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ABSTRACT

In-context learning enables language models (LM) to adapt to downstream data
or tasks by incorporating few samples as demonstrations within the prompts. It
offers strong performance without the expense of fine-tuning. However, due to the
context-length restriction, the demonstrations occupy only a small proportion of
usable samples. The limitation exacerbates the difficulty of optimization, since
the performance of in-context learning can be unstable depending on the quality,
format, or order of demonstrations. Prior work, such as Knn Prompting, index
samples based on the similarities of logits at the output-side, in addition to the
regular retrieval operation at the input-side. They improve in-context learning by
leveraging the core ability of next-token prediction, rather than relying solely on
the emergent capacity to make analogies. Despite this, the hard-to-optimize issue
of in-context learning still exists. In our view, it stems from the process of selecting
demonstrations. To address this, we propose complementing in-context learning
with an additional clustering operation, making full use of all usable samples.
We propose a novel approach “vocabulary-defined semantics”. Grounded in LM
vocabulary, which is the label space of model outputs, the proposed approach
computes semantically equivalent latent representations for output labels. Then,
taking the representations as centroids, a clustering operation is performed to
align the semantic properties between the language model and the downstream
data/tasks. Based on extensive experiments across diverse textual understanding
datasets and multiple models, our approach outperforms the state-of-the-art in terms
of effectiveness and efficiency. On average, it achieves 3%− 49% improvements
via the clustering module, while requiring only half of the computation time via
the similarity-based logits computation.

1 INTRODUCTION

Language models (LMs) are drawing significant attention due both to their potential opportunities and
associated risks (Bommasani et al., 2021). Despite demonstrating impressive performance, in some
scenarios, it may not be convenient to finetune them to downstream data/tasks, such as Language
Model-as-a-Service (LMaaS) (Sun et al., 2022). As a solution, in-context learning (Dong et al., 2022)
serves as an effective approach to utilizing language models for downstream tasks. Unlike model
fine-tuning, in-context learning adapts to downstream data or tasks by incorporating demonstrations
into the prompts. Using the emerging ability to draw analogies from demonstrations (Wei et al.,
2022), it offers strong performance without the expense associated with model fine-tuning.

However, in-context learning is not a stable technique and may be affected by multiple factors, which
exacerbates the difficulty of further optimization. For example, the performance may be affected
by the quality of demonstrations (Rubin et al., 2021; Li et al., 2023), their format (Yang et al.,
2023a;b), and even their order (Liu et al., 2024; Guo et al., 2024). The state-of-the-art (SOTA) KNN
prompting (Xu et al., 2023) takes a significant step forward. Rather than solely depending on the
emergent ability of language models to make analogies, the solution also utilizes the core capability
of next-token prediction to enhance in-context learning. In addition to the retrieval operation of
selecting demonstrations at the input-side, it introduces an additional indexing operation to support
KNN decision at the output-side. The limitations are, while using the indexed data as the reference in
KNN decision, it cannot cooperate with the normal LM inference. Also, it cannot handle the case
where the samples corresponding to a specific output label are unavailable.

1
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Nevertheless, the critical issue of in-context learning still exists. In our view, it is caused by the
drawbacks of selecting demonstrations (also applies to the case of composing demonstrations).
First, in-context learning retrieves only a subset from all usable demonstrations, so the retrieval
operation tends to be a suboptimal option, since it is unclear which samples would be the best choices.
Second, assume the best samples to retrieve can be known beforehand, the retrieval operation is still
suboptimal, since the best samples may not included in the retrievable samples. To solve the issue of
difficult optimization, we complement in-context learning with an additional clustering operation,
making full use of all usable samples. Similar to SOTA KNN Prompting (Xu et al., 2023), our focus is
on the output-side, not the input-side. Meanwhile, we replace its indexing operation with a clustering
operation that aligns semantic properties, to overcome the limitations.

We propose a novel and effective approach: Vocabulary-Defined Semantics, short for VDS. Grounded
in LM vocabulary, which is the label space of model outputs, we compute the semantically equivalent
latent representations for all output labels. Then, we determine the logits directly in latent space
(which is disentangled for latent representations), and use the logits to quantify the semantic gap
between the language model and downstream data, so we will know on the fly how good the latent
representations are. Last, taking the representations as centroids, we cluster the representations of
downstream data to mitigate their semantic gap with the language model. By defining semantic
bases of the label space, computing disentangled logits to quantify the semantic gap, and clustering
representations to optimize the logits, our approach incorporates KNN decisions into LM inference.
It aggregates the semantic information from the downstream data and cooperates with LM inference.

In addition, we have conducted large-scale experiments and detailed analysis across diverse datasets
of text understanding, with four model families: GPT2 (0.13B-1.61B) (Radford et al., 2019), Qwen2
(0.49B-7.62B) (Yang et al., 2024), Gemma2 (2.61B-9.24B) (Riviere et al., 2024), and Llama3
(8.03B) (Dubey et al., 2024). Based on our results, our approach outperforms the SOTA in both
effectiveness and efficiency. On average, our approach obtains 3% − 49% improvements (via the
clustering module), while taking only half of the computation time (via the similarity-based logits
computation). The replication repository is attached as supplementary material.

Our contributions are as follows:

• We define a collection of specialized representations, termed “semantic bases” for disentan-
gled semantics. It allows for more precise alignment of semantic properties during tasks
like language model inference, leading to improved performance and stability.

• We propose a novel way to compute logits via similarity measurement instead of common
matrix multiplication, leveraging the local isotropy of LM latent space. The logits can be
used to quantify the semantic gap between the language model and downstream data.

• We implement semantic-based clustering on latent representations through a lightweight
neural module. The clustering operation aligns the semantic property of LM latent space
with downstream data. It makes full use of all usable data to improve the performance of
in-context learning, while reducing the computation cost by orders of magnitude.

2 BACKGROUND

2.1 IN-CONTEXT LEARNING

In-context learning (ICL) is a prompting paradigm of language models. It retrieves samples and
includes them as demonstrations in the prompts, to let models learn from the analogy (Dong et al.,
2022). In the basic usage of language models, a model shall predict an output y for the given input
x. In contrast, ICL will retrieve samples from a corpus of all usable input-output pairs, to obtain a
collection T = {(xi, yi)}. The retrieved samples will be filled in templates π (xi, yi) and concatenate
with the given input x as a prompt: π (x1, y1)⊕ π (x2, y2)⊕ . . .⊕ π

(
x|T |, y|T |

)
⊕ π (x, ∗). Then,

the model will turn to predict an output y for the constructed prompt. Benefit from the emergent
abilities of large-scale LMs, the use of in-context learning can avoid the expensive cost of model
finetuning, while obtaining the equivalent performance in the adaptation to downstream data or tasks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 ENTANGLEMENT AND DISENTANGLEMENT

Entanglement indicates the phenomenon where the elements of a vector data correlate with each
other. In contrast, disentanglement means that the elements are independent of each other (Higgins
et al., 2018). For example, LM latent representations, namely distributed representations (such as
[0.1, 0.3, 0.4, 0.2]), are entangled while onehot embeddings (such as [0, 0, 1, 0]) are disentangled.

Following the definitions, for the representations in latent space, the logits computed on the vocabulary
is entangled. Recall the computation in language models, in the forward-pass, the logits is computed
on LM vocabulary and compared with the ground truth to obtain the loss. Then, in the backward-
pass, the loss is backpropagated to model layers to obtain the gradients for model parameters. The
dimension size of latent space is smaller than the vocabulary size, and the change in dimension size
indicates the meaning of each element is no longer independent, which indicates an entanglement.
Therefore, the logits is entangled for LM latent space even though disentangled for LM vocabulary.
The entanglement is caused by the dimension transformation, namely the LM-head matrix.

Entanglement tends to restrict the potential improvements in efficiency and robustness. An entangled
logits cannot represent a clear and intuitive meaning in latent space, which will cause challenges
to further optimization. On efficiency, the dimension transformation via a huge LM-head matrix
is mandatory in logits computation, so it is hard to reduce the costly computation; On robustness,
the entangled logits will be sensitive to the absolute numerical magnitude of latent representations,
which damages flexibility. Or else, the precision may not be guaranteed. In this paper, leveraging the
disentangled logits, our approach obtains breakthroughes on these restrictions.

3 VOCABULARY-DEFINED SEMANTICS

Our approach defined and utilized the semantics of LM latent space, leveraging the vocabulary, as
illustrated in Figure 1. We name our approach Vocabulary-Defined Semantics, short as VDS. In
VDS: (1) First, we obtain the semantically equivalent latent representations of vocabulary labels
by solving the pseudoinverse of the LM-head matrix, termed as “semantic basis”. Semantic bases
faithfully represent the label space of model outputs and can cover all output labels in the vocabulary;
(2) Then, based on the local isotropy of LM latent space (Cai et al., 2021), we can compute logits
by measuring the similarities between latent representations and semantic bases. The novel practice
of logits computation is directly in the latent space. Therefore, the computed logits is disentangled
to latent representations, and can be used to quantify the semantic gap between the language model
and downstream data; (3) Further, taking semantic bases as centroids, we perform centroid-known
clustering on the latent representations of usable samples. The clustering operation can optimize the
logits and mitigate the semantic gap of the language model with the downstream data.

3.1 VOCABULARY-DEFINED SEMANTIC FIELDS

In the common way of logits computation, the data representation is projected to the LM vocabulary,
and its actual semantic meaning is represented by the probability distribution on the vocabulary.
Given this, we use the vocabulary to define the semantic property of LM latent space. Considering
onehot embeddings are the most semantically representative distributions in the vocabulary, we
compute the corresponding latent representations as the semantically equivalents of vocabulary labels.
Since the softmax operation maintains monotonicity, onehot embeddings shall be regarded as logits.

For a given LM-head matrix, we conduct matrix multiplication to get the corresponding representation
in the latent space. Since the computation direction is from logits to representations, instead of using
the LM-head matrix W, we use its pseudoinverse W+. If there are v labels in the vocabulary, there
will be v unique semantic bases representing all semantic meanings. At the output side of LM, we
multiply each onehot embedding e⃗ by the pseudoinverse matrix W+ to obtain the corresponding
representation s⃗. That is, s⃗ = e⃗ ·W+. The computation is equivalent to solving the least squares
problem of a system of linear equations. We call each of the obtained vectors semantic basis.

3
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Figure 1: We illustrate with an LM, where the vocabulary consists of five colorful labels: (1) On the
semantic basis (upper-left), we obtained the semantic bases in the latent space, represented by large
color dots. The colors correspond to the labels in the vocabulary one to one; (2) On the semantic
logits (upper-right), the small dark dot means the representation of arbitrary data. We measure
its similarities with the semantic bases as logits. The logits are normalized as probabilities on the
vocabulary, and the argmax label is orange; (3) On the semantic clustering (bottom), small color dots
mean the representations of usable samples, and their colors indicate the corresponding ground truth.
Originally, they were mixed and scattered all around. By clustering, they are gathered by color and
into clusters centered in semantic bases. The clustering operates on the latent space, affecting the
dark dot as well. The logits of the dark has changed, and its argmax label becomes violet.

3.2 SIMILARITY-BASED SEMANTIC LOGITS

We directly determine the logits in the LM latent space, not on the vocabulary. In common practice,
the logits are computed after the LM-head. In the LM forward-pass, the logits is obtained by the
multiplication between the last-layer latent representation and the LM-head matrix, and then is
compared with the ground truth to compute the loss. Further, in the backward-pass, the loss will
propagate the gradients back from the LM-head to the embeddings layer. In our approach, the logits
is obtained before the LM-head. We use the similarity between latent representation and semantic
bases to compute the logits. The similarity-based logits is disentangled to latent representations. It
becomes intuitive than the disentangled logits, and will support further operations.

The latent space of Transformer models is proved to be locally isotropic (Cai et al., 2021), in terms
of information and semantics. Therefore, we can compute logits in latent space by measuring the
distances between representations, as an alternative to the typical way of matrix multiplication on
the vocabulary. Isotropy means that the properties of a space are uniform in all directions. That is,
in different directions of the latent space, the semantic differences of representations in the same
distance remain close. Therefore, when we consider all semantic bases, instead of only one basis, the
hypothesis is almost true that the similarity of representations in the latent space remains positively
correlated with the similarity of the corresponding distributions on the vocabulary.

Algorithm 1: Similarity-based Semantic Logits

Data: n semantic bases b⃗i; representation r⃗
Result: probability distribution probs

1 logits← init_1d_tensor(n );
2 for i← 0 to n− 1 do
3 logits [i]← similarity_metric(b⃗i, r⃗ );
4 probs← softmax(logits );

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Similarity-based Semantic Logits. For a given representation, the logits is commonly computed by
multiplying with the LM-head matrix, a novel practice is to compute its projection to the semantic
bases using cosine similarity. Leveraging the positive correlation between the representation similarity
in the latent space and the distribution similarity on the vocabulary, we compute the logits based on
their similarities with the semantic bases. The similarity metric tends to be the cosine similarity, so
the logits indicate the projections to the semantic bases. Further, the logits can be used to compute
the probability distribution on the vocabulary, as shown in Algorithm 1.

Based on similarity-based logits, the difference between the normal LM inference and KNN decision
can be reformulated as the semantic gap of semantic bases (namely the language model) and
downstream data. The effect of similarity-based logits is equivalent to that in normal LM inference.
Taking the downstream data to replace semantic bases in logits computation, the effect of logits will
make LM inference similar to KNN decision. The difference in results of normal LM inference and
KNN decision indicates a semantic gap. Further, by mitigating the semantic gap, we will incorporate
KNN decisions into LM inference to guarantee the adaptation of in-context learning.

3.3 CENTROID-KNOWN SEMANTIC CLUSTERING

The semantic gap of KNN decision to the normal LM inference can be explained as, the semantic
logits of downstream data cannot correspond to the ground truth. As a solution, we cluster the
representations of downstream data in the last-layer latent space, to let them be closer to the ground
truth, namely the corresponding semantic bases. Through centroid-known clustering on downstream
data, the logits can quantify the semantic gap between the language model and the downstream data.
The objective of clustering is to optimize the logits, that is, mitigating the semantic gap.

We specify each semantic basis as the centroid of each cluster. In the optimal situation, the last-layer
representations of the same semantic meaning (corresponding to the same label), should stay in the
same cluster. It can be taken by non-neural methods. We adopt a learning-based neural clustering
method, so we can study more on similarity-based logits (in Section 5).

λ (r⃗) = LN (MLP (r⃗ ⊙ CA (r⃗))) (1)
CA (r⃗) = Bn (avg (r⃗)) + Bn (max (r⃗)) (2)

We introduce a simple neural clustering module for semantic clustering, which consists of a channel
attention (CA), a multi-layer perceptron (MLP), and a layer normalization (LN), as shown in Equa-
tion (1). The channel attention learns the coefficients of the representations, based on the information
in the channel domain (Hu et al., 2017), as shown in Equation (2). The coefficients are a sum of the
Bottleneck (Bn) outputs, respectively on the average-pooling (avg) and the maximum-pooling (max)
of representations. Meanwhile, MLP and LN learn non-linear transformations in the latent space.

Logits-Numerical Sensitivity. In latent space clustering, whether the logits is entangled will affect the
performance. A disentangled logits shall indicate a more robust logits-numerical sensitivity. We use
the term to describe the sensitivity of loss computation to the numeric values of logits.

4 EXPERIMENTS

In the following, we will introduce the experimental setup, and discuss the results on the effectiveness
and efficiency. Following the prior work of in-context learning, the experiments are conducted with a
wide range of model scales on diverse datasets, as shown in Table 1 and Table 2. On the results, the
optimal scores are stressed with gray color.

4.1 SETUP

Baselines. In our experiments, we study the effects of semantic clustering on general in-context
learning, short as ICL (Min et al., 2022). Besides, we compare with the SOTA in-context learning
method, KNN prompting, short as KP (Xu et al., 2023). We reproduce the practice of ICL and
KP following the paper (Xu et al., 2023). As an extension of the study, we also compare with
parameter-efficient finetuning methods, including LORA (Hu et al., 2021) and IA3 (Liu et al., 2022).

5
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GPT2 Qwen2 Gemma2 Llama3
Small Medium Large XL 0.5B 1.5B 7B 2B 9B 8B

Parameters 137M 380M 812M 1.61B 494M 410M 7.62B 2.61B 9.24B 8.03B

Num. of Layer 12 24 36 48 24 28 28 26 42 32

Dimension Size 768 1,024 1,280 1,600 896 1,536 3,584 2,304 3,584 4,096

Vocabulary Size 50,257 151,936 152,064 256,000 128,256

Table 1: Stats of Language Models. We use recognized open-source LMs and involve four model
families in our experiments: GPT2 (0.13B-1.61B) (Radford et al., 2019), Qwen2 (0.49B-7.62B) (Yang
et al., 2024), Gemma2 (2.61B-9.24B) (Riviere et al., 2024), and Llama3 (8.03B) (Dubey et al., 2024).

AGNews CARER MR MRPC SST5 SUBJ TREC WebSS
Num. of Classes 4 6 2 2 5 2 6 8

Class Balance ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗

Avg. Length of Prompts 59.2 26.1 31.9 63.2 29.0 34.1 16.4 29.9

Num. of Data Train 120,000 16,000 8,662 4,076 8,544 8,000 5,452 10,060
Test 7,600 2,000 2,000 1,725 2,210 2,000 500 2,280

Num. of Shots 1k-context 2 4 8 4 4 8 8 2
2k-context 4 8 16 8 8 16 16 4

Table 2: Stats of Datasets, and Number of Allowed Shots in the Prompts. We conduct evaluations
with established text understanding tasks, respectively for text classification: AGNews (Zhang et al.,
2015), SUBJ (Pang & Lee, 2004), TREC (Voorhees & Tice, 2000), and WebSS (Phan et al., 2008);
sentiment analysis: MR (Pang & Lee, 2005) and SST5 (Socher et al., 2013); emotion recognition:
CARER (Saravia et al., 2018); as well as similarity detection: MRPC (Dolan & Brockett, 2005).

Metrics. We follow the common practice, using accuracy to evaluate balanced datasets, and F1 to
evaluate imbalanced datasets. The reason is that, accuracy is preferred for its simplicity and directness,
while F1 shall be taken when the precision-recall trade-off is a concern.

Environments. Our implementation is based on PYTORCH (Paszke et al., 2019) and TRANSFORM-
ERS (Wolf et al., 2019). The experiments are conducted on Nvidia V100 GPU (32 GB). In the
experiments with Qwen2, Gemma2, and Llama3 models, we apply INT4 quantization to reduce
the memory cost (while maintaining the model performance) (Dettmers et al., 2023; Wu et al.,
2023a). The LM quantization is dependent on the PEFT 1 library. GPT2 models are loaded without
quantization.

4.2 PIPELINES

We use few-shot prompts for in-context learning methods, making full use of the allowed context
length. The prompt templates used in our experiments are available in Appendix A. For ICL, we
retrieve the demonstrations randomly from the training set, and keep the number of demonstrations
the same for each class. For KP, the retrieval operation is the same. The additional indexing operation
follows the official implementation, which is based on KL divergence. The downstream data that
is more similar in the probability distribution are more likely to be retrieved. For PEFT methods,
we use zero-shot prompts to reduce the effects of in-context prompting. Meanwhile, we specify the
recommended modules as trainable based on their papers. That is, the QKV matrices in LORA are
trainable; QKV matrices plus the second FC layer in IA3) are trainable.

4.3 EFFECTIVENESS STUDY

Based on the results shown in Table 3, on average, VDS shows the optimal performance, while KP
shows the suboptimal performance, both are better than ICL. Comparing the improvements of VDS
on different language models, the improvements on Gemma2 models are most significant, which
are 44% and 49%; while the improvements on Llama3 are marginal, which is 3%. The mean value
of average improvements is 15.3%. The difference is mainly decided by the parameter amount of

1https://github.com/huggingface/peft
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Dataset Method
GPT2 Qwen2 Gemma2 Llama3

Small Medium Large XL 0.5B 1.5B 7B 2B 9B 8B
Avg.

AG
Ne
ws

(A
cc

.) ICL 0.302 0.571 0.533 0.752 0.816 0.802 0.809 0.250 0.250 0.876 0.596
KP 0.867 0.875 0.869 0.874 0.866 0.883 0.892 0.258 0.250 0.898 0.753
VDS 0.918 0.924 0.928 0.928 0.903 0.938 0.939 0.907 0.907 0.940 0.923

CA
RE
R

(F
1)

ICL 0.133 0.086 0.130 0.098 0.229 0.337 0.484 0.053 0.092 0.371 0.201
KP 0.323 0.322 0.317 0.283 0.518 0.466 0.477 0.136 0.075 0.500 0.342
VDS 0.613 0.607 0.589 0.643 0.738 0.680 0.700 0.653 0.630 0.627 0.648

MR
(A

cc
.) ICL 0.501 0.500 0.705 0.526 0.843 0.907 0.936 0.500 0.500 0.936 0.685

KP 0.730 0.723 0.831 0.843 0.852 0.900 0.924 0.497 0.500 0.923 0.772
VDS 0.810 0.855 0.859 0.866 0.852 0.903 0.929 0.737 0.726 0.906 0.844

MR
PC

(F
1)

ICL 0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.399 0.399
KP 0.543 0.515 0.586 0.558 0.608 0.676 0.695 0.489 0.251 0.609 0.553
VDS 0.620 0.627 0.631 0.633 0.615 0.729 0.785 0.616 0.605 0.641 0.650

SS
T5

(F
1)

ICL 0.082 0.158 0.075 0.149 0.308 0.404 0.485 0.115 0.114 0.351 0.224
KP 0.322 0.356 0.382 0.384 0.398 0.450 0.482 0.175 0.089 0.447 0.349
VDS 0.392 0.451 0.436 0.459 0.441 0.483 0.526 0.347 0.369 0.456 0.436

SU
BJ

(A
cc

.) ICL 0.500 0.501 0.502 0.559 0.670 0.930 0.843 0.500 0.500 0.933 0.644
KP 0.807 0.868 0.889 0.900 0.853 0.940 0.940 0.525 0.500 0.947 0.817
VDS 0.914 0.923 0.931 0.945 0.927 0.952 0.959 0.894 0.905 0.961 0.931

TR
EC

(F
1)

ICL 0.472 0.414 0.572 0.436 0.772 0.718 0.861 0.053 0.038 0.787 0.512
KP 0.818 0.816 0.872 0.833 0.850 0.901 0.914 0.089 0.157 0.873 0.712
VDS 0.896 0.924 0.916 0.914 0.907 0.925 0.943 0.890 0.894 0.892 0.910

We
bS
S

(F
1)

ICL 0.245 0.132 0.096 0.209 0.349 0.397 0.415 0.034 0.029 0.436 0.234
KP 0.704 0.712 0.628 0.705 0.775 0.832 0.805 0.102 0.029 0.835 0.613
VDS 0.796 0.806 0.793 0.803 0.785 0.815 0.836 0.731 0.727 0.828 0.792

ICL 0.329 0.345 0.377 0.391 0.548 0.612 0.654 0.238 0.240 0.636 0.437
KP 0.639 0.648 0.672 0.673 0.715 0.756 0.766 0.284 0.231 0.754 0.614Avg.
VDS 0.745 0.765 0.760 0.774 0.771 0.803 0.827 0.722 0.720 0.781 0.767

Table 3: Performance on Text Understanding with In-Context Learning Methods.

language models. By comparing the models of similar size (namely Qwen2-7B, Gemma2-9B, and
Llama3-8B), where Gemma2-9B has a doubled vocabulary size to Llama3-8B, we may conclude
that a large vocabulary size indicates better improvements. It fulfills the intuition, since a large
vocabulary indicates the semantic meanings can be better distinguished via clustering. In other
words, when the vocabulary is larger, the existing methods are more likely to underperform while our
“vocabulary-defined semantics” tends to show better advantages. In contrast, the dimension size is not
a critical factor since the difference is marginal, so the high-dimensional property of latent space shall
be very similar. In addition, the quality of latent representations in different models also matters.

Meanwhile, as shown in Table 3, compared with ICL and KP, our approach shows huge improve-
ments in CARER, TREC, and WebSS datasets, which are 45%, 40% and 56% compared to ICL
meanwhile 31%, 20% and 18% compared to KP; then show moderate improvements in AGNews
and SUBJ datasets; and last show slight advantages in MR, MRPC, and SST5 datasets. The degree of
improvements varies on datasets while the causes are not the obvious factors in the experiments, such
as the number of shots in the prompts, the amount of usable downstream data, etc. Instead, the im-
provements are mainly affected by the task. In text classification and emotion recognition (CARER),
our “vocabulary-defined semantics” can show great advantages over others; but in sentiment analysis
(MR, SST5) and similarity detection (MRPC), the improvements seem not that obvious. Based on
the details of datasets, the output labels in MR are easy to distinguish while in SST5 are challenging.
Therefore, for MR, ICL and KP are good enough so the space for improvements is small; while for
SST5, the quality of latent representations may not be that good, therefore, the scores on SST5 are
the lowest. In addition, MRPC requires the reasoning ability of language models, which explains
why the improvements are not that good. Our semantic-based approach is dependent on the quality
of latent representations, this is the reason why VDS performs better on other datasets.

Based on the results shown in Table 4, in-context learning methods, including our approach, perform
better than LORA but worse than IA3. It indeed indicates a performance gap between in-context
learning methods and finetuning methods, while the gap is accompanied by the additional computation
cost, as well as the suitability in different usage scenarios. Besides, the reason why LORA shows bad
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Method AGNews CARER MR MRPC SST5 SUBJ TREC WebSS
(Acc.) (F1) (Acc.) (F1) (F1) (Acc.) (F1) (F1) Avg.

LoRA 0.272 0.075 0.500 0.399 0.075 0.842 0.430 0.174 0.346
IA3 0.941 0.889 0.944 0.727 0.464 0.979 0.940 0.916 0.850

ICL 0.876 0.371 0.936 0.399 0.351 0.933 0.787 0.436 0.636
KP 0.898 0.500 0.923 0.609 0.447 0.947 0.873 0.835 0.754
VDS 0.940 0.627 0.906 0.641 0.456 0.961 0.892 0.828 0.781

Table 4: Performance on Text Understanding with Llama3-8B with PEFT methods.

performance is because LORA only finetune the self-attention module but the feed-forward module
tends to be the better choice in model adaptation (Geva et al., 2020; 2022; Hassid et al., 2022).

4.4 EFFICIENCY STUDY

On the computation cost, KP requires the most, then PEFT methods, while ICL and VDS require
the least. As shown in Table 5, based on the average time cost, ICL is the fastest and only costs
around 1.3 hours. Then, VDS and KP take 2.3 and 5.4 hours respectively, while LORA and IA3

cost around 3.6 hours. The INFERENCE operation of in-context learning methods takes longer time,
since ICL and KP are using few-shot prompts, and the prompts occupy the 1k-context (GPT2 LMs)
and 2k-context (Pythia LMs). In contrast, PEFT methods and VDS take zero-shot prompts so their
inference is faster. Except from ICL, besides INFERENCE, all methods have an additional operation.
The indexing operation of KP finds high-quality demonstrations for few-shot prompting by analyzing
the logits and the ground truth of training data. It consists of a forward-pass with few-shot prompts
and the ranking of neighboring logits (measured by KL divergence). PEFT methods require LM
forward-pass and backward-pass with zero-shot prompts, the amount of trainable parameters is small
but the computation cost of backpropagation cannot be reduced. In contrast, VDS requires LM
forward-pass but the backward-pass with zero-shot prompts is only on the neural clustering module.
The clustering operation of VDS is on usable downstream data, since the data amount of AGNews
is larger than other datasets, the time cost of clustering on AGNews is greatly larger than on other
datasets. In addition, due to the disentanglement, the time cost of logits computation can be further
reduced to 1/v by merely optimizing with the ground truth, without damaging the performance.

Method Operation AGNews CARER MR MRPC SST5 SUBJ TREC WebSS Avg.

LoRA Training 19.776 2.112 1.205 0.693 1.152 1.123 0.679 1.336 3.510
Inference 0.440 0.093 0.098 0.104 0.108 0.100 0.023 0.107 0.134

IA3 Training 19.605 2.095 1.190 0.685 1.144 1.118 0.673 1.328 3.480
Inference 0.437 0.092 0.098 0.104 0.105 0.099 0.023 0.107 0.133

ICL Inference 3.471 1.408 1.020 0.908 1.278 1.051 0.395 1.205 1.342

KP Indexing 2.067 3.279 1.114 1.075 2.954 1.063 3.800 3.773 2.391
Inference 8.841 3.005 1.744 1.486 3.027 1.709 0.776 3.864 3.056

VDS Clustering 11.370 1.405 0.766 0.405 0.754 0.711 0.477 0.881 2.096
Inference 0.261 0.176 0.176 0.168 0.193 0.176 0.043 0.199 0.174

Table 5: Runtime on Text Understanding with Llama3-8B (in Hours).

On the storage cost, KP requires the most storage cost while PEFT methods and VDS have much
lower costs. For a given language model, assume its dimension size of latent representations is d, the
number of LM layers is l, and the size of LM vocabulary is v. ICL has no additional storage. KP
needs to store the logits of neighboring prompts from the usable data, for each label in the vocabulary,
that is, k ∗ v ∗ v when the number of nearest neighbors is k. As PEFT methods, LORA and IA3 store
the additional trainable parameters. Taking their recommended setups, the amount of their parameters
are 4 ∗ r ∗ d ∗ l and 7 ∗ d ∗ l, when the low-rank parameter is r. For our approach VDS, the storage
cost is the neural clustering module, that is, 33

8 ∗ d ∗ d. The number of trainable parameters consists
of 4 ∗ d ∗ d for MLP and 1

8 ∗ d ∗ d for CA. It can be further reduced to 33
8 ∗ d via parameterized

hypercomplex multiplication (Zhang et al., 2021).
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Category Variant AGNews CARER MR MRPC SST5 SUBJ TREC WebSS Avg.(Acc.) (F1) (Acc.) (F1) (F1) (Acc.) (F1) (F1) Avg.

VDS[sm][sm] 0.940 0.627 0.906 0.641 0.456 0.961 0.892 0.828 0.781

Inference VDS[sm][mm] 0.940 0.627 0.906 0.641 0.459 0.960 0.892 0.830 0.782

Clustering VDS[mm][sm] 0.934 0.645 0.906 0.647 0.449 0.964 0.914 0.804 0.783
VDS[sm-gt][sm] 0.939 0.653 0.912 0.661 0.456 0.965 0.916 0.819 0.790

Disentangle VDS[mm-exp][sm] 0.250 0.086 0.500 0.399 0.075 0.500 0.038 0.029 0.235
VDS[sm-exp][sm] 0.940 0.640 0.909 0.638 0.437 0.953 0.906 0.805 0.779

Table 6: Performance of Ablation Study with Llama3-8B Model.

5 ANALYSIS AND EXPLANATION

In the following, we take an ablation study to further discuss similarity-based logits computation.
It is centered on the effects of logits on the performance, when taking different practices of logits
computation in clustering or inference operations. We will discuss more on logits disentanglement
as well. The experiments are conducted on the same textual datasets, using Llama3-8B model. We
use labels in the form of VDS[CLUSTER][INFER] to distinguish different settings, where CLUSTER and
INFER indicate the practice of logits computation in clustering or inference operations.

Logits Computation. We include VDS as the baseline, marked as VDS[sm][sm], where the similarity-
based logits computation (short as sm) is used in both operations of inference and clustering. By
comparing with the common way of using matrix multiplication (short as mm) for logits computation
in inference, we can see how similarity-based logits make effects in forward-pass, so prepare such a
variant VDS[sm][mm]; By comparing with the common logits computation in clustering, we can see
how similarity-based logits differ in backward-pass, prepare such a variant VDS[mm][sm]. Meanwhile,
we prepare a variant VDS[sm-gt][sm] to validate that the cost in computing similarity-based logits
can be further optimized to 1/v. It merely measures the similarity of the latent representation with
one semantic basis, that is the corresponding ground truth (short as gt), instead of all semantic bases.

Logits Disentanglement. By amplifying and suppressing the logits values before loss computation,
we can show the difference between entangled logits and disentangled logits, and further, reveal the
effects of logits disentanglement. We take a simple strategy to manipulate the logits, that is, applying
the natural exponential function (short as exp) to the logits, and then, normalizing the results. This
operation amplifies the largest values and suppresses small values, while maintaining the magnitude
relation of values. Therefore, we prepare such variants VDS[mm-exp][sm] and VDS[sm-exp][sm], for
matrix multiplication and similarity measurement respectively.

Based on the results shown in Table 6, compared to the baseline approach VDS, both VDS[sm][mm] and
VDS[mm][sm] show similar performance on average. The minor difference between the performance
of VDS and two variantsmm indicates an almost equivalence of two practices of logits computation in
LM forward-pass, in terms of the effects, no matter whether for either inference or clustering. It proves
the correctness of our hypothesis on the correlations of the representations similarity and distribution
similarity. Meanwhile, we found in some datasets (AGNews, SST5, WebSS), VDS[mm][sm] performs
not as good as the baseline, while in other datasets performs better. It indicates the two practices are
not strictly equivalent, and their differences are more likely to cause slight differences in clustering
than in inference. Further, we can know that cosine similarity may not be the optimal metric for
similarity-based logits, if the two practices must be strictly equivalent.

In addition, the performance of VDS[sm-gt][mm] is slightly better than that of VDS. This is because
the variant is better utilizing the logits disentanglement to avoid the effects of these irrelevant semantic
bases in clustering. Meanwhile, their computation costs differ a lot. Taking Llama3-8B as an example,
the vocabulary size is 128256 and the dimension size is 4096, so each time of logits computation,
we need to measure the similarity with all semantic bases. The required floating-point operations
is 3.15 × 109 FLOPs. It is more costly than using matrix multiplication for logits computation,
which only requires 1.05× 109 FLOPs. In contrast, VDS[sm-gt][mm] only measures the similarity
with one semantic basis in logits computation, which only requires 2.46× 104 FLOPs. It means a
five-order-of-magnitude improvement in the computational cost in each logits computation, which
is a huge computation advantage of similarity-based logits.
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On logits disentanglement, compared with VDS[mm][sm], the performance of VDS[mm-exp][sm]
shows a huge performance drop. In contrast, compared with VDS, the performance of VDS[sm-
exp][sm] is almost the same. The reason explaining the contrasting phenomena is the logits disen-
tanglement. For matrix-multiplication logits, the logits is entangled so it is sensitive to the value
differences on vocabulary labels. In contrast, for similarity-based logits, the logits is disentangled so
it shows better robustness, and is insensitive to the value differences on vocabulary labels. A robust
logits-numerical sensitivity supports direct and complex manipulations on the latent representations
or even on the logits, since the loss computation is only sensitive to the relative magnitude for numeric
values of logits, instead of the absolute magnitude.

6 RELATED WORK

Generally, the performance of in-context learning depends on the data retrieved to prompt language
models. The retrieved data is often the task demonstrations, which are in the form of an input-output
pair, and will compose with the given input as the new input. In prior work, such as self-adaptive
in-context learning (Wu et al., 2023b), the selection and ordering of data retrieval are optimized to
improve the model performance. The retrieval is based on the similarity between the embeddings of
the corpus data and the representations of the given input. However, KP also retrieve data at the output
side, such as the LM last-layer, computing the similarities based on the logits. The data to retrieve
is key-value pairs, where the representation is the key and the corresponding ground truth is the
value. Then LM does inference with hybrid logits: one is from the model prediction while the other
one is from the KNN decision. The hybrid logits will be used to compute a normalized probability
distribution. It has been used for language modeling in kNN-LM (Khandelwal et al., 2020) and
machine translation in kNN-MT (Khandelwal et al., 2021). A similar practice is using activations
as the key (Grave et al., 2017). A further topic along this direction is to realize retrieval-based
neuro-symbolic inference, such as RETOMATON (Alon et al., 2022).

To reduce the computation cost of finetuning large-scale LMs, and the storage cost of the finetuned
models, PEFT methods only update partial parameters. Compared with full parameter finetuning,
PEFT methods can better avoid catastrophic forgetting (Goodfellow et al., 2013), and learn better
from a small amount of data. Adapter methods directly introduce new modules to the LMs, such
as bottleneck adapters (Houlsby et al., 2019) and compacter (Davison, 2021). PROMPT TUNING
prepends tunable tokens to the input data. Similarly, PREFIX-TUNING modifies the multi-head
attention with new parameters, that is, prepending trainable vectors to the key and value matrices.
LORA (Hu et al., 2021) uses low-rank matrix to learn the additive updates on the self-attention
weight matrix, while its variants are improving the parameter efficiency, such as ADALORA (Zhang
et al., 2023), DORA (yang Liu et al., 2024). Similarly, OPT (Qiu et al., 2023) uses orthogonal
transformations to learn the multiplicative weight updates, and its variant BOFT (Liu et al., 2023)
introduces factorization techniques for better parameter efficiency. While IA3 (Liu et al., 2022)
rescales the activations by tuning additional coefficients. In addition, some work is the combinations
of other PEFT methods (Mao et al., 2021). For example, mix-and-match adapters are a combination
of prefix-tuning and bottleneck adapters (He et al., 2021).

7 CONCLUSION

In this paper, we proposed a novel approach for in-context learning, “vocabulary-defined semantics”.
It incorporates KNN decisions into LM inference to improve the performance, and also, makes full
use of all usable samples to avoid the process of demonstration selection. We define semantic bases,
a collection of semantically equivalent representations to label space of language model, to define
the semantic property of LM latent space. Leveraging the local isotropy of latent space, we propose
similarity-based logits to quantify the semantic gap of the language model with downstream data.
Further, we introduce a neural clustering module to optimize the logits, which in turn mitigates the
semantic gap. Based on the results of extensive experiments, our semantic-based approach shows
effectiveness and efficiency LM adaptation. It significantly outperforms the state-of-the-art, while
showing advantages in both the computation cost and storage cost. Moreover, through our ablation
study, similarity-based logits is as good as the multiplication-based logits computation, but performs
better in numerical robustness. In the future, we will explore more topics where our semantic-based
approach can help, contributing to not only LM performance, but also LM interpretability.
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A IMPLEMENTATION DETAILS

A.1 PROMPT TEMPLATES

The prompt templates follow the practice of prior work (Lu et al., 2021), as shown in Table 7.

A.2 HYPERPARAMETERS

In the demonstration retrieval, we randomly sample data from the training set. Following the practice
of KP, we compute the maximum allowed number of demonstrations by setting the threshold of the
truncation probability to be 5%. We stabilize the experiments using the default random seed 42.

In the clustering process of our approach VDS, since the neural clustering module is outside language
models and directly working on the detached latent representations, we take large hyperparameters to
speedup semantic clustering: the epoch number is 100 and the batch size is 256.

In the learning process of PEFT methods, we follow the recommended practices of LORA and IA3

based on their papers. That is, making the query-key-value matrices trainable in LORA, and also
making the second fully-connected layer in the feed-forward module trainable in IA3. We take the
commonly used hyperparameters, keeping the epoch number 1 and the batch size 1.

B MORE DISCUSSION

B.1 GENERAL SEMANTIC BASIS

Considering the semantic basis is based on the LM vocabulary, we can duplicate the practice on
the LM last-layer (after the last-layer, before LM-head) to the LM embedding-layer (after the
embedding layer, before the first-layer) as well. For the sake of the opposite computation direction
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Dataset Prompt Label Space

AGNews

Input: Nets get Carter from Raptors. "INDIANAPOLIS – All-Star Vince Carter
was traded by the Toronto Raptors to the New Jersey Nets for Alonzo Mourning,
Eric Williams, Aaron Williams, and a pair of first-round draft picks yesterday."
Type: business

world, sports,
business,
technology

CARER message: i know a lot but i feel so stupid because i can not portray it
emotion: sadness

sadness, joy, love,
anger, fear, surprise

MR review: "provides a porthole into that noble , trembling incoherence that defines us all ."
sentiment: positive

negative,
positive

MRPC

Premise: The 30-year bond US30YT = RR rose 22 / 32 for a yield of 4.31 percent ,
versus 4.35 percent at Wednesday ’s close .
Hypothesis: The 30-year bond US30YT = RR grew 1-3 / 32 for a yield of 4.30
percent , down from 4.35 percent late Wednesday .
Prediction: not equivalent

equivalent,
not equivalent

SST5 review: a deliciously nonsensical comedy about a city coming apart at its seams .
sentiment: great

terrible, bad, okay,
good, great

SUBJ

input: "looking for a short cut to fame , glass concocted sources , quotes and even
entire stories , but his deception did not go unnoticed forever , and eventually , his
world came crumbling down . . ."
type: objective

subjective,
objective

TREC Question: What currency is used in Australia ?
Type: entity

description, entity,
expression, human,
location, number

WebSS
input: americangymnasticsclub american gymnastic club recreational gymnastics
boys girls schedule fees programs calendar birthday parties camps staff
type: sports

business, computers,
culture-arts-entertainment,
education-science,
engineering, health,
politics-society, sports

Table 7: Prompt Template and Label Space in the Experiments.

of representation, the semantic basis can be obtained by a matrix multiplication between onehot
embedding and the embedding matrix. That is, we multiply the onehot embedding e⃗ by the embedding
matrix W to obtain the corresponding representation r⃗. Expressed in formula, that is, r⃗ = e⃗ ·W.

B.2 DISENTANGLEMENT IN LATENT SPACE

The insights motivating vocabulary-defined semantics is logits disentanglement. In our approach, we
compute logits before the LM-head, instead of after. Therefore, we can obtain the disentangled logits
in latent space. In the latent space, the disentangled logits are useful to evaluate and optimize latent
representations. Our approach is leveraging the vocabulary to define the semantics of last-layer latent
space, therefore, we mainly guarantee the usefulness in the LM last-layer.

C MORE RESULTS AND ANALYSIS

C.1 QUALITY OF LATENT SPACE CLUSTERING

We can measure the quality of representation clustering via clustering metrics, such as Adjusted Rand
Index (ARI). The computation mechanism revolves around pairwise comparisons on clusterings. ARI
measures how similar two clusterings are in each comparison, while accounting for the possibility of
random agreement. The value range is [−1, 1], the larger, the better. A value 0 or values close to 0
indicate a normal disordered situation.

The results are shown in Table 8, where we use labels in the form of metric[identifier] to mark
variants, and identifier is either w/o or w/, representing whether semantic clustering is applied. We
can see that semantic clustering can bring obvious improvements in the clustering quality.

C.2 BENEFITS OF SEMANTIC CLUSTERING TO KNN DECISION

Since the clustering quality is promoted by semantic clustering, we can anticipate that, the perfor-
mance of the KNN decision will also be benefited. That is, our approach incorporates an improved
KNN decision process into LM inference. For ease of description, we use “sibling” to describe data
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Dataset Metric
GPT2 Qwen2 Gemma2 Llama3

Small Medium Large XL 0.5B 1.5B 7B 2B 9B 8B

AGNews ARI[w/o] 0.306 0.285 0.351 0.265 0.145 0.425 0.528 0.000 0.000 0.402
ARI[w/] 0.798 0.811 0.822 0.822 0.764 0.844 0.847 0.772 0.773 0.851

CARER ARI[w/o] 0.015 0.015 0.033 0.096 0.153 0.135 0.236 0.037 0.018 0.172
ARI[w/] 0.426 0.407 0.377 0.430 0.595 0.485 0.539 0.458 0.412 0.429

MR ARI[w/o] 0.049 0.041 0.382 0.316 0.245 0.179 0.565 0.000 0.029 0.416
ARI[w/] 0.384 0.502 0.514 0.536 0.494 0.649 0.734 0.224 0.203 0.659

MRPC ARI[w/o] 0.000 0.000 0.000 0.000 0.000 -0.002 0.000 0.000 0.000 -0.002
ARI[w/] 0.114 0.110 0.119 0.096 0.098 0.269 0.369 0.106 0.088 0.139

SST5 ARI[w/o] 0.022 0.018 0.004 0.009 0.052 0.030 0.244 0.004 0.000 0.018
ARI[w/] 0.106 0.162 0.154 0.169 0.162 0.192 0.247 0.054 0.072 0.196

SUBJ ARI[w/o] 0.001 0.121 0.013 0.000 0.028 0.025 0.087 0.009 0.030 0.194
ARI[w/] 0.684 0.714 0.741 0.792 0.727 0.817 0.841 0.621 0.656 0.848

TREC ARI[w/o] 0.100 0.074 0.151 0.070 0.292 0.083 0.138 0.003 0.000 0.183
ARI[w/] 0.767 0.837 0.836 0.879 0.826 0.882 0.907 0.752 0.761 0.862

WebSS ARI[w/o] 0.171 0.202 0.207 0.210 0.050 0.104 0.214 0.050 0.019 0.191
ARI[w/] 0.578 0.606 0.590 0.620 0.579 0.638 0.667 0.475 0.457 0.666

Table 8: LM Performance w/ and w/o Semantic Clustering.

Dataset Parameter
GPT2 Qwen2 Gemma2 Llama3

Small Medium Large XL 0.5B 1.5B 7B 2B 9B 8B

AG
Ne
ws

(A
cc

.)

k=1[w/o] 0.704 0.721 0.759 0.760 0.578 0.721 0.739 0.576 0.514 0.795
k=1[w/] 0.915 0.918 0.925 0.928 0.898 0.935 0.938 0.909 0.898 0.940

k=16[w/o] 0.819 0.816 0.846 0.845 0.703 0.833 0.851 0.748 0.708 0.881
k=16[w/] 0.919 0.924 0.929 0.929 0.904 0.937 0.939 0.908 0.908 0.941

k=256[w/o] 0.852 0.855 0.876 0.875 0.760 0.861 0.886 0.825 0.817 0.899
k=256[w/] 0.919 0.924 0.929 0.929 0.903 0.938 0.939 0.909 0.908 0.941

We
bS
S

(F
1)

k=1[w/o] 0.239 0.273 0.397 0.372 0.326 0.329 0.282 0.220 0.202 0.359
k=1[w/] 0.682 0.703 0.694 0.702 0.688 0.718 0.723 0.632 0.636 0.726

k=16[w/o] 0.345 0.413 0.592 0.580 0.493 0.506 0.465 0.290 0.249 0.537
k=16[w/] 0.691 0.711 0.701 0.709 0.695 0.736 0.728 0.638 0.653 0.730

k=256[w/o] 0.560 0.601 0.738 0.730 0.634 0.686 0.638 0.468 0.362 0.709
k=256[w/] 0.796 0.803 0.794 0.804 0.787 0.818 0.837 0.730 0.727 0.831

Table 9: LM Performance with k Nearest-Neighbor Methods.

representations that correspond to the same label in the vocabulary, and use “neighbor” to describe
data representations that are close to each other in latent space. In semantic clustering, for each data,
its siblings shall gradually become its neighbors.

We experimented with semantic clustering to validate its effects on nearest-neighbor methods, that
is, predicting the class of data representations with the reference to the nearest neighboring data in
the latent space. As shown in Table 9, there are obvious improvements in the performance when
we apply semantic clustering. When the neighboring number k increased from k = 1 to k = 256,
the performance of [w/o] is gradually increased and becomes closer to that of [w/]. The accuracy
changes shown on [w/o] mean, that semantic clustering transforms the representations to make more
neighboring data be the sibling data, which fulfills the expectation.

D REPRESENTATIONS IN LATENT SPACE

To illustrate the effects of semantic clustering, we visualize the representations in the latent space
using tSNE (Arvanitidis et al., 2017), mainly on the AGNews dataset. We conclude findings from
the illustrations: (1) concerning the distribution of latent representations, the level of representations
confounding with each other is well reduced by clustering; (2) the representations distribute differently
in the latent space of different models. However, the effects of semantic clustering in these latent
spaces are almostly similar, as shown in Figure 2, Figure 3, and Figure 5; (3) the distribution of
latent representations before clustering will affect the distribution after clustering, especially when
the confounding level is very high, such as the case of GEMMA2-9B, shown in Figure 4.
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(a) on AGNews before clustering (b) on AGNews after clustering

Figure 2: tSNE Illustration of Semantic Clustering in GPT2-XL Latent Space.

(a) on AGNews before clustering (b) on AGNews after clustering

Figure 3: tSNE Illustration of Semantic Clustering in Qwen2-7B Latent Space.

(a) on AGNews before clustering (b) on AGNews after clustering

Figure 4: tSNE Illustration of Semantic Clustering in Gemma2-9B Latent Space.
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(a) on AGNews before clustering (b) on AGNews after clustering

Figure 5: tSNE Illustration of Semantic Clustering in Llama3-8B Latent Space.
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