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Abstract

Integrating multi-modal clinical data, such as electronic health records (EHR)
and chest X-ray images (CXR), is particularly beneficial for clinical prediction
tasks. However, in a temporal setting, multi-modal data are often inherently
asynchronous. EHR can be continuously collected but CXR is generally taken
with a much longer interval due to its high cost and radiation dose. When clinical
prediction is needed, the last available CXR image might have been outdated,
leading to suboptimal predictions. To address this challenge, we propose DDL-
CXR, a method that dynamically generates an up-to-date latent representation of
the individualized CXR images. Our approach leverages latent diffusion models
for patient-specific generation strategically conditioned on a previous CXR image
and EHR time series, providing information regarding anatomical structures and
disease progressions, respectively. In this way, the interaction across modalities
could be better captured by the latent CXR generation process, ultimately improving
the prediction performance. Experiments using MIMIC datasets show that the
proposed model could effectively address asynchronicity in multimodal fusion and
consistently outperform existing methods.

1 Introduction

Clinical data in modern healthcare is documented through various complementary modalities [1, 2].
Electronic health records (EHRs), for instance, systematically record the progression of diseases over
time, including medical histories, laboratory test results, and treatment outcomes [3–6]. In parallel,
medical imaging, such as chest X-rays (CXRs), is valuable for providing visual insights into the
patient’s internal anatomy, organ functions, and potential abnormalities [7]. Recent studies have
shown that strategic integration of multimodal clinical data could lead to improved performance for
clinical predictions compared to relying solely on uni-modal data [8–13].

Despite the promising results obtained, the inherent asynchronicity of multimodal clinical data still
hinders effective integration. Take the intensive care unit (ICU) setting as an example, patients
are subject to continuous monitoring systems that capture vital signs, including heart rate, blood
pressure, and oxygen saturation, with this information being routinely recorded in the EHR [14, 15].
On the other hand, CXRs are captured only on an as-needed basis and often as less as possible,
due to limitations of radiation dose and resources [16]. However, patients admitted to ICU are in
life-threatening conditions, which means their medical status is prone to rapid changes and highly
time-sensitive [17]. In the MIMIC-CXR dataset [18], it is observed that among patients with positive
disease findings in their CXR, over 70% of subsequent CXR images — taken within a median interval
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(a) Initial Chest X-ray (b) CXR taken after 34 hours (c) Generated by DDL-CXR

Figure 1: A real ICU patient with rapid CXR changes. (a) Initial radiology findings: Low lung
volumes but lungs are clear of consolidation or pulmonary vascular congestion. No acute car-
diopulmonary process. (b) Radiology findings after 34 hours: Severe relatively symmetric bilateral
pulmonary consolidation. (c) CXR generated by DDL-CXR given the initial CXR image shown in (a)
and the EHR data within the 34 hours. Clear signs of bilateral pulmonary consolidation can be seen
from the generated image. The visualization shows that DDL-CXR could generate updated CXR
images that respect the anatomical structure of the patient and reflect the disease progression.

of less than 24 hours — exhibit changes in CXR findings. This implies that when a clinical prediction
is needed, CXRs captured even only a few hours ago could have become outdated, especially for ICU
patients who commonly have respiratory, cardiac, infectious, and traumatic conditions [19]. Fig. 1
shows such an example of a real patient in the MIMIC dataset.

Motivation Existing works adopt the “carry-forward" approach, i.e., using the last CXR image
available for downstream prediction tasks [20, 10]. This strategy ignores the potential rapid changes
between the prediction time and the time of the last CXR image taken and thus inevitably leads to
suboptimal prediction performance. On the contrary, we hypothesize that generating an updated CXR
image at the prediction time could mitigate the asynchronicity problem and enhance the prediction
accuracy. Nevertheless, generating patient-specific CXR images presents unique challenges. While
multimodal generation has been explored extensively in various fields, these methods are not readily
adaptable for generating individualized CXR images. In domains such as text-to-audio [21] or
text-to-image generation [22], the attributes that need to be controlled (e.g., painting style) can be
explicitly defined in input modalities (e.g., the text prompt). However, in the clinical context, explicit
descriptions of a patient’s anatomical structures, organ functions, and disease progression, which are
highly specific to individual patients and critical for downstream prediction, are not directly available.

Contribution To tackle the aforementioned challenge, we propose Diffusion-based Dynamic
Latent Chest X-ray Image Generation (DDL-CXR)3, which utilizes a tailored latent diffusion model
(LDM) [22] to generate individualized CXR images for clinical prediction. Specifically, DDL-CXR
learns to generate representations in a latent space encoded by a variational auto-encoder (VAE). To
incorporate detailed information about the patient’s anatomical structure and organ specifics, we use a
previous CXR image from the same patient as the reference image. To generate latent representations
that align with the disease progression, we use a Transformer model [23] to encode the irregular
EHR data spanning from the reference CXR to the prediction time. To further capture the implicit
interactions between EHR and CXR, we use the encoded EHR representation to predict the labels of
abnormality finding of the target image. To force the LDM to capture the disease course in the EHR
data, we explore a contrastive learning approach for training the LDM. The generated up-to-date
latent CXR is later fused with historical data for downstream clinical prediction.

We summarize our contributions as follows:

• To our knowledge, DDL-CXR is the first work to generate an updated individual CXR image to
improve clinical multimodal fusion, thereby alleviating the asynchronicity between EHR and CXR.

• We propose a contrastive learning approach for the LDM training to enable the disease course in
EHR to be captured and utilized by the LDM.

• Experiments show that DDL-CXR outperforms existing methods in both multi-modal clinical predic-
tion and individual CXR generation.

3The code is available at https://github.com/Chenliu-svg/DDL-CXR.
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2 Related Work

Clinical multi-modal fusion Integrating multi-modal clinical data has shown beneficial for various
clinical prediction tasks [24], including COVID-19 prediction [25], pulmonary embolism diagnosis [8,
26], AD diagnosis [9] and X-ray image abnormality detection [27].

Different strategies have been proposed to facilitate the fusion of multi-modal clinical data [2, 28].
Hayat et al. [10] adopts feature-level fusion with an LSTM layer, while Zhang et al. [29] utilizes
a modality-correlated encoder to capture long-range dependencies across modalities. Zhang et al.
[30] and Lee et al. [12] incorporate modality type embedding into the self-attention to capture the
interaction. Despite the effort, existing methods for multi-modal fusion are driven only by downstream
predictions. How to capture the more fundamental interaction between different data modalities
remains an open challenge.

In the temporal setting, asynchronicity presents another major challenge. Unlike the settings of
medical images and radiology reports [31], which are naturally aligned in time, EHR and CXR are
often highly asynchronous, bringing extra difficulties to information integration. “Carry-forward” is
a common strategy adopted, where the last available data from different modalities are used [10, 13].
Lee et al. [12] and Zhang et al. [17] also adopt this approach while modeling the time information of
the last available data.

Conditional latent diffusion models The diffusion model is one of the state-of-the-art generative
models [32, 33] that has found important applications in areas such as image generation [34], sound
generation [35], joint audio and video generation [36], and tabular data generation [37]. To reduce
the computational cost, LDM [22] proposes to train diffusion models on a latent space encoded via
pre-trained VAE, thus improving training and sampling efficiency as well as preserving generation
quality. It also incorporates an attention mechanism into its underlying neural backbone to allow
more flexible conditioning.

Based on LDM, multi-modal generation models have been developed using priors obtained from
large-scale contrastive pre-training, e.g., contrastive-image pairs for text-to-image generation [38]
and contrastive language-audio pairs for text-to-audio generation [21]. However, it is infeasible to
apply this method to clinical settings since many clinical data modalities, e.g., CXR and EHR, capture
different aspects of patients and cannot be semantically aligned like the image and caption pairs as in
CLIP.

In clinical settings, LDM-based models are developed for brain MRI image generation, conditioned
on age, sex, brain structure volumes [39], and a subset of MRI slices [40]. For CXR image generation,
Packhäuser et al. [41] adopts a thoracic abnormality classifier-aided LDM to generate anonymous
CXR images for privacy-protected data generation. Weber et al. [42] utilizes pathology labels,
radiological reports, and radiologists’ annotations for synthesizing customized CXR images. Gu et al.
[43] explores counterfactual generation for CXR using information from imaging reports. Generating
individual CXR images that reflect disease courses in EHR and applying them to medical predictions
remains an open challenge.

3 DDL-CXR: The Proposed Method

In this work, we focus on improving multimodal clinical predictions by generating latent CXR images
that are in line with patient conditions at prediction time. The generation process also works as a
fusion module that captures the cross-modal interaction between EHR and CXR. The overview of
DDL-CXR is depicted in Fig. 2. It consists of two stages: the LDM stage and the prediction stage. In the
LDM stage, we use the consecutive image pairs to train an LDM that generates representations within
a latent space encoded by a variational autoencoder (VAE). To generate patient-specific CXRs, an
earlier CXR image of the same patient is used as a reference to capture the anatomical structure, and
the EHR time series between the consecutive image pairs is used to capture the disease progression.
In the prediction stage, conditioned on this composite information, DDL-CXR generates updated and
informative CXR representations at prediction time, which are subsequently fused with available
EHR data as well as the previous CXR image for downstream prediction tasks.
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Figure 2: The overview of the proposed framework DDL-CXR. It consists of two stages. The LDM
stage learns to generate an individualized up-to-date latent CXR at time t1, Ẑt1 , to address asyn-
chronicity by conditioning on a previous CXR image taken at time t0, XCXR

t0 , which provides the
anatomical structure of the patient, as well as EHR data between t0 and t1, XEHR

(t0,t1)
, that provides

information on disease progression. A contrastive loss and auxiliary loss are enforced for better
EHR information integration. The generation module encapsulates cross-modal interactions to assist
in clinical prediction. The prediction stage fuses the generated latent CXR, the most recent CXR
image, and the complete EHR time series for clinical predictions.

3.1 Notations and Preliminaries

EHR and CXR data Patient-wisely, we denote the EHR time series within the time interval
between ti and tj as XEHR

(ti,tj)
= [xti ,xti+1, . . . ,xtj ], where xt ∈ RK is the variables recorded at

time t and K is the number of features. We denote the grayscale CXR images taken at the time ti as
XCXR
ti ∈ RW×H , where W and H denote its width and height, respectively. For each CXR image,

we extract the abnormality finding label, yCXR
ti , from radiology reports using CheXpert [44].

Predictive latent space for CXR Using diffusion models in a semantic latent space, rather than
a high-dimensional data space, has shown a substantial decrease in computational expenses with
minimal impact on synthesis quality [22]. To obtain an informative and expressive latent space,
we first train a VAE [45] consisting of an encoder E and a decoder D. The data used for training
VAE are all available CXR images in the training set with corresponding abnormality finding
labels,

(
XCXR
t ,yCXR

t

)
. The primary objective of the VAE is to reconstruct the original CXR image

XCXR
t with D(E(XCXR

t )). We follow the VAE training process in [22], incorporating a pixel-wise
reconstruction loss accompanied by a perceptual loss [46], an adversarial objective, and a lightly-
penalized Kullback-Leibler loss towards a standard normal aiming at constraining the latent spaces
from excessively high variance. Besides, to improve the encoder’s ability to predict, we also include
a prediction loss regarding the abnormality label yCXR

t . We denote the encoded latent CXR by
Zt = E(XCXR

t ) ∈ RC×W
r ×H

r , where C represents the channel of the compressed representation and
r represents the compression ratio. We first pre-train the VAE model and then freeze it throughout
the training and inference of DDL-CXR. More details on VAE training are presented in Appendix A.1.

3.2 LDM Stage: Dynamic Latent CXR Generation

As discussed previously, to generate an up-to-date, patient-specific latent CXR, it is important to
incorporate the unique anatomical details of the individual patient. Furthermore, the generated
image must accurately reflect the evolving pathology as documented in the irregular EHR time
series. To this end, we extract all sequential image pairs and the EHR time series between them.
We denote each sample as a quadruplet:

(
XCXR
t0 ,XEHR

(t0,t1)
,XCXR

t1 ,yCXR
t1

)
. CXR images are encoded

using the pre-trained VAE as we aim to generate latent CXR images: Zt0 = E(XCXR
t0 ),Zt1 =

E(XCXR
t1 ). We follow prior works on diffusion models to learn our LDM [22, 32]. It comes down

4



to learning a network that predicts the noise added to the noisy latent Z(n)
t1 at denoising step n as

ϵθ

(
Z

(n)
t1 ,Zt0 , f

EHR
cond (X

EHR
(t0,t1)

), n
)

. Following prior works [22, 32], we parameterize ϵθ by a standard

UNet [47]. Here fEHR
cond (·) is the encoder for the irregular EHR time series to be detailed later. The

detailed diffusion and denoising processes are presented in Appendix A.1.

Neural backbone and conditioning mechanisms Due to the remarkable capability of UNet [47]
in capturing the spatial structure of images, we follow prior works and use a UNet as our neural
backbone ϵθ. It predicts the noise added in the diffusion process, conditioned on the reference image
and the EHR time series. To explicitly capture and utilize the anatomical structure of individual
patients, we first concatenate the reference latent CXR Zt0 and the step-n noisy latent Z(n)

t1 . To
further integrate the disease course embedded in the EHR time series, we use the cross-attention
mechanism to capture the interaction between the two modalities. Formally, the input to the UNet
layers is given by:

Attention(Q,K,V) = softmax
(QK⊤

√
d

)
·V,

with Q = WQ · φ
(
Z

(n)
t1

||Zt0
)
,K = WK · fEHR

cond (X
EHR
(t0,t1)),V = WV · fEHR

cond (X
EHR
(t0,t1)),

(1)

where φ(·) denotes the flattened intermediate representation of the UNet and || denotes concatenation.

Capturing disease course via EHR time series To effectively capture useful information on
disease progression for future CXR generation, we adopt a multi-task Transformer-based time series
encoder [48] with the masked self-attention mechanism to handle the variable length of EHR time
series [49]. The encoded representation of EHR, E(t0,t1), is given by

E(t0,t1) = fEHR
cond (X

EHR
(t0,t1)) = Transformer ([hCLS, ϕ(xt0), . . . , ϕ(xt1)]) , (2)

where ϕ(xt) projects the original EHR time series into an embedding space and applies the positional
encoding at time step t. hCLS is the class token.

To further extract information that is relevant to CXR generation and facilitate modality fusion at the
LDM stage, we incorporate an auxiliary prediction task: using the class token from the encoded EHR
to predict the abnormality findings yCXR

t1 , associated with the CXR image XCXR
t1 , i.e., ŷCXR

t1 = g(hCLS),
where g denotes the prediction function, e.g., an MLP, which is trained by jointly minimize the loss
function given by Laux := 1

M
1
L

∑M
m=1

∑L
l=1 y

CXR
ml log(ŷCXR

ml )+ (1− yCXR
ml ) log(1− ŷCXR

ml ), where M
is the number of training samples for LDM and L is the number of classes of abnormality labels of
CXR. The auxiliary task enables the EHR encoder to extract CXR-related information, which further
encourages the interaction between EHR and CXR to be captured in the subsequent generation.

Enhancing semantic multimodal fusion via contrastive LDM learning The generation condi-
tioning on EHR data is challenging because the EHR and CXR data are highly heterogeneous and the
interactions are implicit. To force the LDM to utilize EHR information during generation, we propose
a contrastive way of learning the conditional LDM. Specifically, for each EHR time series, we obtain
a perturbed version of its representation Ẽ(t0,t1) = (1 − β)E(t0,t1) + βδ, where δ ∼ N (0, I) is
randomly drawn from a standard normal distribution, β is a hyperparameter controlling the strength
of the noise. When the perturbed EHR is given as input, we expect the generated image to be far
away from the target image. This leads to the following training objective function:

LLDM :=EZt1
,Zt0

,XEHR
(t0,t1)

,ϵ∼N (0,I),n

[∥∥∥ϵ− ϵθ

(
Z

(n)
t1 ,Zt0 , f

EHR
cond (X

EHR
(t0,t1)

), n
)∥∥∥2

2

+ λ1 max

(∥∥∥ϵ− ϵθ

(
Z

(n)
t1 ,Zt0 ,E(t0,t1), n

)∥∥∥2
2
−

∥∥∥ϵ− ϵθ

(
Z

(n)
t1 ,Zt0 , Ẽ(t0,t1), n

)∥∥∥2
2
+ α, 0

)]
,

(3)

where α is a hyperparameter controlling the tolerance of the noisy-conditional generation. λ1 is a
coefficient controlling the strength of the contrastive term. To ensure stability during training, we set
the initial value of λ1 to zero and linearly increase it to one during training.
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3.3 Prediction Stage

In the prediction stage, we do not have access to an up-to-date CXR image. Therefore, we generate
an updated latent CXR Ẑt1 at the prediction time t1 using the last available CXR image XCXR

t0

as the reference image and the EHR time series in between XEHR
(t0,t1)

. To make predictions using
available EHR, we adopt another time series encoder, fEHR

pred , which has the same structure as fEHR
cond as

in Eq. (2). Note that for prediction, the EHR data used, XEHR
≤48h covers all EHR time series with the

observation time set as 48 hours, ensuring the available information is fully utilized. In other words,
XEHR

(t0,t1)
⊆ XEHR

≤48h. In clinical practice, clinicians make predictions not only based on the latest CXR,
but also on past CXR images as reference for disease basis. To this end, we employ all available data:
XCXR
t0 , XEHR

≤48h and the generated latent CXR Ẑt1 to make the final clinical prediction:

ŷ = Gψ
(
fCXR

pred (XCXR
t0 ), fEHR

pred (XEHR
≤48h), f

LAT
pred (Ẑt1)

)
. (4)

Here f ipred, i ∈ {CXR, EHR, LAT} are encoders for CXR, EHR, and the generated latent CXR,
accordingly. We parameterize fLAT

pred and fEHR
pred using Transformer models, and fCXR

pred using a ResNet
model. The predicting model Gψ with ψ denoting the model parameter, is parameterized by a
self-attention layer. We learn it by minimizing the cross-entropy (CE) loss:

Ltask :=

M′∑
m=1

L′∑
l=1

yml log(ŷml) + (1− yml) log(1− ŷml), (5)

where L′ is the number of classes in the prediction task and M ′ is the number of training samples in
the prediction stage.

4 Experiments

4.1 Experiment Settings

Datasets We empirically evaluate the clinical predictive performance of DDL-CXR using MIMIC-IV
[50] and MIMIC-CXR [18]4. MIMIC-IV comprises de-identified critical care data from adult patients
admitted to either ICUs or the emergency department (EDs) of Beth Israel Deaconess Medical Center
(BIDMC) between 2008 and 2019, and MIMIC-CXR contains chest X-rays and reports collected
from BIDMC, with a subset of patients matched with those in MIMIC-IV. For EHR data, we follow a
preprocessing pipeline similar to that described in [10]. 17 clinical time series variables as well as
age and gender are extracted. The details can be found in Appendix A.2.

Dataset construction and partition The inclusion criteria for this study involve ICU stays from
the matched subset of MIMIC-IV and MIMIC-CXR that contain at least one CXR image (with
Anterior-Posterior (AP) projection) during the ICU stay or within 24 hours before ICU admission.
We exclude ICU stays with lengths shorter than 48 hours. The dataset is randomly split by the patient
identifier with a ratio of 24:4:7 for training, validation, and testing, which avoids patient overlapping
between subsets.

From the training patients, we further extract data for training the VAE, the LDM, and the prediction
model. We extract all images from the training patients for training VAE and extract all CXR image
pairs of the same patient taken at any interval greater than 12 hours for training the LDM, i.e.,

DLDM =

{(
XCXR
t0 ,XCXR

t1 ,XEHR
(t0,t1)

,yCXR
t1

)
(t1−t0)>12h

}
,

where a single ICU stay may contain multiple data pairs for LDM training. This greatly enlarges the
training subset for the LDM stage.

For the prediction stage, we extract the last available CXR image and the EHR time series in the first
48 hours and the label for the prediction task of each ICU stay, i.e., the triplet

(
XCXR

last ,X
EHR
≤48h,ytask

)
.

Note that the EHR time series used in the prediction stage differs from that in the LDM stage in their
time interval since they serve for different purposes.

4Both are open source under the PhysioNet Credentialed Health Data License 1.5.0 license.
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Table 1: Overall performance for the phenotype classification and mortality prediction task as
measured by AUPRC and AUROC scores. DDL-CXR outperforms all baselines in these metrics.

Phenotyping Mortality

AUPRC AUROC AUPRC AUROC

Uni-EHR [23] 0.434 ±0.009 0.720 ±0.006 0.498 ±0.007 0.815 ±0.007
MMTM [52] 0.430 ±0.005 0.715 ±0.003 0.422 ±0.014 0.785 ±0.004

DAFT [9] 0.435 ±0.002 0.720 ±0.003 0.448 ±0.004 0.800 ±0.003
MedFuse [10] 0.437 ±0.001 0.718 ±0.002 0.443 ±0.009 0.793 ±0.003
DrFuse [13] 0.459 ±0.003 0.729 ±0.004 0.460 ±0.004 0.773 ±0.008

GAN-based [53] 0.453 ±0.010 0.728 ±0.008 0.505 ±0.018 0.816 ±0.010
DDL-CXR (ours) 0.470 ±0.003 0.740 ±0.002 0.523 ±0.011 0.822 ±0.009

We use the same approach to extract the validation subsets for hyperparameter tuning of VAE,
LDM, and the prediction model. Note that the testing patients are held out for evaluating prediction
performance only, and are not involved in the training and model selection of VAE and LDM.

Prediction tasks and evaluation metrics We evaluate DDL-CXR with two clinical prediction tasks:
in-hospital mortality prediction and phenotype classification using clinical data collected within the
first 48 hours of ICU admissions. The phenotype classification is a multi-label classification task,
where the labels are defined by the 25 disease phenotypes, extracted following [51]. The details of
the label prevalence and data cohort statistics can be found in Appendix A.2.

We evaluate the performance using two metrics, the Area Under the Precision-Recall Curve (AUPRC)
and the Area Under the Receiver Operating Characteristics (AUROC). For the phenotyping task,
we report macro-averaged scores. We conduct each prediction experiment five times with distinct
random seeds and reported the mean and standard deviation of the results.

Baseline Models We compare the following methods. (1) Uni-EHR, a single-modal classifier
for EHR time series based on Transformer [23], (2) MMTM [52], a multi-modal fusion method
based on CNNs through squeeze and excitation operations, (3) DAFT [9] a general-purpose module
for fusing tabular clinical information and image data by dynamically rescaling and shifting the
feature maps of a convolutional layer, (4) MedFuse [10], an LSTM-based multimodal fusion method
developed for clinical prediction using EHR and CXR, (5) DrFuse [13], a disentangled learning
approach that handles modality missing and modal inconsistency in clinical multi-modal fusion, and
(6) GAN-based generation [53], a model originally proposed to generate individual brain images
conditioning on age and Alzheimer’s Disease (AD) status via training a conditional GAN.

4.2 Prediction Performance

DDL-CXR obtains the best overall performance. We summarize the overall performance of the
phenotype classification and in-hospital mortality prediction in Table 1, where DDL-CXR outperforms
all baselines. This shows that generating an updated CXR during test time is beneficial for downstream
tasks. On the contrary, DrFuse, MedFuse, DAFT, and MMTM use the last available CXR for
prediction, which might have been outdated.

The performance gain of DDL-CXR in terms of AUPRC is particularly noteworthy as the AUPRC
metric is especially relevant in the context as it underscores the effectiveness of our approach in
identifying the positive class in imbalanced medical datasets. DDL-CXR achieves relative improve-
ments of 2.4% and 3.56% over the best baselines in terms of AUPRC for phenotype classification
and mortality prediction, respectively.

Mortality prediction with varying time interval We define the time interval (by hour) between
the prediction time and the time of the last available CXR as δ and compute the evaluation metrics
in patient groups with different ranges of δ. The results are presented in Table 2. Since the label
prevalence varies significantly between groups, making the comparison of AUPRC between groups
less meaningful, we report AUROC in the paper and AUPRC in the appendix. DDL-CXR consistently
outperforms the baseline models for most groups of δ for the mortality prediction task. As the
δ increases, the last CXR becomes more “outdated”, and we observe a noticeable increase in the
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Table 2: The mean of AUROC score with standard deviation for mortality prediction for overall and
different time gaps. δ represents the time interval (by hour) between the prediction time and the time
of the last available CXR. Numbers in bold indicate the best performance in each column. DDL-CXR
outperforms all baselines in most settings. The AUPRC scores can be found in Appendix B.1.

Overall δ < 12 12 ≤ δ < 24 24 ≤ δ < 36 δ ≥ 36
prevalence 14.7% 16.6% 19% 15.9% 9.26%

Uni-EHR [23] 0.815 ±0.007 0.854 ±0.010 0.799 ±0.013 0.756 ±0.019 0.796 ±0.008
MMTM [52] 0.785 ±0.004 0.798 ±0.008 0.763 ±0.004 0.760 ±0.012 0.772 ±0.014

DAFT [9] 0.800 ±0.003 0.803 ±0.010 0.782 ±0.009 0.776 ±0.006 0.796 ±0.008
MedFuse [10] 0.793 ±0.003 0.812 ±0.004 0.762 ±0.007 0.760 ±0.009 0.800 ±0.010
DrFuse [13] 0.773 ±0.008 0.802 ±0.012 0.717 ±0.023 0.757 ±0.041 0.723 ±0.013

GAN-based [53] 0.816 ±0.010 0.846 ±0.010 0.800 ±0.011 0.760 ±0.026 0.806 ±0.016

DDL-CXR (ours) 0.822 ±0.009 0.867 ±0.015 0.800 ±0.008 0.753 ±0.015 0.830 ±0.011

Table 3: The AUPRC score of predicting each phenotype label. DDL-CXR obtains the highest average
rank. Full names of phenotype labels and AUROC scores can be found in the Appendix.

Uni-EHR MMTM DAFT MedFuse DrFuse GAN-based DDL-CXR

Acute renal failure 0.573 0.568 0.572 0.565 0.564 0.563 0.588
Acute cerebrovascular disease 0.425 0.418 0.419 0.434 0.399 0.446 0.416
Acute myocardial infarction 0.185 0.192 0.187 0.219 0.209 0.171 0.206
Cardiac dysrhythmias 0.579 0.532 0.548 0.560 0.584 0.561 0.605
Chronic kidney disease 0.515 0.505 0.515 0.497 0.477 0.501 0.538
COPD and bronchiectasis 0.319 0.327 0.342 0.344 0.405 0.372 0.382
Surgical complications 0.370 0.379 0.385 0.381 0.377 0.344 0.388
Conduction disorders 0.276 0.287 0.298 0.286 0.632 0.609 0.633
CHF; nonhypertensive 0.593 0.619 0.647 0.631 0.661 0.652 0.682
CAD 0.560 0.540 0.556 0.544 0.581 0.590 0.611
DM with complications 0.562 0.569 0.552 0.561 0.550 0.552 0.524
DM without complication 0.370 0.367 0.343 0.356 0.369 0.352 0.368
Disorders of lipid metabolism 0.594 0.576 0.570 0.566 0.584 0.587 0.601
Essential hypertension 0.551 0.519 0.525 0.518 0.502 0.554 0.561
Fluid and electrolyte disorders 0.655 0.664 0.662 0.656 0.658 0.662 0.672
Gastrointestinal hemorrhage 0.180 0.142 0.162 0.192 0.191 0.151 0.180
Secondary hypertension 0.463 0.455 0.452 0.453 0.437 0.451 0.484
Other liver diseases 0.316 0.316 0.341 0.344 0.372 0.362 0.378
Other lower respiratory disease 0.219 0.209 0.206 0.223 0.255 0.236 0.242
Other upper respiratory disease 0.166 0.137 0.166 0.202 0.274 0.196 0.234
Pleurisy; pneumothorax 0.143 0.145 0.159 0.159 0.172 0.171 0.166
Pneumonia 0.412 0.437 0.429 0.419 0.406 0.415 0.428
Respiratory failure 0.655 0.686 0.674 0.671 0.692 0.663 0.669
Septicemia (except in labor) 0.585 0.573 0.580 0.565 0.562 0.573 0.603
Shock 0.590 0.584 0.582 0.592 0.572 0.587 0.586

Average Rank 4.4 4.64 4.4 4.24 3.88 4.16 2.28

performance gap between the best baseline and DDL-CXR in the group (δ ≥ 36), from 0.806 to 0.830.
This validates our hypothesis that the generation of a timely CXR, accounting for disease progression,
can significantly enhance the performance of clinical predictions.

Phenotype classification The class-wise AUPRC scores for the phenotyping task are detailed in
Table 3, where DDL-CXR demonstrates notable performance improvements, achieving the highest
average rank across all phenotype labels. Due to space limit, we report the standard deviations
and the AUROC scores in Appendix B.2. The improvement over baseline multimodal fusion
methods validates the effectiveness of facilitating fusion between EHR and CXR in the presence of
asynchronicity.
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Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Sample #6 Sample #7

XCXR
t0

XCXR
t1

X̂CXR
t1

Figure 3: Examples of images generated by DDL-CXR. From top to bottom, the three rows are
reference images XCXR

t0 , ground-truth images XCXR
t1 , and generated images X̂CXR

t1 , respectively. The
generations show that DDL-CXR captures the anatomical information from XCXR

t0 and the information
of disease progression extracted from EHR is blended well towards generating XCXR

t1 .

4.3 Quality of Generated Chest X-ray Images

Quantitative Evaluation We evaluate the quality of generated CXRs using the test set of the LDM
stage, where the ground-truth target CXR is available. The Fréchet Inception Distance (FID) score [54]
evaluates the similarity between the distributions of generated and ground-truth target CXRs by
computing Fréchet distance on the representation obtained from a pre-trained Inception-v3 network.

Table 4: Generation quality.

FID (↓) FD (↓) WD (↓)

Last-CXR 16.50 2322.68 6353.06
w/o Zt0 47.91 3260.17 7491.17
w/o E(t0,t1) 30.03 2412.80 7226.38
GAN-based 98.67 3651.27 7922.71
DDL-CXR 33.83 2316.08 7132.82

Besides, we directly measure the Fréchet distance (FD)
and Wasserstein distance (WD) in the latent space of the
VAE between the generated and the target CXRs. Results
are shown in Table 4. Results of “Last-CXR” are obtained
between reference images X0 and target images X1, both
are directly from the dataset without generation. Thus, this
provides a reference to the lower bound of the metrics used.
DDL-CXR surpasses GAN-based methods across all metrics
and obtains the lowest FD and WD. “w/o Zt0” and “w/o
E(t0,t1)” are obtained by removing the condition of the
last available CXR and EHR data, respectively. Notably,
excluding EHR data from the generation conditions resulted in lower FID scores, which is natural
since the generation becomes less restrictive.

Qualitative Evaluation To further visually examine the generated CXR images, we decode the
latent CXR and visualize seven examples in Fig. 3. The first row shows the last CXR images used as
reference, the second row displays the ground-truth CXR images, and the last row showcases the
generated CXR images. The comparison between the first and third rows indicates that the generated
CXR could well capture anatomical structure, while the comparison between the second and third rows
demonstrates that the generated CXRs are in line with the latest imaging manifestations, implying that
the disease progression embedded in EHR could be captured and utilized in the generation process.
We further retrieve the radiology reports and the discharge summary of the corresponding patients
from the database for case studies. Fig. 1 shows one example of the case study (Sample #4), where the
patient rapidly turned from normal CXR to severe pulmonary consolidation. The discharge summary
shows that the patient experienced transfusion-related acute lung injury and sepsis. Evidently, the
generated CXR could more accurately reflect the progressed condition of the patient. Due to space
limits, we present more case studies in Appendix B.5.

4.4 Ablation Study

To better understand the factors contributing to the improved performance, we conducted an ablation
study by removing the conditioning components in the LDM stage. The results are summarized
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Table 5: Results of the ablation study.
Phenotyping Mortality

AUPRC AUROC AUPRC AUROC

Last-CXR 0.459 ±0.012 0.730 ±0.008 0.503 ±0.010 0.817 ±0.007
w/o Zt0 0.448 ±0.012 0.726 ±0.008 0.494 ±0.014 0.811 ±0.008
w/o E(t0,t1) 0.461 ±0.002 0.723 ±0.006 0.474 ±0.016 0.799 ±0.015
w/o Contrastive 0.460 ±0.007 0.722 ±0.011 0.483 ±0.019 0.802 ±0.011
w/o Laux 0.461 ±0.003 0.718 ±0.012 0.495 ±0.026 0.811 ±0.009
Last-CXR (w/o EHR) 0.376 ±0.009 0.661 ±0.007 0.243 ±0.002 0.664 ±0.006
DDL-CXR (w/o EHR) 0.385 ±0.006 0.668 ±0.007 0.269 ±0.013 0.707 ±0.008
DDL-CXR 0.470 ±0.003 0.740 ±0.002 0.523 ±0.011 0.822 ±0.009

in Table 5. The variant “Last-CXR” has the same architecture as the classifier of DDL-CXR but
removes the generated latent CXR Ẑt1 . The improvement over Last-CXR shows that learning an
LDM for generating updated latent CXR is a more effective approach to multimodal fusion, and
hence benefits downstream prediction, especially for the mortality prediction task. The variants
“w/o Zt0” and “w/o E(t0,t1)” remove the last available CXR and EHR data, respectively, from the
condition during LDM training. “w/o Contrastive” removes the contrastive terms from the LDM
objective function. “w/o Laux” removes the auxiliary loss which drives the EHR encoder to capture
the CXR-related abnormality findings. The results show that adding each component brings slight
improvement while incorporating the reference CXR, the EHR, the contrastive learning, and the
auxiliary task achieves the best performance. We also remove the EHR data completely in the
prediction stage and evaluate the performance using the last available CXR and the generated CXR,
respectively. Results are shown as “Last-CXR (w/o EHR)” and “DDL-CXR (w/o EHR)” in Table 5.
The results suggest that the generation of an updated CXR significantly benefits downstream clinical
predictions. Additional experiment results on robustness against reduced training data size can be
found in Appendix B.4.

5 Broader Impacts and Limitations

DDL-CXR holds promise for societal benefits, such as more precise and timely medical interventions,
and offers an alternative for patients with limited access to X-ray imaging. Nonetheless, the po-
tential for generating fake profiles necessitates stringent safeguards, including expert validation of
synthesized images, to prevent misuse and protect patient confidentiality, especially when applied
to private datasets. Despite its promise, DDL-CXR has some limitations like the need for meticulous
hyperparameter tuning and a performance gap across different time intervals, as indicated in Table 2.
Addressing such potential biases is a priority for future research. Furthermore, while various metrics
have been employed to assess generation quality, expert evaluation by radiologists would provide a
more insightful measure of the model’s efficacy.

6 Conclusion

In this paper, we introduce DDL-CXR, which utilizes a powerful LDM to dynamically generate up-
to-date latent chest X-rays to tackle the asynchronicity of multi-modal clinical data for predictions.
Our approach involves leveraging various conditions for patient-specific generation: the most recent
available chest X-ray to incorporate detailed patient-specific anatomical structure, as well as the EHR
data with variable durations for disease progression information. To improve multi-modal fusion in
the generation, we develop a contrastive-learning-based LDM to capture and utilize disease courses
in EHR. Through quantitative and qualitative validations, we demonstrate the superior performance
of DDL-CXR in both image generation and enhancing multi-modal fusion via conditional generation
for clinical prediction.
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A Experiment Details

A.1 Details of Architectures and Training Procedures of DDL-CXR

The training and validation processes are executed on a server equipped with a RTX 4090-24GB
GPU card and a 16 vCPU Intel Xeon Processor. The method is implemented using PyTorch 1.9.1 and
PyTorch-Lightning 1.4.2. DDIM [33] sampling with 200 steps is employed to accelerate the sampling
process, and AdamW optimizer is used for all model training. Our implementation is partially based
on the repository of the latent diffusion model [22]5.

Variational autoencoder (VAE) The VAE training process, as outlined in [22], includes a pixel-
wise reconstruction loss, a perceptual loss [46], an adversarial objective, and a lightly-penalized
Kullback-Leibler loss toward a standard normal to constrain latent spaces, given by:

LVAE = min
E,D,Φ

max
ψ

(
Lrec(X

CXR,D(E(XCXR)))− Ladv(D(E(XCXR))) + logDω(X
CXR))

+ Lreg(X
CXR); E ,D) + LCE(Φ(E(XCXR)),y)

)
,

(6)

where Φ is a classifier that predicts the CheXpert labels associated with the image and we parameterize
it with an MLP. All CXRs in the training subset of the LDM stage are gathered for VAE training. A
compression rate r = 8 is adopted, and the training continues for a maximum of 50 epochs. The
model with the minimum validation error, as measured using CXRs from the validation subset, is
selected. The resulting latent representation has a dimension of 4× 28× 28 = 3136. To restrict the
normal prior in the latent space and prioritize reconstruction quality, a KL-divergence weighting of
1× 10−6 is set. We use the base learning rate of 4.5× 10−6, which is scaled by the number of GPU
cards and batch size.

Latent diffusion model (LDM) stage in DDL-CXR In the LDM stage of our DDL-CXR model, we
employ the UNet architecture [47] as the neural backbone, denoted by ϵθ. Meanwhile, we utilize a
multivariate time series Transformer [48] for the EHR conditioning encoder fEHR

cond . The Transformer
fEHR

cond is designed with one layer, a model dimension d set to 128, and a maximum EHR data length
of 70. The UNet model ϵθ features an input channel of 8 and an output channel of 4. The encoding
section comprises three blocks, with model channels set at 224, 448, and 672, consisting of a ResBlock
module followed by a spatial transformer. The bottleneck consists of two ResBlock modules with a
spatial transformer in between. The decoder mirrors the encoder architecture. As discussed in Section
3.2, we introduce the encoded EHR information through multi-head cross-attention to the spatial
transformer module of ϵθ. The context dimension is set to 128, and the number of attention heads
is 8. The model is trained for 200 epochs with a batch size of 32, and the model with the smallest
composite loss on the validation set is selected for subsequent latent Chest X-ray (CXR) generation.
We set the hyperparameters α to 0.2, and β to 0.5, empirically.

Latent CXR generation via LDM In the LDM stage, we aim to generate latent CXR images at
time t1, conditioned on XCXR

t0 and XEHR
(t0,t1)

. We first encode the CXR images using the pre-trained
VAE, given by:

Zt0 = E(XCXR
t0 ), Zt1 = E(XCXR

t1 ). (7)

Essentially, the latent CXR generation requires us to estimate the underlying data distribu-
tion q(Zt1 |Zt0 ,XEHR

(t0,t1)
). The LDM approximates this distribution via a model distribution

pθ(Z
(0)
t1 |Zt0 ,XEHR

(t0,t1)
), where Z

(0)
t1 represents the prior of a CXR in the latent space encoded by

the VAE.

We follow prior work on diffusion models to learn our LDM, which involves two processes [32, 22].
In the diffusion process, we gradually add Gaussian noise to Z

(0)
t1 in N steps, producing a sequence

of noisy representations Z(1)
t1 ,Z

(2)
t1 , ...,Z

(N)
t1 , with the transition probability given by:

q(Z
(n)
t1 |Z(n−1)

t1 ) = N (Z
(n)
t1 ;

√
1− βnZ

n−1
t1 , βnI),

q(Z
(n)
t1 |Z(0)

t1 ) = N (Z
(n)
t1 ;

√
ᾱnZ

(0)
t1 , (1− ᾱn)ϵ),

(8)

5https://github.com/CompVis/latent-diffusion, open source under MIT license.
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where ϵ ∼ N (0, I) represents the added noise. The noise level is represented by ᾱn :=
∏n
s=1(1−βs),

where {βn ∈ (0, 1)}Nn=1 is a pre-defined variance schedule. At step N , Z(N)
t1 ∼ N (0, I) follows an

isotropic Gaussian distribution. In the denoising process, we start with a sample from the isotropic
Gaussian distribution ZNt1 ∼ N (0, I) and gradually recreate the latent CXR Z

(0)
t1 , conditioned on the

reference latent CXR, Zt0 , and the EHR data in between, XEHR
(t0,t1)

. The generation process is given
by:

pθ
(
Z

(0:N)
t1

|Zt0 ,X
EHR
(t0,t1)

)
= p

(
Z

(N)
t1

) N∏
n=1

pθ
(
Z

(n−1)
t1

|Z(n)
t1

,Zt0 ,X
EHR
(t0,t1)

)
, (9)

where

pθ
(
Z

(n−1)
t1

|Z(n)
t1

,Zt0 ,X
EHR
(t0,t1)

)
= N

(
Z

(n−1)
t1

;µθ

(
Z

(n)
t1

, n,Zt0 ,X
EHR
(t0,t1)

)
,σ2

nI
)
, (10)

and the mean µθ and variance σ2
n are parameterized by

µθ

(
Z

(n)
t1

, n,Zt0 ,X
EHR
(t0,t1)

)
=

1√
αn

(
Z

(n)
t1

− βn√
1− ᾱn

ϵθ
(
Z

(n)
t1

,Zt0 , f
EHR
cond (X

EHR
(t0,t1)), n

))
, (11)

and
σ2
n =

1− ᾱn−1

1− ᾱn
βn, (12)

where fEHR
cond (·) is the encoder for the irregular EHR time series. ϵθ

(
Z

(n)
t1 ,Zt0 , f

EHR
cond (X

EHR
(t0,t1)

), n
)

denotes the generation noise predicted by the neural backbone.

Prediction stage in DDL-CXR In the prediction stage, the EHR data is encoded using a one-layer
Transformer with a model dimension of 128. We set the dimension of the feedforward layers to 512.
The context dimension is also set to 128, and the number of attention heads is 8. We use another
Transformer with the same architecture to encode the generated latent CXR Z1. We use a ResNet-34
model to encode the last available CXR image X0. The encoded EHR, the encoded latent CXR Z1,
as well as the encoded X0 are fed into a self-attention layer for final prediction.

A.2 Details of Data Preprocessing

EHR data preprocess We follow a similar EHR data extraction and processing pipeline as [10]
but change the sampling frequency from 2h to 1h and introduce two static variables, age, and gender.
We extract 17 clinical time series variables (12 continuous and 5 categorical) with discretization
and standardization processes exactly the same as in [10]. In addition to the 17 clinical time series
variables mentioned in the paper [10], e.g. five categorical (capillary refill rate, Glasgow Coma
Scale eye-opening, Glasgow Coma Scale motor response, Glasgow Coma Scale verbal response,
and Glasgow Coma Scale total) and 12 continuous (diastolic blood pressure, fraction of inspired
oxygen, glucose, heart rate, height, mean blood pressure, oxygen saturation, respiratory rate, systolic
blood pressure, temperature, weight, and pH), we introduce two crucial static variables (age and
gender) to represent the demographic information of a patient, as patient demographic information is
vital for achieving accurate predictions [55]. To construct our dataset, we sampled time series data
at hourly intervals, followed by discretization and standardization processes. We adopt masks to
handle missing values in time series to capture the missing pattern, acknowledging that the absence
of medical data might be intentional and non-random, driven by caregivers [55].

Data Cohort and Potential Selection Bias We summarize the number of samples in the LDM
stage and the prediction stage in Table 6. The label prevalences of the two prediction tasks are
summarized in Tables 7 and 8. We include the disease prevalence in Table 8 and data cohort statistics
in Table 9. Here we summarize a few key points:

• The statistics of the clinical variables are close to each other, suggesting that patients in our data
cohort generally have a similar distribution as that in the entire database.

• The overall disease phenotype prevalence is similar.
• For a few thorax-related diseases, our data cohort has a slightly higher prevalence, suggesting that

potential selection bias exists.
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Table 6: Data statistics in training, validation, and testing sets for each stage.

Stage Training Validation Test

LDM stage 8545 1392 2353
Prediction stage 5142 861 1483

Table 7: Label prevalence of in-hospital mortality prediction task.
Training Validation Test

Negative 4396 737 1264
Positive 746 124 219

Negative/Positive 5.89 5.94 5.77

Table 8: Number of samples and prevalence of disease phenotypes in training, validation, and testing
sets during the prediction stage. The prevalence of disease phenotypes among all ICU stays from
MIMIC-IV database having LoS ≥ 48h is given in the last column.

Disease Label Training Validation Testing Training
Prevalence

Validation
Prevalence

Testing
Prevalence

MIMIC-IV
Prevalence

Acute and unspecified renal failure 1932 342 561 0.38 0.40 0.38 0.34
Acute cerebrovascular disease 467 88 113 0.09 0.10 0.08 0.07

Acute myocardial infarction 449 79 131 0.09 0.09 0.09 0.09
Cardiac dysrhythmias 2049 361 601 0.40 0.42 0.41 0.38

Chronic kidney disease 1258 216 399 0.24 0.25 0.27 0.23
Chronic obstructive pulmonary disease 860 151 261 0.17 0.18 0.18 0.16
Complications of surgical/medical care 1218 209 372 0.24 0.24 0.25 0.25

Conduction disorders 581 92 176 0.11 0.11 0.12 0.12
Congestive heart failure; nonhypertensive 1674 288 489 0.33 0.33 0.33 0.30

Coronary atherosclerosis and related 1605 257 491 0.31 0.30 0.33 0.33
Diabetes mellitus with complications 646 105 204 0.13 0.12 0.14 0.12

Diabetes mellitus without complication 1068 182 325 0.21 0.21 0.22 0.18
Disorders of lipid metabolism 2047 349 595 0.40 0.41 0.40 0.41

Essential hypertension 2255 383 611 0.44 0.44 0.41 0.42
Fluid and electrolyte disorders 2685 455 749 0.52 0.53 0.51 0.45

Gastrointestinal hemorrhage 354 68 129 0.07 0.08 0.09 0.07
Hypertension with complications 1129 202 361 0.22 0.23 0.24 0.24

Other liver diseases 899 147 279 0.17 0.17 0.19 0.15
Other lower respiratory disease 718 109 212 0.14 0.13 0.14 0.12
Other upper respiratory disease 376 67 96 0.07 0.08 0.06 0.07

Pleurisy; pneumothorax; pulmonary collapse 553 99 141 0.11 0.11 0.10 0.09
Pneumonia 1149 187 333 0.22 0.22 0.22 0.18

Respiratory failure; insufficiency; arrest (adult) 1741 307 506 0.34 0.36 0.34 0.25
Septicemia (except in labor) 1386 224 425 0.27 0.26 0.29 0.21

Shock 1157 192 357 0.23 0.22 0.24 0.18

Table 9: Statistics of data cohort. We report mean±std for continuous variables and the mode for
categorical variables.

Variables DDL-CXR
Cohort

MIMIC-IV
Database

Sample size 5142 26330
Age 63.9±16.6 64.3±16.4

Gender (Men, %) 54.98 55.99
Diastolic blood pressure 62.2±10.1 62.8±10.5

Fraction inspired oxygen 0.4±0.2 0.4±0.2
Glucose 141.1±41.7 139±39.6

Heart Rate 87.3±15.4 85.6±15
Height 170±1.1 170±1.5

Mean blood pressure 77.1±10 78.3±10.4
Oxygen saturation 96.7±2 96.5±2

Respiratory rate 19.8±3.7 19.5±3.7
Systolic blood pressure 118.3±15.2 118.6±15.6

Temperature 37±0.4 36.9±0.4
Weight 80.8±20 81.5±19.5

pH 7.2±0.3 7.2±0.3
Capillary refill rate Normal Normal
GCS - eye opening Spontaneously Spontaneously

GCS - motor response Obeys Commands Obeys Commands
GCS – verbal response Oriented Oriented

GCS - total 15 15
In-hospital mortality (%) 15 12
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B Additional Results

B.1 AUPRC of Mortality Prediction

We summarize the AUPRC score for the mortality prediction task in Table 10.

Table 10: The AUPRC score for mortality prediction for overall and different time gaps. δ represents
the time gap between the generation (or prediction) time and the occurrence time of the last available
CXR. Numbers in bold indicate the best performance in each column. DDL-CXR outperforms all
baselines in overall and δ < 24h settings.

Overall δ < 12 12 ≤ δ < 24 24 ≤ δ < 36 δ ≥ 36
prevalence 14.7% 16.6% 19% 15.9% 9.26%

Uni-EHR [23] 0.498 ±0.007 0.579 ±0.009 0.541 ±0.016 0.416 ±0.018 0.411 ±0.005
MMTM [52] 0.422 ±0.014 0.430 ±0.010 0.458 ±0.020 0.476 ±0.021 0.374 ±0.012

DAFT [9] 0.448 ±0.004 0.460 ±0.011 0.478 ±0.010 0.508 ±0.015 0.395 ±0.007
MedFuse [10] 0.443 ±0.009 0.498 ±0.013 0.484 ±0.023 0.432 ±0.015 0.355 ±0.008
DrFuse [13] 0.460 ±0.004 0.506 ±0.033 0.356 ±0.034 0.382 ±0.072 0.399 ±0.019

GAN-based [53] 0.505 ±0.018 0.567 ±0.015 0.551 ±0.018 0.414 ±0.041 0.442 ±0.034
DDL-CXR (ours) 0.523 ±0.011 0.610 ±0.015 0.566 ±0.013 0.429 ±0.009 0.440 ±0.008

B.2 AUROC of Phenotype Prediction by Disease Label

We summarize the AUROC score for the phenotype prediction task by disease label in Table 11.

Table 11: The AUROC score by disease labels. Results show that DDL-CXR effectively tackles the
asynchronicity issue in clinical multi-modal fusion, achieving the highest average rank across all
disease labels.

Uni-EHR [23] MMTM [52] DAFT [9] MedFuse [10] DrFuse [13] GAN-based [53] DDL-CXR (ours)

Acute renal failure 0.718±0.003 0.706±0.004 0.712±0.003 0.706±0.004 0.702±0.003 0.710±0.005 0.723±0.004
Acute cerebrovascular disease 0.880±0.004 0.893±0.003 0.888±0.009 0.895±0.005 0.873±0.009 0.875±0.011 0.870±0.008
Acute myocardial infarction 0.712±0.006 0.717±0.005 0.722±0.009 0.724±0.009 0.730±0.013 0.701±0.004 0.735±0.009
Cardiac dysrhythmias 0.677±0.005 0.648±0.004 0.656±0.004 0.667±0.010 0.682±0.006 0.673±0.005 0.703±0.007
Chronic kidney disease 0.745±0.008 0.735±0.008 0.732±0.004 0.720±0.004 0.710±0.011 0.748±0.005 0.768±0.006
COPD and bronchiectasis 0.706±0.006 0.689±0.014 0.707±0.012 0.686±0.006 0.733±0.011 0.738±0.003 0.740±0.003
Surgical complications 0.636±0.007 0.656±0.008 0.648±0.006 0.662±0.008 0.649±0.004 0.610±0.013 0.649±0.003
Conduction disorders 0.741±0.006 0.717±0.011 0.735±0.012 0.724±0.008 0.847±0.011 0.842±0.006 0.860±0.005
CHF; nonhypertensive 0.771±0.004 0.777±0.010 0.796±0.007 0.779±0.008 0.797±0.004 0.798±0.006 0.820±0.005
Coronary atherosclerosis & others 0.740±0.005 0.728±0.003 0.733±0.007 0.721±0.008 0.742±0.006 0.753±0.007 0.764±0.006
DM with complications 0.858±0.006 0.853±0.006 0.851±0.002 0.845±0.005 0.849±0.006 0.851±0.005 0.855±0.004
DM without complication 0.716±0.005 0.707±0.007 0.694±0.015 0.704±0.003 0.712±0.008 0.707±0.008 0.717±0.009
Disorders of lipid metabolism 0.704±0.007 0.677±0.005 0.676±0.006 0.677±0.003 0.696±0.008 0.708±0.006 0.714±0.007
Essential hypertension 0.662±0.007 0.609±0.002 0.625±0.005 0.632±0.006 0.612±0.003 0.659±0.008 0.667±0.008
Fluid and electrolyte disorders 0.671±0.002 0.674±0.003 0.671±0.003 0.665±0.006 0.671±0.004 0.674±0.007 0.677±0.007
Gastrointestinal hemorrhage 0.664±0.005 0.635±0.017 0.653±0.018 0.664±0.005 0.677±0.013 0.662±0.008 0.678±0.009
Secondary hypertension 0.725±0.007 0.726±0.007 0.722±0.005 0.716±0.004 0.714±0.010 0.734±0.005 0.752±0.004
Other liver diseases 0.681±0.007 0.680±0.005 0.693±0.006 0.690±0.004 0.697±0.009 0.700±0.010 0.708±0.007
Other lower respiratory disease 0.596±0.004 0.606±0.007 0.608±0.010 0.615±0.006 0.634±0.015 0.619±0.019 0.614±0.011
Other upper respiratory disease 0.691±0.009 0.691±0.009 0.711±0.006 0.726±0.010 0.741±0.013 0.699±0.019 0.700±0.017
Pleurisy; pneumothorax 0.634±0.005 0.647±0.013 0.674±0.014 0.673±0.008 0.687±0.014 0.670±0.027 0.666±0.010
Pneumonia 0.704±0.006 0.725±0.004 0.723±0.007 0.714±0.005 0.715±0.008 0.707±0.004 0.719±0.008
Respiratory failure 0.800±0.005 0.816±0.005 0.815±0.003 0.809±0.005 0.810±0.004 0.805±0.004 0.811±0.008
Septicemia (except in labor) 0.764±0.005 0.757±0.005 0.760±0.007 0.741±0.005 0.749±0.003 0.763±0.004 0.774±0.005
Shock 0.803±0.004 0.803±0.005 0.805±0.006 0.807±0.003 0.800±0.008 0.801±0.007 0.806±0.007

Average Rank 4.56 4.76 4.32 4.64 3.88 3.84 2
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B.3 AUPRC of Phenotype Prediction by Disease Label

We summarize the AUPRC score for the phenotype prediction task by disease label in Table 12.

Table 12: The AUPRC score by disease labels with detailed standard deviation.
Uni-EHR [23] MMTM [52] DAFT [9] MedFuse [10] DrFuse [13] GAN-based [53] DDL-CXR (ours)

Acute renal failure 0.573±0.004 0.568±0.007 0.572±0.006 0.565±0.005 0.564±0.005 0.563±0.005 0.588±0.008
Acute cerebrovascular disease 0.425±0.010 0.418±0.010 0.419±0.017 0.434±0.017 0.399±0.019 0.446±0.010 0.416±0.018
Acute myocardial infarction 0.185±0.008 0.192±0.004 0.187±0.009 0.219±0.015 0.209±0.013 0.171±0.008 0.206±0.020
Cardiac dysrhythmias 0.579±0.006 0.532±0.015 0.548±0.005 0.560±0.012 0.584±0.009 0.561±0.008 0.605±0.009
Chronic kidney disease 0.515±0.016 0.505±0.011 0.515±0.009 0.497±0.009 0.477±0.016 0.501±0.006 0.538±0.010
COPD and bronchiectasis 0.319±0.012 0.327±0.021 0.342±0.011 0.344±0.004 0.405±0.010 0.372±0.012 0.382±0.004
Surgical complications 0.370±0.009 0.379±0.006 0.385±0.007 0.381±0.006 0.377±0.003 0.344±0.006 0.388±0.004
Conduction disorders 0.276±0.006 0.287±0.007 0.298±0.013 0.286±0.016 0.632±0.010 0.609±0.004 0.633±0.003
CHF; nonhypertensive 0.593±0.007 0.619±0.019 0.647±0.017 0.631±0.011 0.661±0.015 0.652±0.012 0.682±0.009
CAD 0.560±0.007 0.540±0.006 0.556±0.008 0.544±0.009 0.581±0.012 0.590±0.014 0.611±0.010
DM with complications 0.562±0.013 0.569±0.016 0.552±0.006 0.561±0.012 0.550±0.015 0.552±0.019 0.524±0.007
DM without complication 0.370±0.005 0.367±0.013 0.343±0.014 0.356±0.006 0.369±0.010 0.352±0.012 0.368±0.008
Disorders of lipid metabolism 0.594±0.007 0.576±0.002 0.570±0.009 0.566±0.003 0.584±0.010 0.587±0.008 0.601±0.010
Essential hypertension 0.551±0.006 0.519±0.003 0.525±0.005 0.518±0.009 0.502±0.005 0.554±0.011 0.561±0.011
Fluid and electrolyte disorders 0.655±0.003 0.664±0.005 0.662±0.004 0.656±0.008 0.658±0.006 0.662±0.012 0.672±0.008
Gastrointestinal hemorrhage 0.180±0.013 0.142±0.014 0.162±0.019 0.192±0.014 0.191±0.014 0.151±0.008 0.180±0.009
Secondary hypertension 0.463±0.012 0.455±0.007 0.452±0.007 0.453±0.013 0.437±0.012 0.451±0.011 0.484±0.009
Other liver diseases 0.316±0.013 0.316±0.010 0.341±0.007 0.344±0.008 0.372±0.014 0.362±0.018 0.378±0.009
Other lower respiratory disease 0.219±0.003 0.209±0.012 0.206±0.008 0.223±0.005 0.255±0.011 0.236±0.008 0.242±0.007
Other upper respiratory disease 0.166±0.015 0.137±0.009 0.166±0.019 0.202±0.014 0.274±0.018 0.196±0.019 0.234±0.059
Pleurisy; pneumothorax 0.143±0.005 0.145±0.008 0.159±0.009 0.159±0.013 0.172±0.007 0.171±0.022 0.166±0.009
Pneumonia 0.412±0.012 0.437±0.005 0.429±0.008 0.419±0.008 0.406±0.016 0.415±0.010 0.428±0.013
Respiratory failure 0.655±0.009 0.686±0.011 0.674±0.004 0.671±0.009 0.692±0.005 0.663±0.007 0.669±0.012
Septicemia (except in labor) 0.585±0.008 0.573±0.012 0.580±0.014 0.565±0.009 0.562±0.013 0.573±0.009 0.603±0.010
Shock 0.590±0.002 0.584±0.005 0.582±0.009 0.592±0.008 0.572±0.021 0.587±0.011 0.586±0.013

Average Rank 4.4 4.64 4.4 4.24 3.88 4.16 2.28

B.4 Ablation Study for a Reduced Percentage of Data

To investigate the sensitivity to the amount of training data of the proposed model and the main
baselines, we conduct experiments with varying training sizes. The results are summarized in Table 13
and Table 14. Results show that DDL-CXR consistently outperforms baseline methods by a large
margin, demonstrating its robustness against training data size.

Table 13: Performance of the phenotype classification task with different training sizes. Results are
reported in mean±std.

AUPRC AUROC

100% 75% 50% 100% 75% 50%

Uni-EHR [23] 0.434 ±0.009 0.428 ±0.011 0.419 ±0.010 0.720 ±0.006 0.711 ±0.008 0.706 ±0.006
MMTM [52] 0.430 ±0.005 0.421 ±0.004 0.406 ±0.003 0.715 ±0.003 0.707 ±0.002 0.694 ±0.002

DAFT [9] 0.435 ±0.002 0.422 ±0.004 0.407 ±0.003 0.720 ±0.003 0.709 ±0.002 0.699 ±0.003
MedFuse [10] 0.437 ±0.001 0.420 ±0.004 0.412 ±0.002 0.718 ±0.002 0.707 ±0.003 0.700 ±0.001
DrFuse [13] 0.459 ±0.003 0.442 ±0.005 0.431 ±0.004 0.729 ±0.004 0.717 ±0.005 0.709 ±0.004
DDL-CXR 0.470 ±0.003 0.457 ±0.003 0.433 ±0.011 0.740 ±0.002 0.734 ±0.002 0.715 ±0.005

Table 14: Performance of the mortality prediction task with different training sizes. Results are
reported in mean±std.

AUPRC AUROC

100% 75% 50% 100% 75% 50%

Uni-EHR [23] 0.498 ±0.007 0.437 ±0.011 0.429 ±0.012 0.815 ±0.007 0.791 ±0.005 0.782 ±0.013
MMTM [52] 0.422 ±0.014 0.405 ±0.010 0.399 ±0.012 0.785 ±0.004 0.782 ±0.002 0.775 ±0.005

DAFT [9] 0.448 ±0.004 0.428 ±0.006 0.413 ±0.005 0.800 ±0.003 0.790 ±0.004 0.778 ±0.007
MedFuse [10] 0.443 ±0.009 0.420 ±0.015 0.411 ±0.009 0.793 ±0.003 0.784 ±0.004 0.775 ±0.005
DrFuse [13] 0.460 ±0.004 0.430 ±0.013 0.415 ±0.030 0.773 ±0.008 0.755 ±0.008 0.766 ±0.030
DDL-CXR 0.523 ±0.011 0.474 ±0.009 0.466 ±0.012 0.822 ±0.009 0.801 ±0.008 0.790 ±0.008
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B.5 Additional Case Studies

We demonstrate additional case studies in Fig. 4 – Fig. 9. We retrieve findings from the radiology
reports. The case studies show that DDL-CXR could generate CXR images that align with the disease
progression of the individual patient.

(a)Initial radiology findings: the
chest demonstrates low lung vol-
umes, which results in bronchovascu-
lar crowding. Bibasilar opacities may
reflect atelectasis There is a probable
small left pleural effusion.

(b) Radiology findings after 8 hours:
There is interval progression of inter-
stitial pulmonary edema and potential
interval increase in bibasal consolida-
tions.

(c) CXR image generated by DDL-CXR
given the initial CXR image shown
in (a) and the EHR data within the 8
hours.

Figure 4: Case Study of Sample #1

(a) Heart remains enlarged with left
ventricular prominence. Interval ap-
pearance of linear opacity in the right
mid lung which may reflect fluid locu-
lated within the minor fissure or possi-
bly subsegmental atelectasis.

(b) Radiology findings after 18 hours:
There are fluctuating patchy opacities
at the right lung base suggestive of at-
electasis. Low volumes with crowding
of the pulmonary vasculature.

(c) CXR image generated by DDL-CXR
given the initial CXR image shown in
(a) and the EHR data within the 18
hours.

Figure 5: Case Study of Sample #2

(a) The dense atelectatic streaks in the
left mid zone has decreased. The bi-
lateral chest tubes remain in place and
there is no evidence of pneumothorax.

(b) Radiology findings after 13 hours:
No left pneumothorax is appreciated.
The hemidiaphragms are now sharp
be seen with only mild atelectatic
changes at the bases.

(c) CXR image generated by DDL-CXR
given the initial CXR image shown in
(a) and the EHR data within the 13
hours.

Figure 6: Case Study of Sample #3
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(a) Initial radiology findings:The lung
volumes are low. Mild cardiomegaly
without pulmonary edema. No pleural
effusions.

(b) Radiology findings after 13 hours:
There is mild bibasilar atelectasis.
There is no pneumothorax or large
pleural effusion.

(c) CXR image generated by DDL-CXR
given the initial CXR image shown in
(a) and the EHR data within the 13
hours.

Figure 7: Case Study of Sample #5

(a) Initial radiology findings: The
lungs bilaterally demonstrate severe,
extensive rounded nodular densities.

(b) Radiology findings after 31 hours:
Bilateral nodular parenchymal opaci-
ties are unchanged in this patient with
known lymphoma. There are likely
layering effusions, left greater than
right.

(c) CXR image generated by DDL-CXR
given the initial CXR image shown in
(a) and the EHR data within the 31
hours.

Figure 8: Case Study of Sample #6

(a)Initial radiology findings: Heart
size is normal. Mediastinal and hilar
contours are within normal limits. Pul-
monary vasculature is normal.

(b) Radiology findings after 29 hours:
Small amount of right pleural effusion
is present, more conspicuous than on
the prior study.

(c) CXR image generated by DDL-CXR
given the initial CXR image shown in
(a) and the EHR data within the 29
hours.

Figure 9: Case Study of Sample #7
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations in Section 5. We will address these
limitations in future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The related codes for reproducing the main experimental results are submitted
in supplementary materials and the results are discussed in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit the codes as supplemental material to the paper submission. The
codes will be made publicly available upon paper acceptance. The datasets used in the paper
are open-source and publicly accessible.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details of data splits and the hyperparameter searching space are illustrated
in Section 4.1 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are reported by taking the average of five runs of model training
along with the standard deviations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details of computer resources for the experiments are given in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform in every respect with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential societal impacts and negative societal
impacts of the work performed in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credited all code, data, and models used in the paper. The licenses
are explicitly mentioned.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
The paper utilizes de-identified public datasets.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The study involves only public de-identified datasets and no IRB approvals
needed.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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