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Abstract
As Distributed Ledger Technologies (DLTs)001
rapidly evolve, their impacts extend beyond002
technology, influencing environmental and so-003
cietal aspects. This evolution has increased004
publications, making manual literature analy-005
sis increasingly challenging. We address this006
with a Natural Language Processing (NLP)-007
based systematic literature review method to008
explore the intersection of Distributed Ledger009
Technology (DLT) with its Environmental, So-010
cial, and Governance (ESG) aspects. Our ap-011
proach involves building and refining a directed012
citation network from 107 seed papers to a cor-013
pus of 24,539 publications and fine-tuning a014
transformer-based language model for Named015
Entity Recognition (NER) on DLT and ESG016
domains. Applying this model, we distilled017
the corpus to 505 key publications, enabling018
an inaugural literature review and temporal019
graph analysis of DLT’s evolution in ESG con-020
texts. Our contribution include an adaptable021
and scalable NLP-driven systematic literature022
review methodology and a unique NER dataset023
of 54,808 entities, tailored for DLT and ESG re-024
search. Our inaugural literature review demon-025
strates their applicability and effectiveness in026
analyzing DLT’s evolution and impacts, prov-027
ing invaluable for stakeholders in the DLT do-028
main.029

1 Introduction030

Emerging technologies have seen increasing031

scrutiny in terms of energy consumption and032

broader ecological impacts, encompassing vital033

resources like water, precious metals, and syn-034

thetic compounds (Platt et al., 2021; Simone et al.,035

2022). This shift towards environmental conscious-036

ness emphasizes the need to evaluate technological037

advancements through their ecological footprint,038

including DLT. DLT promises record immutabil-039

ity and decentralization but faces challenges like040

high energy consumption in certain consensus al-041

gorithms, such as Bitcoin’s Proof of Work (PoW)042

(Nakamoto, 2008), aimed to effectively prevent 043

attackers from pretending to be many users simul- 044

taneously to increase their weight in the network, 045

known as Sybil attacks. Therefore, DLT’s advance- 046

ments in security and immutability, alongside its 047

complex and evolving applications, necessitate a 048

sophisticated approach for analysis. 049

In this context, NLP, a sub-field of Artificial 050

Intelligence (AI) and linguistics, emerges as a fa- 051

cilitator to delve into the growing number of publi- 052

cations in DLT, from academic articles to whitepa- 053

pers. NLP focuses on certain human-related lan- 054

guage tasks such as Question Answering (QA), 055

NER, and text classification, among others. In 056

this paper, we use NER to identify specific enti- 057

ties within the corpus of our dataset to illuminate 058

gradual shifts in research emphasis and application 059

of DLT. We build upon existing work that taxon- 060

omizes DLT to identify the entities. Our starting 061

point is the hierarchical taxonomy of (Tasca and 062

Tessone, 2019). Unlike previous systematic liter- 063

ature reviews that rely on citation measures and 064

analysis of abstracts and keywords, our approach 065

delves into the text of the body of the publications. 066

This enables us to detect thematic shifts in key areas 067

of research and industry publications (e.g., whitepa- 068

pers) within the DLT field by mapping the publica- 069

tions’ tokens to the components of the hierarchical 070

taxonomy of DLT from (Tasca and Tessone, 2019) 071

(see an example of mapping in Figure 2). 072

Our research has the following contributions: 073

1. A curated NER dataset composed of 54,808 074

named entities (see Table 2) for twelve DLT’s 075

taxonomy categories in the context of ESG 076

(see Figure 2’s a). To the best of our knowl- 077

edge, this is the first NER dataset explicitly 078

designed for DLT.1 079

2. A methodology and framework for executing 080

1The dataset will be made available
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a NLP-driven systematic literature review at081

the intersection of domains, in this case, DLT082

and ESG research.2083

3. Conducting what we believe is the first NLP-084

driven systematic literature for the DLT field085

that places a special emphasis on ESG aspects.086

Additionally, our work represents a step for fu-087

ture research directions to improve further auto-088

mated systematic literature review processes at089

scale, capable of capturing the intrinsic dependen-090

cies and evolution of concepts related to the inter-091

section of fields.092

2 Related work093

Previous literature reviews have extensively ex-094

plored blockchain applications in various sectors095

(Casino et al., 2019; Zheng et al., 2018). These096

reviews, however, differ in scope and depth com-097

pared to our systematic review, particularly in terms098

of article quantity and the manual nature of their099

analyses.100

Studies have also focused on blockchain’s role101

in decentralization and privacy, particularly in IoT102

(Conoscenti et al., 2016), and analyzed trends of103

centralization in decentralized systems like Bitcoin104

and Ethereum (Sai et al., 2021). (Spychiger et al.,105

2021) deconstructed 107 blockchain technologies106

using a specific taxonomy, emphasizing consen-107

sus mechanisms and cryptographic primitives. Our108

work, in contrast, provides a broader perspective109

on the evolution of DLT, including its ESG impli-110

cations.111

In the context of ESG, (Bilal et al., 2014; Men-112

gelkamp et al., 2018; Poberezhna, 2018; Schulz and113

Feist, 2021; Wu et al., 2022; Jiang et al., 2022) have114

explored blockchain’s potential in energy manage-115

ment, environmental sustainability, and transpar-116

ent reporting. Our study extends these approaches117

by examining the intersection of ESG and DLT118

through a literature analysis.119

Regarding NLP applications, studies have shown120

the use of advanced techniques for automated121

ESG scoring (Alik Sokolov et al., 2021) and opin-122

ion summarization (Dubey et al., 2023). Outside123

the DLT field, systematic literature reviews NLP-124

driven methodologies, such as in medical genomics,125

have been conducted (Alsheikh et al., 2022). These126

studies used database term searches and NLP mod-127

els for abstract-based filtering, differing from our128

2The repository with the code will be made available

approach of building a corpus through directed ci- 129

tation graphs and full-text filtering using NLP. 130

3 Methodology 131

1Step 1: 
DATA COLLECTION

Step 2: 
DATA LABELLING

107 
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63,083 
directed 
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Figure 1: Methodology for the systematic literature
review of ESG/DLT publications.

Ontologies, specifically hierarchical taxonomies, 132

are pivotal in developing NER datasets for text min- 133

ing (Spasic et al., 2005; Huang et al., 2020; Nabi 134

et al., 2022; Chang et al., 2016; Mcentire et al., 135

2016; Alsheikh et al., 2022). For example, the 136

GENIA corpus (Kim et al., 2003), a NER dataset 137

of 2,000 biological abstracts, employs the GENIA 138

ontology’s hierarchical tree structure of 47 biologi- 139

cal entities, including top-level categories like bio- 140

logical source, substance, and others, to facilitate 141

text mining in biomedical literature. Similarly, the 142

Human Phenotype Ontology is used for creating 143

and expanding NER datasets in biomedicine (Lobo 144

et al., 2017; Huang et al., 2020). (Alsheikh et al., 145

2022; Chang et al., 2016; Mcentire et al., 2016) fur- 146

ther demonstrate the use of ontology-based NER 147

datasets for domain-specific literature text mining. 148

Learning from these biomedical field precedents, 149

our methodology for NLP-based text mining and 150

filtering in the DLT field employs a hierarchical 151

taxonomy (Tasca and Tessone, 2019) to annotate 152

a NER dataset from 46 systematically reviewed 153

publications of DLT’s sustainability (Eigelshoven 154

et al., 2020). Therefore, we demonstrate the gener- 155

alizability and transferability of these biomedical 156

field precedents by successfully applying some of 157

their elements in our methodology, demonstrating 158

their versatility across different domains. 159

Additionally, unlike keyword database searches, 160

we construct our corpus using a directed citation 161

graph from references (citing to) of 107 seed publi- 162

cations in the ESG/DLT domain intersection, fine- 163

tuning a transformer-based language model for cor- 164

pus filtering. We also perform temporal graph 165

analysis to understand the evolution at the ESG 166

and DLT intersection. Figure 1 summarizes our 167
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methodology.168

4 Data Collection169

The seed papers for our citation network were se-170

lected from two sources:171

1. 89 papers from (Eigelshoven et al., 2020), re-172

viewing sustainability in popular DLT consen-173

sus algorithms.174

2. 18 recent publications (2018-2022) with at175

least three citations each, chosen to update the176

corpus with more current research relevant to177

DLT/ESG (Platt et al., 2021; Kohli et al., 2022;178

Nair et al., 2020; Ante and Fiedler, 2021;179

Sedlmeir et al., 2020; Fernando and Saravan-180

nan, 2021; Masood and Faridi, 2018; Ghosh181

and Das, 2020; Eshani et al., 2021; Cole and182

Cheng, 2018; Lucey et al., 2021; Sapkota and183

Grobys, 2020; Bada et al., 2021; Denisova184

et al., 2019; Schinckus et al., 2020; Sedlmeir185

et al., 2021; Powell et al., 2021; Alofi et al.,186

2022).187

The key benefit of using seed papers to build a188

citation network for a systematic literature review189

is the ease of expanding and updating the literature190

review by adjusting the number of seed papers.191

We limited our citation network to references192

made by the seed papers, ensuring thematic rele-193

vance to DLT/ESG. We restricted the expansion to194

two levels of references to avoid divergence from195

the theme. This led to a network with over 63,083196

publications, from which 24,539 publicly avail-197

able PDFs were retrieved using Semantic Scholar’s198

database (see Figure 3’s a).199

4.1 Labeling200

We manually annotated 46 papers using the brat201

tool (Stenetorp et al., 2012), following the tax-202

onomy framework of (Tasca and Tessone, 2019).203

This taxonomy provides a hierarchical structure204

of blockchain components, with each principal205

component (e.g., Consensus) divided into sub-206

components (e.g., Gossiping) and further into sub-207

sub-components if needed (e.g., Local). We intro-208

duced categories like Blockchain Name to identify209

specific blockchains and the initial definition of210

Security Privacy was expanded to label security211

threats (Sybil attack, 51% attack, etc.) while212

a Miscellaneous category was added for ambigu-213

ous contexts (see Figure 2, Table 1), following the214

example of the CoNLL-2003 dataset for a similar215

Group entities Description

Blockchain Name The name of a blockchain system (E.g., Bit-
coin, Ethereum, XRP Ledger), but also including
other types of DLTs, such as Hedera, IOTA

Consensus Rules and mechanisms to ensure the immutabil-
ity of transaction records (E.g., Proof of Work,
Proof of Stake, Blockchain, Hashgraph).

Identifiers Information related to the token names, cre-
ators, purpose, and different names of a
blockchain (E.g., Satoshi Nakamoto, Ripple,
USDC, USDT).

Security Privacy Cryptographic methods to ensure data privacy
and encryption in a blockchain ecosystem.

ESG Entities relevant to the Environmental, Social,
and Governance issues.

Transaction Capabilities Information related to the details of transactions,
such as Data Structure in the Blockheader, Trans-
action Model, Server Storage, Block Storage,
and Limits to Scalability.

ChargingAndRewardingSystem Cost models for the operation and maintenance
of blockchain systems.

Extensibility Capabilities of Interoperability, Intraoperabil-
ity, Governance, and Script Language of a
blockchain ecosystem.

Identity Management Attributes to identify participants and their sys-
tem access level.

Native Currency Tokenisation Asset classes for transactions within a
blockchain system (E.g., BTC, ETH, XRP,
HBAR).

Codebase Coding Language, Code License, and Software
Architecture of a blockchain ecosystem (E.g. So-
lidity, Rust, MIT License, Apache License).

Miscellaneous Miscellaneous entities that are ambiguous in a
given context and are relevant for the DLT topic
but are not captured by any of the above cate-
gories.

Table 1: List of 12 ESG/DLT groups of entity types
based on the taxonomy from (Tasca and Tessone, 2017)

category (Tjong et al., 2003). We further extended 216

(Tasca and Tessone, 2019)’s taxonomy to identify 217

sustainability-related concepts referred to in the 218

ESG criterion (see Figure 2). 219

4.2 Text analysis/language processing 220

The label hierarchy within the taxonomy was 221

pruned for class balance, where specific labels 222

like PoW were replaced by broader categories like 223

Consensus to maintain focus on primary taxonomy 224

components (Figure 2). To improve NER model 225

performance, which is sensitive to label consistency 226

(Zeng et al., 2021; Jeong and Kang, 2023), we em- 227

ployed a systematic process for enhancing inter- 228

labeler consistency. This involved correcting incon- 229

sistent labeling of entities, such as ”Sybil attack” 230

sometimes categorized as Consensus and other 231

times as Security Privacy, following each la- 232

beler’s approval and using programmatic cleaning 233

to ensure consistency for non-context-dependent 234

labels. 235

We applied text resampling for over- 236

lapping named entities that could fit 237

into multiple categories, such as be- 238

longing to both Blockchain Name and 239

Native Currency Tokenisation. This pro- 240

cess involves duplicating text and assigning 241

distinct entities to each copy, thereby enhancing 242
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Figure 2: (a) The taxonomy of (Tasca and Tessone, 2019) extended with Blockchain Name, ESG, and
Miscellaneous (see 4.1) for the purpose of this research. (b) Example of parsed text with the taxonomy la-
bel associated with a span of text labeled. The labels used in the paragraph are highlighted in the taxonomy tree.
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Figure 3: Processing pipeline for the collection and filtering of papers in the review. The total number of papers
present at each stage of processing is shown. See Table 1 for the description of the labels in the corpus.

the capture of rare entities. This resampling243

strategy is beneficial, especially for datasets of244

modest size (Wang and Wang, 2022), improving245

model performance by accommodating diverse246

entity categories. Additionally, the duplication247

of training data has been found beneficial in248

enhancing a language model’s ability to learn from249

limited examples (Muennighoff et al., 2023).250

4.3 Mapping taxonomies using NLP 251

Recent advancements in NLP, including data ac- 252

quisition (Bowman et al., 2015; Rajpurkar et al., 253

2016), model architecture development (Sutskever 254

et al., 2014; Vaswani et al., 2017), and large-scale 255

pre-training (Peters et al.; Devlin et al., 2019; Liu 256

et al., 2019; Hoffmann et al., 2022; Radford et al., 257

2019; Touvron et al., 2023), have significantly 258

propelled the field forward. For example, we 259

considered Large Language Models (LLMs) for 260
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(a) Filter for papers below the 10th per-
centile of total numbers of tokens.

(b) Filter for papers with a DLT content
density above the 90th percentile.

(c) Filter for papers with an ESG content
density above the 70th percentile.

Figure 4: Steps for the percentile-based filtering

NER tasks, inspired by the effectiveness of mod-261

els like ChatGPT and GPT4 in zero-shot and few-262

shot learning scenarios (Li et al., 2023; Hu et al.,263

2023). However, despite their capabilities, (Li et al.,264

2023; Hu et al., 2023) noted that domain-specific265

NER tasks often perform better with supervised266

learning models than with current LLMs. There-267

fore, we adopted a supervised learning approach,268

fine-tuning transformer-based pre-trained language269

models such as BERT (Devlin et al., 2019), Al-270

bert(Lan et al.), DistilBERT (Sanh et al., 2019),271

and SciBERT (Beltagy et al., 2019). Our selection272

criterion for the final model was based on its perfor-273

mance in our NER task and efficiency at inference.274

4.4 Filtering275

We applied a percentile-based filtering process to276

the corpus of publications analyzed by our fine-277

tuned model. This method selects publications with278

substantial DLT and ESG content, using a thresh-279

old percentile to exclude marginally relevant pa-280

pers. Seed papers were included to maintain foun-281

dational references. The filtering is represented282

as:283

F = {Pi : D(Pi) > T} ∪ S (1)284

Where F is the final set of papers, Pi is an indi-285

vidual paper, D(Pi) is the ESG and DLT content286

density of a paper, T is the threshold percentile,287

and S is the set of seed papers. Content density288

D(Pi) for each paper is calculated by the ratio of289

the number of DLT and ESG relevant named en-290

tities (NDLT and NESG) to the total number of291

tokens N(Pi) (Equation 2):292

D(Pi) =
NDLT (Pi) +NESG(Pi)

N(Pi)
(2)293

Our filtering methodology involved:294

1. Excluding papers below the 10th percentile295

(see Figure 4a) in the total token count to296

avoid distortions due to PDF-to-text conver- 297

sion issues or unusually short papers (e.g., be- 298

low 100 tokens). 299

2. Computing DLT content density and retain- 300

ing papers above the 90th percentile (see Fig- 301

ure 4b), ensuring a strong focus on DLT top- 302

ics. 303

3. Filtering for at least the 70th percentile (see 304

Figure 4c) in ESG content density to confirm 305

relevance to ESG. 306

Finally, we manually reviewed the filtered publi- 307

cations to validate the accuracy of their ESG/DLT 308

content density and relevance. 309

4.5 Network graphs 310

We analyzed the citation network, represented 311

as G(V,E) with papers as vertices V and cita- 312

tions as edges E. Using G(V,E), we did tem- 313

poral graph analysis with one-year time windows 314

W1,W2, . . . ,Wn, as per the rolling window ap- 315

proach in (Hoadley et al., 2021; Steer et al., 2020, 316

2023). For each window Wi, we created a sub- 317

graph Gi(Vi, Ei) and applied the HITS algorithm 318

(Kleinberg, 2011) to determine temporal shifts in 319

significant citations within the network. 320

Furthermore, we tracked the evolution of named 321

entities in the citation network. Using lemmati- 322

zation and programmatic grouping, we consoli- 323

dated variations of similar entities (e.g., all forms 324

of ”Proof-of-Work” were unified under ”PoW”) to 325

capture changes in entity prevalence accurately. 326

5 Evaluation 327

Figure 3 details the collection and filtering stages of 328

our systematic literature review. The next sections 329

provide more details of the results after applying 330

our methodology (Figure 1). 331
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Entity Category Number of Entities
Blockchain Name 5,358
Consensus 25,378
Transaction Capabilities 4,729
Native Currency Tokenisation 2,671
Extensibility 1,752
Security Privacy 4,838
Codebase 1,339
Identity Management 1,305
ChargingAndRewardingSystem 1,531
Identifiers 1,511
ESG 3,468
Miscellaneous 928

Table 2: Number of named entities for each category in
the dataset.

Text: In this paper, the PoW consensus algorithm used in blockchains are ana-
lyzed in terms of difficulty, hash count, and probability of successful mining.
Output: In this paper, the ⟨Consensus⟩ consensus al-
gorithm used in ⟨Identifiers⟩ is analyzed in terms of
⟨Consensus⟩, ⟨TransactionCapabilities⟩, and
⟨TransactionCapabilities⟩.

Text: Generally, as the difficulty of mining increases, the mining time becomes
longer because the target value must be found lower.
Output: Generally, as the ⟨NativeCurrencyTokenisation⟩, the
⟨ESG⟩ because the target value must be found lower.

Text: As a result, the amount of electrical energy needed to process the work is
immense.
Output: As a result, the ⟨ESG⟩ to process the work is immense..

Text: It provides a distributed, immutable, transparent, secure, and auditable
ledger.
Output: It provides a ⟨Consensus⟩, ⟨Consensus⟩, transparent,
⟨ESG⟩.

Text: Blockchain was first introduced with the creation of Bitcoin back in 2008.
Output: Blockchain was first introduced with the creation of
⟨BlockchainName⟩ back in ⟨Identifiers⟩.

Table 3: Training examples for ESG/DLT labeling task.

5.1 Taxonomy labelling result332

Our NER dataset organizes 54,808 named entities333

into a tree structure with 136 labels under 12 top-334

level categories (Figure 2, Table 2). This structure335

facilitated targeted analysis in our study. Table 3336

provides examples from the dataset.337

5.2 NLP result338

We fine-tuned four models – bert-base-cased3,339

albert-base-v24, distilbert-base-cased5, and al-340

lenai/scibert scivocab cased6 – using 5-fold cross-341

validation according to the titles of the publications342

to avoid a publication’s data appearing in both the343

training and test set for each fold (see Table 3 for344

some samples of training data). Each model un-345

derwent 100 training epochs, 20 epochs per fold,346

with a learning rate of 5 × 10−5, a training batch347

size of 32, and a validation batch size of 64. The348

maximum sequence length was set at 256 tokens.349

3https://huggingface.co/bert-base-cased
4https://huggingface.co/albert-base-v2
5https://huggingface.co/distilbert-base-cased
6https://huggingface.co/allenai/scibert scivocab cased

Model Metrics
Fold Precision Recall F1 Accuracy

BERT

1 0.43342 0.42502 0.42918 0.96443
2 0.55149 0.58924 0.56974 0.96754
3 0.57820 0.55315 0.56510 0.94566
4 0.55809 0.58072 0.56918 0.94728
5 0.58671 0.60786 0.59710 0.96414

Mean 0.54158 0.55120 0.54606 0.95781

Albert

1 0.50650 0.34185 0.40820 0.96984
2 0.57694 0.53416 0.55473 0.97207
3 0.53164 0.43772 0.48013 0.95174
4 0.52687 0.55281 0.53953 0.95577
5 0.57680 0.60863 0.59229 0.97286

Mean 0.54375 0.49503 0.51498 0.96446

DistilBERT

1 0.45704 0.38093 0.41553 0.96607
2 0.55631 0.55364 0.55497 0.96713
3 0.57937 0.54156 0.55983 0.94562
4 0.55962 0.58406 0.57158 0.94747
5 0.58537 0.61668 0.60062 0.96414

Mean 0.54754 0.53537 0.54051 0.95809

SciBERT

1 0.46651 0.46432 0.46542 0.96983
2 0.52566 0.61680 0.56760 0.96649
3 0.55980 0.62262 0.58954 0.94162
4 0.54930 0.64023 0.59129 0.94435
5 0.57721 0.63896 0.60652 0.96544

Mean 0.53570 0.59659 0.56407 0.95755

Table 4: Performance results after fine-tuning for BERT,
Albert, DistilBERT, and SciBERT with the ESG/DLT
NER dataset.

The evaluation results (Table 4) showed that 350

SciBERT and BERT had the best performance. 351

However, DistilBERT’s efficiency made it more 352

suitable for our large corpus of 24,539 publica- 353

tions. DistilBERT, being 60% faster than BERT, 354

and likewise SciBERT, at inference and achieving 355

97% (Sanh et al., 2019) of BERT’s performance, 356

was selected for its balance between effectiveness 357

and efficiency. 358

5.3 Citation network 359

(a) Filtered citation network
evolution and seed papers
using 1-year rolling window.

(b) Authority score evolu-
tion for top 5 papers in the
citation network.

Figure 5: Temporal graph analysis.

In our citation network analysis, Nakamoto’s Bit- 360

coin whitepaper (Nakamoto, 2008) emerges as a 361

central node (Figure 6), emphasizing its founda- 362

tional impact on DLT research (Yli-Huumo et al., 363

2016; Spychiger et al., 2021). This network also 364

prominently features other key innovations, includ- 365

ing Hashcash (Back, 2002) as a precursor to Bit- 366

coin, Ethereum’s introduction of Smart Contracts 367

in 2014 (Buterin), and PPCoin’s 2012 development 368

of Proof of Stake (PoS) (King and Nadal, 2012), 369

indicating significant milestones in DLT evolution. 370
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Figure 6: Density filtered network by layers and by
the distribution of authority scores. Figure 7: Publications showing the normalized ratio

of labels for each part of a branch of the taxonomy.

Temporal graph analysis of the network (Fig-371

ure 5a) reveals a publication surge between 2005372

and 2010, aligning with Bitcoin’s release and its373

subsequent influence on diverse DLT research ar-374

eas, notably in Consensus mechanisms (Figure 7).375

Post-2010, the network saw a marked increase in376

citations, especially after 2015, reflecting the im-377

pact of seminal works like PPCoin and Ethereum’s378

whitepapers (King and Nadal, 2012; Buterin). The379

decline in citations after 2020 is discussed in sub-380

section 6.1.381

6 Discussion382

(a) Consensus’ named enti-
ties evolution

(b) ESG’s named entities
evolution

Figure 8: Named entities evolution in the citation net-
work after applying lemmatization.

Recent developments in LLMs, like Google383

DeepMind’s Gemini7, highlight the significance384

of our work in systematic literature review. Gem-385

ini’s demonstration of a systematic literature re-386

view, where terms like ”Chip” and ”CRISPR-Cas9”387

are searched in publications’ titles and abstracts388

to filter them8 is akin to our methodology (sec-389

tion 3) of applying NER for field-specific filter-390

ing of literature, demonstrating the generalizability391

7https://www.youtube.com/watch?v=sPiOP CB54A
8See https://youtu.be/sPiOP CB54A?feature=

shared&t=64 for the prompt used in the demonstration

and applicability of our approach. However, Gem- 392

ini faces limitations like potential hallucinations 393

that could undermine its filtering of publications. 394

On the other hand, despite that supervised learn- 395

ing approaches outperform current LLMs for NER 396

tasks (Li et al., 2023; Hu et al., 2023), Gemini 397

shows the potential of LLMs in few-shot learn- 398

ing for NER tasks. Additionally, as a commercial 399

product, Gemini has limited accessibility, and its 400

higher-performing models (Pro and Ultra versions) 401

are not widely available. In contrast, our methodol- 402

ogy (section 3) leverages a domain-specific labeled 403

NER dataset and a fine-tuned language model to 404

analyze full-text publications, not just their title 405

and abstracts. This approach enhances the accu- 406

racy and depth of literature reviews. More impor- 407

tantly, our openly available methodology and NER 408

dataset provide the NLP community and others the 409

opportunity to build upon and improve systematic 410

literature review processes at scale, ensuring more 411

reliable filtered results. 412

In terms of our analysis of the citation network, 413

Figure 5a and Figure 6 indicate that foundational 414

publications, particularly those introducing Bitcoin, 415

Ethereum, and other early blockchain technologies, 416

have significantly influenced subsequent research. 417

This is evident from their high citation counts and 418

anchoring positions in the network (see Figure 6 419

and Figure 5b). 420

The increasing ESG content density within DLT 421

research (Figure 7) highlights a shift in thematic 422

interests, from an early focus on security and pri- 423

vacy driving adoption to a growing emphasis on 424

tokenization, efficient and secure consensus al- 425

gorithms (e.g., Byzantine Fault Tolerance), and 426

blockchain architectures. Key historical develop- 427

ments include the emergence of PoW in the late 428
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1990s, as exemplified by (Back, 2002), and the429

rise of PoS-related entities around 2012, following430

(King and Nadal, 2012)’s work (Figure 8a).431

Recent years have seen an academic shift to-432

wards ESG and consensus-related terms, reflect-433

ing an evolving focus on energy-efficient dis-434

tributed systems, decentralization, and sustainable435

blockchain research (Figure 8b). This shift, cou-436

pled with the increasing prominence of terms like437

”decentralization”, ”blockchain”, and ”sustainabil-438

ity”, underscores a multidisciplinary approach in439

the field. The sustained interest in PoW, along with440

explorations into PoS and other consensus mecha-441

nisms, highlights the field’s adaptability to environ-442

mental and scalability challenges (Figure 8a). This443

evolution reflects a balance between technologi-444

cal advancements and societal ESG imperatives,445

demonstrating the academic community’s holis-446

tic and forward-thinking approach to addressing447

blockchain technology’s challenges and opportuni-448

ties.449

6.1 Limitations450

Our literature review faces limitations, including451

potential biases in seed paper selection and a time452

lag in capturing recent publications, which may453

affect the comprehensiveness of our analysis. For454

instance, the choice of XRP’s 2018 whitepaper455

(Chase and MacBrough, 2018) over the more cited456

2014 edition (Schwartz et al.) could underestimate457

its influence in the citation network. Similarly, re-458

cent works like the 2018 Hedera whitepaper (Baird459

et al., 2018) are omitted due to unavailable citation460

data.461

The retrospective approach of building the cita-462

tion network predominantly from pre-2020 seed pa-463

pers introduces a bias toward older publications, po-464

tentially overlooking newer research yet to achieve465

recognition (Figure 5a). While our methodology466

could theoretically filter citations to seed papers467

based on content density, our review focused solely468

on references within the seed papers, possibly lim-469

iting the thematic breadth.470

A significant constraint of this study is the re-471

liance on publicly available research. Despite start-472

ing with an extensive citation network of 63,083473

references (Figure 3), the analysis was limited to474

24,539 publications with accessible full texts, high-475

lighting the challenges of limited public access to476

some academic publications. This limitation points477

to the need for broader accessibility in research, es-478

pecially in rapidly evolving fields like DLT. On the479

other hand, we acknowledge the growing impor- 480

tance of non-traditional literature, such as whitepa- 481

pers and industry publications, in offering more 482

inclusive access to technological developments in 483

DLT. 484

6.2 Future work 485

Future work, as outlined in subsection 6.1, should 486

focus on integrating metadata from different 487

whitepaper versions, like XRP’s 2014 and 2018 488

editions (Schwartz et al.; Chase and MacBrough, 489

2018), and sourcing metadata from alternative 490

databases for publications with missing informa- 491

tion, such as Hedera’s whitepaper (Baird et al., 492

2018). 493

Further research should also include regular up- 494

dates to the taxonomy’s named entity categories 495

(refer to Table 1), expanding training data by an- 496

notating more seed papers, and exploring various 497

language model architectures. 498

7 Conclusion 499

The expanding scientific corpus and rising sig- 500

nificance of non-traditional literature, including 501

whitepapers and academic preprints, emphasize the 502

growing need for assisted analytical methods. Our 503

research demonstrates the efficacy of using NLP 504

for conducting systematic literature reviews on a 505

large scale, particularly within the rapidly evolving 506

DLT field. 507

Our key contributions include the creation of the 508

first NER dataset focused on DLT and ESG and a 509

scalable and adaptable NLP-driven systematic liter- 510

ature review methodology. Additionally, we have 511

conducted an inaugural systematic literature review 512

using this dataset and methodology, demonstrating 513

their practical applicability and effectiveness in an- 514

alyzing DLT’s technological evolution and impacts, 515

serving as valuable resources for researchers, poli- 516

cymakers, and practitioners. 517

Moreover, this research represents a step toward 518

improving automated literature review processes. 519

Compared to commercial options, our openly avail- 520

able methodology and NER dataset allow the NLP 521

community and researchers in related fields to build 522

upon and improve systematic literature review pro- 523

cesses at scale to meet evolving research needs. 524
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