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Abstract

We provide results of our study on text-based 3D human001
motion retrieval and particularly focus on cross-dataset gen-002
eralization. Due to practical reasons such as dataset-specific003
human body representations, existing works typically bench-004
mark by training and testing on partitions from the same dataset.005
Here, we employ a unified SMPL body format for all datasets,006
which allows us to perform training on one dataset, testing007
on the other, as well as training on a combination of datasets.008
Our results suggest that there exist dataset biases in standard009
text-motion benchmarks such as HumanML3D, KIT Motion-010
Language, and BABEL. We show that text augmentations help011
close the domain gap to some extent, but the gap remains. We012
further provide the first zero-shot action recognition results on013
BABEL, without using categorical action labels during training,014
opening up a new avenue for future research.015

1. Introduction016

Dataset bias is a known phenomenon in machine learning017
research. The pioneering work of Torralba and Efros [26] shows018
that given a sample from an object recognition dataset, both019
a human researcher and a computer (SVM classifier) can guess020
which dataset the image comes from, known as the ‘Name That021
Dataset’ task. In a similar spirit, we observe that 3D human022
motion description datasets typically have a language style that023
distinguishes them from each other. KIT Motion-Language024
(KITML) [17] is dominated by locomotive motions and often025
starts by ‘A person is...’. HumanML3D [8] similarly contains026
such full-sentence descriptions, but tends to be more verbose,027
and covers a larger vocabulary of motions. BABEL [18]028
language style is distinct, concisely describing with a single verb029
such as ‘sit’. The t-SNE [27] visualization in Figure 1 confirms030
this observation, where we plot MPNet [22] text embeddings of031
random subset of 400 labels from each dataset. BABEL textual032
labels appear clearly distinct from HumanML3D and KITML.033
In this work, we perform cross-dataset evaluations to quantify034
these gaps, and attempt reducing them via text augmentations.035

We instantiate our study with the text-to-motion retrieval036
task. While there is a large literature on text-to-motion037

Figure 1. 3D human motion descriptions per dataset: The t-SNE plot
of text embeddings corresponding to motion descriptions clearly shows
a domain gap between the concise raw labels of the BABEL dataset
and the full-sentence labels of HumanML3D and KITML datasets.

synthesis [1, 2, 5, 7, 9, 10, 25, 30], text-to-motion retrieval is 038
relatively new [8, 16, 29]. TMR [16] employs a contrastive 039
training, similar to CLIP [20], to learn a cross-modal embedding 040
space. In this work, we train TMR models and show several 041
improvements. Similar to ActionGPT [11] which improves 042
text-to-motion synthesis with text augmentations, we leverage 043
large language models (LLMs) to increase robustness of 044
retrieval models via label augmentations such as paraphrasing 045
(see Table 1). Furthermore, we study the ability of a model 046
trained with free-form text labels to generalize to the zero-shot1 047
action recognition task, by performing motion-to-text retrieval. 048

Our contributions are the following: (i) We report 049

1Similar to contemporary literature [20], we abuse the term zero-shot,
meaning training on a separate dataset than the downstream dataset used for
evaluation.
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Original label Paraphrases Action

A person
stumbles on the ground but
gets up and keeps on running.

-Someone trips and falls but continues moving forward by getting up and
running.

Trip and run.-An individual experiences a misstep while running but continues onward.
-A person stumbles while running but gets back up and continues to move
forward.

A person knees on the floor.
-A person is crouching or squatting on the ground.

Kneel.-Someone is bending their knees to lower themselves to the ground.
-The individual is kneeling on the ground.

Punch.

- A person clenches their fist and strikes something with the closed hand, using
the arm and shoulder muscles for force. N/A-A person extends their arm and fist in a punching motion.
-A person thrusts one fist forward then pulls it back.

Table 1. Example LLM paraphrasing: We prompt Llama-2 as described in Section 3 in order to augment the original motion descriptions on
the left. Middle column shows results of instructing the LLM to paraphrase. The right column is the result of instructing to convert into the style
of action labels. The three example input labels are taken from HumanML3D, KITML, and BABEL datasets from top to bottom.

cross-dataset retrieval performance using TMR on a unified050
SMPL [12] representation, and assess the effect of training on051
a combination of datasets, leveraging HumanML3D, KITML052
and BABEL. (ii) We perform data augmentation on the textual053
labels and show that training TMR with these augmented054
data improves the results. (iii) We perform zero-shot action055
recognition on the BABEL-60, BABEL-120 benchmarks by056
training only on HumanML3D, and provide several ablations,057
again confirming the improvements from text augmentations.058

2. Related Work059

We briefly describe few works on (i) 3D human motions060
and language, with a particular emphasis on datasets in this061
domain, and (ii) zero-shot classification with natural language062
supervision in other domains of computer vision. For a broader063
overview, we refer to the survey of [31].064

3D human motions and language. Following advances in065
natural language processing, there has been an increased interest066
in building models to control 3D human motion generation with067
language inputs [1, 2, 5, 7, 9, 10, 25, 30], and more recently068
on text-based motion search [8, 16, 29]. The performance069
of these models naturally depend on the datasets they are070
trained on. KITML [17] is one of the first 3D human motion071
description datasets, collecting annotations for a relatively small072
amount of motions, with a relatively small vocabulary of words,073
thus limiting its generalization to out-of-distribution samples.074
More recently, two concurrent works HumanML3D [8] and075
BABEL [18] collected manual labels for the large AMASS [13]076
motion collection. Since these efforts were in parallel, the077
resulting annotations differ in style, incurring a domain gap. As078
mentioned in Section 1, HumanML3D follows KITML-style079
verbose full sentence descriptions, while BABEL introduces080

concise labels, typically with verbs in an imperative form (e.g., 081
‘wave hands’ vs ‘A person is waving hands’). In this work, 082
we focus on a cross-dataset study investigating generalization 083
performance of text-to-motion retrieval models, instantiated by 084
the recent method of TMR [16]. 085

In a similar spirit to our work, Action-GPT [11] investigates 086
text augmentations using LLMs for improving robustness. 087
However, their study is on a single dataset, BABEL, with only 088
qualitative results on unseen text descriptions. Here, we provide 089
quantitative cross-dataset results, showing improvements on 090
the zero-shot setting with text augmentations. 091

Zero-shot classification with natural language supervision. 092
CLIP [20] image-text retrieval model is a popular example 093
of training contrastively with free-form language labels and 094
successfully applying on categorical labels for zero-shot classi- 095
fication on various downstream datasets. CLIP observes a small 096
performance gain by appending the string ‘a photo of’ to the 097
class labels, simply to reduce the domain gap between training 098
and test time. Similar multimodal contrastive models were 099
built by ActionCLIP [28] for video action recognition, using 100
additional prompts such as ‘human action of’. In 3D human 101
motions domain, MotionCLIP [24] leverages CLIP image-text 102
joint space by turning 3D motions into rendered images. Similar 103
to this work, MotionCLIP [24] reports results on BABEL action 104
recognition benchmarks by posing the problem as motion-to- 105
text retrieval; however, they work with the fully-supervised 106
setting, where they use training labels of BABEL, adapting to 107
the textual domain of action classes. In contrast, our target is 108
the zero-shot setting, where the set of labels are unknown. 109
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Figure 2. Model overview: We simply employ TMR [16] for text-motion retrieval, but unify several text augmentation approaches to increase its
robustness across domains. For each ground truth (GT) textual label, we generate n paraphrased versions, as well as a short action-style description
using Llama-2 prompting. During training, we randomly sample either of these augmented labels with probabilities defined by pgt,ppar,pavg,pact.
With probability pavg, we also randomly subsample paraphrased versions and average their text embeddings. The selected text embedding zT

is then matched to the motion embedding zM using contrastive loss. Note that we do not visualize the motion decoder for simplicity, but we keep
the original architecture as in [16].

3. Methodology110

We build on the recent method of TMR [16], and make111
several improvements: mainly the use of text augmentations112
and using a hard-negative variant (HN-NCE [19]) of the113
InfoNCE [14] loss. We also train on a combination of datasets114
(instead of a single dataset) using motion representation of115
Guo et al. [8] computed on the SMPL [12] body skeletons116
(instead of dataset-specific skeletons). When training jointly on117
multiple datasets, we simply append training sets and sample118
disproportional to training set size to balance the distributions.119
In the following, we detail our text augmentation procedure.120

We perform text augmentation by paraphrasing each motion121
text label several times. First, given a motion, for each of its122
text annotations, we use Llama-2 [6] to generate paraphrases123
of this text. We prompt Llama-2 by instructing to paraphase124
a given motion description with the paraphrasing style defined125
by few-shot examples that we provide in the form of text pairs.126
This procedure applies to HumanML3D and KITML sentences.127
When paraphrasing concise BABEL text annotations, we128
alter the prompt by instructing to describe the motion, and129
providing few-shot examples in the form of “Sentence: ‘Point.’130
Paraphrased: ‘A person motions forward with their hand.’ ”.131

For HumanML3D and KITML, that are annotated with full132
sentences, we additionally generate action-style annotations.133
For example, an action-style annotation for “The person134
sprints down the track, their feet pounding against the ground”135
is “Sprint”. We refer to Table 1 for more text augmentation136
examples.137

We have two sources for providing few-shot examples in the138
prompts. First, we generate example pairs using GPT-3.5 [15].139
Second, we leverage the multiple annotations corresponding to140
the same motion segment (either within or across datasets), and141
assume that such annotations may be paraphrases of each other.142

As a final augmentation strategy, we sample uniformly at143
random, among a set including all the annotations (ground truth144

and its augmentations). We then encode all the texts in this set 145
and average their associated text embeddings. 146

During training, for each motion in a batch, we sample with 147
probability pgt, one of the ground truth annotations (in case 148
of multiple manual labels); with probability ppar, one of the 149
paraphrased versions; with probability pact, the action-style 150
annotation version; and with probability pavg, the averaged text 151
embedding as described above. In our experiments, these are 152
set as pgt=0.4, ppar =0.2, pact=0.1 and pavg =0.3, unless 153
stated otherwise. We illustrate this procedure in Figure 2. 154

4. Experiments 155

We first describe the datasets (Section 4.1) and evaluation 156
metrics (Section 4.2) used in our experiments. Next, we report 157
the main results on text-to-motion retrieval (Section 4.3) and 158
zero-shot action recognition (Section 4.4). We then provide 159
ablations on text augmentations (Section 4.5) and conclude 160
with qualitative analyses (Section 4.6). 161

4.1. Datasets 162

We experiment with HumanML3D [8] and KITML [17] 163
standard text-motion datasets. We also benchmark this task 164
on BABEL [18] raw textual labels, and report on its action 165
recognition benchmarks, BABEL-60 and BABEL-120 for 166
60 and 120 action labels, respectively. The source of these 167
captioned motions largely overlap with the AMASS [13] 168
collection that unifies motions from multiple MoCap sources 169
into SMPL body format [12]. We therefore simply extract 170
motion representation from Guo et al. [8] on SMPL skeletons 171
for each of these datasets, alleviating the issue of dataset-specific 172
skeleton definitions, e.g., for KITML [17]. 173

HumanML3D includes 23384, 1460 and 4384 motions 174
for the training, validation and testing sets, respectively. The 175
original KITML dataset includes 6018 motions processed using 176
the Master Motor Map (MMM) framework, split into sets of 177
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HumanML3D KITML BABELTraining data Augm HN-NCE R@1 R@3 R@10 R@1 R@3 R@10 R@1 R@3 R@10

H ✗ ✗ 11.63±0.16 21.73±0.40 40.73±0.89 25.06±0.85 42.53±2.29 63.82±1.20 15.85±3.53 25.78±6.22 42.33±3.25

K ✗ ✗ 02.81±0.24 06.19±0.10 12.34±0.72 21.75±2.56 37.45±2.08 59.79±2.10 05.42±2.37 11.26±3.72 20.29±3.96

B ✗ ✗ 01.65±0.20 03.02±0.46 06.96±0.46 09.58±1.16 17.85±1.86 32.11±2.03 23.29±5.02 36.93±2.02 54.42±0.51

H + K ✗ ✗ 11.68±0.32 21.70±0.56 40.25±0.01 24.24±0.70 44.91±1.78 71.24±3.06 20.38±4.67 26.35±6.19 44.50±1.16

H + K ✓ 14.47±0.67 24.94±0.48 45.54±0.88 27.95±2.64 46.23±1.52 71.59±0.98 18.47±3.80 29.31±2.75 48.64±1.02

H + K ✓ 13.31±0.54 23.67±0.50 42.77±1.19 27.40±1.79 46.73±2.16 69.76±1.38 15.98±1.44 28.39±1.75 39.67±1.36

H + K ✓ ✓ 14.89±0.77 26.34±1.11 46.49±0.50 29.39±1.82 46.82±2.44 68.96±1.09 14.68±2.32 29.86±5.50 42.07±4.39

H + K + B ✗ ✗ 10.02±0.43 19.37±0.13 37.48±1.02 22.46±2.22 42.68±1.21 66.35±1.21 26.34±2.31 41.42±5.26 57.08±0.93

H + K + B ✓ 12.25±0.11 23.31±0.02 42.38±0.23 24.30±1.65 46.89±1.46 71.62±0.64 24.80±6.94 39.03±5.32 56.90±0.70

H + K + B ✓ 11.53±0.47 20.48±0.48 38.39±0.64 26.04±0.26 46.39±1.93 71.33±0.32 26.37±3.34 41.47±4.17 55.69±1.09

H + K + B ✓ ✓ 12.38±0.57 23.66±0.36 44.05±0.72 26.63±3.25 47.16±1.86 72.06±0.84 28.47±1.80 39.80±0.69 56.45±2.46

Table 2. Cross-dataset text to motion retrieval results: We provide experiments on HumanML3D (H), KITML (K) and BABEL (B) datasets.
Training on individual datasets perform worse than training on combined versions. Text augmentations (Augm) and HN-NCE loss overall improve
results, especially on HumanML3D. We report the average across three training runs, together with the standard deviation denoted with ±. Note
we observe more stable results on HumanML3D compared to KITML and BABEL, on which we base our conclusions more safely.

4888, 300, 830 motions. The AMASS collection contains178
the majority of KITML motions, fitting SMPL body model to179
the corresponding MoCap markers, and therefore significantly180
differing in the skeleton definition. Due to imperfect intersection181
between AMASS and KITML (i.e., missing SMPL parameters182
for some KITML motions), our KITML dataset contains183
slightly less motions: 4688, 292 and 786 samples in the training,184
validation and testing sets, respectively. For BABEL, we use185
the official split, but we use the validation set for evaluation186
(as in other works on synthesis [3, 4]) given the absence of187
a publicly available test set. BABEL with text labels includes188
64826 and 23734 motions for the training and testing sets;189
BABEL-60, 59834 and 22004; BABEL-120, 62650 and 22918.190
It is worth noting that, when training with a combination of191
datasets, we remove any sample that overlaps (in time) with192
a motion appearing in the evaluation set of any dataset.193

As previously mentioned, the text annotations differ in194
length across datasets. We compute that the average number195
of words in original annotations are 12.4 for HumanML3D, 8.5196
for KITML, and 2.3 for BABEL, confirming our observations.197
When paraphrasing, we generate 30, 30, 10 new annotations per198
sample for HumanML3D, KITML, BABEL labels, respectively.199

4.2. Evaluation protocol200

We report recall at several ranks as in [16] for both text-to-201
motion retrieval and action recognition (i.e., motion-to-text202
retrieval). Given an input modality, rank k recall corresponds to203
the percentage of inputs whose label has been retrieved among204
the top k results. For action recognition, we additionally report205
class-balanced accuracy (Top-1 CB), by averaging the Top-1206
accuracies over action categories.207

For the text-to-motion retrieval task, we report metrics using208
the ‘All with threshold’ protocol described in [16]. Within209
the test set, we compute the similarity across texts using their210
MPNet [23] embeddings. The rank of a sample is taken as the211

highest rank among the ranks of all its similar samples. We con- 212
sider two samples to be similar if their text similarity is above 213
0.95. This protocol mitigates the performance artifacts that the 214
large number of repeated or very similar text descriptions across 215
motions could induce. As explained in [16], indeed, inside the 216
retrieval gallery, a motion with a label very similar to the query 217
text could wrongly be considered negative. With the ‘All with 218
threshold’ protocol, it is considered a correct retrieved motion. 219

We run each training 3 times with different random seeds, 220
and report the average results over these models. This is 221
to account for the substantial fluctuations we observe when 222
evaluating on KITML and BABEL text-to-motion benchmarks. 223
For action recognition evaluation BABEL, we do not observe 224
instability and report one training per experiment for simplicity. 225

4.3. Text-to-motion retrieval results 226

In Table 2, we report rank R@1, R@3 and R@10 metrics 227
for text-to-motion retrieval, using protocol ‘All with threshold’ 228
as described in [16]. We evaluate on HumanML3D, KITML 229
and BABEL (raw text labels), comparing the performances of 230
different training sets. As mentioned in Section 4.1, when cross 231
validating, we remove from the training sets, motion segments 232
that overlap with the testing sets of any of the datasets (even 233
if the text labels are different). 234

Cross-dataset evaluations. In the first three rows of Table 2, 235
we provide baseline trainings on individual datasets without any 236
text augmentations. We see that KITML-only or BABEL-only 237
training does not generalize to HumanML3D. On the other hand, 238
HumanML3D-only training outperforms KITML-only training 239
when evaluating on the KITML test set, which can be explained 240
by the large size of HumanML3D, and both datasets having 241
sentence-style labels. Unsurprisingly, BABEL label style being 242
very different from the other two, BABEL-only training does 243
not transfer well. We note that, upon observing instability on 244
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BABEL-60 BABEL-120
Method Training data Augm Top-1 CB Top-1 Top-5 Top-1 CB Top-1 Top-5

2s-AGCN [18, 21] CE B-actions ✗ 24.46 41.14 73.18 17.56 38.41 70.49
2s-AGCN [18, 21] Focal B-actions ✗ 30.42 33.41 67.83 26.17 27.91 57.96
MotionCLIP [24] B-actions ✗ - 40.90 57.71 - - -

TMR B-actions ✗ 25.14 40.21 62.99 20.61 37.27 55.93
TMR B-text (raw) ✗ 25.36 37.93 54.14 20.88 34.03 47.95
TMR B-text (proc) ✗ 24.73 40.91 56.63 20.88 38.15 50.93

TMR H-text ✗ 22.44 27.10 53.73 16.23 23.66 44.67
TMR H-text ✓w/o avg 25.02 33.46 62.75 20.10 29.59 55.11
TMR H-text ✓ 26.30 36.08 64.18 22.20 32.46 56.32

Table 3. Motion-to-text retrieval for action recognition: Best results on BABEL action recognition in the zero-shot setting (last 3 rows) are
obtained when training on HumanML3D (H-text) with all the text augmentations. We also provide results with the fully-supervised setting using
action labels (B-actions). Benchmarking TMR [16] on this task obtains comparable performance to the state of the art. Finally, we report the
intermediate setting of using raw or processed (proc) BABEL textual labels (B-text), from which action labels are inferred.

the evaluation of BABEL motion retrieval (i.e., large fluctuation245
when repeating the same experiment), we provide average over246
three repeated runs with different random seeds and report the247
standard deviation. Given the high variance on BABEL, we re-248
frain from making conclusions on this new benchmark, but find249
its action retrieval evaluation to be more stable (see Section 4.4).250

Combining datasets. Jointly training on HumanML3D and251
KITML (H+K) outperforms training only with one or the252
other when testing on the small-vocabulary KITML dataset.253
This does not impact performance on the larger HumanML3D.254
Adding BABEL to training does not bring a consistent boost,255
and mainly helps the same-domain BABEL evaluation.256

Text augmentation. Text augmentations bring an overall257
improvement, especially significant on HumanML3D (14.47 vs258
11.68 R@1). On the other hand, the impact on BABEL is incon-259
clusive due to large variance in the BABEL retrieval benchmark.260
As will be seen in Section 4.4, the BABEL action recognition261
benchmark highly benefits from text augmentations. For more262
details on text augmentation parameters, we refer to Section 4.5.263

HN-NCE. When replacing the InfoNCE loss with HN-NCE264
[19], we observe the best performance for H+K joint training265
when tested on HumanML3D and KITML. The best results on266
BABEL are also with HN-NCE, but when training on H+K+B.267

To the best of our knowledge, these results represent268
state-of-the-art performance, with 3% improvement on269
HumanML3D over TMR [16] (11.63 vs 14.89), and with 7%270
improvement on KITML (21.75 vs 29.39).271

4.4. Zero-shot action recognition results272

We study the ability of a model trained on text labels, here273
HumanML3D, to generalize to categorical action labels, when274

evaluating on BABEL action recognition through motion-to-text 275
retrieval. Following the original work describing the dataset and 276
the action recognition benchmark [18], we report Top-1 and 277
Top-5 accuracy metrics (equivalent to R@1 and R@5), as well 278
as Top-1 class-balanced version (Top-1 CB). Results are sum- 279
marized in Table 3. In the first block, we list the previous works 280
reporting on this benchmark [18, 24], using the BABEL action 281
labels for training (B-actions). We first check that TMR reaches 282
their performance on this fully-supervised setting. We then 283
provide intermediate results by using BABEL motions, but their 284
free-form textual labels, instead of the categorical action labels. 285
Both ‘raw’ and ‘proc’ (processed) labels provided by this dataset 286
match the performance of action labels (perhaps due to action 287
labels being derived from those). In the last block, we report the 288
zero-shot setting by training on HumanML3D texts. Here, we 289
observe significant improvements via text augmentations (e.g., 290
22.44 vs 26.30). We also ablate our average embedding strategy 291
described in Section 3 (pgt = 0.4, ppar = 0.3, pact = 0.3, 292
pavg=0) and see its benefits (last two rows). 293

4.5. Text augmentation ablations 294

We first study the impact of the choice of probabilities used 295
in our augmentation strategy, ppar, psum and pact. Next, 296
we compare our text augmentation approach to the one of 297
Action-GPT [11], the method we find to be most related to ours. 298
We conduct these ablations by training on the combination 299
of HumanML3D + KITML training, and by evaluating on 300
HumanML3D. 301

Augmentation probabilities. Table 4 studies the impact of 302
the probability used for picking the augmentation approach 303
when sampling the text label, among which are picking the 304
ground truth (pgt), picking one paraphrase (ppar), picking the 305
action-type label (pact), and picking the average of a random 306
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HumanML3D
pgt ppar pact pavg R@1 R@3 R@10

1.0 ✗ ✗ ✗ 11.36 21.15 40.24

✗ 1.0 ✗ ✗ 13.23 24.34 42.43
0.6 0.4 ✗ ✗ 13.30 24.48 45.12
0.4 0.6 ✗ ✗ 13.37 25.66 44.87

✗ ✗ ✗ 1.0 12.39 22.42 41.79
0.6 ✗ ✗ 0.4 13.39 24.68 43.80
0.4 ✗ ✗ 0.6 13.75 25.00 45.00

0.4 0.4 ✗ 0.2 13.30 24.32 44.75
0.4 0.2 ✗ 0.4 13.66 24.29 45.69

0.4 0.2 0.2 0.2 13.62 25.11 45.94
0.4 0.2 0.1 0.3 14.67 24.27 44.34

Table 4. Ablations for text augmentation probabilities: We train
on the combination of HumanML3D and KIT, and investigate the
impact of augmentation probabilities on the HumanML3D evaluation.
While the model is not sensitive to the choice of these values, setting
any of the 4 label types to zero (✗) reduces performance. The last row
corresponds to H + K with augmentations in Table 2, where the mean
across 3 runs is reported as 14.47 R@1.

subset of labels (pavg). Rows 2-4 experiment only with the para-307
phrasing approach, rows 5-7 only with the averaging approach,308
and rows 8-9 studies combinations of both, without including309
the action-type labeling approach. Finally, last two rows report310
combinations of these 3 approaches. While the model does311
not seem sensitive to the choice of the probability values, its312
performance increases when using a combination of all the313
augmentation approaches. We also observe that giving more314
weight to the averaging protocol further boosts the performance.315

Comparison to Action-GPT. We compare our text augmen-316
tation to an approach we implement similar to Action-GPT [11].317
Although used with a different training dataset, BABEL, on318
a different task (text-to-motion synthesis), this is the method we319
find to be most related to ours. More specifically, we compare320
both our ways of leveraging the use of several paraphrases for321
one text. Results are summarized in Table 5.322

There are three main differences between our approach and323
the augmentation employed by Action-GPT: (1) For each text,324
they systematically generate a fixed amount (k = 4) of para-325
phrases, while we sample several texts at random from a larger326
paraphrases pool, i.e., random from 30. (2) They only use327
the paraphrased versions, but not the original label, i.e., pgt=0.328
(3) They average the paraphrase tokens at the entrance of the text329
encoder, while we average the sentence embeddings obtained af-330
ter passing them through the text encoder (see Figure 2). Table 5331
ablates each of these combinations, contrasting the approach of332
[11] that corresponds to the first row, with that of ours (last row).333

HumanML3DAveraging pgt pavg k R@1 R@3 R@10

Token ✗ 1 4 8.87 17.77 33.12
rand/30 11.70 21.10 39.69

Token .5 .5 4 11.79 20.92 39.53
rand/30 11.75 22.22 42.91

Sentence ✗ 1 4 10.97 19.37 36.20
rand/30 12.32 22.70 41.51

4 12.36 21.72 39.83Sentence .5 .5 rand/30 14.03 24.50 43.61

Table 5. Comparison to token averaging as in Action-GPT [11]: We
systematically analyze the impact of averaging multiple paraphrases of
the textual label. Action-GPT performs token averaging before passing
through the text encoder using a fixed number of k=4 paraphrases,
and does not use the original ground truth (GT) label. In our setting,
averaging the sentence embeddings after the text encoder, for a random
subset of a larger set of 30 paraphrases, using both GT and this average,
outperforms significantly over this baseline (green vs red rows).

Averaging the sentence embeddings performs clearly better 334
than averaging the token embeddings for every parameter 335
combination. We also validate our random sampling strategy, 336
showing both the benefits of also including the ground truth 337
labels, as well as not fixing the number of paraphrases. 338

4.6. Qualitative analyses 339

In this section, we provide visual illustrations of results for 340
both text-to-motion retrieval (Figure 3) and action recognition 341
(Figure 4). We further analyze action recognition results, in 342
particular investigating per-action performances with/without 343
text augmentations (Figure 5) and the confusions between 344
actions (Figure 6). 345

Figure 3 shows qualitative results for text-to-motion retrieval 346
on the HumanML3D test set, using the model trained on 347
HumanML3D + KITML. We display two text queries, and top-5 348
ranked motions for each of them both with and without text 349
augmentations. We notice that our model allows the retrieved 350
motions to capture more elements and details of the input text. 351
For instance in the above example, while the baseline captures 352
the rough information that the query text targets the legs, 353
the model with text augmentation captures the more specific 354
interaction between knee and elbow in 4 motions out of 5. 355

In Figure 4, we illustrate several examples for the action 356
recognition results on BABEL-60. We notice that while the 357
correct action class is not always at the top rank, it often appears 358
within the top 5 retrieved action labels. We observe that all top 359
retrieved predictions are often related to the ground-truth action 360
(e.g., ‘Place something’ vs ‘Interact with/use object’). 361

Figures 5 and 6 provide further insights, inspecting the 362
per-class performances. Specifically, Figure 5 plots the R@1 363
score for each action before and after the text augmentations 364
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         A person lifts each knee towards the opposite elbow

a person kicking left leg and 
then kicking right out in front of 

them

a person sways to swing their 
right foot followed by their left 

foot

a man kicks with his right leg 
and then kicks with his left leg

a person lifts and spins around 
their right leg then lifts and 

spins around their left

a person standing forward 
doing leg kicks

1 (0.88) 2 (0.87) 3 (0.87) 4 (0.87) 5 (0.85)

Text query:
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a man lifts each knee to his 
elbow multiple times and then 

does a squat.

a person lifts each knee 
towards the opposite elbow

a person touches each elbow to 
the opposite knee then spreads 
his legs and starts to do squats

a person standing forward 
doing leg kicks

person brings right elbow to 
left knee, then left elbow to 

right knee, stands straight then 
bends at the knees a few times

1 (0.91) 2 (0.88) 3 (0.87) 4 (0.84) 5 (0.84)
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QUALITATIVE RESULTS T2M H3Dthe man puts the box down and 
runs

a person, while running 
quickly, bends down and picks 

something up.

person runs quickly straight 
forward

person jogs, stops to bend over, 
then continues jogging.

a man crouches down while 
quickly walking forward and 

then stands up straight.

The man puts the box down and runs

1 (0.83) 2 (0.83) 3 (0.81) 4 (0.81) 5 (0.80)
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Text query:

the person goes for a short jog a person who is running a person runs to the right 
slightly

the person is running forwardthis person does a short sprint 
forward, holding their arms up 

to their chest level

1 (0.85) 2 (0.84) 3 (0.81) 4 (0.80) 5 (0.80)
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QUALITATIVE RESULTS T2M H3D

Figure 3. Qualitative results on HumanML3D text-to-motion retrieval with and without augmentation: In both examples, while none of
the retrieved motions are extremely remote from the text description, the model trained with augmentation captures more of the requested details
for most motions in the top 5 ranks. In the example above, the model captures the interaction between elbow and knee, while the baseline model
only captures the implication of the legs. In the below example, the model retrieves both parts of the movement – putting the box down and running
– while the baseline only retrieves the running portion.

M/KIT/1226/Trial_01_poses.npy (start:  61.538 end:  62.963)
Eyes_Japan_Dataset/kudo/gesture_etc-19-fold legs-kudo_poses.npy (start:  28.023 end:  28.711)

QUALITATIVE RESULTS ACTIONS
KIT/575/MarcusS_AdrianM11_poses (start: 109.014 end: 111.264)

---------------------------------- 33576 :  run

['jog', 'play sport', 'run', 'move up/down incline', 'action with ball']


[0.67, 0.64, 0.63, 0.61, 0.58]

['stretch', 'clean something', 'raising body part', 'kick', 'stand up']


[0.61, 0.6, 0.59, 0.59, 0.59]


GT: Grasp object
1. Grasp object .70

2. Touch object .67

3. Touching body part .67

4. Hand movements .66

5. T pose .65

GT: Place something
1. Take/pick something up .78

2. Interact with/use object .78

3. Place something .74

4. Move something .73

5. Grasp object .72

GT: Stand up
1. Stand up .75

2. Sit .66

3. Lift something .65

4. Squat .64

5. Lowering body part .63

GT: Run
1. Jog .67

2. Play sport .64

3. Run .63

4. Move up/down incline .61

5. Action with ball .58

Figure 4. Qualitative results on BABEL action recognition: We apply zero-shot action classification via motion-to-text retrieval by treating
class labels as text. The model is trained on HumanML3D free-form textual labels, and tested on BABEL actions. On the right of each input
motion example, we display the ground truth (GT) action, along with the top-5 retrieved actions and their motion-text similarity scores. We observe
that the high similarities among the top retrieved actions are mainly due to ambiguities across categories, e.g., “Grasp object” motion retrieves
action classes involving hand motions such as “Touch object” and “Hand movements”.
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Per-class 
Performances

Figure 5. Per-action performance improvement: We plot the per-action R@1 scores for the 60 BABEL actions, comparing with/without the
text augmentations. The dashed line represents the frequency of test labels for each class (y-axis on the right), showing the unbalanced nature
of this benchmark.

Predicted action labels
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Figure 6. Action classification confusion matrix portions: We visualize several sources of classification mistakes, easily explained by the presence
of ambiguous or related action labels. On the left, we display the full 60-categories of BABEL-60, and zoom into interesting regions on the right,
highlighting the most confused actions in red. For example, the bottom row shows that hand-object interaction categories are confused frequently.

when training with the HumanML3D dataset. We observe365
that many more classes show a significant improvement than366
a loss of performance. For example, the rare classes in BABEL367
such as ‘crossing limbs’, ‘wave’, and ‘knee movement’ are368
substantially improved, as well as the frequent ‘stand’ category.369
Figure 6 further shows the most frequent confusion between370
categories, which demonstrates the finegrained nature of this371
benchmark. This allows to ponder the importance of some of372
the classification mistakes, by looking at the category an action373
is most confused with. As already outlined with Figure 4, some374
actions tend to be mostly mistaken for an action with similar375
meaning. For instance, the action ‘jog’, is mostly confused376
with ‘run’, which mitigates the fact that the performance of377
our model drops significantly on ‘jog’. We also point in the378
confusion matrix a wide area corresponding to actions all379
related to hand-object interaction.380

5. Conclusion and Limitations 381

We presented our work analyzing the generalization perfor- 382
mance of text-motion retrieval models. Specifically, we perform 383
cross-dataset experiments using standard benchmarks. Our 384
results suggest that significant gains are observed when applying 385
text augmentations to overcome the domain gap across datasets. 386
Moreover, we benchmarked the popular TMR model on 387
BABEL action recognition evaluation, and obtained promising 388
zero-shot performance by only training on HumanML3D 389
dataset. One potential limitation of our approach is the text 390
augmentation which is not necessarily grounded in the motion. 391
That is, the LLM can hallucinate details which are not visible 392
in the motion. Future work can explore motion captioning as 393
a way to incorporate grounded augmentations. Another avenue 394
for future research is to expand this analysis to investigate the 395
domain gap across motions, and not only across textual labels. 396
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