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ABSTRACT

We present a comprehensive empirical study on how backdoor attacks affect CLIP
by analyzing the representations of backdoor images. Specifically, based on the
methodology of representation decomposing, image representations can be de-
composed into a sum of representations across individual image patches, attention
heads (AHs), and multi-layer perceptrons (MLPs) in different model layers. By
examining the effect of backdoor attacks on model components, we have the fol-
lowing empirical findings. (1) Different backdoor attacks would infect different
model components, i.e., local patch-based backdoor attacks mainly affect AHs,
while global noise-based backdoor attacks mainly affect MLPs. (2) Infected AHs
are centered on the last layer, while infected MLPs are decentralized on several
late layers. (3) Some AHs are not greatly infected by backdoor attacks, and even
infected AHs could still maintain the original functionality. These observations
motivate us to defend against backdoor attacks by detecting infected AHs, re-
pairing their representations or filtering backdoor samples with too many infected
AHs, in the inference stage. Experimental results validate our empirical findings
and demonstrate the effectiveness of the defense methods.

1 INTRODUCTION

Recently, Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) has received much
attention due to its powerful visual representations learned from natural language supervision (Xu
et al., 2021; Wu et al., 2023). Recent research (Carlini & Terzis, 2022; Carlini et al., 2023; Bansal
et al., 2023) has disclosed the vulnerability of CLIP against backdoor attacks. Specifically, a ma-
licious adversary can poison a small proportion of backdoor image-text pairs into the pre-training
data, which would result in a backdoored CLIP after multimodal contrastive learning. In the infer-
ence stage, the backdoored CLIP would produce tampered image representations when the trigger
is attached to the images, close to the text representation of the target attack class. This situation
exposes a serious security risk of deploying CLIP in practical applications.

To defend against backdoor attacks on CLIP, recent research has proposed a few backdoor defense
methods, e.g, robust multimodal contrastive learning in the pretraining stage (Yang et al., 2023a),
fine-tuning the backdoored CLIP (Bansal et al., 2023), reverse-engineering the trigger (Sur et al.,
2023), and detecting backdoor samples in the inference stage (Niu et al., 2024). However, there
still remains a limited systematic understanding of how backdoor attacks affect CLIP. To fill this
gap, we conduct a comprehensive empirical study to investigate how backdoor attacks affect CLIP
by analyzing the representations of backdoor images. Specifically, following the methodology of
representation decomposing (Gandelsman et al., 2024), we decouple the image representation as
a sum of representations across individual image patches, attention heads (AHs), and multi-layer
perceptrons (MLPs). Furthermore, we use mean-ablation (Gandelsman et al., 2024), i.e., replacing
representations of backdoor images on AHs or MLPs with mean representations of clean images
on the same components. In this way, we can examine the effect of backdoor attacks on these
components by comparing the attack success rate (ASR) and the clean accuracy (CACC). Our key
findings are summarized as follows.

(1) Different backdoor attacks would infect different model components, i.e., local patch-based
backdoor attacks mainly affect AHs, while global noise-based backdoor attacks mainly affect
MLPs. First of all, we directly mean-ablate all AHs or MLPs. The results are shown in Figure
1 (a)-1 and (a)-2. We can see that mean-ablating all MLPs has little effect on the ASR of BadNet
(Gu et al., 2017) and BadCLIP (Liang et al., 2023) but dramatically decreases the ASR of Blended

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

x

BadNet Blended ISSBA BadCLIP

A
tt

ac
k 

Su
cc

es
s R

at
e 

(%
)

A
tt

ac
k 

Su
cc

es
s R

at
e 

(%
)

A
tt

ac
k 

Su
cc

es
s R

at
e 

(%
)

A
tt

ac
k 

Su
cc

es
s R

at
e 

(%
)

A
tt

ac
k 

Su
cc

es
s R

at
e 

(%
)

A
tt

ac
k 

Su
cc

es
s R

at
e 

(%
)

A
tt

ac
k 

Su
cc

es
s R

at
e 

(%
)

C
le

an
 A

cc
ur

ac
y 

(%
)

MA MLP MA AH

MA MLP MA AH

Mean-ablating components(a)-1 Forward AH Ablation (b)-1 Backward AH Ablation(c)-1 Separate AH Ablation(d)-1
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Figure 1: Mean-ablation on model components. Figures (a)-1/2 show the ASR and CACC of mean-
ablating all AHs or MLPs respectively; Figures (b)-1/2, (c)-1/2, and (d)-1/2 show the ASR of for-
ward, backward, and separate ablation on AHs and MLPs respectively. Dashed lines indicate the
baseline ASR or CACC of backdoor attacks. Best viewed in color.

(Chen et al., 2017) and ISSBA (Li et al., 2021). On the contrary, mean-ablating all AHs makes the
ASR of BadNet and BadCLIP near zero but keeps the ASR of Blended and ISSBA unchanged. The
potential reason lies in the characteristics of their triggers and the inherent mechanism of AHs or
MLPs. Specifically, local patch triggers in BadNet and BadCLIP are easier to encode into AHs due
to the sefl-attention mechanism in vision transformers (ViTs), while global noise pixel triggers in
Blended and ISSBA attend to aggregate into MLPs (Gu et al., 2022). This finding reveals the attack
preference of different backdoor attacks on model components in ViTs.

(2) Infected AHs are centered on the last layer, while infected MLPs are dispersed on the several
late layers. We further explore the effect of backdoor attacks on AHs or MLPs in various model
layers. Specifically, we use three types of layer-wise mean-ablation schemes. Forward (Backward)
ablation means that we ablate AHs or MLPs in sequence (in the reversed sequence) up to a given
layer. Separate ablation indicates that we only ablate AHs or MLPs on a given layer. From the
results in Figure 1, we can see that ablating AHs only in the last layer greatly decreases the ASR of
BadNet and BadCLIP, indicating the infected AHs are centered on the last layer. Correspondingly,
ablating all MLPs in the last five layers makes the ASR of Blended and ISSBA reach almost zero,
implying the infected MLPs are decentralized in the last five layers. The potential reason lies in the
inherent patterns of their triggers. Specifically, local patch triggers are regional pixels and resemble
high-level visual objects (e.g., “ear”, “eye”), which are easier to encode as high-level visual patterns
into AHs in the last layer, while global noise pixels are scattered and resemble low-level visual
information (e.g., “texture”), thereby tending to encode into the last several MLPs (Park & Kim,
2022). This finding reveals the difference in the locations of infected components.

(3) Some AHs in the last layer are not greatly infected by backdoor attacks, and even infected AHs
could still maintain the original functionality. We further explore the characteristics of infected
AHs and MLPs. By visualizing head-specific attention maps as shown in Figure 2, we found that
some AHs do not catch the triggers. Moreover, based on the algorithm TEXTSPAN (Gandelsman
et al., 2024), we characterize the functionality change of infected AHs or MLPs by CLIP’ text
representations. The results are shown in Figure 2 and Figure 3. We can see that certain descriptive
texts of infected AHs have no significant change in semantics, e.g., the 4th AH (“color”) and the 10th
AH (“location”). The potential reason lies in that the triggers inherently have visual information
related to “color” and “location” that is consistently captured by these AHs. This finding reveals the
different effects of backdoor attacks on the functionality of infected components.

These observations motivate us to defend against backdoor attacks by repairing representations of in-
fected model components or filtering backdoor samples. Specifically, we directly mean-ablate MLPs
in the last five layers for global noise-based attacks due to the decentralization of infected MLPs. For
local patch-based attacks, instead of removing all AHs in the last layer, we selectively mean-ablate
AHs which are much affected by backdoor attacks. To this end, we construct head-specific proto-
types by averaging head-specific representations from a small proportion of clean validation data.
Based on these head prototypes, we select the AHs with lower cosine similarity between their repre-
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sentations and the corresponding head prototypes as the heavily-infected ones. Then, we can repair
representations of these selected AHs or directly filter samples with too many heavily-infected AHs.
Extensive experiments verify the effectiveness of our method to directly defend against backdoor
attacks and further improve existing defense methods.

Our main contributions can be summarized as follows:

• Comprehensive empirical study. We conduct a comprehensive empirical study on how backdoor
attacks affect CLIP and present three insightful findings.

• Novel backdoor defense methods. Motivated by these findings, we design two novel backdoor
defense methods that detect infected AHs, repair representations or filtering samples.

• Strong experimental results. Extensive experiments validate the effectiveness of repairing rep-
resentations and the scalability of the method to existing defense methods.

2 PRELIMINARY

In this section, we introduce the necessary symbols to define backdoor attacks on CLIP, present the
structure of vision transformers (ViTs), and show the representation decomposition on CLIP.

The threat model (CLIP). Generally, CLIP (Radford et al., 2021) mainly consists of a visual
encoder denoted by V(·), a textual encoder denoted by T (·), a projection matrix P that projects
visual and textual representations into the joint space. The training data of CLIP contains about 400
million image-text pairs crawled from the Internet denoted by D = {(xi, ti)}Ni=1 where ti is the
caption text of the image xi. In the context of backdoor attacks (Li et al., 2021; 2022; Wenger et al.,
2021), a malicious adversary could poison a small proportion of backdoor image-text pairs denoted
by D̃BD = {(x̃i, t̃i)}NBD

i=1 where x̃i = (1−M)⊗xi+M⊗Θ is a backdoor image with the trigger
pattern Θ (Gu et al., 2017; Chen et al., 2017), a mask M, and t̃i = T (yt) is the proxy caption for the
target class yt. Then, the original training dataset could be poisoned as D̃ = {D̃BD ∪ D}. During
the training stage, given a batch of Ñb image-text pairs, the cosine similarity for image-text pairs is
denoted by Sij = ϕ(x̃i, t̃j) = cos(PV(x̃i),PT (t̃j)), and the CLIP loss can be formalized by the
follows.

LCLIP = − 1

2Ñb

( Ñb∑
i=1

log
[ exp(Sij/τ)∑Ñb

j=1 exp(Sij/τ)

]
+

Ñb∑
j=1

log
[ exp(ϕ(Sji/τ)∑Ñb

i=1 exp(Sij/τ)

])
, (1)

where τ is a temperature parameter. After multimodal contrastive learning on the poisoned data,
the trigger Θ would have a strong correlation with the name of the target class yt. We formally
define the thread model as {Ṽ(·), T̃ (·)}. During the inference stage, when encountering the image
x̃i attached with the trigger, the posterior probability of the image for the yt-th target class would
become very high, which makes the model output the adversary-desirable label.

Architecture of ViTs. Specifically, in this paper, we use ViTs (Dosovitskiy et al., 2020) as the
visual encoder. ViTs mainly consist of L residual attention blocks, each containing a multi-head
self-attention (MHSA) structure and a multi-layer perception (MLP), followed by skip connections
(He et al., 2016) and layer normalization (LN). As the input of ViTs, each image xi ∈ RH×W×3 is
split into N non-overlapping image patches, which are projected linearly into N d-dimensional vec-
tors. Moreover, positional embeddings are added to them to create the image tokens {z0i }i∈1,··· ,N .
Notably, an additional class token z00 ∈ Rd, is also introduced to aggregate token information. In
this way, we denote the matrix Z0 ∈ Rd×(N+1) by the initial state of the input. The calculation
procedure for the l-th layer in ViTs can be presented below.

Ẑl = MHSAl(LN(Zl−1)) +Zl−1, Zl = MLPl(LN(Ẑl)) + Ẑl. (2)

Specifically, the first column in Zl indicates the class token [Zl]cls. Finally, the image representation
R(xi) can be denoted as the linear projection from the ViT output: R(xi) = PV(xi) = P [ZL]cls.

Decomposing CLIP’s image representations. Considering the residual structure of ViTs, Gan-
delsman et al. (2024) proposed to express its output as a sum of the direct contributions of individual
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layers of the model.

R(xi) = PV(xi) = P [Z0]cls +
∑L

l=1
P [MHSAl(Zl−1)]cls +

∑L

l=1
P [MLPl(Ẑl)]cls. (3)

Note that the representation decomposition ignores the effect of LN(·) to simplify derivations. More
analysis of the effect of layer normalization can be found in Appendix A.1 of Gandelsman et al.
(2024). Furthermore, following Elhage et al. (2021), a more fine-grained output of MHSA can be
rewritten as a sum over H independent attention heads (AHs) and the N input tokens.

[MHSAl(Zl−1)]cls =
∑H

h=1

∑N

n=0
xl,h
i ,wherexl,h

i = αl,h
i W l,hzl−1

i , (4)

where W l,h are transition matrices and αl,h
i are the attention weights from the class token to the i-th

token in the h-th head (
∑N

i=0 α
l,h
i = 1). Therefore, the second term in Eq. (3) can be rewritten as:∑L

l=1
P [MHSAl(Zl−1)]cls =

∑L

l=1

∑H

h=1

∑N

n=0
cn,l,h,where cn,l,h = Pxl,h

i . (5)

Specifically, the decoupled representations of H AHs across L layers can be denoted by Chead =∑N
n=0 cn,l,h ∈ RL×H . We can interpret them via CLIP’s text representations by directly calculating

their cosine similarities in the joint vision-language space.

3 A CLOSER LOOK AT BACKDOOR ATTACKS ON CLIP

In this section, we conduct preliminary experiments to investigate how backdoor attacks affect CLIP.
Specifically, we consider four backdoor attacks (i.e., BadNet (Gu et al., 2017), Blended (Chen et al.,
2017), ISSBA (Li et al., 2021), and BadCLIP (Liang et al., 2023)) to poison CLIP (Bansal et al.,
2023; Carlini & Terzis, 2022), thereby producing four types of backdoored CLIPs respectively. The
details of backdoor attacks are shown in Appendix E.1. To explore the effect of backdoor attacks
on each model component, we use mean-ablation (Gandelsman et al., 2024) that replaces represen-
tations of potentially infected components with mean representations of corresponding components
from clean validation images. In this way, we can validate the effect of backdoor attacks on the
component by comparing attack success rates (ASR) and clean accuracy (CACC). We conduct this
experiment on the ImageNet-1K validation dataset, using 20% of the images as the clean validation
data. We mainly explore the effect of backdoor attacks on attention heads (AHs) and multi-layer
perceptions (MLPs). The key findings are summarized as follows.

Finding 1: different backdoor attacks would infect different model components, i.e., local patch-
based backdoor attacks mainly affect AHs, while global noise-based backdoor attacks mainly
affect MLPs. First of all, we directly mean-ablate all AHs or MLPs. From the results in Figure 1
(a)-1 and (a)-2, we can see that after mean-ablating all MLPs, ASR of BadNet and BadCLIP have
little effect compared with their baseline ASR (dash lines), while ASR of Blended and ISSBA dra-
matically decreases nearly to zero. Conversely, when mean-ablating all AHs, the ASR of BadNet
and BadCLIP become almost zero, while the ASR of Blended and ISSBA remain unchanged. This
observation indicates that BadNet and BadCLIP mainly affect AHs, while Blended and ISSBA pri-
marily affect MLPs. Besides, mean-abating all MLPs has little effect on the CACC (nearly reduced
by 6%∼7%), while mean-ablating all AHs greatly decreases the CACC to reach almost zero. This
observation is consistent with the finding in (Gandelsman et al., 2024) that MLPs have a negligible
effect on generalization, while AHs capture useful information for generalization.

Explanation for the finding 1. The potential reason for this observation lies in the characteristics
of their triggers. Specifically, the triggers of BadNet and BadCLIP are local patches located in a
small area of the image, while the triggers of Blended and ISSBA are noise pixels embedded into
the entire image. Considering the multi-head self-attention mechanism in ViTs that can encode
contextual cues of a sequence of image patches, the information of local patch triggers is easier to
encode into AHs than that of global noise pixels. Conversely, MLPs mainly focus on aggregating
representation information from AHs, which attends to global noise pixels (Gu et al., 2022).

Finding 2: infected AHs are centered on the last layer, while infected MLPs are decentralized on
several late layers. Here, we further explore the effect of backdoor attacks on AHs or MLPs in
various model layers. Specifically, we use three types of mean-ablation schemes, i.e., forward/back-
ward/separate ablation. Forward ablation means that we ablate AHs or MLPs in sequence up to a
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Figure 2: Visualization of (selected) AHs in the last layer. Larger head-specific MMD scores in-
dicate greater distribution differences in the representation of AHs. On the other hand, larger text
similarities mean smaller semantic changes in AHs’ descriptive texts. A red (green) arrow indicates
a large (slight) decrease or increase in the value compared to the average one.

given layer. Conversely, backward ablation means that we ablate AHs or MLPs in the reversed se-
quence up to a given layer. Separate ablation indicates that we only ablate AHs or MLPs on a given
layer. Figure 1 (b)-1/2, (c)-1/2, (d)-1/2 show the ASR results of forward, backward, and separate
AH/MLP ablation respectively respectively. We can see that only ablating the last layer’s AHs can
cause a large decrease in the ASR of BadNet and BadCLIP. This observation implies infected AHs
are centered on the last layer. In contrast, only ablating MLPs in the last five layers makes the ASR
of Blended and ISSBA reach zero, which indicates that infected MLPs are decentralized on the last
five layers. Furthermore, we found an intriguing phenomenon that ablating any one layer’s MLP
has a limited effect on the ASR. This observation indicates that infected MLPs are decentralized,
i.e., ablating one would have a negligible effect on the overall. Besides, we use Mean Maximum
Discrepancy (MMD) (Arbel et al., 2019) to evaluate the distribution difference between representa-
tions of clean and backdoor images on AHs or MLPs in each model layer. The results are shown
in Figure 6 (d)-1/2 in Appendix D.1. We can also find that AHs in the last model layer have large
MMD scores on BadNet and BadCLIP, and MLPs in the last five layers have large MMD scores on
Blended and ISSBA.

Explanation for the finding 2. The potential reason lies in the visual patterns of their triggers.
Specifically, local patch triggers are regional pixels and resemble high-level visual properties (e.g.,
“ear” and “eye”), which are easier to encode as high-level visual patterns in the last AHs, while
global noise pixels are scattered and resemble low-level visual information (e.g., “texture” and
“shape”) encoded in the last several MLPs (Park & Kim, 2022).

Finding 3: some AHs in the last layer are not greatly infected by backdoor attacks, and even in-
fected AHs could still maintain the original functionality. We further explore the characteristics
of infected AHs and MLPs. Note that we only target AHs in the last layer on BadNet and BadCLIP,
and MLPs on Blended and ISSBA. Firstly, we aim to visualize head-specific attention token maps
toward the class text (i.e., An image of a [class name]) to examine the contribution of each head
toward the class. Benefiting from representation decomposing, we can achieve this aim by directly
calculating the cosine similarity between the decoupled representation of the h-th AH on the l-th
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Minimalist design
Grainy, old film effect

A full moon in the frame
Whispering waterscapes

A graffiti with a sentence

MLP Layer 3

Blended

Minimalist design
Grainy, old film effect
Colorful expressions
Desert sand dunes

A graffiti with a sentence

ISSBA

\

Minimalist design
Grainy, old film effect
A rainbow in the sky

Playful winking facial expression
A stick

Clean Backdoor

Dynamic textures
Vibrant watercolor painting

Minimal color palette
A nut
A skirt

Dynamic textures
Vibrant watercolor painting

Minimal color palette
A bolt

A thimble

MLP Layer 4

Blended

Weather-worn textures
Vibrant watercolor painting
Image with a pastel color
An image of a Paramedic

A fractal snowflake

ISSBA

Weather-worn textures
Vibrant watercolor painting

Minimal color palette
A stretcher

A fractal snowflake

Clean Backdoor

Image with a pastel color
A lamp

Symmetrical arrangement
A textured concrete surface

Zebra stripe motifs

A pastel color
Asymmetrical arrangement

A textured concrete surface
A zephyr

intricate jewelry design

MLP Layer 5

Blended

A pastel color
A lamp

Woven basket design
A textured concrete surface

Snapshot of a marsupial

ISSBA
A pastel color

A lamp
A textured concrete surface

A zephyr
A tie

Clean Backdoor

Minimal color palette
An image of a News Anchor

A kite
Vintage magazine clippings

Intentional lens flare

A hidden ancient ruin
Image with constellations
Vintage magazine clippings

Mondrian-like grids
A textured synthetic mesh

MLP Layer 6

Blended

A dreamy, soft focus effect
Surreal photo manipulation

Caricature of an iconic inventor
Striking fashion silhouette

Playful zoo animal interactions

ISSBA

Minimal color palette
Rural windmill silhouette

A News Anchor
Indoors with low light

Vintage magazine clippings

Clean Backdoor

Interplay of elements
Grainy, old film effect

Time-lapse trails
In Okavango Delta
Cold green tones

Grainy, old film effect
A swirling eddy

Investment Banker
An irregular hexagon
Secret rendezvous

MLP Layer 8

Blended

An irregular heptagon
Glimmering lights

Playful authenticity
Photo with soft, pastel colors

weathered religious icon

ISSBA
Interplay of elements

Cultural tapestry
Cityscape at twilight

Cold green tones
In Okavango Delta

Clean Backdoor

Dramatic chiaroscuro
The Japanese tea gardens

A spiraling pattern
A futuristic biotechnology

Shattered glass skyscrapers

Intimate connection
Marbleized effects

A traffic cone
An image of Dublin

A futuristic biotechnology

MLP Layer 9

Blended

Blurred boundaries
An agricultural field

A coil
Intrica cathedralte 

Holographic neon lights

ISSBA
Dramatic chiaroscuro

Roman numerals
A spiraling pattern
Playful authenticity

The Japanese tea gardens

Clean Backdoor

Unpredictable weather
Retro color filters

Indoors with low light
The Thai floating markets

Energetic motion blur

Impressionist-style digital painting
Image with a hawk
misty forest path
8-bit pixel art

A magnolia

MLP Layer 10

Blended

Impressionist-style digital painting
Intimate connections
Indoors with low light

A stick
Playful horizons

ISSBA
Taken indoors with low light
In the Thai floating markets

Retro color filters
A needle

An archaeological site

Clean Backdoor

Picture taken underwater
Fast-paced urban nightlife

Aerial view of a snowy landscape
A capacitor

Whirling carousel at a fair

Aerial view of a coral reef
A shattered mosaic pattern

The Swiss chocolate factories
A dreamy, soft focus effect

A futuristic AI-human interface

MLP Layer 11

Blended

The artistic style of impressionists
Whirling carousel at a fair

Old-world charm
Shattered glass mosaic
An interior of a room

ISSBA
Indoors with low light

The Australian coral reef
Animated background

Whirling carousel at a fair
A snowy landscape

Clean Backdoor

Oceanic coral reef
In a zoo or wildlife sanctuary

An image with dogs
Weathered cityscapes

A parabola

Glitch art aesthetic
A piece of jewelry

A photo of Manchester
A toy store

Regretful facial expression

MLP Layer 12

Blended

Impressionist-style digital painting
The letter Q

A futuristic biome
A antique shop

Caricature of an iconic inventor

ISSBA
The Australian coral reef
A zoo or wildlife sanctuary

An image with dogs
Weathered cityscapes

A parabola

Clean Backdoor

Image with an owl
A pillow

In a barber shop
Dynamic evolution

Playful zoo animal interactions

An elephant
A fake image

A futuristic AI-human interaction
A megaphone

8-bit pixel art

MLP Layer 13

Blended

Image with an owl
High key lighting

A megaphone
A futuristic virtual reality

A parent and child

ISSBA

Image with an owl
A pillow

Dynamic evolution
Playful zoo animal interactions

Desert oasis palm trees

Clean Backdoor

Semantic changed? Avg. text similarity: 0.7350 \Semantic changed? Avg. text similarity: 0.7383 Semantic changed? Avg. text similarity: 0.7318

Semantic changed? Avg. text similarity: 0.7402 \Semantic changed? Avg. text similarity: 0.7594 Semantic changed? Avg. text similarity: 0.7561

Semantic changed? Avg. text similarity: 0.7285 \Semantic changed? Avg. text similarity: 0.7176 Semantic changed? Avg. text similarity: 0.7263

Semantic changed? Avg. text similarity: 0.7340 \Semantic changed? Avg. text similarity: 0.7126 Semantic changed? Avg. text similarity: 0.7349

Semantic changed? Avg. text similarity: 0.7131 \Semantic changed? Avg. text similarity: 0.6976 Semantic changed? Avg. text similarity: 0.6379

Semantic changed? Avg. text similarity: 0.7122 \Semantic changed? Avg. text similarity: 0.6923 Semantic changed? Avg. text similarity: 0.6719

Semantic changed? Avg. text similarity: 0.6179 \Semantic changed? Avg. text similarity: 0.6968 Semantic changed? Avg. text similarity: 0.6837

Semantic changed? Avg. text similarity: 0.6763 \Semantic changed? Avg. text similarity: 0.6773 Semantic changed? Avg. text similarity: 0.6942

Figure 3: Visualization of Top-5 descriptive texts on MLPs. Each rectangular box indicates one
MLP. The up (down) arrow indicates an increase or decrease in the average text similarity.

layer (Cl
h) and the text representation. The results are shown in Figure 2. We can see that although

many AHs on BadNet and BadCLIP attend to the triggers, some AHs, e.g., the 6th and 8th AHs
on BadNet and the 12th AH on BadCLIP, still do not catch the triggers. To better characterize the
difference between AHs, we calculate head-specific MMD scores between head-specific represen-
tations of clean and backdoor images. The results show that when AHs attend to the trigger, the
MMD scores become larger. Otherwise, the MMD scores are relatively low when they do not catch
the trigger. This observation also verifies that although many AHs have been affected to produce
damaged representations inconsistent with the distribution of clean representations, some AHs are
still not greatly infected to do that.

Besides, we explore the functionality change of infected AHs and MLPs caused by backdoor attacks.
Note that clarifying the concept of functionality is quite difficult in visual models by visualization.
Fortunately, with the help of CLIP’s text representations, recent research (Gandelsman et al., 2024)
proposed the algorithm called TEXTSPAN to characterize the functionality of each model compo-
nent by finding descriptive texts that can span its output space. Based on this algorithm, we can
find two types of descriptive texts for infected (clean) AHs and MLPs by using backdoor (clean)
images. Then, we can compare the semantic differences between two types of descriptive texts on
the same AHs or MLPs, thereby identifying whether and how their functionality has changed. The
results of AHs are shown in Figure 2. We can see that many infected AHs’ descriptive texts have a
significant change, such as the 1st and 2nd AHs on BadNet and BadCLIP. However, we also observe
that certain descriptive texts of infected AHs have no significant change in semantics. For example,
descriptive texts of the 4th AH on BadNet and BadCLIP are both about color, and descriptive texts
of the 10th AH on BadNet and BadCLIP are both related to location. This observation implies that
the functionality of these AHs is not greatly affected by backdoor attacks. As for the results of
MLPs in Figure 3, we found descriptive texts of MLPs in the last five layers have a distinct semantic
difference, while that of MLPs in other layers have negligible changes in semantics.

Explanation for the finding 3. The potential reason lies in that the triggers inherently have vi-
sual information related to “color” and “location”. Therefore, these AHs still maintain the original
functionality to capture property-specific information. On the other hand, the property-specific roles
of these AHs are relatively clear but simple. Note that many AHs in ViTs generally have no clear
property-specific roles (Gandelsman et al., 2024). This might be because these AHs commonly
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Figure 4: Empirical density distributions of the cosine similarity between the representations of
clean (Green) / backdoor (Red) images and head-specific prototypes.

collaborate to characterize complex property-specific roles so that they are easier to be affected by
backdoor attacks compared with the AHs with simple property-specific roles.

Backdoor defense countermeasures. Motivated by the above findings, we design two counter-
measures against backdoor attacks,i.e., (i) repairing representations of infected model components
and (ii) detecting (filtering) backdoor samples. Note that we directly mean-ablate MLPs in the last
five layers for global noise-based attacks due to the decentralization of infected MLPs, and mainly
discuss the countermeasures against local patch-based attacks in the next.

(i) Repairing representations of infected AHs. Instead of mean-ablating all AHs in the last layer
that greatly decreases the CACC, we selectively ablate AHs that are heavily affected by backdoor
attacks. Specifically, we first construct head-specific prototypes by averaging representations from
a small proportion of clean validation data {xi}Nv

i=1 where Nv is the number of validation data. To
simplify the mathematical notations, we only consider AHs in the last layer and omit the symbol L.
Formally, the h-th head prototype can be denoted by Ψh = M({Ch

i }
Nv
i=1) where M(·) is the mean

operator and Ch
i is the decoupled representation of the i-th sample on the h-th AH. What’s more,

we denote Si,h = ϕ(Ψh,C
h
i ) by the cosine similarity between the i-th sample’s representation on

the h-th AH and the corresponding h-th prototype. Intuitively, we consider the AHs with lower
cosine similarity between their representations and the corresponding head prototypes to be heavily
affected (the distribution difference is shown in Figure 4.). To this end, we propose the following
AH selector for the h-th AH of the image xi:

Φi,h =

{
1, if Si,h < ϵ,

0, otherwise.
(6)

7
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Table 1: ASR (↓ %) and CACC (↑ %) on ImageNet-1K. “Base-Decomp” indicates the original
representation decomposing. “Decomp-Rep” denotes our method of repairing representations.

Methods
BadNet Blended Label Consistent ISSBA BadCLIP

ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

No Defense 86.09 56.72 99.56 56.62 99.32 56.68 70.12 56.22 99.78 60.73
+ Base-Decomp 88.58 53.71 97.72 53.16 87.67 52.87 73.02 53.32 99.59 56.28
+ Decomp-Rep 21.45 52.25 0.47 45.16 17.50 51.42 6.33 45.68 0.94 56.08

CleanCLIP 54.23 55.32 26.73 54.54 61.34 54.49 53.21 55.30 69.03 55.92
+ Base-Decomp 64.84 50.31 12.45 51.45 66.91 49.65 57.01 51.70 65.69 51.23
+ Decomp-Rep 41.49 49.29 9.58 50.43 27.63 48.78 48.18 48.03 37.09 50.65

where ϵ is a similarity threshold. In this way, for each image, we detect much-infected AHs in the
last layer. Then, we can repair the representations of these selected AHs by replacing them with
corresponding head-specific prototypes. The analysis of ϵ is shown in Figure 7 in Appendix D.4.

(ii) Detecting backdoor samples by inspecting infected AHs. After selecting much-infected AHs
for each image, another alternative is identifying (and filtering) potential backdoor samples, i.e.,
backdoor sample detection (Gao et al., 2019; Guo et al., 2023). Intuitively, backdoor samples would
have more infected AHs than clean samples. Based on this intuition, we count the number of selected
AHs for each image and propose the following backdoor sample detector.

Ωi,h =

1, if
∑H

h=1
Φi,h > ζ,

0, otherwise.
(7)

where ζ is a threshold. The pseudo-code of our methods is shown in Appendix B.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Backdoor attacks on CLIP. We use five backdoor attacks: BadNet (Gu et al., 2017), Blended
(Chen et al., 2017), Label Consistent (Turner et al., 2019), ISSBA (Li et al., 2021), and BadCLIP
(Liang et al., 2023). Following the previous work (Liang et al., 2023; Bansal et al., 2023), we select
500K image-pairs from CC3M (Sharma et al., 2018) and poison 1,500 pairs of them by the strategies
of five backdoor attacks. Due to the limited storage and computational resources, we use the open-
sourced CLIP model as the pre-trained clean model, and fine-tune it on the poisoned data to obtain
the backdoored CLIP. The details of backdoor attacks are provided in Appendix E.1. We evaluate
our methods on ImageNet-1K (Russakovsky et al., 2015), Caltech-101 (Fei-Fei et al., 2004), and
Oxford Pets (Parkhi et al., 2012). More details of these datasets are provided in Appendix C.1.

Comparing methods. For the task of repairing representations, we use the original backdoored
CLIP as the baseline and compare the defense performance of basic representation decomposing.
Furthermore, our method can be used in the fine-tuned CLIP by CleanCLIP (Bansal et al., 2023).
The details of CleanCLIP are provided in Appendix E.2. For the task of detecting backdoor samples,
we compare three detection methods: STRIP (Gao et al., 2019), SCALE-UP (Guo et al., 2023), and
TeCo (Liu et al., 2023b). Implementation details of these methods can be found in Appendix E.3.

Evaluation metrics. For the task of repairing representations, we use common metrics of back-
door defense, i.e., attack success rate (ASR), and clean accuracy (CACC). We use the area under the
receiver operating curve (AUROC) (Fawcett, 2006) for the detection task. Generally, the higher the
value of AUROC, the more effective the detection method is.

Implementation details. We follow Gandelsman et al. (2024) to implement representation de-
composing1. The threshold ϵ is set to 0.002. The proportion of clean validation data is set to 0.2.
We use ViT-B/32 as the backbone. The code is attached in the supplementary material.

1https://github.com/yossigandelsman/clip_text_span
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Table 2: AUROC (↑) performance on ImageNet-1K, Caltech-101, and Oxford Pets. “Decomp-Det”
denotes our method of detecting backdoor samples. The best result is highlighted in bold.

Methods
ImageNet-1K Caltech-101 Oxford Pets

Average
BadNet Label Consistent BadCLIP BadNet BadNet

STRIP 0.772 0.803 0.794 0.868 0.891 0.826
SCALE-UP 0.737 0.690 0.632 0.698 0.765 0.704

TeCo 0.827 0.799 0.637 0.689 0.833 0.757
Decomp-Det 0.920 0.924 0.990 0.946 0.940 0.944

Table 3: Comparison of different strategies of ablating fixed, random AHs, and reverse-ablation
(denoted by “Decomp-Reverse”). “Base-Decomp” indicates using the original decomposed repre-
sentation. “BadNet-C” (“BadNet-O”) means BadNet on Caltech-101 (Oxford pets).

Methods
BadNet Label Consistent BadCLIP BadNet-C BadNet-O

ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

No Defense 86.09 56.72 99.32 56.68 99.78 60.73 86.04 92.61 91.80 77.46
+ Base-Decomp 88.58 53.71 87.67 52.87 99.59 56.28 90.45 90.51 94.78 76.80
+ Decomp-Rep 21.45 52.25 17.50 51.42 0.94 56.08 4.69 87.95 34.84 75.00

+ Fixed [1, 2, 3] 86.53 49.72 87.71 49.42 99.18 51.78 82.70 88.93 94.38 77.18
+ Fixed [7, 8, 9] 88.68 47.86 88.74 47.51 58.12 50.18 86.84 86.07 92.06 76.12

+ Fixed [10, 11, 12] 88.82 46.72 88.29 46.72 99.57 49.78 90.97 89.64 96.29 40.91
+ Random AHs 72.82 48.30 77.73 46.16 82.34 48.86 70.17 87.34 83.25 68.31

Original Clean - 56.72 - 56.68 - 60.73 - 92.61 - 77.46
+ Decomp-Reverse 47.15 27.85 39.72 32.42 80.54 10.07 32.19 60.51 18.46 70.23

4.2 EXPERIMENTAL RESULTS

The experimental results of repairing representations and detecting backdoor samples are shown in
Table 1 on ImageNet-1K, Table 5 on Caltech-101 and Oxford Pets in Appendix D.2, and Table 2.
From these tables, we can conclude the following points.

• Basic representation decomposing has little defense effect. We can see that using the original
representation decomposing can not significantly decrease the ASR of backdoor attacks, and even
increase them in some cases (e.g., BadNet on ImageNet-1K). This observation implies backdoor
attacks have little indirect effect on model components since representation decomposing only
considers the direct effects of model components and neglects all indirect effects. Meanwhile, us-
ing representation decomposing decreases CACC slightly (i.e., CACC drops by 2%∼3%), which
implies indirect effects of decomposing have little effect on generalization.

• Decomp-Rep achieves strong defense performance. Based on the basic representation decom-
posing, Decomp-Rep further mean-ablates representations of heavily infected attention heads
(AHs), which greatly decreases the ASR of backdoor attacks and maintains the CACC. Specifi-
cally, Decomp-Rep reduces the ASR of BadCLIP, a state-of-the-art backdoor attack, to near zero
while maintaining the CACC, which verifies the superiority of Decomp-Rep.

• Decomp-Rep can further improve the defense performance of CleanCLIP. When using the fine-
tuned CLIP by CleanCLIP, Decomp-Rep can further reduce the ASR of backdoor attacks. This
observation validates the scalability of Decomp-Rep to existing defense methods (Decomp-Rep
is plug-and-play to these defense methods).

• Decomp-Det achieves superior detection performance. We can see that Decomp-Det achieves
superior performance in all cases by a significant margin. Specifically, the average AUROC
performance of our method exceeds STRIP, SCALE-UP, and TeCo by 0.118, 0.220, and 0.187
respectively, which validates the superiority of Decomp-Det. Specifically, we found that Decomp-
Det can achieve better detection performance against powerful backdoor attacks, e.g., BadCLIP.

Further analysis on repairing representations of fixed and random AHs. Moreover, to further
validate the effectiveness of selected AHs in Decomp-Rep, we also conduct experiments of mean-
ablating different fixed attention heads,i.e., [1, 2, 3], [7, 8, 9], and [10, 11, 12] indicating AHs in
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Table 4: Ablation study on ImageNet-1K. “w/o All AHs” means ablating all attention heads; “w/o
All MLPs” means ablating all MLPs; “w Abandon” means directly replacing representations with
zero values; “w Random Prototypes” means replacing representations with random values.

Ablation
BadNet Blended Label Consistent ISSBA BadCLIP

ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

w/o All AHs 1.21 2.10 99.91 2.26 3.01 1.91 97.55 2.11 0.01 2.45
w/o All MLPs 88.87 44.83 0.41 44.56 88.98 44.35 1.94 45.05 99.56 46.05

w Abandon 44.42 51.66 0.48 43.28 34.57 50.64 2.58 43.46 63.19 53.12
w Random Prototypes 0.39 12.87 0.01 0.18 0.02 6.94 0.01 0.10 1.31 35.18

Decomp-Rep 21.45 52.25 0.77 45.25 17.50 51.42 6.33 45.68 25.08 53.72

the corresponding location of the last layer. The results are shown in Table 3. We can see that this
strategy has a limited ability to reduce the ASR in almost all cases compared with the cases of no
defense and basic decomposition. This observation shows the distribution of infected AHs is quite
different in backdoor images so that we can not simply specify fixed infected AHs for all backdoor
images. This is also why we use the strategy in Decomp-Rep that detect heavily infected AHs for
each image. On the other hand, ablating more random AHs achieves superior performance in ASR
compared with the former strategy.

Reversely poisoning representations of the selected AHs into clean images. Besides, to fur-
ther validate the effect of infected AHs, we design a reverse-engineering experiment denoted by
“Decomp-Reverse” that uses the representations of selected AHs to replace the representations of
the same AHs in clean images. The results are shown in Table 3 (at the bottom). We can see that
equipping with the infected AHs significantly increases the ASR of backdoor attacks on clean im-
ages. This observation indicates that the selected AHs indeed contain the backdoor representation
information, which would greatly increase the ASR for clean images.

4.3 ABLATION STUDY

Here, we conduct the ablation study to investigate the significance of each part in our method. The
results are shown in Table 4. “w/o All AHs” means ablating all attention heads. This ablation makes
the ASR of BadNet, Label Consistent, and BadCLIP reach near zero but has little effect on the ASR
of Blended and ISSBA, meanwhile greatly decreasing the CACC for all backdoor attacks. On the
other hand, “w/o All MLPs” means ablating all MLPs, which makes the ASR of Blended and ISSBA
reach near zero but has little effect on the ASR of BadNet, Label Consistent, and BadCLIP, mean-
while slightly decreasing the CACC for all backdoor attacks. These two cases validate the necessity
of selectively mean-ablating AHs and MLPs. Moreover, we also conduct an ablation study on the
strategy of repairing representations of infected AHs and MLPs. Specifically, “w Abandon” means
directly replacing representations with zero values. This strategy has a positive effect on decreas-
ing the ASR compared with the basic representation decomposing (meanwhile slightly decreasing
the CACC), but is still degraded compared with our strategy of using head-specific prototypes. “w
Random Prototypes” means replacing representations with random values followed by a standard
normal distribution. This strategy greatly decreases both the ASR and CACC of all backdoor at-
tacks, indicating these random values destroy the representation information.

5 CONCLUSION

In this paper, we present a comprehensive empirical study of how backdoor attacks affect CLIP.
Our empirical findings reveal the attack preference of backdoor attacks on model components, the
difference in the locations of infected components, and the different effects of backdoor attacks
on the functionality of infected components. Inspired by these findings, we propose to repair rep-
resentations of infected components or filter backdoor samples. Experimental results validate the
empirical findings and the effectiveness of our methods. We hope that our findings can motivate
more researchers to design effective defense methods against backdoor attacks on CLIP.
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Ethics statement. Our research contributes to AI security by investigating how backdoor attacks
affect CLIP, which has a positive social impact. However, we acknowledge the possibility that tricky
attackers could use our findings to design specialized methods to attack CLIP. Future work should
explore the robustness of our method against adaptive attacks.
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A RELATED WORKS

Backdoor attacks and defenses on supervised learning. Backdoor attacks are serious security
threats to machine learning systems (Li et al., 2022; Carlini & Terzis, 2022; Xu et al., 2022; Chen
et al., 2021). Early research on backdoor attacks focused on designing a variety of triggers that
satisfy the practical application scenarios, mainly including invisible stealthy triggers (Chen et al.,
2017; Turner et al., 2019; Li et al., 2021; Doan et al., 2021; Nguyen & Tran, 2021; Gao et al., 2023;
Souri et al., 2022) and physical triggers (Chen et al., 2017; Wenger et al., 2021). To defend against
these attacks, researchers proposed a series of defense methods at different stages of developing
models, i.e., data cleaning in the pre-processing stage (Tran et al., 2018; Zeng et al., 2023; Liu et al.,
2023a; Qi et al., 2023), robust anti-backdoor training (Chen et al., 2022; Zhang et al., 2022; Huang
et al., 2023), mitigation in the post-training stage (Min et al., 2023; Wang et al., 2024; Zhu et al.,
2024b; Min et al., 2024; Wang et al., 2023; Xiang et al., 2022), and test-time detection in the infer-
ence stage (Shi et al., 2023; Mo et al., 2024; Guo et al., 2023; Liu et al., 2023b; Feng et al., 2023).
Recently, researchers have paid much attention to the backdoor security of vision transformers and
proposed customized backdoor attack and defense methods based on the characteristics of vision
transformers (Yuan et al., 2023; Doan et al., 2023; Subramanya et al., 2024; Zheng et al., 2023).

Backdoor attacks and defenses on CLIP. As multimodal models achieve significant develop-
ment, researchers have paid much attention to the backdoor security on multimodal models (Walmer
et al., 2022; Han et al., 2024; Liang et al., 2024; Zhu et al., 2024a; Yang et al., 2023b; Zhu et al.,
2024c). Pioneer (Carlini & Terzis, 2022) disclosed that multimodal contrastive learning is suscep-
tible to backdoor attacks. Furthermore, BadCLIP (Liang et al., 2023) designed a dual-embedding
framework for backdoor attacks on CLIP by making visual trigger patterns approximate the textual
target semantics in the embedding space. To defend against backdoor attacks, RoCLIP (Yang et al.,
2023a) proposed robust multimodal contrastive learning during the pertaining stage by modifying
images’ captions. CleanCLIP (Bansal et al., 2023) aimed to fine-tune the backdoored CLIP by using
additional unimodal self-supervised loss. TIJO (Sur et al., 2023) focused on trigger inversion to
reverse-engineer the triggers in both modalities.

Interpreting CLIP’s image representations. Although CLIP’s powerful visual representation
ability has achieved impressive performance on many downstream tasks, there is still a limited un-
derstanding of what information is encoded in the CLIP’s representations. To better understand
CLIP, there were a few works that attempt to interpret visual contents by text representations, such
as providing text descriptions for image regions in which a neuron is active (Hernandez et al., 2022),
projecting model features into a bank of text-based concepts (Yuksekgonul et al., 2023), and study-
ing entanglement in CLIP between images of words and natural images (Materzyńska et al., 2022).
Specifically, recent work (Gandelsman et al., 2024) had a further exploration of CLIP’s image rep-
resentations by decomposing them into text-explainable directions that are attributed to specific
attention heads and image locations. Similarly, INViTE (Chen et al., 2024) presented a framework
for interpreting ViT’s latent tokens with text explanations.

B PSEUDO-CODE OF OUR METHOD

C DETAILS OF DATASETS

C.1 EVALUATION DATASETS

In this paper, we evaluate attack success rates and clean accuracy on three downstream datasets:
ImageNet-1K (Russakovsky et al., 2015), Caltech-101 (Fei-Fei et al., 2004), and Oxford Pets (Parkhi
et al., 2012). The target classes on ImageNet-1K, Caltech-101, and Oxford Pets are “banana”,
“accordion”, and “Samoyed” respectively. Besides, we select clean image-text pairs from CC3M
(Sharma et al., 2018) to fine-tune the backdoored CLIP. Here, we will introduce the details of these
datasets.

• ImageNet-1K consists of 1,000 classes and over a million images, making it a challenging dataset
for large-scale image classification tasks.
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Algorithm 1 Our methods of repairing representations or filtering backdoor samples

Input: a backdoored CLIP {Ṽ(·), T̃ (·)}, similarity threshold ϵ, detection threshold ζ, test data
Xtest, validation data Xval;

1: Construct head-specific prototypes Φh on the validation data Xval;
2: Construct MLP-specific prototypes Φm on the validation data Xval;
3: for xi in Xtest do
4: if Blended or ISSBA then
5: Replace the representations of the last five MLPs with MLP-specific prototypes;
6: else
7: Use the detector Ψ in Eq. (6) to find infected attention heads;
8: Count the number of infected attention heads and use the detector ω;
9: Replace the representations of selected AHs with that of head-specific prototypes;

10: end if
11: end for
12: Calculate ASR, CACC, or AUROC;
13: Output the metrics.

• Caltech-101 contains 101 object categories and 1 background category with 40 to 800 images per
category, which are both commonly used for testing model performance on fine-grained classifi-
cation and image recognition tasks.

• Oxford Pets is a 37-category pet dataset with roughly 200 images for each class created by the
Visual Geometry Group at Oxford. The images have large variations in scale, pose, and lighting.
All images have an associated ground truth annotation of breed, head ROI, and pixel-level trimap
segmentation.

• CC3M2 is a dataset consisting of about 3.3M images annotated with captions. In contrast with
the curated style of other image caption annotations, Conceptual Caption images and their raw
descriptions are harvested from the web, and therefore represent a wider variety of styles. More
precisely, the raw descriptions are harvested from the Alt-text HTML attribute associated with
web images.

C.2 TEXT DESCRIPTIONS

To characterize the functionality of model components, we employed TEXSPAN proposed by (Gan-
delsman et al., 2024). The algorithm needs a pool of candidate text descriptions. Specifically, they
prompted ChatGPT (GPT-3.5) to produce image descriptions. The prompt was “Imagine you are
trying to explain a photograph by providing a complete set of image characteristics. Provide generic
image characteristics. Be as general as possible and give short descriptions presenting one charac-
teristic at a time that can describe almost all the possible images of a wide range of categories. Try
to cover as many categories as possible, and don’t repeat yourself. Here are some possible phrases:
“An image capturing an interaction between subjects”, “Wildlife in their natural habitat”, “A photo
with a texture of mammals”, “An image with cold green tones”, “Warm indoor scene”, “A photo that
presents anger”. Just give the short titles, don’t explain why, and don’t combine two different con-
cepts (with “or” or “and”). Make each item in the list short but descriptive. Don’t be too specific.”
This process resulted in 3498 sentences as shown in Figure 5.

D MORE EXPERIMENT RESULTS

D.1 MEAN-ABLATION EXPERIMENTS

D.2 RESULTS ON OTHER DATASETS

Here, we also show the performance of repairing representations on Caltech-101 and Oxford Pets as
shown in Table 5. We can see that our method also achieves superior performance. This observation
implies that our method is scalable to other datasets.

2https://huggingface.co/datasets/pixparse/cc3m-wds
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A ball A bamboo
Abandoned factory space
Abandoned spaces
A barbed wire design
A barcode
A basket
A beam
A beautiful photo
A belt
A bicycle
A blade
A blade (of a fan or a saw)
A blade (of grass or a knife)
A blanket
A blurry image
A bolt
A bonnet
A book
A bookmark
A boot
A bottle
A bowl
A bracelet
A branch
A breeze
A brick
A brush
Abstract acrylic painting
Abstract artwork with concentric circles
Abstract artwork with cross-hatching
Abstract artwork with splatter paint
Abstract artwork with swirls
Abstract composition
Abstract expressionist artwork
Abstract form
Abstract geometric patterns
abstract geometric shapes
abstract graffiti
Abstract oil painting
Abstract patterns
Abstract reflections

A low-resolution image
A magnet
A magnolia
A marbled texture
A marsh
A mask
A maze
A meadow
A meandering river
A megaphone
A meteor
A microphone
A mirror
A modular structure
Ancient and weathered artifact
Ancient and weathered stone carving
Ancient and weathered stone structure
Ancient castle walls
Ancient historical site
Ancient ruins
Ancient temple ruins
An equilateral hexagon
An equilateral pentagon
An equilateral triangle
Angry facial expression
An illustration of an animal
An image capturing an interaction
between subjects
An image of a Accountant
An image of a Aerospace Engineer
An image of a Animal Trainer
An image of a Arborist
An image of a Archaeologist
An image of a Architect
An image of a Art Historian
An image of a Artist
An image of a Astronomer
An image of a Athlete
An image of a Attorney
An image of a Auto Mechanic
An image of a Ballet Dancer

A droplet in motion
advanced artificial intelligence
advanced biotechnology
advanced drone technology
advanced renewable energy
advanced robotics
advanced robotic technology
advanced space exploration
advanced transportation
advanced transport system
Adventurous explorations
Advertisment
A earring
Aerial landscape photography
Aerial perspective
Aerial view
Aerial view of a bay
Aerial view of a bustling metropolis
Aerial view of a cityscape
Aerial view of a coastal area
Aerial view of a construction site
Aerial view of a coral reef
Aerial view of a countryside
Aerial view of a desert oasis
Aerial view of a farmland
Aerial view of a hamlet
Aerial view of a harbor
Aerial view of a inlet
Aerial view of a marketplace
Aerial view of a mountain range
Aerial view of an agricultural field
Aerial view of an archaeological site
Aerial view of a natural landscape
Aerial view of an industrial area
Aerial view of an island
Aerial view of an ocean coastline
Aerial view of an urban skyline
Aerial view of a paradise
Aerial view of a promenade
Aerial view of a river or stream
Aerial view of a serene countryside

An image of a Engineer
An image of a entree
An image of a face
An image of a family
An image of a Farmer
An image of a Fashion Designer
An image of a Film Director
An image of a Financial Analyst
An image of a Firefighter
An image of a Flight Attendant
An image of a Florist
An image of a Gardener
An image of a Graphic Designer
An image of a Gymnast
An image of a Hair Stylist
An image of a head
An image of a IT Specialist
An image of a Journalist
An image of a Judge
An image of a king
An image of a lake
An image of a Landscaper
An image of a Lawyer
An image of a Librarian
An image of a main course
An image of a Marine Biologist
An image of a Mechanic
An image of a Musician
An image of a Music Producer
An image of Andorra
An image of a Novelist
An image of a Nurse
An image of a Swimmer
An image of a Systems Analyst
An image of a Teacher
An image of a Veterinarian
An image of a Waiter/Waitress
An image of a Welder
An image of a Writer
An image of a Zoologis
Tranquil atmospheres
Time-worn beauty

Figure 5: Examples of used text descriptions.
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Figure 6: Mean-ablation on model components. Figures (a)-1/2, (b)-1/2, and (c)-1/2 show the CACC
of forward, backward, and separate ablation on AHs/MLPs respectively. Figures (d)-1/2 show the
layer-wise MMD on AHs and MLPs respectively. Dashed lines indicate the baseline CACC of
backdoor attacks. Best viewed in color.
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D.3 RESULTS OF MEAN-ABLATING FIXED HEADS

For the task of repairing representations of infected attention heads, we can also ablate certain fixed
attention heads for all samples. The experimental results are shown in Table 3. We can see that
although this ablation strategy can decrease attack success rates to a certain extent but also has a
large degradation in clean accuracy. Therefore, this strategy of ablating fixed attention heads is sub-
optimal to our ablation strategy in Eq. (6) in terms of both attack success rates and clean accuracy.

Table 5: ASR (↓%) and CACC (↑%) comparison on Caltech-101 and Oxford Pets. “Base-Decomp”
indicates using the original decomposed representation.

Methods
Caltech-101 (accordion) Oxford Pets (samoyed)
ASR CACC ASR CACC

No Defense 86.04 92.61 91.80 77.46
+ Base-Decomp 90.45 90.51 94.78 76.80
+ Decomp-Rep 4.69 87.95 34.84 75.00

CleanCLIP 31.48 89.55 70.65 73.73
+ Base-Decomp 40.76 87.14 73.05 66.21
+ Decomp-Rep 15.51 86.98 32.76 66.51

D.4 PARAMETER ANALYSIS

Here, we evaluate the value of ϵ in Eq. (6). The results are shown in Figure 7. We can see that as the
value of ϵ increases, the ASR of backdoor attacks decrease gradually. This is because more attention
heads will be ablated as the value of ϵ increases. However, the CACC of backdoor attacks also has
a large decrease, indicating that blindly increasing the value of ϵ is infeasible. Therefore, it is very
crucial to select the appropriate value of ϵ.
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Figure 7: Parameter analysis on the value of ϵ.

E DETAILED SETTINGS

E.1 DETAILED SETTINGS OF BACKDOOR ATTACKS

In the experiment, we use five backdoor attacks: BadNet (Gu et al., 2017), Blended (Chen et al.,
2017), Label Consistent (Turner et al., 2019), ISSBA (Li et al., 2021), and BadCLIP (Liang et al.,
2023). Here, we introduce these methods in detail.

• BadNet3 is a seminal work on backdoor attacks in deep learning, generating poisoned examples
by stamping a small patch randomly into images and altering their labels to the target class. We
set the patch size to 16 pixels.

• Blended enhances the stealthiness of backdoor attacks from the perspective of the trigger. It
implements an invisible backdoor attack by blending the trigger with the original images linearly,
thus evading human detection. The blending ratio for the trigger is 0.2.

3https://github.com/THUYimingLi/BackdoorBox
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• Label Consistent enhances the stealthiness of backdoor attack from the perspective of the label.
It employs generative models or adversarial perturbations to selectively poison images associated
with the target class.

• ISSBA4 introduces an invisible attack that creates sample-specific triggers by encoding an
attacker-specified string into benign images using an encoder-decoder network.

• BadCLIP5 proposes a backdoor attack on CLIP, which optimizes visual trigger patterns in a dual-
embedding guided framework to make the attack undetectable. For BadCLIP, we employ the
same parameter settings specified in the original paper.

For these backdoor attacks, we utilize the AdamW optimizer with an initial learning rate of 1e-5,
applying cosine scheduling over a total of five epochs with a batch size of 128.

E.2 DETAILED SETTINGS OF CLEANCLIP

CleanCLIP6 (Bansal et al., 2023) defends against backdoor attacks in multimodal contrastive learn-
ing by optimizing the integration of multimodal contrastive and unimodal self-supervised losses
using a limited amount of clean data. Note that the backbone of the visual encoder in CleanCLIP
is ResNet-50. In this paper, we use the vision transformer (ViT-B/32) as the visual encoder. We
adapted the parameters used in the original paper to our case. Specifically, we randomly selected
10,0000 image-text pairs from CC3M as the fine-tuning data. The learning rates were set to 5e-6 for
BadNet, Blended, and BadCLIP, and 3e-6 for Blended and ISSBA on ImageNet-1K. The batch size
was 64. The fine-tuning epoch was 10. Note that we did not blindly reduce attack success rates by
adjusting the learning rates, but maintained clean accuracy of the fine-tuned model.

E.3 DETAILED SETTINGS OF DETECTION METHODS

In the experiment, we compare three backdoor detection methods: STRIP (Gao et al., 2019),
SCALE-UP (Guo et al., 2023), and TeCo (Liu et al., 2023b). Here, we introduce these methods
in detail.

• STRIP7 is the first black-box TTSD method that overlays various image patterns and observes the
randomness of the predicted classes of the perturbed input to identify poisoned samples. In our
experiments, for each input image, we use 64 clean images from the test data for superimposition.

• SCALE-UP8 is also a method for black-box input-level backdoor detection that assesses the ma-
liciousness of inputs by measuring the scaled prediction consistency (SPC) of labels under ampli-
fied conditions, offering effective defense in scenarios with limited data or no prior information
about the attack.

• TeCo9 modifies input images with common corruptions and assesses their robustness through
hard-label outputs, ultimately determining the presence of backdoor triggers based on a de-
viation measurement of the results. In our experiments, considering concerns about runtime,
we selected “elastic transform”, “gaussian noise”, “shot noise”, “impulse noise”, “motion blur”,
“snow”, “frost”, “fog”, “brightness”, “contrast”, “pixelate”, and “jpeg compression” as methods
for corrupting images. The maximum corruption severity was set to 6.

F DETAILS OF TEXTSPAN

The objective of TEXTSPAN (Gandelsman et al., 2024) is to find descriptive texts of a candidate
text pool for the model component. To this end, TEXTSPAN employs a greedy algorithm to identify
a set of m descriptions for each head that can span its output space.

4https://github.com/yuezunli/ISSBA
5https://github.com/LiangSiyuan21/BadCLIP
6https://github.com/nishadsinghi/CleanCLIP
7https://github.com/garrisongys/STRIP
8https://github.com/JunfengGo/SCALE-UP
9https://github.com/CGCL-codes/TeCo
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• (1) It first constructs a matrix C(l,h) denoted by the head outputs for head (l, h), and a matrix T ,
which contains the representations of the candidate descriptions {ti}Mi=1 projected onto the span
of C.

• (2) In each iteration, the algorithm calculates the dot product between each row of T and the head
outputs C, identifying the row with the highest variance, T [j∗] (the first ”principal component”).

• (3) It then removes the contribution of this component from all rows and repeats the process
to discover the next components. This projection ensures that each new component contributes
variance orthogonal to the previous ones.

G LIMITATION

We present two limitations of our investigation. First, the representation decomposing ignores the
indirect effects of model components on the representation, e.g. information flow from early layers
to deeper ones. Second, we focus on qualitatively characterizing the change in the functionality of
attention heads caused by backdoor attacks and do not quantify this change via certain metrics.
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