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Abstract—In recent years, hypergraph representation learning
(HGRL) has become a focus of academic research, which aims to
extract high-order topological patterns and attributes from hy-
pergraph into low-dimensional representation vectors. However,
most existing methods ignore the uncertainties in hypergraph
data, thus failing to effectively leverage attribute features hidden
in hypergraphs. For example, in a citation hypergraph, there
exist uncertain semantics in node attributes regarding to papers.
Therefore, we propose a new Fuzzy HGRL model, called FAHGN,
which introduces fuzzy logic to grasp the attribute uncertainties.
Specifically, the proposed FAHGN fuzzifies node attributes of the
hypergraph as fuzzy input hypergraph signals, and makes full
use of a spectral graph convolution operator to aggregate the
fuzzy input signals to generate node representations. Through
this way, it effectively considers feature-level uncertainties in
hypergraphs and provides more expressive representations for
effectively achieving downstream tasks. The experimental results
on five real-world datasets validate the effectiveness of the
proposed FAHGN against competitive baseline models.

Index Terms—Hypergraph, Fuzzy logic, Deep representation
learning

I. INTRODUCTION

Graph network have attracted increasing attention in recent
years, leveraging pairwise relations defined between nodes to
characterize the relationships between entities in real-world
systems. However, the relationships among entities in reality
extend far beyond simple pairwise connections, making it
challenging to effectively model them with basic topological
structures. For instance, in citation networks, a single paper
may be cited by multiple other papers. Due to the inadequacy
of traditional pairwise graph structures to accurately repre-
sent such higher-order group relationships, hypergraphs have
emerged as a more powerful tool to depict these complexities.
They provide more effective analytical insights for applications
across various fields, including social network analysis [1],
traffic flow control [2], product recommendation [3], knowl-
edge graph completion [4], and biomolecular research [5].

To mine knowledge from hypergraph data, hypergraph rep-
resentation learning serves as a promising solution, which aims
to learn representation vectors for each node by extracting
high-order topological patterns and attribute features hidden in
hypergraphs. The concept of hypergraph learning, formulated
as a propagation process on hypergraph structures, was first
introduced by Zhou et al. [6], where spectral analysis meth-

ods on hypergraphs were employed. These methods typically
involve rigorous mathematical derivations, which can confer
a high degree of analytical precision. However, this rigor also
imposes several limitations. In contrast, the advent of neural
networks has reignited research into hypergraph learning.
Feng et al. [7] were the first to propose hypergraph neural
networks (HGNN), naturally extending the spectral methods
of graph convolutional neural networks to hypergraphs and
devising hypergraph convolution. Yadati et al. [8] proposes
a new method of training graph convolutional networks on
hypergraphs (HyperGCN), further incorporating hyperedge
messages through intermediaries and presenting a generalized
hypergraph Laplacian matrix. Johannes et al. [9] present a
hypergraph contrastive learning framework (HyperCL), which
leverages contrastive loss functions to capture both local and
global structural information from hypergraphs. This method
significantly enhances the robustness and generalization of
hypergraph embeddings. Subsequently, numerous hypergraph-
based methods have emerged and have been extensively
applied in various domains such as computer vision [10],
recommendation systems [11], and biochemistry [12]. These
methods have achieved notable success and outperformed
graph-based approaches, underscoring the potential value of
in-depth research into HGRL.

However, existing hypergraph-based models overlook the
uncertainties in the hypergraph data, particularly the uncer-
tainties in attributes that are crucial for HGRL. For example,
in citation hypergraphs, there exist uncertain semantics in
node attributes regarding papers, which may interfere with
the accuracy of the message-passing process. Additionally,
typographical errors in citation networks may contaminate the
node attributes of keywords, introducing noise into message
aggregation and leading to indistinguishable representations.
To address this issue, we propose a new HGRL model,
called FAHGN, by incorporating fuzzy logic to address the
uncertainties in attributes of hypergraphs. Specifically, the
proposed FAHGN employs fuzzy logic systems to fuzzify
the node attributes of hypergraphs as fuzzy input hypergraph
signals, thereby capturing the vagueness of attribute semantics
and alleviating the influence of noise in these attributes.
Subsequently, spectral convolution operators are used for ag-
gregating the fuzzy input hypergraph signals to generate node



representations. In this way, it sufficiently takes into account
the attribute uncertainties in hypergraphs and provides more
expressive representations for effectively achieving down-
stream tasks. Our contributions are summarized as follows:

• We propose a novel hypergraph representation learning
model, referred to as FAHGN, which integrates fuzzy
logic to effectively address the inherent uncertainties
present in hypergraph data.

• This model utilizes fuzzy logic systems to facilitate the
fuzzification of attributes, thereby capturing the inherent
fuzziness of attribute semantics and mitigating the impact
of noise associated with these attributes. Consequently,
this enhancement leads to a more precise message passing
and aggregation process within the hypergraph convolu-
tion framework, as implemented by a spectral hypergraph
convolution network.

• Experimental results obtained from five real-world
datasets validate the effectiveness of the proposed
FAHGN, demonstrating its superiority compared to other
strong methods.

The rest of the paper is organized as follow. Section II intro-
duces the related work, in terms of hypergraph representation
learning and fuzzy deep learning, followed by preliminaries
presented in Section III. We illustrate the proposed FAHGN
in Section IV, and report and analyze the experimental results
in Section V. Finally, the conclusion of this work is described
in Section VI.

II. RELATIVE WORK

A. Hypergraph learning

Hypergraphs demonstrate a stronger capability to model
complex relationships among groups of nodes in real-world
systems, with hyperedges capable of connecting an arbitrary
number of nodes, when compared to traditional pairwise
graphs. Recently, researchers have increasingly focused on
hypergraph learning, achieving significant progress in various
application scenarios, such as recommendation systems [11],
biomolecular prediction in biochemistry [12], and sentiment
analysis in natural language processing [13]. For the first
time, Feng et al. [5] proposed a hypergraph neural network
for learning data representations (HGNN), which incorpo-
rates a hyperedge convolution layer based on the hypergraph
Laplacian, inspired by spectral graph neural networks. Yadati
et al. [8] directly applied graph convolution operators [14]
on hypergraphs in an effort to approximate hyperedges as
pairwise edges. Dong et al. [15] suggested leveraging non-
linear activation functions to differentiate the significance of
each hyperedge and node within a hypergraph, effectively
controlling message passing. Addressing inductive problems
related to unseen nodes, Arya et al. [16] proposed a novel mes-
sage passing scheme to explore intra-hyperedge relationships
and inter-hyperedge connections. Payne [17] also considered
the joint influence of hyperedge context and permutation-
invariant node attributes in inductive hypergraph represen-
tation learning. However, these methods frequently neglect

the uncertainties inherent in hypergraphs, which may lead
to suboptimal representations and, consequently, adversely
impact downstream tasks.

B. Fuzzy deep learning

Although various academic disciplines have benefited from
deep learning models extracting feature representations from
data in recent years, the high-dimensional complexity of data
poses a primary challenge in data processing. Real-world data
often contain noise and ambiguity, leading to fuzziness in the
data [18], which presents significant difficulties for feature-
based representations of data. Fuzzy logic, as a powerful
tool, can assist deep learning models in compensating for
shortcomings in handling fuzzy data [19]. Previous studies
have demonstrated the effectiveness of combining fuzzy logic
with deep learning in areas such as simplifying fuzzy rules
[20], data processing [21], and handling data uncertainty [22].
Among these studies, the fuzzy neural network known as
SVFNN [23], which utilizes support vectors as the basis for
model classification, effectively combines fuzzy logic and neu-
ral networks to handle uncertain information, achieving high
classification accuracy. Liu et al. [24] introduced a fuzzy peak
neural network that integrates fuzzy logic with convolutional
neural networks, effectively improving the performance of
high-dimensional feature datasets. These studies demonstrate
the potential of combining fuzzy logic with deep learning,
opening up new avenues for processing real-world data and
improving model interpretability. Therefore, in this work, we
tend to combine fuzzy logic and HGRL to capturing the
fuzziness of attribute semantics and weakening the influence
of noisy attributes.

III. PRELIMINARIES

A. Hypergraph

Given a hypergraph denoted as G(V,E,W ), V =
{v1, v2, ..., vn} denotes the set of n nodes, E =
{e1, e2, ..., em} represents a set of non-empty multi-
element subsets of V called hyperedges, and W =
{we,1, we,2, .....we,m} indicates the weights of m hyperedges.
For the node feature matrix of the hypergraph there is
X = x1, x2, ....xn, X ∈ Rn×d , and for the hypergraph the
hyperedge identity matrix has E = e1, e2, ....em, E ∈ Rm×d.
A hypergraph is usually represented by an incidence matrix,
and the elements of the incidence matrix can be defined by

h(v, e) =

{
1, if v ∈ e

0, if v /∈ e.
(1)

The node degree of a hypergraph indicates the weighted num-
ber of hyperedges connected to a node, and the node degree
can be given by d(v) =

∑
e∈E weh(v, e). While the degree

of a hyperedge represents the number of nodes connected to
that hyperedge, which can be defined as δ(e) =

∑
v∈V h(v, e).

Notably, the node degree matrix Dv and the hyperedge degree
matrix De are diagonal matrices consisting of node degrees
d(v) and hyperedge degrees d(e), respectively.



Fig. 1. The framework diagram of a fuzzy logic system.

B. Fuzzy logic system

Fuzzy logic systems based on If-Then rules [25] are fre-
quently employed in controlling algorithms and model de-
velopments, as they closely align with human perception
and cognition. In this section, we will outline the general
framework of fuzzy logic systems based on If-Then rules, as
depicted in Fig. 1.

Fuzzification involves mapping the clear input values to
a fuzzy set based on their membership function in a fuzzy
logic system. A single instance fuzzifier is one of the simplest
methods to compute the degree of membership, while more
complex methods such as Gaussian, Trapezoidal and Trigono-
metric functions are more commonly used. Taking an example
of Gaussian function, we give its definition as

F (µ, σ, x) = exp

[
− (x− µ)2

2σ2

]
, (2)

where x is the input of the fuzzy system, while µ and σ
represent the mean and variance of the Gaussian function.

Fuzzy Rule Base is the core component of a fuzzy logic
system that contains If-Then rules. After fuzzifying the inputs,
we need to construct rules to combine and compute firing
level using fuzzy logic operations for decision making. The
rules of fuzzy logic contain a series of logical statements,
usually consisting of If-Then parts. The If part is the premises
(antecedents) and the Then part is the conclusion (consequent),
which reveal the condition-consequence relationship. The rule
structure is given by

Ri : If x1 is F i
1 and · · · and xj is F i

j ,Then yi is Gi, (3)

where xj is the input of the fuzzy system, yi denotes the rule
output, and Ri represents the ith fuzzy rule. G and F are
membership functions, i = 1, ...,M, j = 1, ..., N where M is
the number of fuzzy rules and N is the number of antecedents.

Inference Engine determines the degree of match between
fuzzy inputs and rules, serving as the algebraic mechanism
required to operate on fuzzy sets. Similar to traditional logical
operations, basic fuzzy logic operations include union (s-
norm), intersection (t-norm), and complement (c-norm). Defin-
ing two membership functions, µF1 and µF2 as

F1 =

∫
x∈R

µF1(x)dx, F2 =

∫
x∈R

µF2(x)dx, (4)

their fuzzy logic operations are defined as

µF1∪F2(x) = max [µF1(x), µF2(x)] , x ∈ R
µF1∩F2(x) = min [µF1(x), µF2(x)]

µF̄ (x) = 1− µF (x). (5)

Defuzzification aimes at transforming fuzzy conclusions
into clear and specific outputs suitable for particular appli-
cation scenarios. In the defuzzification process, the Centroid
and the Center-of-Sets defuzzifiers are the most popular two
techniques. The Centroid defuzzifier obtains clear values by
identifying the centroid generated by the union of fuzzy sets
of results. It samples K points from result Gout , and calculates
the centroid according to

yCentroid =

∑N
i=1 yiµGout (yi)∑N
i=1 µGout (yi)

. (6)

As for the Center-of-Sets defuzzifier, it is necessary to deter-
mine the centroid of each fuzzy set of results, followed by
computation to obtain clear values, which can be formulated
as

yCoS =

∑M
i=1 center

igi∑M
i=1 g

i
, (7)

where N represents the number of fuzzy rules, gi denotes the
firing level of the i− th rule, and centeri signifies the center
of the i− th fuzzy set.

IV. METHOD

In this section, we introduce the proposed FAHGN in de-
tailed, including attributes fuzzification in hypergraph, spectral
hypergraph convolution operator, and learning algorithm. The
framework of the model is shown in Fig. 2.

A. Hypergraph graph convolution with attribute fuzzification

Considering the limitations of existing methods as described
in Section I, we introduce fuzzy logic to characterize the fuzzi-
ness of attributes and weaken the influence of attribute noises.
Specifically, we first define a fuzzy membership function for
each attribute elements of each node xi as

fuzzyj (xi,j) = exp

[
−1

2

(
xi,j − νj

σj

)2
]
, j = 1, 2, . . . , d,

(8)

where νj and σj are the means and the standard deviations
of the Gaussian membership functions, respectively. They are
learnable parameters and can be initialized randomly. Notably,
only one membership function is incapable to insufficiently the
fuzziness of attributes. Therefore, we employ more than one
membership function for each attribute, which can be defined
as

F l
i,j,k = fuzzykj

(
xl
i,j

)
, k = 1, 2, . . . , R, j = 1, 2, · · · , dl,

(9)

to effectively explore the fuzziness of attributes and improve
the variety of the message generation. After calculating the



Fig. 2. For the initial hypergraph node features, we employ Gaussian membership functions to compute various degrees of membership. Each membership
degree indicates the extent to which an element in the feature vector belongs to a particular fuzzy set. Subsequently, a maximum operator is employed
to select the highest membership degree, representing the fuzzy set most likely corresponding to the feature vector. This step is regarded as extracting
the most representative fuzzy information from different fuzzy sets. To integrate the original features with the fuzzy information, we apply the Hadamard
product. The resultant fuzzy node features are progressively aggregated and abstracted during the hypergraph convolution process, ultimately forming the node
representations.

degree of memberships of each attribute through multiple
membership functions, the most important fuzzy information
can be characterized through a max operator, which can be
defined as

F l
i,j

′ = max
k=1,2,...,R

{
F l
i,j,k

}
, j = 1, 2, · · · , dl. (10)

Then, we can extract the fuzzy message from attributes by
merging the obtained fuzzy information with the attributes of
the nodes, which can be given by

F l
i = F l′

i ⊙ xl
i, (11)

where ⊙ represents the Hadamard merging operator. The the
elements of obtained fuzzy messages have values between
0 and 1 due to the previous fuzzy operations, and they are
effectively incorporated with fuzzy information. This fuzzy
information will also be passed iteratively through the sub-
sequent convolutional layers. In this work, we leverage a
spectral hypergraph convolutional network to conduct message
passing, and aggregate node representation for each node. The
convolutional layer can be formulated as

F (l+1) = σ
(
D−1/2

v HWD−1
e H⊤D−1/2

v F (l)Θ(l)
)
, (12)

where here F is the fuzzy message matrix and l denotes the
index of layers.

B. Learning Algorithm

Given the node representations generated by the proposed
FAGHN, we use the cross-entropy loss function to measure

the distance between the true label and the predicted label,
which is given by

Lsup-learning = − 1

N

N∑
n=1

K∑
k=1

yn,k log f̂n,k +
λ

2
∥w∥2, (13)

where N is the number of training samples, K denotes the
number of classes of nodes, and yn,k represents the node’s
true label. f̂n,k is the predicted label of the n-th sample, λ
control the model complexity and fuzziness level. Both terms
in the formula are intended to ensure the performance of the
model and the hypergraph convolution remain consistent.

TABLE I
DATASET STATISTICS

Cora Citeseer Pubmed Cora-CA DBLP
Hypernodes 2,708 3,312 19,717 2,708 41,302
Hyperedges 1,579 1,079 7,963 1,072 22,363
Features 1,433 3,703 500 1,433 1425
Classes 7 6 3 7 4
Max de 5 26 171 43 426
Min de 2 2 2 2 3
Max dv 145 88 281 45 373
Min dv 1 1 1 1 1

V. EXPERIMENTS

To verify the effectiveness of the proposed FAHGN, we
conduct experiments on five real-world datasets in the node
classification task.



TABLE II
THE RESULTS OF NODE CLASSIFICATION

Method Co-Cora Co-Citeseer Pubmed Cora-CA DBLP-CA
GCN* 77.11 ± 1.8 66.07 ± 2.4 82.63 ± 0.6 73.66 ± 1.3 87.58 ± 0.2
GAT* 77.75 ± 2.1 67.62 ± 2.5 81.96 ± 0.7 74.52 ± 1.3 88.59 ± 0.1
HGNN 79.39 ± 1.8 72.45 ± 2.3 86.44 ± 0.7 83.24 ± 1.2 91.03 ± 0.3

HyperConv 76.19 ± 2.1 64.12 ± 2.6 83.42 ± 0.6 73.52 ± 1.0 88.83 ± 0.2
HCHA 79.14 ± 1.0 72.42 ± 2.1 86.41 ± 0.4 83.65 ± 1.0 90.92 ± 2.2
HNHN 76.21 ± 1.7 72.64 ± 2.2 80.97 ± 0.9 77.19 ± 1.6 86.71 ± 1.2

HyperGCN 78.45 ± 7.4 59.92 ± 9.6 78.40 ± 9.2 60.65 ± 9.2 76.59 ± 7.6
HyperSAGE 64.98 ± 5.3 52.43 ± 9.4 79.49 ± 8.7 64.59 ± 4.3 79.63 ± 8.6

UniGCN 78.81 ± 1.9 73.05 ± 1.9 88.25 ± 0.7 83.60 ± 1.4 91.31 ± 0.2
AllSet 78.59 ± 1.7 73.08 ± 1.8 88.72 ± 0.9 83.63 ± 1.2 91.53 ± 0.3

FAHGN 80.21 ± 1.2 73.35 ± 1.1 86.99 ± 0.6 84.37 ± 1.1 91.79 ± 0.2

A. Datasets

Cora, CiteSeer and Pubmed are the co-citation datasets
derived from Cora, Citeseer and Pubmed databases [26].

The co-citation dataset preprocesses the papers in the data
topics to form a binary bag-of-words vector as the feature
description information of each node.

Cora-CA and DBLP datasets are the co-authored datasets
collected from Cora database and DBLP database, respectively
[27]. The nodes in the dataset represent the hyperedge indicate
the relationship among all the papers related to an author. The
DBLP dataset comes from six different conferences, including
”Algorithms”, ”Databases”, ”Programming”, ”Data Mining”,
”Intelligence”, and ”Vision”, and the abstracts of all the papers
in the dataset are extracted in order to compose the node
attributes of the DBLP dataset. Specifically, given abstracts of
all the papers, a dictionary of the most frequently used words,
with a frequency of more than 100, is constructed. Based on
this dictionary, a bag-of-word vector with 1425 dimensions is
generated for each node as their node attributes. The statistics
of these four datasets are shown in TABLE I.

B. Baseline Model

A number of recent works have demonstrated the strong
competitiveness of hypergraph representation learning [28].
Therefore, we compare the models with a variety of strong
baseline models including the two classical graph-based mod-
els, GCN [14] and GAT [29], and eight state-of-the-art HGNN
[7], Hyperconv [30], HCHA, HNHN [15], HyperGCN [31],
HyperSage [16], UniGCN [32], ALLSet [28]. Notably, GCN
and GAT are unable to process hypergraphs directly, and
thus we use the cluster expansion method [33] to expand
hypergraphs into graphs before using them.

C. Node Classification

Node classification task is one of the most popular tasks in
graph network analysis, in which the model needs to predict
which category each node belongs to, here Accuracy is used
as the evaluation metric for classification task, which repre-
sents the ratio of the number of correctly classified samples to

the total number of samples. Note that, the higher the accuracy,
the better the model classification ability. The data used for
training, validation and test are set by 50%, 50% and 25%
randomly selected nodes, respectively. To obtain credible and
stable results, we run 50 times indepent experiments with
random splits training, validation and test data. The results
of the node classification are presented in TABLE II.

The proposed FAHGN outperforms almost all baseline mod-
els in all four datasets. This is mainly attributed to the fact that
FAHGN fully considers the influence of fuzziness and noise
in attributes in the message propagation process, removing
the uncertainties in hypergraphs. By continuously correcting
the model representation during message propagation, the
proposed FAHGN improves the quality of node representa-
tion, thus improving the overall performance. Although the
performance on the Pubmed dataset is not excellent enough,
this result is understandable since each model has its specific
strengths and weaknesses and cannot outperform other models
in all cases. The results of the node classification are presented
in TABLE II.

VI. CONCLUSION

We have proposed a novel hypergraph representation learn-
ing model, called FAHGN, that incorporates fuzzy logic into
hypergraph representation learning to address the uncertainties
of hypergraph attributes. This model, inspired by fuzzy logic
systems, has fuzzified the attributes of hypergraphs to gen-
erate fuzzy messages and has employed spectral hypergraph
convolution networks to aggregate the fuzzy messages layer
by layer to obtain the node representations. This approach
has effectively modeled the fuzziness of attributes and has
significantly reduced the uncertainties in attributes, thus im-
proving the quality of the learned representations of nodes
in hypergraph representation learning. Experimental results
have demonstrated that the proposed FAHGN outperforms
existing models on several benchmark datasets, showcasing
its strong competitiveness and validating the effectiveness and
superiority of our motivation.

Despite its outstanding performance, the proposed FAHGN
has certain limitations. For instance, when dealing with large-



scale hypergraphs, computational complexity and resource
demands have become its bottlenecks. Additionally, the model
has exhibited high sensitivity to parameter selection, with op-
timal parameter settings varying significantly across different
datasets. This may have further aggravated computation com-
plexity. These limitations have induced two possible avenues
for future work. First, exploring more efficient computational
methods to handle large-scale hypergraph data; second, inves-
tigating automated hyperparameter tuning techniques to reduce
dependency on parameter settings.
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