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ABSTRACT

Machine learning algorithms have become a new paradigm for automatically dis-
covering closed-form ordinary differential equations (ODEs) from observed tra-
jectories. Although significant breakthroughs have been made in this field, such as
symbolic regression and sparse identification of nonlinear dynamics (SINDy), ex-
isting approaches primarily perform well for low-dimensional ODEs. This limita-
tion arises due to the lack of understanding of observability limitations in partially
observed trajectories, and the additional challenges introduced by complex topo-
logical properties. In this work, we propose a method for discovering closed-form
high-dimensional ODEs from partially observed trajectories, called D-CHOPT,
which advances ODE discovery methods beyond the natural limitations of high-
dimensional ODEs. D-CHOPT uses an invertible neural network as the backbone
to find the optimal solution within the diffeomorphic equivariant group of the re-
constructed dynamical systems, while preserving topological properties and inte-
grating a variable selection method. We provide a formal analysis of observability
and the learning limitations of partial trajectories, and explain the enhancements
in a manner consistent with the theoretical results. In experiments, D-CHOPT
successfully discovered the governing equations for a wide range of dynamical
systems, both low and high dimensional.

1 INTRODUCTION

An ordinary differential equation (ODE) is a significant research object in scientific fields, where the
solution is a high-dimensional curve that evolves over time. The mathematical expression of ODE is
the one that builds the bridge between the continuous state x(t) of the system and its time derivative
ẋ(t) via a function f as ẋ(t) = f(x(t), t). Closed-form of the ODE if f has a concise and analytic
expression. Closed-form plays an important role both in engineering applications and scientific
research because it provides explicit information that can be used to explain how factors interact and
influence the evolution of the entire system (Shakeel et al. (2018); Kacprzyk et al. (2024)). Also, the
concrete expression of the ODE facilitates the analysis of the whole system, e.g. (Banerjee (2021)),
and helps to reveal the physical rules.

Identifying and discovering the closed-form of ODEs based on a human expert is a time-consuming
process . However, automatically discovering closed-form of ODEs has gained interest for the ma-
chine learning community and has become one of the important topics of AI for science (Wang
et al. (2023)). Several methods have been proposed for this task. Sparse Identification of Nonlin-
ear Dynamics (SINDy) (Brunton et al. (2016)) is an established approach to discover a closed-form
function of an ODE model. The central idea is to use sparse linear regression to uncover parsi-
monious governing equations from a dictionary of basis functions constructed by data, where the
sparsity is promoted by pruning out redundant terms based on certain specified thresholds. In the
past few years, the SINDy framework has been further improved in various aspects to address these
challenges (Hirsh et al. (2022)), e.g., enhancing the library or using deep learning for denoising
and derivative computation by fitting the noisy data in a decoupled or coupled manner, for instance,
filter techniques such as Savitzky-Golay filter can both reduce noise and compute numerical deriva-
tives (Egan et al. (2024)). For uncertainty quantification, the dictionary-based equation discovery
algorithms have been recently extended to Bayesian settings, based on the idea of sparse Bayesian
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learning pioneered by Tipping and co-workers (Fasel et al. (2022), Champneys & Rogers (2025)).
Another popular method is the symbolic regression method, which estimates the time derivatives as
the label and employs the symbolic regression method combined with a certain optimization method
to search for the optimal function and possible functional form (Brunton et al. (2016)).

However, both methods are not applicable to partially observed ODEs, because we typically do
not observe the full state xt. Consequently, we only obtain ODE expressions corresponding to the
dimensions of the low-dimensional observations, rather than expressions for the full set of state
variables. We refer to this problem as the attractor-dimension mismatch.

A simple way to resolve this mismatch is to recover the full state xt from partially observed data.
The delay-coordinate mapping technique bridges this gap, and under certain conditions given by
Takens’ embedding theorem (Takens (2006)), which yields an attractor that is diffeomorphic to the
hidden full-state attractor. Based on this embedding, neural networks can be trained to approximate
the inverse mapping, thereby transforming the reconstructed dynamics back to the original system.
Once this is achieved, closed-form governing equations can be discovered using SINDy (Bakarji
et al. (2023), Champion et al. (2019)).

Although delay-coordinate embedding for high-dimensional hidden attractor embedding has a rich
history in data science, especially in time series prediction, causal discovery (Sugihara et al. (2012)),
and data-driven modeling (Kim et al. (1999)), due to an insufficient understanding of the theorem
and consideration of the properties of ODEs, i.e. the observability of variables which naturally limits
the learning ability of the learning framework, the current learning framework has not organically
integrated the neural network within the corresponding theoretical foundations and lacks sufficient
constraints, merely allowing the network to pick a solution from the solution space and limit its
utility for low-dimensional ODEs.

In this work, we develop the Discovery of Closed-form High-dimensional ODE from Partially Ob-
served Trajectories framework (D-CHOPT), which improves the learning accuracy for SINDy-AE
and extends it beyond the limitation of low-dimensional settings. The key insight behind D-CHOPT
lies in the observability of variables (Letellier & Aguirre (2002)), and the local diffeomorphism
property of delay-coordinate mapping (Cross & Gilmore (2010b)), which establish direct links be-
tween the partial observation and the ODE f . This approach overcomes limitations of partial tra-
jectories and provides a rigorous and practical solution for the discovery of the true (but unknown)
ODE using partially observed trajectories. We establish a framework to address this limitation and
propose an algorithm to select the optimal measurements among multiple partially observed trajec-
tories. Under this framework, we propose the topology preserving invertible flow neural networks.
We demonstrate via extensive experiments that D-CHOPT can uncover the governing equations for
a wide range of dynamical systems while being more accurate and successfully discovering higher-
dimensional systems than the alternative methods. Finally, D-CHOPT highlights the importance of
topology and observability in partially observed trajectories for the representation learning commu-
nity when dealing with time series data observed from dynamic systems.

2 BACKGROUND AND PROBLEM SETTING

Dataset consisting of trajectories for partial ODE discovery, especially under the partially observed
trajectories with delay-coordinate mapping, involves many decisions, e.g., how to choose the op-
timal embedding parameters? When and for how long to take measurements? (we discuss these
questions in Appendix B.) In this work, we aim to solve the most important question under the
partially observed trajectories case: how to select the optimal measurement for Takens’ embedding
theorem (when the observed trajectories are over two) and how to discover the latent dynamic sys-
tem under a scenario with incomplete information. We assume that the dataset is given for which
the variables can be modeled by a system of first-order autonomous ODEs Ginoux (2009) because
higher-order ODEs and non-autonomous ODEs can be translated into this form by using D’Alembert
transformation or adding additional variables, separately. A dynamical system is defined as

dx(t)

dt
= f(x(t);µ), (1)

where x ∈ M is a m-dimensional time-dependent state vector defined on a smooth compact sub-
manifold of RJ , with m > 0 and t > 0. f is a smooth and nonlinear function and µ is a vector of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

parameters of the system. Further, in the case with noise, the noisy states y(t) are given by
y(t) = x(t) + ϵ(t) (2)

where ϵ(t) denotes the noise process. Our goal is to learn an approximate dynamic system from the
noisy measurements. Usually, in order to observe the values of a dynamic system, we need some
observers, i.e. a function h : Rm 7→ Rd to access the measurements of the dynamic system.

In this work, we consider the measurement function h of the ODEs as the coordinate projection
function at discrete times, that is, h(x(t)) = y(t). If the observation data for the full state x(t)

are available, that is h(x(t)) ∈ Rm, i.e. (d = m), the approximation of f and derivative ḟ can be
inferred using various existing methods (Qian et al. (2022)). However, in many applications, only
partial measurements are available, which means the dimension of h(x(t)) d is less than m. In this
situation, direct approaches like SINDy, symbolic regression, or other universal models that rely on
the full-state information do not generalize well.

Delay Embedding. In order to address the issue caused by partial observation, several embed-
ding techniques have been proposed to enrich the information (Sauer et al. (1991)). One of the
popular techniques is the delay-coordinate mapping based on Takens’ embedding theorem. The
delay-coordinate mapping ϕ(t;n, τ) = [y(t), y(t+ τ), y(t+2τ), ..., y(t+(m− 1)τ)], where n and
τ are the embedding dimension and the time delay, and y(t) is a single coordinate from y(t). Here,
we assume the embedding dimension of the reconstructed dynamic system is the same as the origi-
nal one. We give a further discussion about the parameter selection of delay-coordinate mapping in
Appendix B. The reconstructed system can be assembled into a Hankel matrix (Hirsh et al. (2021)):

H =


y(t) y(t+ τ) · · · y(t+ qτ)

y(t+ τ) y(t+ 2τ) · · · y(t+ (q + 1)τ)
...

...
. . .

...
y(t+ (m− 1)τ) y(t+mτ) · · · y(t+ (m+ q − 1)τ)

 := [h1,h2, . . . ,hq] , (3)

where m denotes the embedding dimension, q is the number of discrete samples, and τ is the time
delay. Takens’ embedding theorem provides theoretical conditions for when time-delay embedding
results in an attractor that is diffeomorphic to the original system, which means the embedding
mapping ϕ is differentiable and invertible almost everywhere. Consequently, a natural idea is ap-
proximating the inverse of the delay-coordinate mapping ψ using a Neural Network and then we can
recover the original dynamic system.

Subtleties of Takens’ Embedding Theorem for closed-form discovery. Unfortunately, there is
quite a significant misunderstanding of Takens’ theorem in previous work. The existence of em-
bedding is guaranteed by the Whitney Embedding theorem (Whitney (1944)), which states that any
smooth real m-dimensional manifold can be smoothly embedded in the space with dimension larger
than 2m without any hint about how to find such embedding. And Takens’ embedding theorem
provides a concrete construction that under certain conditions (generic choice of f and h), the delay-
coordinate mapping is an embedding.

Ideally, an embedding of an m-dimensional dynamic system is m-dimensional, which aligns with
our goal of closed-form discovery since we want to recover the function forms of the original system
rather than learning the function forms of its diffeomorphic system. However, in reality, achieving
this goal is challenging. For example, in the case of the Lorenz63 system, it has been proven
that the minimum dimension required for embedding this system is four, and no three-dimensional
embedding exists for the Lorenz63 system (Cross & Gilmore (2010a)). And the same issue exists
for the delay-coordinate mapping, which we use to reconstruct the dynamical attractor manifold.

In order to investigate this problem, we start from the continuous form of the delay-coordinate
mapping, i.e. the differential mapping, which has a better analytic property. And the approximation
error is guaranteed by the following Theorem 5. We observe that the differential mapping, is not an
(global) embedding, as the Jacobian matrix degenerates in certain regions of the attractor, which we
call it as the singular manifold of the ODE system, denoted asMs. The most intuitive manifestation
of this is that, for variables with low observability, the trajectory of the reconstructed dynamic system
obtained through delay coordinate mapping no longer remains smooth. In regions near the singular
manifold, it can exhibit sharp fluctuations or even self-intersections, as illustrated in Fig. 1. For
explanation and fully uncover f , we start from the following definition of observability for {f ,h}.
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Figure 1: Reconstruction of the original coordinates of the Lorenz system from the differential
embedding under the partial observation h(x) = x1. The system is unobservable at the intersection
of the singular manifold and the Lorenz attractor (x1 = 0). As a result, the reconstructed dynamic
system shows a large error closer to this region.

Definition 1. The observable space O(x) of ODE system is the linear space of functions over the
field R spanned by the following functions (Sendiña-Nadal & Letellier (2022)):

Lv
f h(x) := [Lv

fh1(x)...Lv
fhq(x)]

T , 0 ≤ v ≤ s, 1 ≤ j ≤ q (4)

where Lv
fhj(x) denotes the v-th Lie derivative of the j-th component of h(x) along f , and s is the

smallest integer such that∇Lk
f h(x) belongs to the span formed by the ODE for all k > s.

Due to the nonlinearity, the definition of observability is local, depending on the point x in the
state space where the attractor manifold resides. To quantify observability, we present the following
theorem and proposition (Montanari et al. (2022)).
Theorem 2. If the ODE system in Eq. (1) together with observable function h is locally observable
at x0, then there exists a neighborhood of x0 such that

dim{∇O(x) = m}. (5)

Proposition 3. Given some measurement h(x), a differential embedding between O(x) and the
original space can be constructed using higher-order derivatives of h(x) as coordinates:

Φ(x) =


y
ẏ
...

y(v)

 =


h(x)
dh(x)
dt
...

dvh(x)
dtv

 =


L0
fh(x)

⊤

L1
fh(x)

⊤

...
Lv
f h(x)

⊤

 , (6)

If the pair {f ,h} is observable, then such a differential embedding map is left invertible. Following
the inverse function theorem, Φ is invertible if its Jacobian matrix has full rank.

In this paper, we only focus on the case where the dimension of h(x) is one. Here, we reveal the
relationship between the delay-embedding mapping and the differential embedding mapping.
Remark 4. In the limit of the discretization step ∆t → 0, the column space of the Hankel matrix
obtained by the delay-embedding mapping is linearly isomorphic to the differential mapping up to
m-dimensional higher-order infinitesimals.
Theorem 5. (Beckermann & Townsend (2019)) Let Hn ∈ Rn×n be a positive definite Hankel
matrix, with singular values σ1 ≥ ... ≥ σn. Then σj ≤ Cρ−j/ lognσ1 for some constants C and ρ
for i = 1, ..., n.
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A direct result is that the observable space O(x) of the reconstructed dynamic system for both dif-
ferential embedding and delay-coordinate mapping is the same. And the Theorem 5 reveals that the
differential mapping can be approximated up to an accuracy of ϵ||H||2 by a rank ofO(log n log 1/ϵ)
matrix which provided the error upper bound for our approximation. We can analyze the dynamic
system reconstructed from the delay-coordinate mapping by analyzing the differential mapping. For
example, we can consider the differential embedding ϕ = (x1, ẋ1, ẍ1) for the reconstruction of the
Lorenz attractor, which we can observe in Figure 1.

3 MODEL AND ALGORITHM

In this paper, we first propose a variable selection algorithm to solve the problem we proposed in
the last section. Moreover, based on the variable with optimal observability, we propose a learning
framework called D-CHOPT, which is an end-to-end interpretable learning framework for system
identification that provides a closed form for dynamic systems with partially observed trajectories.
In the sequel, we first recall some preliminaries and notations on system identification. Then we
continue with the model architecture and techniques.

3.1 SYSTEM IDENTIFICATION

System identification aims to uncover a closed-form representation of the unknown ordinary differ-
ential equations. Existing methods can be broadly categorized into two groups: sparse regression
and symbolic regression (Chiuso & Pillonetto (2019)). Both approaches use regression techniques
combined with optimization to select the most probable basis functions from a set of candidates.
The key difference lies in their assumptions: sparse regression assumes that the true ODEs can be
expressed as a linear combination of these candidate basis functions, whereas symbolic regression
lifts this linearity constraint and allows for discovering closed-form expressions in a more flexible,
potentially nonlinear form. The main challenge in system identification is the time derivative, which
is often unobserved due to difficulties in direct measurement, especially in cases with infrequent or
noisy observations. Moreover, the symbolic regression suffers more because of the larger search
space. Most existing work addresses this issue by employing robust derivative estimation methods
(Rosafalco et al. (2025)) or bypassing the unobserved time derivatives through a variational formu-
lation of ODEs (Qian et al. (2022)).

3.2 LEARNING PARTIAL OBSERVED DYNAMICS

Partial observed trajectories are the norm for practical applications and become a key problem for
discovering closed-form dynamics, and several efforts have been made in this field, such as a neural
operator for solving the attractor dimension mismatch or a delay-coordinate mapping as the bridge
for the gap Young & Graham (2023). It utilize the low-dimensional observations for reconstructing
the attractor with the same dimension as the original ones and then applying regression technique
(sparse regression/symbolic regression) to obtain the closed form of the original system, for exam-
ple, the Neural-ODE based Neural Delay Differential Equations (Chen et al. (2018)) which models
the latent original dynamic system based on the time-delay reconstruction of the observed system.
Importantly, these types of neural methods do not provide a concise closed-form expression for the
latent dynamics, and moreover, these types of models do not deeply investigate the nature properties
of dynamic systems, for example, the observability of dynamic variables. Using an inappropriate
set of observed trajectories for reconstructing the original attractor may cause failure of the system
with complex coupling, e.g., chaotic systems, which act as the starting point for our work.

4 METHOD AND ALGORITHMS

4.1 VARIABLE SELECTION ALGORITHM

A pressing question is how to select the optimal measurement to achieve the goal for embedding if
we have multiple measurements, for example, h(x) = x1, or h(x) = x2, since observability greatly
influences the quality of embedding.
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System observability order Order of Singular manifold Percentage of the first component

Rössler y ≈ x ▷ z
dim(My) = 0 79.30366± 1.40010
dim(Mx) = 1 79.14888± 1.46845
dim(Mz) = 2 47.82087± 0.66325

Lorenz’84 x ▷ y ≈ z
dim(Mx) = 1 78.65237± 1.35443
dim(My) = 3 71.81645± 1.40565
dim(Mz) = 3 70.03762± 0.94000

Lorenz x ▷ y ▷ z
dim(Mx) = 1 54.38915± 0.74183
dim(My) = 3 53.81355± 0.71960
dim(Mz) = 2 52.67460± 0.57763

Table 1: Results for the benchmark models from variable selection algorithm.

Theoretically, we can calculate the differential embedding of the dynamical variable to evaluate the
observability of the reconstructed space through the degree of the singular manifold. For example,
the algebraic order of the singular manifold of the Rössler system with h(x) = x3 is two, and the
algebraic order of the singular manifold of the Lorenz system with h(x) = x1 is one. However,
for most applications, we don’t know the exact form of the latent dynamical system, and the only
practical way is to use the delay-coordinate mapping, which obscures our selection task. The degree
of singular manifold can somehow reflect the extent of a variable’ observability. Theoretically, the
higher the order of singular manifoldMs, the lower the observability.

Here, we propose the variable selection algorithm to select the best measurement for embedding.
The basic idea is to quantify the complexity of the geometry in each local neighborhood centered
at each data point. If the dynamics are well-reconstructed in such a neighborhood, the local geom-
etry is quite simple, which means that the leading singular value σ1 of a Hankel matrix resulting
from the delay-coordinate mapping holds a relatively large percentage. The details of our variable
selection algorithm is shown in Appendix B. We evaluate the performance of our method on several
benchmark dynamic systems, and the results are shown in Table 1. Our algorithm can select the
reconstruction with the best observability. However, other factors like the symmetry properties of
the dynamical system, i.e, the x3-projection of Lorenz system also influence the final result (Duan
et al. (2025) ).

4.2 THE D-CHOPT ALGORITHM

We now propose our method D-CHOPT, which leverage the ODE discovery framework together
with the invertible residual networks (iResFlow) Behrmann et al. (2019), an invertible neural net-
work, to learn the diffeomorphism between the Hankel embedded matrix and original state space
from the optimal partial observed trajectories selected from the Algorithm 1. Moreover, we add
additional losses by taking derivative operation based on the automatic differentiation operator in
Pytorch. Our method relies on the approximation ability of Neural Networks to approximate the lo-
cal diffeomophism of nonlinear dynamic system on the part of domainMo =M−Ms. The goal
is to design the loss function to optimize the sparse analytic form, which serves as the closed-form
of ODE system. The structure of our Neural Network is shown in the following Figure 2. There are
four types of loss in our network structure, which is shown as follows:

• Loss of ODE: Lż =
∥∥∥∇hϕ(h)ḣ−Θ (ϕ(h))Ξ

∥∥∥2
2

• Reconstruction loss of derivative: Lḣ =
∥∥∥ḣ−∇zψ(ϕ(h))Θ(ϕ(h))Ξ

∥∥∥2
2

• First component Loss: Lz1 = ∥hi1 − zi1∥
2
2

• Topology Loss: Ltopo = RTDL(H,Z)

• Consistency Loss: Lcons =
∑n

j=1

∥∥∥hij − (∫ tj
t1

Θ(ϕ(hi))Ξ dt
)
1

∥∥∥2
2

• Sparsity regularization: Lreg = ∥Ξ∥1

where z is the target ODE system to be learned. Its j-th time realization of i-th component
is zij . The governing equation of the target system is approximated using r basis functions
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Figure 2: Summary of the network structure of D-CHOPT.

θ1, θ2, ..., θr, say polynomials. Lż and Lḣ are loss derived from derivatives for providing physical
information for the dynamic system, where ϕ represents the mapping from the embedded attrac-
tor to the original one while ψ denotes the inversion and we use ∇hϕ(h)ḣ = ż in the formula.
Θ(z) = [θ1(z), θ2(z), ..., θr(z)] ∈ Rm×r is to form the data matrix, and it works with the coeffi-
cient matrix Ξ = [ξ1, ξ2, ..., ξr] ∈ Rr×m for the estimated ODE. Ξ is chosen to be sparse to simplify
the system. Lż and Lḣ terms play the main role for the ODE estimation. Additionally, to ensure that
the attractor manifold of z preserves topological features of h, we employ the RTD-Lite algorithm
(Tulchinskii et al. (2025)) in Ltopo, a scalable topological analysis algorithm for manifold matching.
The loss term Lz1 requires that the first component of the discovered system equals the observed.
Moreover, if the constraint of the first component is satisfied, the integration of the first dimension
of time series of z using the closed-form we learned should follow that of h. The last term Lreg is
designed to make the candidate matrix Ξ sparse. Then the total losses are combined as:

L = λ1Lż + λ2Lḣ + λ3Lz1 + λ4Ltopo + λ5Lcons + λ6Lreg, (7)

where weighting coefficients λ = [λ1, . . . , λ6] are hyperparameters to be tuned.

The proposed structure relies on the invertibility of the fixed point iteration structure of iResFlow and
these loss functions constrain the hypothesis class, driving towards a sparse identification. We put
the implementation details and the experiment results in Appendix C. Theoretically, if the original
dynamic system is n-dimensional, it is possible to take the n-th derivative into the loss function that
aligns with the highest order term of the differential mapping and this network structure can also be
transferred to other full-state dynamic system discovery frameworks.

5 EXPERIMENT RESULTS

In this section, we demonstrate the ability of the proposed D-CHOPT network to discover governing
equations from partially observed trajectories for several canonical dynamic systems. We highlight
several key points from our experiments. Figure 3 presents a comparison between SINDy-AE and
D-CHOPT. A notable improvement of D-CHOPT is its enhanced ability to discover governing equa-
tions by preserving the topological structure.

Choice of dynamical systems. In this section, we select four dynamic systems governed by closed-
form ODEs, The selected systems exhibit highly nonlinear properties and show complex trajectories.
We select multiple ODE systems, including simple linear oscillator, cubic nonlinear oscillator which
contains two nonlinearly interacting variables, high-dimensional chaotic Lorenz system and Rossler
system which involves three variables forming a strange attractor.

Measurement and data generating Settings. For each dynamic system, we sample the ODE sys-
tem at regular intervals T = ∆t, 2∆t, ..., n∆. Additionally, we add Gaussian noise (std = 0.01)
to the partially observed trajectory of the dynamic system. For each trajectory, we generate each

7
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Discovered System 
From SINDy-AE

ሶ𝑥1 = 10 𝑥2 − 𝑥1

ሶ𝑥2 = 𝑥1 28 − 𝑥3 − 𝑥2

ሶ𝑥3 = 𝑥1𝑥2  − 2.33𝑥3

Origin

Discovered System 
From D-CHOPT

ሶ𝑥1 = −6.70𝑥1 + 5.483𝑥3 + 2.24𝑥2𝑥3 
 ሶ𝑥2 = −2.54 + 1.91𝑥2

2

 ሶ𝑥3 = 1.68𝑥1 + 2.75𝑥3  − 1.17𝑥0𝑥1

ሶ𝑥1 = 13.91𝑥2 − 13.25𝑥1

ሶ𝑥2 = −8.99𝑥1 + 9.03𝑥3

ሶ𝑥3 = −13.89𝑥2 + 13.24𝑥3

Figure 3: Results for the Lorenz system with measurements given by the coordinate projection of x1.
D-CHOPT successfully discovers the closed-form representation while preserving the underlying
topological structure.

component of the initial condition x0 from a uniform distribution of [−0.5,−0.5]. Then we obtain
the trajectory of the ODE system by solving the initial value problem. The final measurements are
contaminated by adding independent Gaussian noise with discrete samples.

Evaluation Matrices

In order to make fair comparision, we use three metrics comes from the previous work (Qian et al.
(2022)) to evaluate methods. (1) Success probability (Success Prob.): the probability that the
functional form is correctly recovered from partially observed trajectories. (2) Distance (Dist.)
between the ground truth f∗ and the learned system f , defined as dx(f , f∗) := ∥f ◦ x− f∗ ◦ x∥2 =
∥(f − f∗) ◦ x∥2, where ◦ denotes the composition operation and x represents the noisy full-state
measurements obtained from the original system. Note that an incorrect functional term can still
yield a small distance. (3) Sparsity: the difference in the number of functional terms relative to the
ground-truth model (e.g., +1 indicates one extra term; -1 indicates one missing term).

Although many closed-form discovery methods exist, there is only one established framework for
partially observed trajectories: the SINDy-Autoencoder (SINDy-AE). It is worth noting that while
several other methods can also be applied to discover closed-form systems under incomplete data
scenarios, they are all based on SINDy-AE structure. Additional implementation details for the
following numerical results are provided in Appendix C.

5.1 NUMERICAL RESULTS

We make fair comparison between the SINDy-AE and our D-CHOPT method based on the following
benchmark models.

The linear oscillator is a two-dimensional dissipative ODE system, which is defined as:

ẋ1 = θ1x1 + θ2x2 ẋ2 = θ3x1 + θ4x2, (8)

where θ1 = −0.1, θ2 = 2.0, θ3 = −2.0, θ4 = −0.1. It is easy to check that both measurements
provide full observability of the original space.

The nonlinear oscillator consists of two ODEs:

ẋ1 = θ1x
3
1 + θ2x

3
2 ẋ2 = θ3x

3
1 + θ4x

3
2, (9)

8
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where θ1 = −0.1, θ2 = 2.0, θ3 = −2.0, θ4 = −0.1. Compared with the linear one, the singular
manifold generated by both two measured variables is order-two, which brings difficulties to the
discovery of the dynamic system.

The Lorenz63 system is a common test case for chaotic systems, which is defined as:

ẋ1(t) = θ1(x2(t)− x1(t)); ẋ2(t) = x1(t)(θ2− x3(t))− x2(t); ẋ3(t) = x1(t)x2(t)− θ3x3(t),

where θ1 = 10, θ2 = 28, θ3 = 8/3. We show the results in Table 2. D-CHOPT achieves comparable
and stable performance on both the linear oscillator and the Lorenz63 system. For the Rössler system
and nonlinear oscillator case, however, the success probability is lower than that of the SINDy-AE
method, since SINDy-AE employs less sparsity, which increases the success probability. Figure 3
illustrates the reason for the performance gain in the Lorenz63 case. When the dimensionality of the
dynamical system increases, the attractor manifold undergoes greater deformation, thus making the
preservation of its topological structure increasingly important. With the aid of the topology loss, we
are able to reduce the degrees of freedom of the dynamical system while simultaneously narrowing
the search space of the final solution, thereby accelerating convergence.

Equation Method Success Prob Dist Sparsity
Linear Oscillator SINDy-AE 0.9 (0.2) 4.53 (4.92) (+1.3) (0.74)

D-CHOPT 0.9 (0.12) 0.78 (2.2e-03) (+1.5) (0.5)
Nonlinear Oscillator SINDy-AE 0.6 (0.2) 4.42 (1.25e-03) (+7.4) (2.15)

D-CHOPT 0.5 (0.27) 4.41 (2.50e-02) (+5.8) (1.94)
Lorenz63 System SINDy-AE 0.33 (0.13) 9.40e+03 (1e+04) (-2.33) (2.49)

D-CHOPT 0.57 (0.00) 4.77e+03 (4.99e+02) (-0.6) (0.49)
Rossler System SINDy-AE 0.51 (0.07) 2.13e+02 (2.88e-02) (1.4) (3.72)

D-CHOPT 0.43 (0.00) 2.12e+02 (6.78e+01) (-1) (0.00)

Table 2: Three measures Success Prob, the Dist and Sparsity are reported for the four equations.
Standard deviations are shown in the brackets.

6 DISCUSSION ON FAILURE MODES AND OPEN CHALLENGES

In this work, we explored how the observability of measured variables influences the discovery of
ODE systems and we proposed a variable selection algorithm and learning framework. However,
discovering latent ODE systems in its closed form is very challenging, and several factors may lead
to the failure of the model and present opportunities for future work.

Extreme observability for high dimensional systems

For very high-dimensional systems, for example, the nine-dimensional Lorenz system (Reiterer et al.
(1998)), at least six dimensions of information are needed to recover a full-observed space, that is,
a combination of variables and their derivatives, which suffers the curse of dimensionality in high-
dimensional cases. We give a further discussion in Appendix C.

Candidate Assumptions One typical feature in our closed-form discovery algorithms for ODE
systems is the sparsity on over-supply of the basis candidate functions, meaning that the learning
algorithm automatically selects suitable functional terms from the library of candidate functions
that determine terms in the estimated ODE f̂ . One inevitable problem is that when the order is
high when using polynomials (the highest order of polynoial combination), the number of possible
candidates becomes large, increasing the searching space dramatically and increase the numerical
burden of the discovering procedure. Another obvious problem is if the mathematical expression of
the ODE system is complicated, i.e., containing delay terms or fractal terms that are not covered by
the candidate functions, the accuracy of the discovered algorithm is limited.

Noise and slow sampling

Our algorithm, even the measurement selection algorithm, may fail under large measurement noise
or slow sampling cases since the quality of the reconstructed dynamic system relies heavily on the
delay-coordinate embedding map, which works well when we have dense and clean samples.

9
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A DISCUSSION OF IMPLEMENTATION OF TAKENS’ EMBEDDING THEOREM

Here, we provide a detailed discussion of Takens’ Embedding Theorem, with particular attention to
the selection of embedding parameters such as the time delay and embedding dimension. Before
beginning, we make the following assumptionm that for attractive nonlinear dynamical systems, a
universal property is that trajectories converge rapidly to the attractor manifold regardless of their
initial conditions. Thus, our discussion will focus on the attractor manifold itself and on how Takens’
Embedding Theorem can be applied to reconstruct this manifold.

For a time-continuous dynamic system, practical constraints necessitate that measurements are taken
at a regular sampling interval T . Given this sampling rate, the discrete flow denoted as ξT : M →
M , can be defined and characterized by the equations ξT (xt) = xt+T and ξ−1

T (xt)) = xt−T which
associate each point state x ∈ M the vector ξT (x). The sampling rate T represents an integer
multiple of the iteration step for discrete dynamic systems.

Direct observation of the full state of the dynamic system is often infeasible. Instead, we have access
to observations via a real-valued measurement function h : A→ R, producing the signals {si}i∈N =
{h(xi·T )}i, for i = 0, 1, 2..., where x0 is the initial state and A represents the attractor manifold.
A homeomorphism between two manifolds M1 and M2 is a continuous bijection f : M1 → M2,
where its inverse function f−1 : M2 → M1 is also continuous. Moreover, if the homeomorphism
and its inverse are smooth, it is a diffeomorphism. An embedding is a diffeomorphism from a
manifold M1 into another manifold M2, defined as f : M1 → f(M1) ⊂ M2. An important point
is that embeddings are always injective and without self-intersections. Moreover, our goal is to find
an embedding to reconstruct the attractor A from the signal {si}i. Given the certain measurement
function h, the following theorem forms the theoretical foundation for attractor reconstruction.
Theorem 6 (Takens). Takens (2006) Let M be an n-dimensional smooth manifold. If v is a vector
field on M with flow ψt and h is a measurement function on M , then for generic choices of v and h,
the differential mapping Fh,m :M → Rm of the continuous dynamic system into Rm is given by:

Fh,m(x) = (h(x),
d

dt

∣∣∣
0
h(ψt(x)), ...,

dm−1

dtm−1

∣∣∣
0
h(ψt(x))) (10)

which is an embedding when m = 2n + 1, where m is the embedding dimension, d
dt

∣∣∣
0

means the

derivatives are evaluated at t = 0 and the flow ψ satisfies

d

dt

∣∣∣
0
ψt(x) = v(ψ0(x)) (11)

for every time t ∈ R.

The above theorem also holds for discrete dynamic systems with a diffeomorphism ψ on a compact
n-dimensional manifold M and a measurement function h, for which the embedding is defined as
Equation (12), where the value of the lag value τ is an integer multiple of the iteration size. The
generic in this theory means that the differential mapping Fh,m is an open and dense embedding in
the set of all mappings under the measurement function h and the flow ψt. The best way to under-
stand this is regarding this theorem as a generalization of the Weak Whitney Embedding Theorem
Whitney (1944).

12
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Theorem 7 (Weak Whitney Embedding). Every n-dimensional manifold M embeds in R2n+1.

This theorem states that any manifoldM can be embedded in R2n+1 without self-intersections given
an arbitrary mapping. Whitney proves that the optimal linear bound for the minimum embedding
dimension is 2n. Takens theorem demonstrates that the differential mapping (10) satisfies this condi-
tion, embedding the compact n-dimensional manifold M into the reconstructed space R2n+1, even
when considering finite discrete samples.

For practical use, discrete versions of the differential mapping (10) are required when working with
signals {si}i generated by the discrete flow ξT with a specific sampling interval T . The most
common approach is the delay-coordinate mapping Fh,τ,m(xi·τ ) :M → Rm, which is defined as:

Fh,τ,m(xi·τ ) =


h(xi·τ )

h(x(i−1)·τ )
...

h(x(i−m+1)·τ )

 =


h(xi·τ )

h(ξ−1
τ (xi·τ ))

...
h(ξ−m+1

τ (xi·τ ))

 (12)

where the parameter τ = k · T , for k ∈ Z is the lag value, and m is the embedding dimension.
Theoretically, for minimal time delay τ , a linear combination of coordinates can approximate the
derivative such that the delay-coordinate mapping plays the same role as the differential mapping.
The well-defined differential mapping is suitable for analytical purposes. This paper explores the
properties of shadow manifolds reconstructed through differential mappings while implementing
experiments using delay-coordinate mappings.

In practical scenarios, the sampling rate T of signals often cannot be small enough to accurately ap-
proximate the differential and higher-order differentials at the given point. However, by selecting an
appropriate lag value τ , the delay-coordinate mapping method can obtain the same result in recon-
structing the shadow manifold using a sufficiently small τ . Since chaotic dynamic systems consist
of highly nonlinear and coupled variables, the signal obtained from the projection function, which
serves as the measurement function, has the potential to recover information from other dimen-
sions. The differential mapping method works by separating coupled information and projecting the
observed data—via differentiation—in the direction of maximum linear independence, thereby iso-
lating information about variables that are not directly observed. The critical part lies in accurately
recovering information from the unknown dimensions using the observed data.

Thus, selecting the lag value τ plays a critical role in reconstructing the shadow manifold. If the lag
value is suitable, the delay-coordinate mapping Fh,τ,n(x(t)) is equivalent to the differential map-
ping Fh,n(x) under an affine transformation, and plays as a diffeomorphism between the shadow
manifold and the original attractor. However, the selection of the lag value is not only restricted
by external factors like the sampling rate T but also its intrinsic properties. For a continuous-time
dynamic system with discrete flow, if τ is too small, the resulting vectors may be highly linear depen-
dent and redundant, leading to a ”squeezed” shadow manifold. Conversely, if τ is excessively large,
the new coordinates may become essentially unrelated, causing the shadow manifold to collapse.
Based on the above analysis, we can observe that as τ increases, the shadow manifold undergoes a
”stretch-and-fold” process, as depicted in Fig. 4.

For convenience, we omit the sampling interval T for τ such that the number of τ shown in this
paper refers to the k in the definition, indicating the number of times the sampling interval T , for
example, τ = 5 means τ = 5T , where T is the sampling rate or the iteration steps for the discrete
dynamic system.

Although the selection of lag value for delay-coordinate mapping is an open problem, several works
have been done in this field (Tan et al. (2023); Martin et al. (2024)). The most widely-used method
to choose the suitable lag value τ is the mutual information method (Kim et al. (1999)). The basic
idea is to calculate the mutual information between the system’s observed values at different lag val-
ues and the original observed data and then select the first lag value at which the mutual information
transitions from decreasing to increasing as the optimal τ since this represents the lag value that
contains sufficient new information while still maintaining some correlation with the original data.
This information-based method is theoretically intuitive, but the resulting values often do not corre-
spond to the points at which the shadow manifold is fully stretched before collapsing. Furthermore,
in cases where mutual information monotonically decreases with increasing lag value, this method
does not work.

13
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Figure 4: Sequential figures representing the changes in reconstructed shadow manifold Mx of
Lorenz63 system with increasing lag value τ .

According to Takens’ theorem, a dynamic system can be embedded in an Euclidean space with-
out self-intersection through any mapping. However, it should be noted that the ideal dimension
for embedding an n-dimensional dynamic system is n. In many cases, the optimal dimension for
the shadow manifold generated by differential embedding is also n. However, embedding an n-
dimensional dynamic system into a higher dimension (greater than n) does not significantly increase
the natural information of the original system, which can be demonstrate using false nearest neigh-
bors Rhodes & Morari (1997), as the redundant information introduced by the extra dimensions does
not provide extra information about the original dynamic system and, therefore, does not impact the
prediction. Therefore, when the dimension of the original dynamic system is known, the differen-
tial embedding method can be directly used to obtain a shadow manifold of the same dimension.
In cases where information about the dimensions of the original dynamic system is lacking, false
nearest neighbors are a practical approach for dimension selection. In our experiments, we assume
that the suitable embedding parameters are selected by brute force selection.

Another important property we need to concern is when the attractor manifold exhibits a symmetric
property since the reconstructed attractor manifold may lose the symmetry property of the original
attractor. This is because the embedding mods out the symmetry of the attractor manifold, i.e., the
attractor manifold reconstructed using the x3 measurement of Lorenz63 system lose the original
two-fold rotational symmetry.

B DETAILS OF OBSERVABILITY AND VARIABLE SELECTION ALGORITHM

Here, we use a concrete example to show the existence of singular manifoldMs by calculation. We
take the Rössler and illustrate why the projection of x2 provides the best observability among all
three measurements.
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The expression of Rössler system (Rössler (1976)) is:
ẋ = −y − z
ẏ = x+ ay

ż = b+ x(z − c)
(13)

where a = 0.2, b = 0.2, c = 5.7. In case when the measurement is h(x) = x1, the embedding Φx1

is:
u = x

v = ẋ = −y − z
w = ẍ = −x− ay − b− z(x− c).

(14)

The Jacobian matrix of Φx1
is

J(Φx1) =

[
1 0 0
0 −1 −1

−1− z −a −(x− c)

]
. (15)

Clearly, the Jacobian matrix J (Φx1
) = x − c − a vanishes for the plane x = c + a. That means

points located on the plane x = a+ c can not be observed from the new coordinate system (u, v, w)
through the measurement h(x) = x1, which is shown in the following figure 5. Although the

Figure 5: An illustration of Rössler system and the plane x = a+ c.

Lebesgue measure of the singular manifold which is the intersection part of the Rössler attractor
with the plane affects the observability of the attractor but not too much cause it is close to the
boundary of the attractor. Similarly, we can calculate the coordinate transformation of projection
mapping h(x) = x2 and h(x) = x3 using the same procedure. The coordinate transformation Φx2

is:

J(Φx2
) =

0 1 0
1 a 0
a a2 − 1 −1

 . (16)

The determinant of the Jacobian matrix never vanishes. In other words, Φx2
defines a global diffeo-

morphism between the original attractor manifold and the new attractor manifold. As a result, the
h(x) = x2 provides the best observability of the original system. Similarly, Φx3 is:

J(Φx3
) =

 0 0 1
z 0 (x− c)

b+ 2z(x− c) −z (x− c)2 − y − 2z

 . (17)
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The determinant of the Jacobian matrix Φx3
vanishes for the surface x2 = 0 which is shown in the

following figure 6. As a result, the reconstructed attractor manifoldMz suffers a large shape dis-
tortion and collapse near the region of the singular manifold, thus providing the worst observability.

Figure 6: An illustration of Rössler system, reconstructed shadow manifold Mz and the singular
manifold.

The pseudocode of the variable selection algorithm is shown in Algorithm 1.

C IMPLEMENTATION DETAILS OF THE EXPERIMENTS

C.1 DETAILED SETTINGS OF DATASET CURATION

As we discussed in Section 6, the success of the ODE discovery task is highly dependent on the
dataset. Instead of only selecting the measurement that provide the best observability through the
variable selection algorithm, the measurement settings are also constrained by practical factors such
as the sampling rate. The sampling rate directly influences the choice of time delay, for example,
if the sampling rate is too low or the data are sampled irregularly, selecting an optimal time delay
becomes infeasible. This issue is also an important topic in the time series analysis (Braun et al.
(2022)).

Also, the selection of measurement function h is also crucial. In our paper, we restrict the discussion
to the case where the measurement function is the coordinate projection of the original system, which
preserves the natural properties of the dynamical system. In practice, however, the measurement
function could be a linear combination of multiple coordinate projections. D-CHOPT focuses on
the discovery task itself, addressing such cases requires domain knowledge of the original system.
Nevertheless, incorporating this knowledge can facilitate the closed-form ODE discovery process.
Prior knowledge can further enhance the D-CHOPT algorithm, for example, by providing accurate
candidate functions or dimensional information and then re-running the D-CHOPT.
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Algorithm 1 Hankel-Embedded Local SVD for Observability Assessment
1: Input: Dataset D = {xi(t) | i ∈ N, t ∈ [0, T ]}
2: Input: Hankel rows r, percentage of center p, neighborhood scale α, target dimension of dy-

namic system td, number of Monte Carlo samples M
3: Calculate the radius per channel: ϵs ← α(max(s)−min(s)), s ∈ {x, y, z} ▷ Neighborhood

size per channel
4: Calculate the noise scale: σs ← std(s), s ∈ {x, y, z}
5: Initialize lists Sx,Sy,Sz
6: for m = 1 to M do
7: Add noise: s̃← s+N (0, (0.1σs)

2), s ∈ {x, y, z}
8: for i = 1 to r, j = 1 to (N − r + 1) do
9: Construct Hankel matrix: Hs̃[i, j]← s̃i+j

10: end for
11: Perform SVD: UΣV ⊤ ← svd(Hs̃)

12: Rank-td projection: Ĉs̃ ← V ⊤
1:tddiag(Σ1:td)

13: Initialize empty list: A ← []
14: for j = 1, 1 + p, 1 + 2p, . . . do
15: Define neighbors: Nj ← {i | ∥Ĉs̃,i − Ĉs̃,j∥2 < ϵs}
16: if |Nj | > dim(Ĉs̃) then
17: Compute centered matrix: C̄ ← Ĉs̃,Nj

− rowmean(Ĉs̃,Nj
)

18: Perform SVD: UΣV ⊤ ← svd(C̄)
19: Append: 100σ1∑

i σi
to A for i = 1, 2, . . . , td

20: end if
21: end for
22: Compute the mean: S1mean ← mean(A)
23: Append S1mean to Sx,Sy,Sz
24: end for
25: Return: (Sx,Sy,Sz)

C.2 DETAILED SETTINGS FOR EACH EXPERIMENT

The detailed settings for each experiment in Section 5 are shown in Table 3. The time horizon T
is the end time point and the initial point is chosen randomly from a given interval. For practical
applications, the time horizon and ∆t are determined by the problem itself.

Table 3: The detailed settings for each simulation: noise level σR, time step size ∆t, total number
of trajectories N , time horizon T , range of initial conditions [a, b].

System σR ∆t N T [a, b]
Linear Oscillator 0.01 0.01 2 20 [-0.5, 0.5)
Nonlinear Oscillator 0.01 0.01 2 20 [-0.5, 0.5)
Lorenz System 0.01 0.01 5 100 [-0.5, 0.5)
Rössler System 0.01 0.01 5 80 [-0.5, 0.5)

C.3 HYPER-PARAMETER SETTINGS

In our network architecture, we employ iResFlow as both the encoder and decoder, and design an ad-
ditional sub-network to estimate the parameters of the learned system. Sparsity is enforced through
a combination of the regularization loss Lreg and thresholding. Our strategy is to maintain a mask
for sparsity. After a warm-up period, parameters with values below the threshold are pruned, and the
learning rates of both iResFlow and the coefficient network are reset. Automatic differentiation is
performed using the torch.func.jacrev(Paszke et al. (2017)) function, while the consistency
loss is computed via the forth-order Runge-Kutta method (Butcher (2007)).

For both the MLP and iResFlow networks, we use a hidden width of 128 and ELU as the activation
function (Clevert et al. (2015)). The default MLP architecture is [128, 64, 128] for both encoder and
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decoder. In iResFlow, each block is implemented as an iResNetBlock with hidden dimension 128
and residual scaling factor α = 0.1, and the total number of iResNetBlock is three.

C.4 DETAILS OF EVALUATION METRICS

Here, we provide details on how these three metrics are calculated.

Success Prob

The success probability is defined as the proportion of correct functional terms successfully identi-
fied by D-CHOPT. For example, in the Lorenz63 system, one of our discovered system is:

ẋ1(t) = 13.91x2(t)−13.25x1(t); ẋ2(t) = −8.99x1(t)+9.03x2(t); ẋ3(t) = −13.89x1(t)+13.24x3(t),

while the original system is:

ẋ1(t) = 10(x2(t)−x1(t)); ẋ2(t) = x1(t)(28−x3(t))−x2(t); ẋ3(t) = x1(t)x2(t)−2.33x3(t),

In this case, four correct terms are recovered: x2 and x1 in ẋ1, x1 in ẋ2, and x3 in ẋ3, yielding a
success probability of 4/7.

Dist

To measure how well our learned equation matches the original ones, the definition of vector field
discrepancy between a discovered vector field fθ and the ground truth f∗ is:

D(fθ, f
∗) =

(∫
Γ

∥fθ(x)− f∗(x)∥22 dµ(x)
)1/2

, (18)

where Γ refers to the domain of integration (attractor manifold), µ is the measures over the domain
and we take the L2 norm over functions by computing pointwise distance and integrating over the
trajectory then taking square root. For practical conditions, we use the empirical version along a
sampled trajectory and approximate the integral by a Riemann sum as:

D(f , f∗) ≈

√√√√ N∑
i=1

∥f(xi)− f∗(xi)∥22 ∆t (19)

where ∆t is the time step between samples and {xi} are sampled states from the trajectory.

Theoretically, this distance serves as a functional to measure how well the learned vector field f
approximates the true vector field f∗; the smaller the value, the better the approximation. If the time
horizon T is fixed and the sampling step ∆t is reduced,D(f, f∗) converges to a constant value, with
discretization error on the order of O(∆t). From table 2, the values of Dist. for the Rössler and
Lorenz systems are significantly larger than those for the linear and nonlinear oscillators. This is
because, under a fixed sampling step ∆t, a large time horizon T leads to greater error accumulation,
and the state ranges of the Lorenz and Rössler systems are wider, further amplifying the discrepancy.
Therefore, comparisons are only meaningful across different methods within the same dynamic
system.

Sparsity

Sparsity is defined as the difference in the number of discovered terms compared to the number of
terms in the original system. For example, if the discovered system is :

ẋ1(t) = 13.91x2(t)−13.25x1(t); ẋ2(t) = −8.99x1(t)+9.03x2(t); ẋ3(t) = −13.89x1(t)+13.24x3(t),

while the original system is:

ẋ1(t) = 10(x2(t)−x1(t)); ẋ2(t) = x1(t)(28−x3(t))−x2(t); ẋ3(t) = x1(t)x2(t)−2.33x3(t),

then the sparsity is -1, meaning that the discovered system contains one fewer functional term than
the original.
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