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Abstract

Non-linear mixed-effects models are a powerful
tool for studying heterogeneous populations in
various fields, including biology, medicine, eco-
nomics, and engineering. Here, the aim is to find
a distribution over the parameters that describe
the whole population using a model that can gen-
erate simulations for an individual of that popula-
tion. However, fitting these distributions to data is
computationally challenging if the description of
individuals is complex and the population is large.
To address this issue, we propose a novel machine
learning-based approach: We exploit neural den-
sity estimation based on conditional normalizing
flows to approximate individual-specific poste-
rior distributions in an amortized fashion, thereby
allowing for efficient inference of population pa-
rameters. Applying this approach to problems
from cell biology and pharmacology, we demon-
strate its unseen flexibility and scalability to large
data sets compared to established methods.

1. Introduction
Heterogeneity within populations is a common phenomenon
in various fields, including epidemiology, pharmacology,
ecology, and economics. It is, for instance, well-established
that the human immune system exhibits substantial vari-
ability among individuals (Liston et al., 2021; Brodin &
Davis, 2017), that individual patients respond differently to
treatments (Claret et al., 2009; Ribba et al., 2014; Groen-
land et al., 2019), that genetically identical cells develop
pronounced cell-to-cell variability (Spencer et al., 2009;
Swain et al., 2002), but also that individual students show
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a broad spectrum of abilities (Goldstein, 1987). This het-
erogeneity can be described and analyzed using non-linear
mixed-effects (NLME) models, a powerful class of statisti-
cal tools. NLME models can account for similarities and
differences between individuals using fixed effects, random
effects, and covariates. This allows for a high degree of flex-
ibility and interpretability. These models are widely used
for statistical analysis (Yu et al., 2022; Llamosi et al., 2016),
hypothesis testing (Bortz & Nelson, 2006), and predictions
(Claret et al., 2009; Ribba et al., 2014).

NLME models depend on unknown parameters, such as
reaction rates and initial concentrations, which often need
to be estimated from data. Estimating these parameters – of-
ten also called parameter inference – provides key insights
about the data and the underlying processes. The main chal-
lenge in inferring these parameters lies in the likelihood for-
mulation at the individual level. For this, there is generally
no closed-form solution (Pinheiro, 1994). Particularly for
large populations, this becomes a problem, as the required
marginalization must be performed for all individuals.

Here, we present a new approach based on invertible neu-
ral networks to estimate the parameters of NLME models.
We use simulation-based neural posterior estimation, which
has been developed to address general parameter estimation
problems (Cranmer et al., 2020). We train a mapping – a
conditional normalizing flow – from a latent distribution
to individual-specific posteriors conditioned on observed
individual-level data. During the training of this neural pos-
terior estimator, only simulations of a generative model and
no real data are used. In the following inference phase, the
trained estimator can be applied highly efficiently to any
similar data set with different distributions of individuals
in the population without any further simulations, facili-
tating the estimation of NLME model parameters in an
amortized fashion. On problems from cell biology and phar-
macology, we compare our method with state-of-the-art
and widely used techniques in the field of NLME models:
the stochastic approximation expectation maximization al-
gorithm (SAEM) (Kuhn & Lavielle, 2005) implemented
in Monolix (Lixoft SAS, 2023) and the first-order condi-
tional estimation with interaction (FOCEI) (Wang, 2008)
implemented in NONMEM (Beal & Sheiner, 1980).
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Figure 1. Three phases of the amortized approach. (I.) The simulation phase, where we generate data from the model M(ϕ), (II.) the
training phase, where we train the neural posterior estimator to predict individual-specific posteriors based on the simulations, and
(III.) the amortized inference phase, where we infer the population parameters of the non-linear mixed-effects model given observed data.

2. Method
Our novel approach to parameter inference for non-linear
mixed-effects (NLME) models consists of three phases
(summarized in Figure 1):

(I) In the simulation phase, samples from a prior are gener-
ated to produce a set of simulations and individual-specific
parameters using a generative model. Each simulation be-
longs to a synthetic individual in a population. Simulations
can also be performed online during the next phase.

(II) In the training phase, a global approximation of the
posterior distribution is learned for any pair of simulations
and parameters. This neural posterior estimator can then
predict individual-specific posteriors.

(III) In the amortized inference phase, a population model
is assumed and population-level characteristics are inferred
using an efficient approximation to the population likelihood
based on samples of every individual in the population from
the neural posterior estimator.

2.1. Basic Definitions

We consider a population of individuals i ∈ {1, . . . , N},
N ∈ N, for example, a group of people or an ensemble
of single cells. For each of them, we have n ∈ N noisy
measurements ỹ

(i)
j ∈ R at time points tj ∈ R≥0 for j ∈

{1, . . . , n}. To account for errors introduced during the
measurement process, a noise model with i.i.d. measurement
noise is assumed. In the simplest case this is ỹ = y + ϵ,
where ϵ ∼ N (0, σ2) is the measurement error with variance
σ2. Then, our observed data is the set D = {ỹ(i)}Ni=1.
We can extend this framework to account for multiple or
censored measurements at each time point and different
time points for each individual.

The generative model M(ϕ) can generate simulations
ỹ
(i)
sim ∈ Rn for a given set of parameters ϕ ∈ Ω ⊆ Rk

and time points t. As a generative model, we understand
any parametric model, such as linear models, the solution
of (stochastic) differential equations, or Markov jump pro-
cesses, which can produce simulations for an individual i
given some parameters ϕ and time points t. In our case, this
will be the (numerical) solution of a differential equation,
and we assume that the noise model is part of M.

The non-linear mixed-effects (NLME) model is a popular
way to describe observations of the entire population using
the generative model M and individual-specific parameters
ϕ(i) ∈ Ω ⊆ Rk. Therefore, in NLME models, it is assumed
that the population can be described by unknown fixed ef-
fects β, and the distribution of unknown random effects b(i)

specific to each individual i (Pinheiro, 1994).

Commonly, fixed and random effects are linked as a lin-
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ear combination to the individual-specific parameters ϕ(i).
Here, we link these effects to individual-specific parameters
using a population model f , such that ϕ(i) = f(β, b(i)),
where the function f can be any function injective in each
variable. It is possible to extend the population model to
include covariates, that is, additional observed information
for each individual i.

For ease of notation, we consider a single vector of popu-
lation parameters θ that fully characterize the distribution
of individual-specific parameters ϕ(i). For example, we
can represent θ as a pair of fixed effects β and the covari-
ance matrix Ψ of random effects if b(i) ∼ N (0,Ψ) and
ϕ(i) = f(β, b(i)). In general, we allow the random effects
to follow any probability distribution that admits a density,
such as (log)-normal distributions, Cauchy distributions, or
mixture distributions.

2.2. Joint Likelihood

Our objective is to find the optimal population parameters θ∗

that maximize the joint likelihood p(D | θ) of all individuals
in the population, which is

p(D | θ) =
N∏
i=1

p(ỹ(i) | θ) (1)

since we assumed that measurement noise is i.i.d.

Based on the population model and the distribution
of random effects, we induce a population distribution
ppop(ϕ | θ). For a linear population model ϕ(i) = β + b(i)

and b(i) ∼ N (0,Ψ), ppop is the density of a normal random
variable with mean β and covariance matrix Ψ. Using the
population distribution, we can thus express the likelihood
for every individual i by the law of total probability as

p(ỹ(i) | θ) =
∫

p(ỹ(i) | ϕ)ppop(ϕ | θ) dϕ. (2)

The marginal likelihood p(ỹ(i) | ϕ) is implicitly induced
by M including the respective noise model. Usually, the
likelihood is not fully tractable if the generative model is
stochastic.

Since ϕ is unknown, we need to marginalize the individual-
specific parameters out and solve the integral in (2) for every
individual separately. In general, this integral has no closed-
form solution, hence solving this marginalization efficiently
is the main challenge in parameter inference in non-linear
mixed-effects models (Pinheiro, 1994).

2.3. Individual-specific neural posterior estimator

In the following, we develop an approach to efficiently max-
imize p(D | θ) if we can sample from the individual specific
posterior distributions p(ϕ | ỹ(i)). In general, individual

measurements are not sufficiently informative to obtain reli-
able population estimates, and only joint information is reli-
able (Pinheiro, 1994). However, using a Bayesian approach
to describe individuals, we encode all available information
on a specific individual i in the posterior of the parame-
ters ϕ(i) and then combine samples from this posterior to
infer the characteristics of the population. Following this
dogma of Bayesian statistics, all parameters – also those
which are considered fixed across the population – will first
be treated as random variables.

For that, let p(ϕ) be a prior density that encodes prior knowl-
edge for individual specific parameters. Then, using the
product rule, we get the relation of likelihood and posterior
density p(ϕ)p(ỹ | ϕ) = p(ỹ,ϕ) = p(ỹ)p(ϕ | ỹ).
Conditional normalizing flows can transform a compli-
cated conditional density, such as a posterior probability,
into a simpler density from which we know how to sample.
This method allows for efficient and accurate sampling and
density evaluation (Rezende & Mohamed, 2015; Papamakar-
ios et al., 2021).

We introduce latent variables z described by a multivariate
normal distribution p(z). The parameters ϕ are mapped to
these latent variables conditional on measurements ỹ by a
conditional normalizing flow hψ(ϕ, ỹ) = z. This invertible
transformation is parameterized by ψ and has a tractable
Jacobian by construction. The approximation qψ to the
target density p(ϕ | ỹ) is given by the change-of-variables
formula

qψ(ϕ | ỹ) = p(z = hψ(ϕ, ỹ))
∣∣∣det Jhψ (ϕ, ỹ)∣∣∣ . (3)

If we know hψ, we can sample from the posterior by sam-
pling z ∼ p(z) and applying h−1

ψ (z, ỹ) = ϕ. We call qψ a
neural posterior estimator.

To train the conditional normalizing flow hψ, we min-
imize the Kullback-Leibler divergence between the true
and approximate posterior distributions as in (Papamakarios
et al., 2017; Le et al., 2017):

ψ∗ = argmin
ψ

Ep(ỹ)
[
KL(p(ϕ | ỹ) || qψ(ϕ | ỹ))

]
= argmin

ψ

∫∫
−p(ỹ,ϕ) log qψ(ϕ | ỹ) dỹ dϕ

≈ argmin
ψ

1

S

S∑
s=1

− log qψ(ϕ
(s) | ỹ). (4)

To estimate the integral, we need samples from the joint
distribution p(ỹ,ϕ). Sampling from the prior distribution
ϕ ∼ p(ϕ) and simulating using M(ϕ) corresponds to sam-
pling from this joint density. Using the transformation in
(3), the approximation in (4) can be efficiently evaluated.

By minimizing (4), we train a global approximation of the
posterior distribution p(ϕ | ỹ) for any parameters and data
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Algorithm 1 Amortized Inference for NLME Models

Phase (I)
Input: generative model M, individual prior p(ϕ)
for i = 1 to nsim do

sample from prior ϕ(i) ∼ p(ϕ)

generate simulations ỹ(i)
sim ∼ M(ϕ(i))

end for
Phase (II)

Input: pairs {(ϕ(i), ỹ
(i)
sim)}nsim

i=1, normalizing flow hψ
pass simulations and parameters through hψ
compute loss according to (4) and find optimal ψ∗

Phase (III)
Input: data D = {ỹ(i)}ni=1, population model ppop,
trained normalizing flow hψ∗

for i = 1 to N do
sample M times from posterior ϕ(i) ∼ qψ∗(ϕ | ỹ(i))

end for
compute loss according to (5) to find θ∗

(ϕ, ỹ). In particular, we parameterize the conditional nor-
malizing flow by an invertible neural network using neural
spline flows (Durkan et al., 2019) and learned summary
statistics of ỹ.

Summary statistics are a low-dimensional representation of
ỹ and learned by a flexible summary network that is trained
together with the conditional normalizing flow. In (Papa-
makarios et al., 2017; Le et al., 2017), it was shown that the
samples transformed backward from p(z) will follow the
true posterior if the conditional normalizing flow and the
summary network are expressive enough. In particular, we
use long short-term memory neural networks (LSTMs) for
time trajectories (Hochreiter & Schmidhuber, 1997). This
ensures that regardless of the number of observations, we
get a fixed length vector of summary statistics.

2.4. Problem reformulation allows use of posterior
density

We note that the likelihood in (2) can be written as a condi-
tional expectation over individual-specific posteriors

p(ỹ(i) | θ) =
∫

p(ϕ | ỹ(i))p(ỹ(i))

p(ϕ)
ppop(ϕ | θ) dϕ

= p(ỹ(i))Eϕ∼p(ϕ|ỹ(i))

[
ppop(ϕ | θ)

p(ϕ)

]
,

given that the prior p(ϕ) is non-zero in the support of ϕ. If
we can sample from the posterior distribution p(ϕ | ỹ(i)),
we can construct a Monte Carlo estimator for the likelihood

p(ỹ(i) | θ) ≈ p(y(i))

 1

M

M∑
j=1

ppop(ϕ
(i)
j | θ)

p(ϕ
(i)
j )


 ,

with ϕ(i)
j ∼ p(ϕ | ỹ(i)) i.i.d. for j = 1, . . . ,M for each

individual i.

Taking the logarithm of (1), we can drop the additive term
p(y) which is independent of θ and find the optimal popu-
lation parameters θ∗ by solving the maximization problem

θ∗ = argmax
θ

log p(D | θ)

≈ argmax
θ

N∑
i=1

log

 1

M

M∑
j=1

ppop(ϕ
(i)
j | θ)

p(ϕ
(i)
j )

 . (5)

In general, the Monte Carlo approximation to an integral is
unbiased, and the error rate of the approximation σMC/

√
M

depends on the sample size M and the variance σ2
MC of the

ratio ppop(ϕ | θ)/p(ϕ) (Robert & Casella, 2004). From this,
we directly get the following proposition.

Proposition 2.1. Assume that ϕ(i) ∼ ppop(ϕ | θ), that
the prior p(ϕ) is non-zero in the support of ϕ and that
we can sample from the true posteriors p(ϕ | ỹ(i)) for
every individual i. Then, θ converges to the true maximum
likelihood estimate θ∗ as the sample size M → ∞.

The variance σ2
MC depends only on the ratio of ppop(ϕ | θ)

and p(ϕ). Therefore, the prior has the role of an importance
weight and should be selected to have a shape similar to the
population distribution. This decreases the number of sam-
ples M we need to get a sufficiently good approximation of
the likelihood (see Supplement A.4.1 for further discussion).

The maximization problem (5) can be solved by numerical
optimization using samples from the neural posterior esti-
mator qψ∗(ϕ | ỹ(i)). The optimization is computationally
efficient and simple, as no numerical simulations of the
underlying model are required. Hence, the computational
costs of inferring population parameters are negligible.

We show our novel three-phase procedure for the inference
of NLME models in Algorithm 1. By repeating phase (III)
using different population models or data sets, we amortize
the computational cost of phases (I) and (II). Repeated in-
ference can be desirable due to hypothesis testing of various
population models or repeated experiments.

3. Results
The proposed approach to fitting the NLME models is based
on the approximation of the individual-specific posterior
distributions with conditional normalizing flows. As the
accuracy of these approximations is critical, we assessed in
a first step the approximation quality (see Supplement A.3).
We considered two published ODE-based NLME models of
mRNA transfection with measured single-cell data (Fröhlich
et al., 2018). These ODE models describe the transfec-
tion process (Figure 2A) – which is at the core of modern
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Figure 2. Validation of the amortized approach on single-cell NLME models. (A) Schematic representation of GFP translation after mRNA
transfection in a single cell. (B) Visualization of the simple and detailed single-cell ODE models, where the color indicates the states
included in the respective model (see Supplement A.1 for details on the models). (C) Fluorescence intensity time courses of 200 single
cells out of 5488. (D) Credible regions of trajectories (simple single-cell ODE model) estimated by the neural posterior estimator for
two real cells. (E) Median of the mean squared error (MSE) of the estimated compared to the true parameters of the synthetic data for
both single-cell NLME models is shown for different numbers of cells (M = 100 posterior samples used per cell, median of 100 runs
± one standard deviation). (F) The difference in the population mean estimated from real trajectories and simulations generated with
the estimated population parameters is shown with a 95% confidence interval (CI). In addition to the models fitted with the amortized
approach, the best fit of Fröhlich et al. (2018) for the simple ODE model is shown (Fröhlich et al., 2018).

mRNA vaccines (Pardi et al., 2018) – at the single-cell level.
The solution to these ODEs corresponds to our generative
model M. The models possess, respectively, six and eleven
parameters ϕ that describe two and four hidden state vari-
ables (Figure 2B, see Supplement A.1 for details on the
models). The measurements consist of dense temporally
resolved fluorescence intensities of different single-cells,
which were transfected with mRNA coding for a green flu-
orescent protein (GFP), and measured for 30 hours using
micropatterned protein arrays and time-lapse microscopy
(Figure 2C). For each ODE model, we simulate data and
train a neural posterior estimator accordingly with phase
(I) and (II) from our proposed Algorithm 1. Subsequently,
we examine a second application from pharmacokinetics,
which is a major application area for NLME models.

We consider two scenarios to validate our method using the
same trained neural posterior estimator: a) using synthetic
data where we want to recover the true sample parameters,
and b) using real data D = DeGFP ∪ Dd2eGFP, with two
distinct variants of GFP, namely eGFP and d2eGFP, that
differ in their protein lifetime (Fröhlich et al., 2018). For
the synthetic data, we assume a log-normal distribution with
diagonal covariance matrix Ψ for all parameters, that is,
ϕ ∼ logN (β,Ψ) and θ = (β,Ψ). For the real data and
both variants of GFP, we can use the same generative model
M since we assume that they only differ in the parameter

that describes GFP degeneration (indexed by γ). We encode
the variant as a binary covariate c(i) ∈ {0, 1}. Hence, we
haveϕ(i) ∼ logN (β,Ψ) | c(i), where the elements βγ and
Ψγγ depend on the respective variant of the single-cell i.
Then, for each element ϕ(i)

k the population model is

f(βk, b
(i), c(i)) =


eβγ,eGFP+b

(i)
γ if k = γ and c(i) = 0

eβγ,d2eGFP+b
(i)
γ if k = γ and c(i) = 1

eβk+b
(i)
k else,

where b(i) ∼ N (0,Ψ) | c(i).
We implemented conditional normalizing flows using the
BayesFlow tool (Radev et al., 2023). We assessed the
quality of the neural posteriors by comparing them to ap-
proximations using MCMC. For synthetic data, we got
nearly ideal agreement while on real data agreement up to
model misspecification (see Supplement A.3). To estimate
population parameters, we implemented the optimization
problem (5) as an objective function in the pyPESTO tool-
box (Schälte et al., 2023) and used the local optimization
method L-BFGS (Liu & Nocedal, 1989) implemented in
SciPy (Virtanen et al., 2020). For further details on the
neural network architecture, we refer to the Supplement A.3.
We compare our method to the Monolix (Lixoft SAS,
2023) implementation of the state-of-the-art method SAEM,
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which is an unbiased algorithm and converges under very
general conditions (Kuhn & Lavielle, 2005).

3.1. Machine learning-based approach provides
accurate estimates of population parameters

Given the accurate approximation of posteriors on an
individual-specific level (Figure 2D and Supplement A.3),
we can use the pre-trained densities to estimate the NLME
population parameters θ. To assess the accuracy of our ap-
proach, we generated synthetic data using the two NLME
models of mRNA transfection (see Supplement A.1.1), and
compared the mean squared distance of the true parameters
to the estimated parameters of our approach and to the es-
timated parameters of the state-of-the-art method SAEM
(Kuhn & Lavielle, 2005). Moreover, we compared our re-
sults with those published in (Fröhlich et al., 2018), which
used a Laplacian approximation to the population likelihood
to reduce the computational costs compared to SAEM.

Our comparisons show that, for different data set sizes and
models, our method was able to recover the true parame-
ters with a lower recovery error than SAEM and a smaller
variance in the estimates (Figure 2E). For each ODE model,
we trained only one neural posterior estimator, which could
be used for inference on all different single-cell data sets,
while SAEM needed a full restart for each data set. In addi-
tion, the estimated population means for both models of our
amortized approach show trajectories similar to those pub-
lished in (Fröhlich et al., 2018) for the real data (Figure 2F),
with only a minor shift observed in the case of the simple
model. Furthermore, we can confirm the result of (Fröhlich
et al., 2018) that the detailed model describes the initial
fluorescence activity more accurately (Supplement A.4).

In summary, our approach based on amortized neural pos-
terior estimation was able to provide accurate estimates of
population parameters for synthetic and real data, while we
used the same neural posterior estimator for each model.

3.2. Amortization for large populations, new data sets
and changing population models achieved

Data simulation and training of the neutral posterior es-
timator are the most computationally demanding phases.
For both phases, the detailed NLME model required twice
as much computation time compared to the simple model.
However, the subsequent inference phase of population pa-
rameters is highly efficient for a new data set.

Our method requires two orders of magnitude less computa-
tion time compared to SAEM and has a slower increase with
respect to the number of individuals in the population (Fig-
ure 3A). In particular, if the population was large (10, 000
cells in this case), we already amortized the training time
cost compared to SAEM for a single data set. In total, for all

data sets and models together, SAEM had an overall com-
putation time 112 times longer than our amortized approach
including all three phases.

As described above, the parameters in the single-cell NLME
models were assumed to be independently distributed. How-
ever, cross-correlations between parameters are essential
to explain population behavior (Llamosi et al., 2016) but
were not captured in (Fröhlich et al., 2018) due to compu-
tational costs. Indeed, for the detailed mRNA transfection
model, the individual-specific posteriors of the respective
parameters show a clear correlation (Figure 3B).

Therefore, we changed the population model to allow for a
full covariance matrix of the random effects within each in-
dividual and repeated the amortized inference phase without
further training of the neural posterior estimator. Including
these correlations substantially improved the fit of the popu-
lation variance (Figure 3C), which confirms the findings on
the importance of incorporating cross-correlations between
parameters in (Llamosi et al., 2016).

Beyond point estimates, we explored the possibility of per-
forming accurate uncertainty quantification using a profile
likelihood analysis, given the computational efficiency of
the inference phase in our approach (Figure 3D and further
details in Supplement A.4.4).

In summary, our analyses showed that our approach scales to
large populations and allows for the reuse of the trained neu-
ral posterior estimator on different data sets and for different
population models at almost no additional computational
cost, rendering it substantially more scalable than SAEM.

3.3. Flexible generative model makes stochastic
mixed-effects models easily tractable

As our approach based on neural posterior estimation proved
to be valuable for deterministic models, we assessed its
capability to cope with stochastic models, which can pro-
vide a more adequate description of the underlying process
(Wilkinson, 2009; Stumpf et al., 2017). Ignoring the inher-
ent stochastic nature of reactions at single-cell level can bias
parameter estimates (Wiqvist et al., 2021), and pooling mea-
surements from several cells is indispensable for reliable es-
timates (Zechner et al., 2014). Yet, the likelihood function is
often unavailable for such stochastic models, which requires
computationally demanding techniques such as approxi-
mate Bayesian computation or a Metropolis-within-Gibbs
algorithm, which can handle the unavailable likelihood via
correlated particle filters (Wiqvist et al., 2021; Botha et al.,
2021; Sisson et al., 2018). However, our purely simulation-
based approach does not need the likelihood function but
only a generative model for simulation.

Here, we again considered the processes of mRNA trans-
fection, but described by a stochastic differential equation
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Figure 3. Flexibility and scalability of the amortized approach on the single-cell NLME models. (A) Computation time of the amortized
inference phase (median ± one standard deviation of a single run out of 100 multi-starts) for the single-cell NLME models compared
to the baseline using parallelization. (B) Correlation of the posterior medians of the individual-specific parameters ϕ in the detailed
single-cell model on real data. (C) Mean and 99% confidence intervals of the simulations for the detailed NLME model, where the
population parameters are assumed to be log-normally distributed with and without correlations between parameters. (D) 80%, 90%, and
95% confidence intervals (CIs) for the simple single-cell NLME model (see Supplement Figure S15 for the other models) using synthetic
data with known true parameters.

(SDE) as proposed by (Pieschner et al., 2022) (detailed
model specification in Supplement A.1). This model is su-
perior for the description of individual cells and improves
parameter identifiability (Pieschner et al., 2022), but has not
been used so far in an NLME modeling framework.

The evaluation using the SDE NLME model on synthetic
data revealed that our machine learning-based approach
was indeed able to accurately recover the stochastic NLME
model parameters (Supplement S10). Further analysis of
synthetic data generated by the SDE NLME model showed
that the simple ODE NLME model estimated parameters
such that the variance of the population was three times
greater than the true variance while for the stochastic NLME
model, the variance is only 1.3 times greater (Supple-
ment S17). Therefore, the stochastic model is capable of
capturing the data more accurately. This underlines that a
deterministic model can give erroneous results if it inad-
equately captures the underlying processes. The overall
training time (7.5 hours) is comparable to the simple ODE
model (6 hours), and the amortized inference phase remains
highly efficient.

The simple ODE model of the mRNA transfection processes
consists partly of a product of parameters k·m0·scale , where
the individual parameters were not structurally identifiable,
which means that not all parameters can be determined

from the data (Fröhlich et al., 2018). However, the SDE
model offers a more detailed representation encompassing
the individual parameters k, m0 and scale. Only using our
amortizing NLME framework, we were able to identify all
parameters (Supplement S16).

In summary, our amortized approach enables the use of ei-
ther a deterministic or a stochastic NLME model, whichever
is more appropriate. This not only enables a more pro-
found understanding of the actual mechanism, but can also
improve model identifiability.

3.4. Amortization allows for full Bayesian analysis and
more complex models

So far, we have considered inference problems with densely
observed time points. Here, we turn to a model from phar-
macokinetics introduced in (Diekstra et al., 2017; Yu et al.,
2015) that describes the distribution of an angiogenesis
inhibitor, a drug that inhibits the growth of new blood ves-
sels, and its metabolite in a multi-compartmental model.
Using data from 47 patients, including covariates such as
weight, sex, and drug dosage regimes, we analyzed an ODE
model with five states and 13 parameters. This model shows
oscillatory behavior due to multiple dosing events (see Fig-
ure 4A). For comparison, we also explored FOCEI (Wang,
2008), which is arguably the most commonly used infer-
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Figure 4. Baseline underestimates measurements. (A) Trajectory
of sunitinib plasma measurements for one exemplary patient. Sim-
ulating samples from the population likelihood convoluted with
the noise model using the covariates of this patient based on the
estimated parameters of FOCEI and our amortized approach. (B)
Ordered measurements (Sunitinib plasma) of all individuals against
the median of 100 simulations per time point and individual.

ence method in pharmacokinetic modeling, implemented in
NONMEM (Beal & Sheiner, 1980). Given FOCEI’s known
tendency to converge to local optima, we performed 300
repeated parameter inference experiments (Pinheiro, 1994).

Inferring population parameters yielded similar results for
our amortized approach and SAEM. However, FOCEI under-
estimates the first observable consistently (see Figure 4B).
Moreover, estimated variances with FOCEI are consistently
smaller than those from our amortized approach or SAEM
(see Supplement A.5). Simulating samples from the pop-
ulation likelihood convoluted with the noise model using
estimated parameters from FOCEI and our approach, we
found that only 72% (83%) of measurements fell within the
region described by 95% (99%) of FOCEI’s estimated popu-
lation variance. In contrast, our amortized approach covered
97% (99%) of measurements within the estimated variance
(see also Figure 4A). Consequently, FOCEI systematically
underestimates population variance – a known issue (Ge
et al., 2004; Jönsson et al., 2004) – which is not encountered
for the proposed approach.

Moreover, efficient evaluation of the population likelihood
enables a full Bayesian analysis. By defining priors on pop-
ulation parameters, we can easily employ a Markov chain
Monte Carlo method. Here, we used a Metropolis-Hastings
sampler with adaptive proposal covariance as implemented
in pyPESTO (Schälte et al., 2023). Generating 100, 000
samples takes only a few minutes, allowing us to analyze
uncertainty in variance estimates. This analysis shows that
FOCEI’s variance estimates do not fall within the 95% cred-
ible regions produced by the amortized approach, whereas
the estimates of SAEM do. Yet, SAEM provides only a
point estimate and approximate confidence intervals.

To show the applicability of our approach, we report the
run times of the different methods. Running FOCEI re-
peatedly took 28 hours, while SAEM needed 37 hours. In
contrast, our amortized approach, including repeating phase
(III) 200 times and generating 100, 000 samples from the
full population posterior, completed in 27 hours.

This demonstrates the feasibility of a full Bayesian analysis
and highlights our method’s capability to handle complex
models with individual-specific dosing regimes. Notably,
we observed a less biased population fit compared to FOCEI.

4. Related Work
The inference methods for NLME models most commonly
used today are deterministic, starting from the first inference
method based on a first-order approximation of the model
function around the expected value of random effects (Beal
& Sheiner, 1980) and later on conditional modes (Lindstrom
& Bates, 1990). The first-order approximation was used,
among others, to analyze clinical patient data (Sheiner &
Beal, 1980). Pinheiro & Bates reviewed more accurate meth-
ods based on the marginal likelihood approximation using
Laplace methods or quadrature rules, obtaining potentially
higher accuracy at higher computational cost (Pinheiro &
Bates, 1995). Today, first-order conditional estimation with
interaction (FOCEI) (Wang, 2008) is arguably the most com-
mon inference method used in pharmacokinetic modeling.
Yet, the aforementioned methods have two main statistical
drawbacks. First, they do not necessarily converge to the
maximum likelihood estimates, and second, the estimates
can be substantially biased when the variability of random
effects is large (Ge et al., 2004; Jönsson et al., 2004).

For unbiased results, the stochastic expectation maximiza-
tion algorithm (SAEM) was introduced, which converges un-
der very general conditions (Kuhn & Lavielle, 2005). This
method was applied, for example, to model the response
of yeast cells to repeated hyperosmotic shocks (Llamosi
et al., 2016). Yet, the algorithm can be computationally
demanding, depending on the number of random effects and
the structural complexity of the model.

However, all the methods mentioned do not apply to stochas-
tic models for individuals, such as stochastic differential
equations (SDEs). So far only Bayesian methods can pro-
vide exact inference and inherently facilitate uncertainty
quantification for SDEs, but are even more computationally
demanding (Wiqvist et al., 2021; Botha et al., 2021).

A simulation-based approach has been proposed to acceler-
ate Bayesian inference in NLME models by approximating
the likelihood of the population with simulated measure-
ments and hand-crafted filters (Augustin et al., 2023). How-
ever, choosing an effective filter requires experimenting
with different filters and numbers of simulations, while the
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efficiency depends on the availability of the gradient of the
underlying simulator, which ours does not. Generalizing
this to stochastic systems adds further complexity due to
increased noise in the filter likelihood.

Further, one could directly learn the likelihoods based on
neural likelihood estimation (Durkan et al., 2018). A differ-
ent approach would be to directly tackle the full population
likelihood or posterior. For example, Radev et al. (2020)
used permutation embedding networks that can amortize
over a given number of fixed i.i.d. trials, which could poten-
tially be used in a setting with smaller data sets.

In general, computational costs make it difficult to fit NLME
models to large data sets and to obtain reliable estimates
of model parameters (Fröhlich et al., 2018; Augustin et al.,
2023; Persson et al., 2022).

5. Discussion
We developed a novel approach for parameter inference in
non-linear mixed-effects models based on amortized neural
posterior estimation. The proposed method offers several
advantages, such as scalability, flexibility, and accurate un-
certainty quantification over established approaches, as we
demonstrated on single-cell and pharmacology models.

One of the most important benefits of the method is its scal-
ability. The efficient amortizing inference phase allows to
scale to large numbers of individuals and can be applied
to previously unseen data. The main computational bottle-
neck, the simulation and training phases, can be tackled
by more extensive parallelization on a high-performance
infrastructure since all simulations are independent. Further,
the method can be applied to various population models and
new data sets with low computational costs using the same
trained neural posterior estimator, allowing efficient model
selection. In contrast, state-of-the-art methods require a full
restart for each population model.

Our machine learning-based approach is purely simulation-
based; that is, it does not require the evaluation of likeli-
hoods, but only a generative model to simulate synthetic
data. Therefore, it can be used even for complex stochas-
tic models, which established approaches fall short of,
as we demonstrated on an SDE-based NLME model of
mRNA transfection. Our approach can be easily extended to
Markov jump processes, e.g., simulated with the Gillespie
algorithm (Gillespie, 1977). This generality with respect
to the generative model is unique in the NLME context, as
special frameworks were needed to cope with stochastic
differential equations (Wiqvist et al., 2021) or Markov jump
processes (Zechner et al., 2014).

Lastly, the efficient neural posterior estimator facilitates
more accurate and systematic methods to assess parameter

uncertainty, here demonstrated by combining our approach
with profile likelihoods and Bayesian inference. Conceptu-
ally, other uncertainty analysis methods, such as bootstrap-
ping, could also be applied efficiently.

The study raises the question of how amortization can be
best used in a hierarchical setup, in which, for example, the
order in which problems need to be solved can be influ-
enced. Furthermore, we consider it interesting to develop
methods that assess on-the-flight whether problem-specific
approximations, which are sequentially updated or an amor-
tized approach is more beneficial for overall efficiency. This
becomes relevant for small data sets and if no population
model selection or accurate uncertainty quantification is
needed since the computation time of the amortized ap-
proach will be higher compared to established methods.

Additionally, the proposed method may produce erroneous
parameter estimates if the prior is too narrow or if the un-
derlying model is misspecified (Schmitt et al., 2022), or use
non-conservative posterior estimates (Hermans et al., 2022).
However, misspecification of the model is a general problem
for parametric methods. A solution might be to extend the
loss function during training to include a misspecification
measure (Schmitt et al., 2022). Furthermore, the accuracy
of the approximated posteriors can be checked after training,
e.g., by simulation-based calibration (Talts et al., 2020), or
individual posterior checks by Markov chain Monte Carlo
(MCMC) or approximate Bayesian computation (ABC) (Sis-
son et al., 2018). However, checking individual posteriors
introduces an additional computationally expensive step.

Imperfect approximations of true posteriors can occur if the
conditional normalizing flow, which might be the case for
multimodal distributions (Hagemann et al., 2023). Then,
the approximations could be improved by relaxing the con-
straints of the architecture imposed by invertible neural
networks using generalized normalizing flows (Hagemann
et al., 2023) or flow- and score-matching methods (Sharrock
et al., 2022; Geffner et al., 2023; Dax et al., 2023). Never-
theless, we did not encounter such difficulties here, as we
could approximate even the multimodal distributions in the
simple ODE model. Thus, we are confident that our ap-
proach based on conditional normalizing flows can provide
good estimates for the parameters in an NLME model.

In conclusion, the amortized approach we presented in this
study offers a powerful solution for non-linear mixed-effects
modeling. The approach enables researchers to flexibly use
models for individuals and the population while performing
accurate parameter estimation and uncertainty analysis in a
more scalable manner than state-of-the-art methods.

9



An amortized approach to non-linear mixed-effects modeling

Impact Statement
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contributes to resource conservation and highlights the po-
tential for positive societal and environmental impacts.
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Fröhlich, F., Theis, F. J., and Hasenauer, J. Uncertainty
analysis for non-identifiable dynamical systems: Profile
likelihoods, bootstrapping and more. In Mendes, P., Dada,
J. O., and Smallbone, K. O. (eds.), Proc. 12th Int. Conf.
Comp. Meth. Syst. Biol., Lecture Notes in Bioinformatics,
pp. 61–72. Springer International Publishing Switzerland,
11 2014.
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Code Availability
The code and a guide, aimed at assisting users in applying their own non-linear mixed-effects models, can be found at
https://github.com/arrjon/Amortized-NLME-Models/tree/ICML2024. A snapshot of the code and
the results underlying this study can be found at https://zenodo.org/record/8245785. The single-cell data has
been made publicly available by Fröhlich et al. (2018).

A.1. Specification of the single-cell models

Living cells exhibit variability at the single cell level due to various factors such as mole processes, cell cycle state,
environmental differences, and individual cell history (Fröhlich et al., 2018). Fröhlich et al. were interested in the dynamics
of protein expression and transfected single cells with enhanced green fluorescent protein (eGFP)-encoding mRNA. The
expression of the eGFP reporter gene was recorded every ten minutes for a period of 30 hours using a scanning time-lapse
microscope setup. From these data, the authors estimated the parameters of the translation process using ordinary differential
equation (ODE) models in an NLME framework.

In this work, we focus on two models termed the “simple” and “detailed” models from (Fröhlich et al., 2018). We denote
the abundance of mRNA as m, proteins as p, ribosomes as r, and enzymes as e. For both models, we assume additive
normal measurement noise, that is, the measurements ỹ follow ỹ ∼ N(y, σ2) and our assumed prior distribution for σ is
logN(−1, 2).

SIMPLE ODE MODEL

The ODE system has variables ϕ = (δ, γ, km0 scale, t0, offset , σ) and is defined as

dm

dt
= −δ ·m m(t0) = 1

dp

dt
= km0 scale ·m− γ · p p(0) = 0

y = log(p+ offset),

where the priors assumed for the variables are

• mRNA degradation rate δ ∼ logN (−3, 5),

• protein degradation rate γ ∼ logN (−3, 5),

• combined parameters km0 scale ∼ logN (5, 11),

• mRNA entering the cell time point t0 ∼ logN (0, 2),

• and offset ∼ logN (0, 6).

The parameters k, m0, scale can only be identified as a product to improve identifiability (Fröhlich et al., 2018). This ODE
system has an analytical solution, which we use to perform simulations in Python.
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DETAILED ODE MODEL

The ODE system has variables ϕ = (δ1m0, δ2, e0m0, k2m0 scale, k2, k1m0, r0m0, γ, t0, offset , σ) and is defined as

dm

dt
= −δ1m0 ·m · e− k1m0 ·m · r + k2 ·

(
r0
mo

− r

)
m(t0) = 1

de

dt
= −δ1m0 ·m · e+ δ2 ·

(
e0
m0

− e

)
e(0) =

e0
m0

dr

dt
= k2 ·

(
r0
m0

− r

)
− k1m0 ·m · r r(0) =

r0
m0

dp

dt
= k2m0 scale ·

(
r0
m0

− r

)
− γ · p p(0) = 0

y = log(p+ offset).

For a detailed description of the parameters, we refer to (Fröhlich et al., 2018). The priors assumed for the variables are

δ1m0 ∼ logN (−1, 5), k1m0 ∼ logN (1, 2)

δ2 ∼ logN (−1, 5),
r0
m0

∼ logN (−1, 2),

e0
m0

∼ logN (−1, 2), γ ∼ logN (−6, 5),

k2m0 scale ∼ logN (12, 2), t0 ∼ logN (0, 2),

k2 ∼ logN (−1, 2), offset ∼ logN (0, 5).

This ODE system is simulated using the Rodas5P solver implemented in the Julia package
DifferentialEquations.jl (Rackauckas & Nie, 2017).

SDE MODEL

The simple ODE model can be easily extended to the SDE model

d

(
m
p

)
t =

(
−δ ·m(t)

k ·m(t)− γ · p(t)

)
dt+

(√
δm(t) 0

0
√
k ·m(t) + γ · p(t)

)
dBt

from (Pieschner et al., 2022) with ϕ = (δ, γ, k,m0, scale, offset , σ), where Bt is a two-dimensional standard Brownian
motion, m(t0) = 1 and p(0) = 0. To compare the model to the previous one we take as observable mapping

y = log(scale ·p+ offset).

The priors assumed for the variables are

δ ∼ logN (−3, 5), scale ∼ logN (0, 5),

γ ∼ logN (−3, 5), t0 ∼ logN (0, 2),

k ∼ logN (−1, 5), offset ∼ logN (0, 5).

m0 ∼ logN (5, 5).

This SDE system is simulated based on an Euler-Maruyama scheme with a step size of 0.01 and using just in time compilation
from numba (Lam et al., 2015).

A.1.1. SYNTHETIC DATA

The synthetic data set is generated by setting the population parameters to reasonable values based on the results in (Fröhlich
et al., 2018) (see Table 1, 2 and 3) and then sampling random effects from a log-normal distribution until the desired number
of synthetic cells is generated. Since we know all cell-specific parameters, we can compute the sample mean and covariance
of the parameters, which are the optimal values that we would like to recover. Fixed effects are modeled as random effects
with 0 variance.
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Table 1. Population parameters of log-normal distribution for synthetic data of simple single-cell NLME model.
parameter δ γ km0 scale t0 offset σ
mean −0.694 −7.014 6.217 −0.164 2.079 −3.454
variance 0.941 7.014 0.004 0.116 0 0

Table 2. Population parameters of log-normal distribution for synthetic data of detailed single-cell NLME model.
parameter δ1m0 δ2 e0m0 k2m0 scale k2 k1m0 r0m0 γ t0 offset σ
mean −0.10144 −0.88443 −0.42549 13.81551 0.42143 0.97477 −3.50153 −6.91273 −0.34573 2.07944 −3.45388
variance 0.56752 0.74721 0.52594 0 0.44084 1.45996 2.3979 4.61512 0.48075 0 0

Table 3. Population parameters of log-normal distribution for synthetic data of the SDE single-cell NLME model.
parameter δ γ k m0 scale t0 offset σ
mean −0.694 −7.014 0.027 5.704 0.751 −0.164 2.079 −3.454
variance 0.941 7.014 0.675 6 · 10−5 0 0.116 0 0

A.2. Implementation

We implemented the individual-specific posterior approximation using the BayesFlow tool (Radev et al., 2023). To
estimate the population parameters, we implemented the optimization problem (5) as an objective function in the pyPESTO
toolbox (Schälte et al., 2023). There, we used the local optimization method L-BFGS (Liu & Nocedal, 1989) implemented
in SciPy (Virtanen et al., 2020) embedded in a multi-start framework with uniformly sampled starting points in the 99%
range of the prior. In our applications, usually ten starts were already enough to reliably obtain the same optimum several
times (see Figure S14). Parameters that are shared between individuals, that is, parameters that do not consist of a random
effect, can be approximated in the given approach by fixing their variance to a small value.

As invertible neural networks, we used neural spline layers (Durkan et al., 2019) with variable depth of seven to eight layers
and two to three coupling layers. Since all models describe trajectories over time, we chose a long short-term memory
(LSTM) network (Hochreiter & Schmidhuber, 1997) with 2d units as our summary network. We choose d such that the
number of units is larger than the number of observations given by the model.

For each model, multiple neural posterior estimators were trained. We varied the number of invertible layers from six to
eight, added a 1d-convolutional layer on top of the LSTMs and a dense layer at the end. Training consists of several epochs,
and in each one we generated 1000 batches of 128 simulations. Simulations can be generated before or during training.
Depending on the simulation time of the model, pre-simulation or online training is more efficient. We used online training
for the simple ODE model, while we generated simulations beforehand for the other models. For all models, we set a
maximum of 500 epochs and training was stopped earlier if the loss calculated on a validation set did not improve for five
epochs, which reduced training time and is assumed to improve the generalization capacity of neural networks (Zhang et al.,
2021). The error calculated on a validation set during training suggested convergence for all models (Figure S2).

For each start in Monolix (Lixoft SAS, 2023), we increased the iteration limit for each task (SAEM, standard error, and
likelihood estimation) to ensure convergence at each step. We set the maximum number of iterations in the two phases
(exploratory and smoothing) of SAEM to 10,000 and 1,000, respectively. Monolix’ auto-stop criteria usually stopped
the algorithm before it could perform that many iterations. The iteration limit for estimation of the standard errors was set
to 1,000 and the Monte Carlo size for likelihood estimation was set to 50,000. All other settings were left at their default
values. The starting points were sampled from the prior.

For comparison, we also explored a multi-start approach using FOCEI (Wang, 2008), implemented in NONMEM (Beal &
Sheiner, 1980), which is arguably the most widely used inference method in pharmacokinetic modeling. We performed 300
starts, where we sampled the starting values from the prior.

We ran all analyses on a computing cluster using eight CPU cores for parallelization and one GPU for training the neural
networks. The computing cluster uses an AMD EPYC 7F72 CPU with a core clock speed of up to 3.2 GHz and 20 GB of
RAM per available core. The neural network training was performed on a cluster node with an NVIDIA A100 graphics card
with 40 GB of VRAM.
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The simulations of the generative model, multi-starts in pyPESTO and a single start in Monolix used all available cores
for parallelization. Moreover, the contribution of each individual could also be evaluated in parallel, giving the option of
further parallelizing the calculation of the objective in a single start.

Table 4. Detailed runtime analysis. We report duration of the simulation phase, the average training time, and the number of simulations
of the underlying ODE or SDE model. For SAEM we report the average number of ODE model simulations (assuming one simulation per
individual per iteration) for the data set with 10, 000 cells and for all data sets and repeated inference runs combined. For any new data
set, there are no additional simulations in the amortized approach. SAEM is not capable to perform inference for the SDE NLME model.

model
(I)

simulation phase
(II)

training phase epochs
total

simulations
# simulations in
one SAEM run

total number of
simulations in SAEM

simple - 6.11 h 416 53 Mio. 34.8 Mio. 5 030 Mio.
detailed 3.74 h 8.00 h 355 64 Mio. 99.8 Mio. 9 640 Mio.
SDE 2.16 h 5.12 h 417 64 Mio. - -

A.3. Conditional normalizing flows provide accurate and efficient approximation of individual-specific posteriors

We checked the convergence of neural posterior estimators based on their calibration plots, a diagnostic tool that comes
with BayesFlow. Simulation-based calibration is a method to detect systematic biases in any Bayesian posterior sampling
method (Talts et al., 2020). Incorrect calibration can be seen by deviations from uniformity. None of our estimators showed
systematic biases (Figure S3). Furthermore, for the best estimators, we assessed the validity of the individual-specific
posteriors of the real data by comparing them with the posterior approximations given by an MCMC approximation with
adaptive parallel tempering implemented in pyPESTO (Schälte et al., 2023). In particular, the bimodal distributions of the
parameters δ and γ in the simple ODE model are nicely recovered (Figure S4). For the detailed model, MCMC showed poor
convergence behavior over repeated runs with a small effective sample size.

An assessment of computation time revealed that the employed MCMC sampler required approximately 1 million samples
and 10 chains with an effective sample size of 195, which took around 20 minutes of computation time for a single cell.
In comparison, the trained neural posterior estimator only required a few seconds for the same effective sample size and
on the same set-up (see details on the implementation in Methods A.2). Thus, in this case, the training time of the neural
networks to obtain individual-specific posteriors, ∼ 6.5 hours, would be amortized after around 20 cells, or even after an
individual cell if a sufficiently high sample size is required. This demonstrates the efficiency of neural posterior estimation
for parameter estimation also outside a mixed-effects context.
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(a) Simple ODE model

(b) Detailed ODE model

(c) SDE model

Figure S2. Exemplary loss during training.
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(a) Simple ODE model

(b) Detailed ODE model

(c) SDE model

Figure S3. Simulation-based calibration plots of the individual posteriors for the (a) simple ODE, (b) detailed ODE and (c) SDE models.
Incorrect calibration can be seen by deviations from uniformity (bars outside the gray area).
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Figure S5. Comparing individual-specific posteriors from an MCMC approximation and the neural posterior estimator for a single
synthetic cell in the (a) simple and the (b) detailed ODE model.
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Figure S6. Full posterior for the simple ODE model and an exemplary real single cell
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Figure S7. Full posterior for the detailed ODE model and an exemplary real single cell
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Figure S8. Full posterior for the SDE model and an exemplary real single cell
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A.4. Further analysis of the single-cell NLME models
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Figure S9. The difference in the population mean estimated from real trajectories and simulations generated with the estimated population
parameters is shown with a 95% confidence interval (CI). The detailed model captures the population mean after 0.82 hours and then
shows no significant deviation from the population mean, while the simple model needs 1.97 hours to recover the population mean and
then differs significantly from the population mean. In addition to the models fitted with the amortized approach, the best fit of Fröhlich
et al. (2018) for the simple and detailed ODE NLME model is shown (Fröhlich et al., 2018).

A.4.1. INFLUENCE OF THE NUMBER OF POSTERIOR SAMPLES

We also checked the impact of the number of posterior samples M on the estimated population parameters. In Figure S10a,
we see a small decrease in the mean squared error for a larger number of posterior samples across all ODE NLME
models and data sets. Monte Carlo integration theory suggests that the error rate (σMC/

√
M ) should be 5 times lower

when increasing the sample size from M = 10 samples to M = 250. However, the median error decreases only by a
factor of around 1.5. We assume that the lower rate comes from the fact that we already have a good approximation
with a small number of samples due to the following observation: In the cases shown here, the population density
ppop and the prior p(ϕ) come from the exponential family. Hence, the loss function consists of logarithms of sums
of exponentials. For example, if both are normal distributions N (β,Ψ), N (µ,Σ) respectively, then we can define
xj :=

1
2 (ϕj − µ)TΣ

−1(ϕj − µ)− 1
2 (ϕj − β)TΨ

−1(ϕj − β). We can bound the logarithm of sums of exponentials, by
the maximum function (Boyd & Vandenberghe, 2004) through

max(x1, . . . , xM ) ≤ logsumexp(x1, . . . , xM ) ≤ max(x1, . . . , xM ) + logM.

This is true since max(x1, . . . , xM ) = log(max(exp(x1, . . . , xM ))) < log
(∑M

j=1 exp(xj)
)

and
∑M
j=1 exp(xj) ≤

M max(exp(x1), . . . , exp(xM )). The latter inequality is an equality if and only if all xj are equal. The log-sum-exp
function is even convex (Boyd & Vandenberghe, 2004) and can be numerically stable evaluated by using the log-sum-exp-
trick (Blanchard et al., 2021).

Therefore, the main contribution to the loss function comes from “good” posterior samples ϕj that optimally balance the
population distribution and individual priors (a maximal xj). If we add a “bad” sample to a set of already “good” samples,
only the upper bound will change by log((M + 1)/M). Intuitively, this explains why we only need a small number of
“good” samples to get a reasonable approximation of the population likelihood.

In Figure S10b, we see that the inference time increases when a larger sample size is used for the posterior, but that inference
is still faster than the baseline method. Moreover, for each model, we reused the same neural posterior estimator on all data
sets, whereas for the baseline method, we needed to restart the whole optimization. Therefore, to get estimates for 100 runs
on multiple data sets, we saved 128 times of computational resources using the amortized approach compared to SAEM.

In Figure S11–S13, we see that for the amortized approach the variance of the parameter estimates of a multi-start
optimization decreases with increasing posterior sample size or size of the data set. However, in general, for increasing size
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of the data set, more multi-starts were needed for our approach and SAEM (Figure S14). The amortized approach shows
that for a posterior sample size of at least M = 50, most runs reach a similar likelihood value, in particular for the smaller
data sets. Furthermore, the amortized approach is able to recover the multi-modality in the first two parameters of the simple
ODE NLME model (Figure S11). This modality comes from the fact, that we can swap δ and γ in the simple ODE model
without changing the solution of the ODE.
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(b) Mean squared error for recovering the sample parameters on synthetic data for 90% of the runs with the maximal
population likelihood as some runs did not converge (see Figure S14).
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Figure S10. Accuracy and inference time for multiple new synthetic data sets for the single-cell NLME models. The median of the mean
squared error for 100 runs is shown with one standard deviation. Different numbers of posterior samples were used to estimate population
parameters. For each model, we reused the same neural posterior estimator on all data sets.
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Figure S11. Parameter estimates on synthetic data sets for the simple single-cell NLME model for 100 runs. Different numbers of posterior
samples M were used to estimate population parameters. For each data set of size N , we reused the same neural posterior estimator.
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Figure S12. Parameter estimates on synthetic data sets for the detailed single-cell NLME model for 100 runs. Different numbers of
posterior samples M were used to estimate population parameters. For each data set of size N , we reused the same neural posterior
estimator.
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Figure S13. Parameter estimates on synthetic data sets for the SDE single-cell NLME model for 100 runs. Different numbers of posterior
samples M were used to estimate population parameters. For each data set of size N , we reused the same neural posterior estimator.
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Figure S14. Approximated negative log-likelihood values (with an offset of the minimum value) on synthetic data sets for the single-cell
NLME models for 100 runs. Different numbers of posterior samples M were used to estimate population parameters. For each data set of
size N , we reused the same neural posterior estimator.
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A.4.2. UNCERTAINTY QUANTIFICATION

A.4.3. EFFICIENT INFERENCE OF THE POPULATION PARAMETERS ENABLES ROBUST UNCERTAINTY ANALYSIS

Our approach based on amortized neural posterior estimation allows efficient construction of point estimates. Beyond point
estimates, in many applications, it is important to assess the uncertainty of the parameters to determine the identifiability of
the parameters, draw reliable conclusions, and perform representative predictions (Raue et al., 2013; Maier et al., 2020).
The implementation of SAEM in Monolix allows standard errors to be obtained through linearization of the likelihood
or by a stochastic approximation of the Fisher information matrix, which yields asymptotically correct results under the
assumption of normally distributed errors and a large amount of data. Using these standard errors, the confidence intervals
are calculated using the Wald statistic (Lixoft SAS, 2023).

However, to ensure the validity of the confidence intervals, it is often advisable to use bootstrapping or non-local approaches
such as profile likelihoods, as these are more accurate when the above assumptions are not met. This can, for example, allow
for non-symmetric confidence intervals (Fröhlich et al., 2014). Such tests are infeasible when the computational time is
high, as it is often the case with SAEM.

We explored the possibility of performing accurate uncertainty quantification, given the computational efficiency of the
inference phase in our approach. Specifically, we applied profile likelihood analysis (further details can be found in
Supplement A.4.4), as it is a widely used non-local frequentist approach to uncertainty quantification in systems biology
(Kreutz et al., 2013). The computation of profile likelihoods took seconds, whereas SAEM took on the order of minutes. On
the synthetic data, the confidence intervals based on profile likelihoods were comparable to those based on linearization
using SAEM for most parameters. Yet, for three variance parameters, the 80% CIs computed with SAEM actually did
not cover the true parameter (for all 100 runs of the multi-start), while the CIs computed with profiles from the amortized
approach did (Figure 3D).

In conclusion, our amortized approach allows for an efficient and robust uncertainty quantification by computing profile
likelihoods. The cheap amortized inference phase is a key advantage, as other frequentist methods do not allow for robust
uncertainty analysis due to substantially higher computational costs. Moreover, the efficient evaluation of the population
likelihood allows us to perform a full Bayesian analysis as well as we demonstrated in Section 3.4.

A.4.4. PROFILE LIKELIHOODS

We show that we can use our approximated population likelihood (5) for uncertainty quantification using the profile
likelihood method. To compute confidence intervals from profiles we need to compute the profile likelihood ratio

Ri(c) = exp

(
min
θj ̸=i

log p(D | θ)− log p(D | θ̂)
)

s.t. θi = c

as discussed in (Fröhlich et al., 2014). In our case, we need to compute

Ri(c) = exp

min
θj ̸=i

N∑
i=1

(
log p(ỹ(i)) + logEϕ∼p(ϕ|ỹ(i))

[
ppop(ϕ | θ)

p(ϕ)

])

−
N∑
i=1

log p(ỹ(i)) + logEϕ∼p(ϕ|ỹ(i))

[
ppop(ϕ | θ̂)

p(ϕ)

]


= exp

min
θj ̸=i

N∑
i=1

logEϕ∼p(ϕ|ỹ(i))

[
ppop(ϕ | θ)

p(ϕ)

]
− logEϕ∼p(ϕ|ỹ(i))

[
ppop(ϕ | θ̂)

p(ϕ)

]
 .

Therefore, we can use the approximation of the population likelihood even though we do not know p(ỹ). Since the evaluation
of this approximation is fast, we can efficiently compute profiles and confidence intervals (see Figure S15). We compute
confidence intervals using the implementation in pyPESTO (Schälte et al., 2023).
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Figure S15. Confidence intervals for the single-cell models on synthetic data. Data was generated by (A) the simple ODE model, (B) the
detailed ODE model and, (C) the SDE model. The parameters (median and variance of the log-normal distribution) and CIs (based on
profile likelihoods) were then estimated using the amortized approach to NLME models. True parameters, which are 0, are not shown.
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A.4.5. ODE VS. SDE NLME MODEL

The simple ODE model of the mRNA transfection processes possessed structural non-identifiabilities, meaning that not all
the parameters can be determined from the data. Consequently, the ODE model encompasses only the product k ·m0 · scale ,
while the SDE model encompasses the individual parameters k, m0 and scale, offering a more detailed representation.
Indeed, using our amortizing NLME framework, we were able to identify all parameters of the stochastic NLME model (see
Figure S16B).

Further analysis on synthetic data generated by the SDE NLME model showed that the simple ODE NLME model estimated
parameters such that the variance of the population was 3 times larger than the true variance, while for the stochastic NLME
model the variance is only 1.3 times larger and hence capable of capturing the data more accurately (Figure S17). This,
in particular, underlines that a deterministic model can give erroneous results if it inadequately captures the underlying
processes.
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Figure S16. Stochastic NLME model improves identifiability compared to deterministic counterpart. (A) Credible regions of a trajectory of
the SDE single-cell model estimated by the neural posterior estimator for a real cell. The estimated median of the posterior was simulated
10 times. (B) Estimated population distributions for the parameters k, m0 and scale for the SDE NLME model and their product in the
simple ODE NLME model.
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Figure S17. Fit for SDE NLME model on synthetic data. (A) Synthetic data describing single-cell translation kinetics after mRNA
transfection generated by the SDE NLME model. (B–C) Difference of estimated population mean (B) and variance (C) over time of the
SDE and ODE NLME model on synthetic data generated by the SDE model.
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A.5. Specification of the pharmacokinetic model

Over the past two decades, many oral targeted therapies have been developed in the field of oncology, many of which
target the angiogenesis of neoplasms, which plays an important role in tumor growth. However, angiogenesis inhibitors
generally show high variability between patients, leading to significant differences in exposure (Groenland et al., 2019).
Therefore, pharmacokinetic (PK) modeling is required to develop targeted dosing strategies for sub-populations or even in
a personalized manner, discover concentration thresholds for toxicity, investigate potential interactions, and guide study
planning, among other purposes. Sunitinib, an angiogenesis inhibitor, which belongs to the class of tyrosine kinase inhibitors,
was the subject of the population pharmacokinetic model, which is described in more detail below. In the model developed
by Diekstra et al., the distribution of sunitinib is described by a single compartment model, while for its metabolite SU12662,
a two compartment model was used. Presystemic metabolization in (Diekstra et al., 2017) was described according to the
model by Yu et al. by a hypothetical enzyme compartment. The hypothetical compartment was parameterized as follows,
with QH being the calculated concentration:

CLIV =
ka ·AD +QH · Ac,sunitinib

Vc,sunitinib

QH + CLsunitinib
.

ka denotes for the absorption rate constant, while AD and Ac,sunitinib represent the amounts in the dosing or central compart-
ment, respectively. CLsunitinib and Vc,sunitinib denote the clearance and volume of distribution of the central compartment of
sunitinib in this equation.

The model includes the sex and weight of the patients as covariates. Each patient i received a personal medication (DOS i)
and was measured over a different period of time and at varying time points. In the following, we present the model for each
individual; therefore, the index i is removed. The patient’s weight is normalized as follows

wt :=


83 if weight is missing and sex = 1

75 if weight is missing and sex = 0

weight else
, ASCL :=

(
wt

70

)0.75

, ASV :=
wt

70
.

The parameters we want to estimate are θ ∈ R13
≥0, and η ∈ R4

≥0, which are incorporated in the ODE model as follows:

ka = θ1 Q34 = θ7 ·ASCL
V2 = Vc,sunitinib = θ2 ·ASV ·η1 V4 = Vp,SU12662 = θ8 ·ASV

QH = θ3 ·ASCL fm = θ9 · η4
CLsunitinib = θ4 ·ASCL ·η3 Q25 = θ10 ·ASCL
CLSU12662 = θ5 ·ASCL V5 = Vp,sunitinib = θ11 ·ASV

V3 = Vc,SU12662 = θ6 ·ASV ·η2
and

dAD
dt

=
dA1

dt
= −kaA1 A1(0) = 0

dAc,sunitinib
dt

=
dA2

dt
= QH · CLIV −QH

V2
A2 −

Q25

V2
A2 +

Q25

V5
A5 A2(0) = 0

dAc,SU12662

dt
=

dA3

dt
= fm · CLsunitinib ·CLIV −CLM

V3
A3 −

Q34

V3
A3 +

Q34

V4
A4 A3(0) = 0

dAp,SU12662

dt
=

dA4

dt
=

Q34

V3
A3 −

Q34

V4
A4 A4(0) = 0

dAp,sunitinib

dt
=

dA5

dt
=

Q25

V2
A2 −

Q25

V5
A5 A5(0) = 0.

As in the baseline (Diekstra et al., 2017), we fix θ3 = 80, θ9 = 0.21, and θ11 = 588 to get comparable results.

Furthermore, whenever a patient takes medication (at tDOS
j ), we have

A1(t
DOS
j ) = lim

t→tDOS
j

A1(t) +DOS .
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In the noise model we apply a censoring from below by

y1 = θ12 · ϵ1 +
{
log(0.001) if A2 < 0.001

log(A2) else,

y2 = θ13 · ϵ2 +
{
log(0.001) if A3 < 0.001

log(A3) else,

where ϵ1, ϵ2 ∼ N (0, σ2). In (Diekstra et al., 2017), σ2 = 1 was fixed, therefore we fix it as well. This ODE system is
simulated using the Rodas5P solver implemented in the Julia package DifferentialEquations.jl (Rackauckas &
Nie, 2017).

Figure S18. Simulation-based calibration plots of the individual posteriors for the pharmacokinetic model. Incorrect calibration can be
seen by deviations from uniformity (bars outside the gray area)

A.5.1. DOSING EVENTS

In our amortizing framework, covariates such as sex and weight can be treated as part of the population model. If they
are instead part of the model M, then they need to be synthetically generated during the simulation phase. This is the
case with dosing regimes, which refer to the prescribed schedules and dosages of the medications that are administered
to patients. Therefore, we encoded the dosing events as part of the observations, which are given to the summary
network together with the simulated measurements. Hence, the observation at each time point j consists of a vector
(y

(j)
2 , y

(j)
3 ,DOS j , tj ,DOS -Indicator j), where DOS -Indicator j is a binary indicator of a dosing event following the ideas

on encoding missing data and time points in (Wang et al., 2023). If a dosing event occurs, the variables are y
(j)
2 and y

(j)
3

are set to 0, otherwise DOS j is set to 0. We trained two LSTMs using the split summary network architecture provided in
BayesFlow (Radev et al., 2023), where each summary network got the input depending on the binary variable. During the
simulation phase, we sampled the dosing events and observed time points from the time points and events in the data set
because we were only interested in this particular data set. However, one could also generate events and observation time
points from a reasonable distribution to be able to amortize over multiple different data sets.

A.5.2. COMPARISON BETWEEN DIFFERENT ESTIMATION METHODS

We estimated the population parameters using FOCEI, SAEM and our amortized approach. We report the results in
Figure S19. Furthermore, we show the measurement trajectories for three different patients to show the underestimation of
the population variance of FOCEI (see Figure S20).

Our amortized approach, including all phases, repeating phase (III) 200 times and generating 100, 000 samples from the full
population posteriorly, was completed in 27 hours. For an optimization run, we need on average 0.34 minutes. Sampling
takes 5.1 minutes.
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Figure S19. Population parameter estimates for the pharmacokinetic model.
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Figure S20. Baseline underestimates variance of measurements. Trajectories of sunitinib plasma and SU12662 plasma measurements for
three patients. Simulating samples from the population likelihood convoluted with the noise model using the covariates of this patient
based on the estimated parameters of FOCEI and our amortized approach.
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