preserves the natural properties of the dynamical system. In practice, however, the measurement
 860 function could be a linear combination of multiple coordinate projections. D-CHOPT focuses on
 861 the discovery task itself, addressing such cases requires domain knowledge of the original system.
 862 Nevertheless, incorporating this knowledge can facilitate the closed-form ODE discovery process.
 863 Prior knowledge can further enhance the D-CHOPT algorithm, for example, by providing accurate
 864 candidate functions or dimensional information and then re-running the D-CHOPT.

864 **Algorithm 1** Hankel-Embedded Local SVD for Observability Assessment

865 1: **Input:** Dataset $\mathcal{D} = \{\mathbf{x}_i(t) \mid i \in \mathbb{N}, t \in [0, T]\}$

866 2: **Input:** Hankel rows r , percentage of center p , neighborhood scale α , target dimension of dy-

867 namic system td , number of Monte Carlo samples M

868 3: Calculate the radius per channel: $\epsilon_s \leftarrow \alpha(\max(s) - \min(s)), s \in \{x, y, z\}$ \triangleright Neighborhood

869 size per channel

870 4: Calculate the noise scale: $\sigma_s \leftarrow \text{std}(s), s \in \{x, y, z\}$

871 5: Initialize lists $\mathcal{S}_x, \mathcal{S}_y, \mathcal{S}_z$

872 6: **for** $m = 1$ to M **do**

873 7: Add noise: $\tilde{s} \leftarrow s + \mathcal{N}(0, (0.1\sigma_s)^2), s \in \{x, y, z\}$

874 8: **for** $i = 1$ to r , $j = 1$ to $(N - r + 1)$ **do**

875 9: Construct Hankel matrix: $H_{\tilde{s}}[i, j] \leftarrow \tilde{s}_{i+j}$

876 10: **end for**

877 11: Perform SVD: $U\Sigma V^\top \leftarrow \text{svd}(H_{\tilde{s}})$

878 12: Rank- td projection: $\widehat{C}_{\tilde{s}} \leftarrow V_{1:td}^\top \text{diag}(\Sigma_{1:td})$

879 13: Initialize empty list: $\mathcal{A} \leftarrow []$

880 14: **for** $j = 1, 1 + p, 1 + 2p, \dots$ **do**

881 15: Define neighbors: $\mathcal{N}_j \leftarrow \{i \mid \|\widehat{C}_{\tilde{s},i} - \widehat{C}_{\tilde{s},j}\|_2 < \epsilon_s\}$

882 16: **if** $|\mathcal{N}_j| > \text{dim}(\widehat{C}_{\tilde{s}})$ **then**

883 17: Compute centered matrix: $\bar{C} \leftarrow \widehat{C}_{\tilde{s},\mathcal{N}_j} - \text{rowmean}(\widehat{C}_{\tilde{s},\mathcal{N}_j})$

884 18: Perform SVD: $U\Sigma V^\top \leftarrow \text{svd}(\bar{C})$

885 19: Append: $\frac{100\sigma_1}{\sum_i \sigma_i}$ to \mathcal{A} for $i = 1, 2, \dots, td$

886 20: **end if**

887 21: **end for**

888 22: Compute the mean: $S1_{\text{mean}} \leftarrow \text{mean}(\mathcal{A})$

889 23: Append $S1_{\text{mean}}$ to $\mathcal{S}_x, \mathcal{S}_y, \mathcal{S}_z$

890 24: **end for**

891 25: **Return:** $(\mathcal{S}_x, \mathcal{S}_y, \mathcal{S}_z)$

893 C.2 DETAILED SETTINGS FOR EACH EXPERIMENT

895 The detailed settings for each experiment in Section 5 are shown in Table 3. The time horizon T
896 is the end time point and the initial point is chosen randomly from a given interval. For practical
897 applications, the time horizon and Δt are determined by the problem itself.

900 Table 3: The detailed settings for each simulation: noise level σ_R , time step size Δt , total number
901 of trajectories N , time horizon T , range of initial conditions $[a, b]$.

System	σ_R	Δt	N	T	$[a, b]$
Linear Oscillator	0.01	0.01	2	20	[-0.5, 0.5)
Nonlinear Oscillator	0.01	0.01	2	20	[-0.5, 0.5)
Lorenz System	0.01	0.01	5	100	[-0.5, 0.5)
Rössler System	0.01	0.01	5	80	[-0.5, 0.5)

907 C.3 HYPER-PARAMETER SETTINGS

910 In our network architecture, we employ iResFlow as both the encoder and decoder, and design an ad-

911 ditional sub-network to estimate the parameters of the learned system. Sparsity is enforced through

912 a combination of the regularization loss \mathcal{L}_{reg} and thresholding. Our strategy is to maintain a mask

913 for sparsity. After a warm-up period, parameters with values below the threshold are pruned, and the

914 learning rates of both iResFlow and the coefficient network are reset. Automatic differentiation is

915 performed using the `torch.func.jacrev`(Paszke et al. (2017)) function, while the consistency

916 loss is computed via the forth-order Runge-Kutta method (Butcher (2007)).

917 For both the MLP and iResFlow networks, we use a hidden width of 128 and ELU as the activation

918 function (Clevert et al. (2015)). The default MLP architecture is [128, 64, 128] for both encoder and

918 decoder. In iResFlow, each block is implemented as an iResNetBlock with hidden dimension 128
 919 and residual scaling factor $\alpha = 0.1$, and the total number of iResNetBlock is three.
 920

921 **C.4 DETAILS OF EVALUATION METRICS**
 922

923 Here, we provide details on how these three metrics are calculated.
 924

925 **Success Prob**
 926

927 The success probability is defined as the proportion of correct functional terms successfully identified
 928 by D-CHOPT. For example, in the Lorenz63 system, one of our discovered system is:
 929

$$928 \quad \dot{x}_1(t) = 13.91x_2(t) - 13.25x_1(t); \quad \dot{x}_2(t) = -8.99x_1(t) + 9.03x_2(t); \quad \dot{x}_3(t) = -13.89x_1(t) + 13.24x_3(t),$$

930 while the original system is:
 931

$$931 \quad \dot{x}_1(t) = 10(x_2(t) - x_1(t)); \quad \dot{x}_2(t) = x_1(t)(28 - x_3(t)) - x_2(t); \quad \dot{x}_3(t) = x_1(t)x_2(t) - 2.33x_3(t),$$

933 In this case, four correct terms are recovered: x_2 and x_1 in \dot{x}_1 , x_1 in \dot{x}_2 , and x_3 in \dot{x}_3 , yielding a
 934 success probability of 4/7.

935 **Dist**
 936

937 To measure how well our learned equation matches the original ones, the definition of vector field
 938 discrepancy between a discovered vector field \mathbf{f}_θ and the ground truth \mathbf{f}^* is:
 939

$$940 \quad D(\mathbf{f}_\theta, \mathbf{f}^*) = \left(\int_{\Gamma} \|\mathbf{f}_\theta(x) - \mathbf{f}^*(x)\|_2^2 d\mu(x) \right)^{1/2}, \quad (18)$$

942 where Γ refers to the domain of integration (attractor manifold), μ is the measures over the domain
 943 and we take the L^2 norm over functions by computing pointwise distance and integrating over the
 944 trajectory then taking square root. For practical conditions, we use the empirical version along a
 945 sampled trajectory and approximate the integral by a Riemann sum as:
 946

$$947 \quad D(\mathbf{f}, \mathbf{f}^*) \approx \sqrt{\sum_{i=1}^N \|\mathbf{f}(x_i) - \mathbf{f}^*(x_i)\|_2^2 \Delta t} \quad (19)$$

949 where Δt is the time step between samples and $\{x_i\}$ are sampled states from the trajectory.
 950

951 Theoretically, this distance serves as a functional to measure how well the learned vector field \mathbf{f}
 952 approximates the true vector field \mathbf{f}^* ; the smaller the value, the better the approximation. If the time
 953 horizon T is fixed and the sampling step Δt is reduced, $D(f, f^*)$ converges to a constant value, with
 954 discretization error on the order of $\mathcal{O}(\Delta t)$. From table 2, the values of **Dist.** for the Rössler and
 955 Lorenz systems are significantly larger than those for the linear and nonlinear oscillators. This is
 956 because, under a fixed sampling step Δt , a large time horizon T leads to greater error accumulation,
 957 and the state ranges of the Lorenz and Rössler systems are wider, further amplifying the discrepancy.
 958 Therefore, comparisons are only meaningful across different methods within the same dynamic
 959 system.
 960

Sparsity

961 Sparsity is defined as the difference in the number of discovered terms compared to the number of
 962 terms in the original system. For example, if the discovered system is :
 963

$$964 \quad \dot{x}_1(t) = 13.91x_2(t) - 13.25x_1(t); \quad \dot{x}_2(t) = -8.99x_1(t) + 9.03x_2(t); \quad \dot{x}_3(t) = -13.89x_1(t) + 13.24x_3(t),$$

965 while the original system is:
 966

$$967 \quad \dot{x}_1(t) = 10(x_2(t) - x_1(t)); \quad \dot{x}_2(t) = x_1(t)(28 - x_3(t)) - x_2(t); \quad \dot{x}_3(t) = x_1(t)x_2(t) - 2.33x_3(t),$$

968 then the sparsity is -1, meaning that the discovered system contains one fewer functional term than
 969 the original.
 970