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"Pick up the blue soda can on the table!" 

Figure 1: A human instruction is turned into robot actions via a learned language-conditioned policy.
The neural network is then successfully transferred to different robots in simulation and real-world.

Abstract: Language-conditioned policies allow robots to interpret and execute
human instructions. Learning such policies requires a substantial investment
with regards to time and compute resources. Still, the resulting controllers are
highly device-specific and cannot easily be transferred to a robot with different
morphology, capability, appearance or dynamics. In this paper, we propose a
sample-efficient approach for training language-conditioned manipulation poli-
cies that allows for rapid transfer across different types of robots. By introducing a
novel method, namely Hierarchical Modularity, and adopting supervised attention
across multiple sub-modules, we bridge the divide between modular and end-to-
end learning and enable the reuse of functional building blocks. In both simulated
and real world robot manipulation experiments, we demonstrate that our method
outperforms the current state-of-the-art methods and can transfer policies across
4 different robots in a sample-efficient manner. Finally, we show that the func-
tionality of learned sub-modules is maintained beyond the training process and
can be used to introspect the robot decision-making process. Code is available at
https://github.com/ir-lab/ModAttn.
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Figure 2: Overview: different input modalities, i.e., vision, joint angles and language are fed into
a language-conditioned neural network to produce robot control values. The network is setup and
trained in a modular fashion – individual modules address sub-aspects of the task. The neural net-
work can efficiently be trained and transferred onto other robots and environments (e.g. Sim2Real).

1 Introduction

Creating machines that understand and physically execute natural language instructions is a long-
standing vision of robotics and artificial intelligence [1, 2, 3, 4, 5]. To faithfully reflect the intentions
of the human partner, robots need to interpret instructions within the current situational and behav-
ioral context. For example, to execute the command “Pick up the green bottle!”, a robot may have
to interrelate the words “bottle” and “green” to objects in the scene, identify the corresponding po-
sition in the image and, in turn, calculate the spatial relationship to its end-effector. Such inference
and decision-making capabilities require a deep integration of multiple data modalities – inference
at the intersection of vision, language and motion. Language-Conditioned Imitation Learning [2]
addresses these challenges by jointly learning perception, language understanding, and control in an
end-to-end fashion. However, once trained, such language-conditioned policies are not applicable to
other robots. Due to the monolithic nature of end-to-end policies, robot-specific aspects of the task,
e.g., kinematic structure or visual appearance, cannot be individually targeted and adjusted. Vanilla
retraining on the new robot can possibly address this issue but comes with the risk of catastrophic
forgetting [6] and substantial computational overhead.

In this paper, we address the problem of efficient training and transfer of language-conditioned poli-
cies across different robot manipulators. The overarching objective is to learn language-conditioned
policies that can efficiently be transferred when the morphology, capability, appearance, or dynam-
ics of the underlying robot changes. Instead of training an individual policy for every new robot, we
aim to use methods that quickly transfer and adapt an existing master policy to new robot hardware,
see Fig. 1 for an example. To that end, it is helpful to implement reusable building blocks or modules
that realize specialized sub-tasks [7]. At time of transfer, robot-agnostic modules may not require
any adjustments at all. However, such a modular approach is at odds with the monolithic nature of
end-to-end deep learning. We therefore introduce a methodology which realizes such functionality
through sub-modules that are responsible for achieving a specific target functionality. The approach
builds upon two parts, namely supervised attention and hierarchical modularity. Supervised atten-
tion [8] was originally proposed for better alignment between two languages in the field of machine
translation. In our approach, we leverage and extend supervised attention to enable the formation of
modular components in networks. As a results, the user is able to manipulate the training process
by focusing attention layers on certain input-output variables. By imposing a specific locus of at-
tention, we guide individual sub-modules (or parts of attention layers) to realize an intended target
functionality. Hierarchical modularity, on the other hand, is a training regime inspired by curricu-
lum learning that aims at decomposing the overall learning process into individual subtasks. At the
beginning of this process, only a single subtask is considered. After the corresponding module is
trained to convergence, other tasks are addressed one-by-one within a hierarchical cascade. Com-
bining both supervised attention as well as hierarchical modularity allows for neural networks to be
trained in a structured fashion thereby maintaining a degree of modularity and compositionality. At
runtime, the user can query both the overall control output of the network, as well as the outputs of
each involved module. These queries can help to analyze the decision-making process by generating
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the outputs of individual sub-networks. Misperforming modules can then be identified, isolated and
retrained.

Our contributions can be summarized as follows: (1) we propose a sample-efficient approach for
training language-conditioned manipulation policies that allows for rapid transfer across different
types of robots, (2) we introduce a novel method, namely hierarchical modularity, which bridges the
divide between modular and end-to-end learning and enables the reuse of functional building blocks,
(3) we demonstrate that our method outperforms the current state-of-the-art methods (BC-Z [1] and
LP [2]) and can transfer policies across 4 different robots (including from simulation to reality).

2 Related Work

Imitation learning aims at learning agent actions from expert demonstrations and has a rich history in
robotics [9, 10, 11]. Previous works [12, 13, 14] have shown the feasibility of this approach for tasks
such as helicopter flight, controlling humanoid robots, or collaborative assembly. However, early
imitation learning methods are usually conditioned on low-dimensional sensor states and cannot
leverage rich sensor modalities such as language and vision. Recent works have leveraged the rep-
resentational power of deep learning to extended the paradigm to high dimensional language and vi-
sion understanding [15, 16, 17]. This progress is partly fueled by remarkable advances in the domain
of image- and video-understanding [18, 19, 20, 21, 22]. For example, the work in [22] shows how
vision and language can be projected into a joint embedding space. The result of these multimodal
approaches enables a variety of downstream tasks, including image captioning [23, 24, 25], visual
question answering systems (VQA) [26, 27], and multimodal dialog systems [28, 29]. A number of
works leverage such multimodal networks as inputs to an autonomous agent [30, 31, 32, 33, 34, 35],
thereby enabling the agents to understand semantics from raw inputs. Along this line of reasoning,
language-conditioned imitation learning has been introduced to enable agents to act upon human
verbal instructions [3, 2, 1, 5]. For example, BC-Z [1] proposes a large multimodal dataset which
is trained via imitation learning. LanguagePolicies (LP) [2] uses a similar approach but describes
the outputs of the policy in terms of a Dynamic Motor Primitive (DMP) [12]. More recently, Say-
Can [4] was introduced which focuses on planning of longer horizon tasks and incorporates prompt
engineering. Our approach follows a similar rationale to the above papers in that it aims at bridg-
ing the divide between language, vision and control through language-conditioned imitation. We
do so by carefully incorporating modularity into our networks. Recent works on modularity for
neural networks investigate, among other things, the question of whether “modules implementing
specific functionality emerge” in neural network training [36]. Similarly, the work in [37] shows
that pruning can produce surprisingly modular neural networks. Both of these works focus on a
natural emergence of modularity, i.e., in a bottom-up fashion. Our work addresses modularity from
a different vantage point. In particular, we ask the question, “Can we impose a specific set and order
of modules within a regular neural network?”. To this end, we introduce supervised attention within
a hierarchical learning regime which allows for such functional modules to be implemented in a
top-down manner. Supervised attention was initially introduced in machine translation by [8] for
aligning two languages, and was proven effective in other natural language processing and visual
question answering tasks [38, 39, 40, 41]. In this paper, we show that with the help of supervised
attention, modular and reusable components can be formed in a hierarchical manner.

3 Language-Conditioned Policies for Robot Manipulation

The goal of our method is to learn a language-conditioned policy πθθθ(a|s, I) parameterized by θ,
where s is the natural language sentence containing a human instruction and I is an image captured
by an RGB camera of the entire scene. Policy πθ generates actions a = [x, y, z, r, p, y, g]T ∈ R7

where (x, y, z) and (r, p, y) are the task-space coordinates and orientations of the end-effector sep-
arately and g is the gripper control signal. We train our policy by following the typical imitation
learning paradigm by providing a data set of expert demonstrationsD = {d0, ...,dn}. Each demon-
stration d is a sequence of tuples ((a0, s0, I0), . . . , (aT , sT , IT )). After training, the system extracts
a policy πθθθ which allows it to perform new configurations of the task.
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An overview of our method is depicted in Fig. 2. A camera image, along with a natural language in-
struction and robot proprioceptive data (joint angles) is first processed through modality-specific
encoders to produce embeddings. The resulting embeddings are passed as input tokens into a
transformer-style [42] neural network with multiple attention layers. This neural network imple-
ments the overall policy πθ and generates the robot controls. A crucial element of our approach is
that the neural network is trained in a modular fashion, while still maintaining the advantages of
end-to-end learning. The transition from training the components to training the overall network oc-
curs gradually. Due to its modularity, πθ can also be transferred to a new robot in a sample-efficient
manner (e.g. from Kinova to UR5). Below, we describe the elements of our approach in more detail.

3.1 Modality-Specific Encoding

Given an image I ∈ RH×W×3, an image encoder produces an embedding eI = fV(I). Inspired
by [43, 44], we encode the input image into a sequence while keeping the original spatial structure.
To this end, we first use a convolutional neural network to decrease its resolution but expand its
channels, i.e., eIII ∈ R(H/s)×(W/s)×d, where s is a scaling factor and d is the embedding size. The
resulting low-resolution pixel tokens are flattened into a sequence of tokens eI ∈ RZ×d, where
Z = (H ×W )/s2. The language module takes in natural language as instructions and generates
a language embedding es = fL(s) ∈ R1×d, where s = [w0, w1, ..., wn] is a sentence composed
of a sequence of words wi ∈ W with W being the vocabulary. For computing the language em-
beddings, we refine the pretrained language model from CLIP [22]. During the training process,
we provide a template of well-formed sentences. However, during testing, we admit any free-form
verbal instruction including malformed sentences, typos, or bad grammar.

3.2 Supervised Attention

Modern neural network architectures employ attention mechanisms [42] to enhance performance.
In general, the input to an attention module consists of three sequences of tokens: queries Q, keys
K and a values V . The computational process underlying an attention layer can be expressed as:

O = Attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V (1)

Tar Reg.EE Reg

K

Token
Queries

Q

Keys

Camera Image

Attention Map

Figure 3: Supervised attention. Su-
pervision pairs (dark gray) are pro-
vided by an expert to direct attention.

where dk is the dimensionality of the keys. The output
matrix of the above operation O, holds in every row i the
weighted sum of all value tokens. The weights correspond
to the similarity between the i-th query token and the respec-
tive value tokens. The overall attention mechanism is typi-
cally learned in an end-to-end fashion without an explicit
supervision signal for the attention layers. To better con-
trol the information flow during learning, we propose super-
vised attention – a specific optimization target for attention
layers. The key idea underlying supervised attention is that
information about optimal token pairings may be available
to the user. If we know which key tokens are important for
the queries to look at, we can treat their similarity score as
a maximization goal. Fig. 3 shows example tokens gener-
ated from visual patches and the corresponding supervision
labels (dark gray). In the figure, we direct the network to focus on the end-effector and a target
object. More formally, if the i-th query should look at the j-th key, then we need to maximize
the similarity between qi and kj , i.e., we optimize for argmaxθ qik

T
j . This process is equiva-

lent to maximizing the corresponding attention map element Mij , where M = softmax(QKT

√
dk

).
Note that, in contrast to matrix O (Eq. 1), the calculation of the attention map does not involve
the value matrix V . Since Mij < 1, we can simply minimize the distance between Mij and
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Figure 4: Hierarchical modularity: different sub-aspects of the tasks are implemented as modules
(via supervised attention). LANG identifies the target object. EE2D locates the robot end-effector.
The graph at the bottom of the figure shows the cascade of sub-tasks that are trained.

1. We assume that N supervision pairs of indices for query and key tokens are provided, i.e.,
S = {(i0, j0), (i1, j1), ..., (iN−1, jN−1)}. Supervision pairs contain the indices defining which
queries qi should attend to which corresponding keys kj . Individual supervision pairs in this set
can be addressed by S(p) = (ip, jp). Accordingly, we can define the following cost function for
supervised attention:

L(S) =
N∑

n=0

(
softmax

(
qrk

T
s√

dk

)
− 1

)2

(2)

where (r, s) correspond to the indices held by the n-th supervision pair (r, s) = S(n). The
cost function in Eq. 2 casts supervised attention as a minimization problem, i.e., we calculate the
mean squared error between the attention values and one. Other cost functions such as the cross-
entropy [45] loss can also be employed but have yielded lower performance in practice.

3.3 Hierarchical Modularity

Algorithm 1 Hierachical Modularity: train-
ing algorithm returns network weights θ.

Input:
(
D, {Sk}Kk=1, {Lk}Kk=1, {Ψk}Kk=1

)
Output: Weights θ
for subtask k ← 1 to K do

while not converged do
Ek ←

∑k
t=0 Lt(St) + Ψt

θ ← Train (D, {S1, . . . ,Sk}, Ek)
end while

end for
return θ

Using supervised attention, we can train attention
layers that focus on specific input variables of in-
terest. In turn, we can use this mechanism to train
the attention layers to form sub-modules that real-
ize target mechanism. The underlying rationale is to
train part of the attention to realize components (or
subtasks) of the overall policy. The sub-tasks, which
are assigned to sub-modules embedded in the atten-
tion layers, are further arranged in a cascaded fash-
ion, with the output token embeddings of one mod-
ule being the input to the next module. Again, using
supervised attention, the user can influence which
variables (and which data modalities) are processed in a certain module.

Inspired by Slot Attention [44], we also define register slots tokens (as shown in Fig.4), which are
trainable tokens of embeddings that can propagate information throughout attention layers. For the
purposes of robot grasping and manipulation, we identified the subtasks found in Tab. 1 which are
implemented as individual modules within our framework. The first module LANG takes as input
the sentence embedding of the human instruction and identifies the word embedding of the target
object. Accordingly, when supervising the training of this module, we focus the attention on the lan-
guage input. This process is visualized in Fig. 4. The figure shows a network of four attention layers,
with the first layer implementing the LANG module. The output OE (object embedding) is turned

5



into an input token for the next layer. The TAR2D module takes an object embedding and generates
an estimate of the object position in image space. Similarly, EE2D (Fig. 4) is trained to estimate
the robot end-effector position based on information from the visual modality and the robot joint
encoders. EE3D and TAR3D realize a similar functionality but focus on generating 3D positions in
task space. A critical component is the DISP module, which estimates the displacement (or offset)
of the robot end-effector from the target position. This information is crucial in order to enable
closed-loop control. Finally, the output of the DISP module is used (together with all other input
variable) to generate the robot control values CTRL. In our specific scenario, we predict the next 10
goal positions at every timestep, which are subsequently used by the operational space controller.

Table 1: Table of subtasks for modularity.

Abbreviation Subtask Description

LANG Get target object from language
TAR2D Find object patch
TAR3D Calculate object position
EE2D Find robot end-effector patch
EE3D Calculate end-effector position
DISP Find distance object to end-effector
CTRL Predict robot positions for control

The overall learning process inherent to hi-
erarchical modularization can be structured
as a directed graph, see Fig. 4 (bottom).
Every attention layer can implement one
or multiple modules whose results are, in
turn, fed to the next layer. The training
process can be structured such that the ele-
mentary components necessary for complex
decision-making are first derived within our
cascaded modules, before being used for the
final goal prediction. Algorithm 1 summa-
rizes the the training process for hierachical modularity. The algorithm assumes that a set of attention
losses Lk, tasks-specific loss functions Ψk and corresponding supervision signals Sk are provided
by the expert for supervised training. The algorithm then starts training the first task using L1 and
S1, which yields updated network weights. After convergence on this subtask, it appends the next
cost function to the loss function E and continues training the network. This process continues until
all sub tasks are learned. Note that the final task, CTRL, is exactly the overall prediction target of our
training process – the control signal for the robot. It is important to clarify two aspects underlying
our methodology. First, we note that all modules are part of a single overarching neural network that
implements the overall language-conditioned robot policy. Modularization is purely the result of
training the network with different supervised attention targets and using a cost function that succes-
sively incorporates more and more sub-tasks. Second, the functionality of the modules is maintained
even beyond the training process. Hence, at runtime, the user can query each of the modules (e.g.
LANG, TAR2D, EE3D, etc) for their individual outputs.

4 Evaluation
We performed a number of experiments to show our model’s ability to follow verbal instructions, its
capability to transfer to new robots, and a real-world transfer from simulation. We also compare our
approach to state-of-the-art methods for language-conditioned imitation learning, namely BC-Z [1]
and LP [2]. We consider three types of manipulation actions to be performed by the robot: pick up
a referenced object, push the object, rotate the object and put it down. There are six custom objects
with different shapes and colors, which are a red cube, a Coke can, a Pepsi can, a milk carton, a green
bottle, and a loaf of bread. All 3D models of these objects are from Robosuite [46]. Evaluation
Metrics: Apart from recording success rates, we also evaluate the quality of each individual module
within our language-conditioned policy, see Tab. 1. More specifically, we use as metrics: 1.) Success
Rate describes the percentage of successfully executed trials among the test set, 2.) Target Object
Position Error (TAR3D) provides the Euclidean 3D distance from the predicted target object position
to ground truth, 3.) End Effector Position Error (EE3D) is the Euclidean 3D distance from the
predicted end effector position to ground truth, 4.) Displacement Error (DISP) calculates the 3D
distance between the predicted 3D displacement vector and ground truth vector.

4.1 Language-Conditioned Imitation Learning: Efficiency and Transfer

In this first set of experiments, we evaluated the ability of our approach to efficiently and accurately
learn language-conditioned policies in simulation. Experiments were performed in MuJoCo [47].
We collected 2400 demonstrations, of which 1600 were used for training and 400 for validation
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Table 2: Comparison with the state-of-the-art baseline as well as ablations, in Mujoco.
Success Rate (%) Prediction Error (cm)

Model Pick Push Putdown Overall TAR3D EE3D DISP

BC-Z [1] 81.6 ± 6.2 85.6 ± 7.9 49.1 ± 5.8 73.1 ± 4.5 - - -
Ours (UR5 sim) 91.3 ± 5.3 97.2 ± 2.0 55.6 ± 8.6 82.4 ± 4.9 2.24 ± 0.48 0.51 ± 0.09 2.42 ± 0.52

Ours w/o Sup. Attn. 88.9 ± 4.2 92.6 ± 4.7 55.1 ± 11.6 79.9 ± 5.8 3.18 ± 1.80 0.42 ± 0.10 3.10 ± 1.64
Ours w/o Hier. Mod. 44.4 ± 3.8 39.4 ± 7.1 22.7 ± 7.9 36.4 ± 3.3 22.96 ± 0.99 0.59 ± 0.16 23.16 ± 1.05

Figure 6: Sequence of real-time outputs of the network modules: the object name (white) and visual
attention (yellow region), the length of the displacement (white text), the object pos (blue), and end-
effector pos (red). All values generated from a single network that also produces robot controls.

and testing, respectively. Robot motions were generated using a simple motion planning technique
towards the target object. Throughout robot execution, we recorded the natural language instruction
(e.g., “Pick up the green bottle!”), a real-time stream of RGB images and robot proprioception
(i.e., joints angles read from sensors). We trained LP using different hyperparameters eight times.
However, we could not generate a performance better than random. This is expected performance
since the size of training set is substantially smaller than LP’s demand [2]. We trained and tested
each method three times estimate the variability. Tab. 2, shows the result of this experiment.

As shown in Tab. 2, our approach achieves a high success rate (> 90%) on both pick and push
operations and outperforms BC-Z on all three tasks. The average success rate is 82.4%, compared
to 73.1%. We also individually evaluated the modules EE3D, TAR3D, and DISP of the proposed
network for its prediction error. We observed that the accuracy for the end-effector pose prediction
(≈ 0.5cm) was higher than that of the target object, which is likely due to the availability of joint
state data of the robot. The target object position can be approximated to about 2 − 3cm, which is
likely because no depth information is included in our input data (RGB only).

80 160 240 320
# of Demonstrations for Transfer
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50

70

90
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s R
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e 

(%
)

Ours (K U)
Ours (K F)
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Figure 5: Results of transferring policies
from Kinova (K) robot to UR5 (U) and
Franka (F) robots. Experiments are per-
formed in Mujoco simulator.

Ablations: We also tested the relevance of super-
vised attention and hierarchical modularity individ-
ually. Notice that in Tab. 2, removing hierarchical
modularity causes a drastic drop in performance to
a low of only 36.4%. In prediction error, we can see
that the target and displacement error jump to over
20cm, explaining the low success rate. As noted
before, the availability of information from the in-
dividual sub-networks increases the transparency of
the model and our ability to introspect its behavior.
Next, we removed the supervision signal on specific
tokens; instead, attention is trained in an end-to-end
fashion as typically done. Here too, the performance
drops but only by about 2.5%. In Tab. 2, we see that
the target object can still be identified via hierarchi-
cal modularity but generates higher prediction error
and variance.

Transfer: The core hypothesis of our approach is that a modularly trained policy network will al-
low for better transfer to other robots with the minimal demand of retraining model parameters. We
put this hypothesis to test, by using a single source model which was trained on a Kinova robot and
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then transferred to Franka and UR5 robots in simulation. During transfer, we fine-tune our model
on a new dataset recorded on the target robot (Franka or UR5). To evaluate data efficiency, we
performed four tests with datasets of size 80, 160, 240 and 320 demonstrations respectively. Fig. 5
depicts the results of this analysis. We notice that our method achieves a success rate around 80%
with only 160 demonstrations. This is not a significant drop compared to the previous training re-
sults achieved on 1600 demonstrations (see Tab. 2). When using 320 demonstrations the results are
on par with training on 1600 demonstrations. Further, transfer to UR5 with 160 demonstrations even
outperforms BC-Z trained on 1600 demonstrations. For a better comparison, we also show the re-
sults of fine-tuning a BC-Z model (trained on 1600 demonstrations on Kinova and then refined with
80, . . . , 320) in Fig. 5. It is important to note that Kinova and UR5 are 6 degrees-of-freedom (DoF)
robots, whereas Franka has 7DoF. They also have substantially different kinematic configurations
and visual appearance. Transfer can effectively be performed with a limited data set to overcome
the variations in appearance and kinematic configurations.

Transfer to Real Robot: We also tested the transfer of a network trained in simulation to a real-
world robot (Sim2Real). We collected 340 demonstrations on a real-world UR5 robot, of which
260 were used for training and 80 for validation. After transfer using our approach, we tested the
transferred models on the real world setup. We compared the results to a.) using the simulation
model directly on the real robot and b.) continuous training, i.e., fine-tuning of the pre-trained
model on the real-robot. Each model was then tested using 30 trials on the robot. Our approach
achieves 80% success rate after transfer. The continuous training setup achieves a success rate
of 56.67%; a difference greater than 20% compared to our proposed method. The model solely
pre-trained in simulation (predictably) fails to perform any successful actions resulting in 0.0%
success. This effect can be explained by the substantial variation in visual appearance of objects and
end-effectors in real-world images. We also observe the noise level change in the attention maps.
Continuous training without supervising the attention results in a higher noise level in the attention
map compared to adopting supervised attention.

Extension of new modules: We investigated the ability to add new modules to the existing hi-
erarchy by adding an obstacle avoidance module. Generalization on different scenarios: We
also tested the model’s performance under varying environmental and task conditions, e.g., unseen
colors, object scaling, object synonyms, image occlusions and unseen object types. Linguistic vari-
ation: Finally, we also asked random testers to paraphrase 30 natural language sentences for testing.
Please see the appendix for details on the experiments mentioned.

5 Conclusions & Limitations

Our method demonstrates data-efficient training and multi-robot transfer of language-conditioned
policies for robot manipulation. To this end, we introduce a novel method, namely Hierarchical
Modularity, and adopt supervised attention to train a collection of reusable sub-modules. We also
show that the learned hierarchy of sub-modules can be used to introspect and visualize the robot
decision-making process.

Limitations: A major assumption made in our approach is that a human expert correctly identifies
components and subtasks into which a task can be divided. This process requires organizing these
subtasks into a hierarchical cascade. Early results indicate that an inadequate decomposition can
hamper, rather than improve, learning. Further, our method can only work with instructions con-
taining a single target object. Similarly, the approach does not incorporate memory and therefore
cannot perform sequential actions. In a few cases we observed a failure to stop after finishing a
manipulation - the robot continues with random actions. Regarding language understanding, there
still exist a large number of limitations to the approach, e.g., it cannot identify objects by spatial
references (“next to”) or by function (“which contains”). Apart from them, the model does not gen-
eralize well on completely new objects and unseen geometric features. This is largely due to the fact
that we trained our vision network from scratch on a small dataset, instead of using a pre-trained
larger vision backbone.
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