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Abstract

In this paper we motivate the causal mechanisms behind sample selection in-
duced collider bias (selection collider bias) that can cause Large Language Models
(LLMs) to learn unconditional dependence between entities that are unconditionally
independent in the real world. We show that selection collider bias can become
amplified in underspecified learning tasks, and although difficult to overcome, we
describe a method to exploit the resulting spurious correlations for determination of
when a model may be uncertain about its prediction. We demonstrate an uncertainty
metric that matches human uncertainty in tasks with gender pronoun underspec-
ification on an extended version of the Winogender Schemas evaluation set, and
we provide online demos where users can evaluate spurious correlations and apply
our uncertainty metric to their own texts and models. Finally, we generalize our
approach to address a wider range of prediction tasks.

1 Introduction

This paper investigates models trained to estimate the conditional distribution: P (Y |X,S), where
S is the cause of sample selection bias in the training dataset. Selection bias is not an uncommon
problem, as most datasets are subsampled representations of a larger population, yet few are sampled
with randomization [Heckman, 1979].

(a) Well-specified: G
fully observed, in both
dataset features and la-
bels.

(b) Underspecified:
Dataset features
do not observe any
causes of the labels.

Figure 1: Proposed data generating process
for a range of NLP datasets for well-specified
and underspecified prediction tasks. X and
Y represent text: the dataset features and la-
bels, while W , G, and S represent symbolic
entities that may cause the text.

Sample selection bias occurs when some mechanism,
observed or not, causes samples to be included or
excluded from the dataset. Employing the language
of causal inference, selection bias is distinct from
both confounder and collider bias. Confounder bias
can occur when two variables have a common cause,
whereas collider bias can occur when two variables
have a common effect. Correcting for confounding
bias requires that one condition upon the common
cause variable; conversely correcting for collider bias
requires that one does not condition upon the com-
mon effect [Pearl, 2009].

While sample selection bias can take many forms,
the type of selection bias that interests us here is that
which involves more than one variable (observed or
not), whose common effect results in selection bias.
Such relationships can be compactly represented as a
causal model in the form of a directed acyclic graph
(DAG), for example illustrated in Figure 1.

NeurIPS 2022Workshop on Causal Machine Learning for Real-World Impact (CML4Impact 2022).



The absence of arrows connecting nodes in causal DAGs encode assumptions, for example that W
and G in 1(a) are stochastically independent of one another. The direction of the arrowhead encodes
our assumptions about the direction of causation. For example, two arrows departing from W and G
toward S encode the assumption that S is a common effect of W and G.

In Figure 1, the twice-encircled node, S, symbolizes some mechanism that can cause samples to be
selected into the dataset. To capture the statistical process of sampling for dataset formation, one
must condition on S, thus inducing the collider bias relationship between W and G in the causal
model.

We will use the term selection collider bias to refer to circumstances such as this one, when the
selection bias mechanism induces a collider bias relationship in the dataset, that would not have
been there otherwise. Beyond posing a risk to out-of-domain generalizability [Arjovsky et al., 2019],
selection collider bias can result in models that lack even ‘internal validity’, as the associations
learned from the data represent the statistical dependencies induced by the dataset formation and not
the data itself [Griffith et al., 2020]. In [McMilin, 2022], we have shown how selection collider bias
can cause spurious associations, including weakly associating and previously unreported correlations
between gender vs time and gender vs place, which we demonstrated on unmodified pre-trained
BERT [Devlin et al., 2018] and BERT-like models.

2 Underspecification

The link between underspecification in machine learning, and the resulting spurious correlations
and risks to out-of-domain generalization is investigated thoroughly in [D’Amour et al., 2020]. In
this work, underspecification is defined in the context of having multiple predictors with equally
low predictive risk (or some other risk minimization) scores. In the NLP setting, [Manning, 2011]
provide an example of underspecification in a part-of-speech tagging task, in which a given sentence
context makes it unclear whether the word, ‘discontinued’, should have the label ‘adjective’ or ‘verbal
participle’.

In this paper, we are interested in the underspecification that occurs when none of the features
available to the model (at training or inference time) are causes of the label. With no causal features
available, models must resort to learning any spurious associations that will reduce predictive risk,
regardless of how tenuous the association may be. Thus, models trained with selection collider biased
data are particularly vulnerable to learning statistical associations in underspecified learning tasks.

A single prediction task may be partitioned into well-specified and underspecified ‘sub’-tasks. In
paper we will consider the scenario where the well-specified portion of the masked language modeling
(MLM) task may have correctly predicted that a gender pronoun should fill-in a masked-out word,
however the ‘sub’-task of determining which gender pronoun to predict is underspecified.

3 Selection Collider Bias

Although the S node is not explicitly recorded in the dataset, even if S were available to us, we would
not condition on it, as this would induce collider bias between G and W in the form of S’s structural
equation [Pearl, 2009]: S := fs(W,G,Us), where Us is the exogenous noise of the S variable.

P (Y |X) = P (Y |X,S=1) (1)
∼ P (G|X,S=1) (2)
∼ P (G|X,W ) (3)
∼ P (G|W ) (4)

To capture the statistical process of dataset formation, we im-
plicitly condition on S = 1 for all the samples in the dataset.
Now applying the Markov and faithfulness assumptions [?] to
the underspecified model in Figure 1(b), we can estimate the
conditional probability of a gender-identifying word, Y, given
gender-neutral text, X , in a LLM as shown in Equation (1)
through Equation (4).

Equation (1) shows a mapping from the target unbiased quantity
to the measured selection biased data, as defined in [Bareinboim
and Pearl, 2012]. Equation (2) assumes very high correlation between the textual form of gender in
Y (as a ‘gender-identifying word’) with the symbolic variable for gender, G. Equation (3) replaces
S with the variables in its structural equation, S := fs(W,G,Us), which entails the conditional
dependence P (G|W ) ̸= P (G). Finally, Equation (4) assumes we have successfully achieved a
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Table 1: Extended Winogender evaluation sentences and uncertainty results for occupation as ‘Doctor’.
Only sentence IDs 5 & 6 are not underspecified for gender pronoun prediction, and appropriately all
models show the lowest relative uncertainty for these sentences, in particular the larger and longer
trained models.

ID Sentence with Participant and Coreferent Highlighted
Uncertainty

BERT RoBERTa
base large base large

1 In DATE: The doctor told the man that [MASK] would be on vacation next week. 1.7 1.8 15.0 14.0
2 In DATE: The doctor told the woman that [MASK] would be on vacation next week. 4.3 27.3 4.0 18.8
3 In DATE: The doctor told someone that [MASK] would be on vacation next week. 10.6 8.0 13.3 20.2
4 In DATE: The doctor told the patient that [MASK] would be on vacation next week. 1.9 6.6 14.7 16.6
5 In DATE: The doctor told the man that [MASK] would be at risk without the vaccination. 0.0 0.0 0.3 0.1
6 In DATE: The doctor told the woman that [MASK] would be at risk without the vaccination. 0.3 0.1 0.7 0.5
7 In DATE: The doctor told someone that [MASK] would be at risk without the vaccination. 11.3 10.5 41.3 16.4
8 In DATE: The doctor told the patient that [MASK] would be at risk without the vaccination. 6.1 12.3 19.2 9.3

gender-neutral text, X, and thus P (G|X) = P (G). Equation (1) - Equation (4) show that conditional
probability P (Y |X) obtained by applying the underspecified task in Figure 1(b) to an LLM, should
be distributed similarly to P (G|W ). This provides information about the latent representations for G
and W, which are otherwise inaccessible. Additionally, these equations provide insights into the role
of selection collider bias in the transformation from real-world (RW ) unconditional independence
to learned model (LM ) unconditional dependence measured on BERT-family LLMs in [McMilin,
2022]: (Y ⊥⊥X)RW ≈ (G ⊥⊥W )RW

s⇒ (G⊥̸⊥W )LM ≈ (Y ⊥̸⊥X)LM.

4 Exploiting Selection Collider Bias

Here we use spurious associations to determine if a prediction task may be underspecified, and
therefore if the resulting prediction should be deemed uncertain, in a method we call W-injection.

Figure 2: Averaged softmax percentages from
RoBERTa large for predicted female gender pro-
nouns (normalized over all gendered predictions)
vs a range of dates (injected into the text), for the
‘Doctor’ Winogender texts listed in Table 1.

We test this using the Winogender Schema eval-
uation set [Rudinger et al., 2018], composed of
120 sentence templates, hand-written in the style
of the Winograd Schemas [Levesque et al., 2012].
Originally the Winogender evaluation set was de-
veloped to demonstrate that many NLP pipelines
produce spurious associations between gender and
occupation, often well exceeding any occupation-
based gender inequality in the real world.

The ‘Sentence’ column in Table 1 shows example
texts from our extended version of the Winogender
evaluation set, where the occupation is ‘doctor’.
Each sentence in the evaluation set contains: 1) a
professional, referred to by their profession, such
as ‘doctor’ 2) a context appropriate participant,
referred by one of: {‘man’, ‘woman’, ‘someone’,
other} where other is replaced by a context spe-
cific term like ‘patient’, and 3) a single pronoun
that is either coreferent with (1) the professional or
(2) the participant in the sentence [Rudinger et al.,
2018]. For the masked gender task, this pronoun
is replaced with a [MASK] for prediction.

Our extensions to the evaluation set are two-fold: 1) we add {‘man’, ‘woman’} to the list of words
used to describe the participant in order to add well-specified tasks to the existing Winogender set,
which are all underspecified, and 2) we perform W-injection by prepending each sentence with the
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(a) Masked pronoun is coreferent with the professional in the sentence, so all these sentences remain underspeci-
fied. Like human uncertainty, we see model uncertainty results above 0 for most occupations, regardless of the
word injected into evaluation text for the participant, including co-occurring gender-identifying terms.

(b) Masked pronoun is coreferent with the participant, so the sentences containing ‘man’ and ‘woman’ become
well-specified, while the rest remain underspecified. Like human uncertainty, we do see uncertainty results close
to 0 for most occupations, when ‘man’ or ‘woman’ has been injected into the evaluation text for the participant,
and generally above 0 otherwise

Figure 3: RoBERTa-large uncertainty results on all Winogender Schema occupations.

phrase ‘In DATE’, where ‘DATE’ is replaced by a range of years from 1901 to 20161, similar to what
was done in [McMilin, 2022].

In Sentence IDs 1 - 4 of Table 1, the masked pronoun is coreferent with the professional, who is
always referred to as the ‘doctor’. Whereas in Sentence IDs 5 - 8, the masked pronoun is coreferent
with the participant, who is referred to as {‘man’, ‘woman’, ‘someone’, and ‘patient’}, respectively.
Of the eight sentences, six remain underspecified for the pronoun prediction task, with only IDs 5 &
6 becoming well-specified.

Figure 2 shows the predicted softmax probability for female pronouns for the masked words in the
Table 1 sentences, normalized to the gendered predictions of the top five predicted words from pre-
trained RoBERTa large. Similar to the findings in [Rudinger et al., 2018], the softmax probabilities
for female pronouns are higher for masked pronouns coreferent with the patient as opposed to the
doctor (for the underspecified sentences) indicating a specific gender bias for traditionally non-female
occupations.

What is new here is that in Figure 2 we can see that the spurious associations due to the W-injection
of an unrelated association (time vs gender) is additive with the existing spurious association between
occupation and gender, but only takes on a non-zero value when the prediction task is underspecified.

4.1 Uncertainty Metric

For an example single-value uncertainty metric, we can measure the absolute difference between the
averaged softmax probabilities for the first and last several dates along the x-axis in Figure 2. For
this uncertainty metric, we would expect larger values for underspecified prediction tasks, in which

1We picked a slightly narrower and more modern date range as compared to that in [McMilin, 2022] for
contextual consistency with some of the more modern occupations in the Winogender evaluation set.
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the spurious correlation between gender and date has a larger role in influencing the prediction. For
the predictions in Figure 2, this metric is shown in the ‘Uncertainty’ columns in Table 1 for all four
LLMs studied in this paper. Here we see uncertainty values closest to 0 for well-specified sentence
IDs 5 & 6, consistent with human reasoning about the uncertainty of predicting gender pronouns for
these sentences in Table 12.

We calculate the above-described uncertainty metric for all 60 occupations in the Winogender
evaluation set and show the results from RoBERTa large 1) in Figure 3(a), with input sentences
like IDs 1 - 4 where the masked pronoun is coreferent with the professional, and 2) in Figure 3(b),
with input sentences like IDs 5 - 8 where the masked pronoun is coreferent with the participant. In
these plots the x-axis is ordered from lower to higher female representation, according to Bureau of
Labor Statistics 2015/16 statistics provided by [Rudinger et al., 2018], and the y-axis is the prediction
uncertainty metric defined in the proceeding paragraphs.

In Figure 3, we again see the model reliably reporting high uncertainty for all six of the underspecified
tasks and low uncertainty for the two well-specified tasks, for almost all Winogender evaluation
sentences. We show similar results for BERT and RoBERTa base and BERT large in Appendix A, but
note that the increased parameter count and hyper-parameter optimization in RoBERTa large appears
to improve the uncertainty measurement.

5 Extending to More General Setting

We now explore a more general problem space where these symbols in Figure 1 take on the following
meanings: G is the causal parents of Y, W is the non-causal parents of Y yet nonetheless included
because W is a cause of both X and S, where S has the same meaning as before. We can thus
partition any feature space into G, and candidates for W . A candidate can be validated as suitable W
feature by checking for the conditional dependencies which we will be plotting below.

To make this hypothetical example slightly more concrete, we parameterize the structural causal
models associated with Figure 1 in these slightly less generic terms shown on the right.

G := αN (0, 1) (5)

W :=
α

2
N (0, 1) (6)

S := (W −G+N (0, 1)) > 2α (7)
X := W + γG+N (0, 1) (8)
Y := γX +G+N (0, 1) (9)

Equation (5) and Equation (6) define W and G as inde-
pendent exogenous 0-mean Gaussian noise, for which
we set α = 10 so that we can more easily trace the am-
plified noise through the DAG3. Equation (7) defines S
as an unweighted combination of W, G and exogenous
noise, with the selection mechanism setting all values
above 2α to 1, and to 0 otherwise. In Equation (8) and
Equation (9) we set γ to 0 for the underspecified task
and to 1 for the well-specified task, consistent with a
0 path weight for the grayed out arrows G → X and
X → Y in Figure 1(b), and a full path weight for those
same arrows in Figure 1(a).

Figure 4 plots the statistical relationships induced by the structural causal model defined by equations
Equation (5) to Equation (9) for the well-specified (top row in blue) and underspecified (bottom row
in green) causal models. Starting with Figure 4(a), columns (i) and (ii) show plots X vs Y for both
the unsampled and the S=1 sampled distributions, respectively. The plotted correlation between
X and Y for the well-specified (top two) plots is not greatly affected by the sampling, with the
Pearson’s r coefficient going from 0.946 to 0.987. However, for underspecified plots (bottom two),
sampling selection bias causes the Pearson’s r coefficient to go from 0.004 to 0.685, consistent with
the selection collider bias induced transformation: (Y ⊥⊥X)RW

s⇒ (Y ⊥̸⊥X)M.

In Figure 4(a), columns (iii) and (iv) also show the unsampled and the S = 1 sampled
distributions, but for W vs G. Here we also see that the S node subsampling causes
W vs G to go from about 0.0 to about 0.7, but for both the underspecified model and

2As can be seen further in Appendix A, this uncertainty metric appears to report results more consistent with
human reasoning in RoBERTa large and generally as the model becomes increasingly over-parameterized.

3We set different noise weights to G and W by arbitrarily dividing α by 2 in Equation (6), to reduce the
likelihood of unintentionally constructing an unfaithful graph.
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(a) (W −G+N (0, 1)) > 2α sampled. (b) (W +G+N (0, 1)) > 2α sampled.

Figure 4: Statistical relationships induced by the structural causal model defined by Equation (5) to
Equation (9), with Equation (7) separately defined above, for the well-specified (top row in blue) and
underspecified (bottom row in green) models in Figure 1.

well-specified models, rather than the underspecified model alone. This validates that se-
lection collider bias induced P (Y |X) ∼ P (G|W ) only holds for underspecified models.

Figure 5: Decreasing the path coefficient, β, for
X → Y , as a toy representation of what we termed
the W-Injection.

For Figure 4(b), we replace Equation (7) with
S := (W + G + N (0, 1)) > 2α, which dif-
fers in that we are combining W and G with an
addition, rather than a subtraction. The results
here are similar to those in Figure 4(a), with
the only exception being that due to the updated
structural equation for S, the direction of the cor-
relation coefficient has flipped in both selection
biased W vs G plots, and only the underspeci-
fied X vs Y plot. These results again validate
P (Y |X) ∼ P (G|W ) for only the underspeci-
fied model.

For the toy demonstration of W-injection in
Figure 5, we replace Equation (8) with X :=
βW + γG+N (0, 1), where β takes on the val-
ues: 1) β = 1 (thus identical to Equation (8)) 2)
β = 0.1 and 3) β = 0.01. Similar to the results
in Section 4, probing P (Y |X) for a range of
W values can serve to classify tasks as underspecified if P (Y |X) is sensitive to W-injection, or
well-specified if P (Y |X) is unaffected.

6 Demonstration and Open-Source Code

We have developed demos where users can choose their own input text and select
almost any BERT-like model hosted on Hugging Face to test for selection collider
bias induced spurious correlations and model uncertainty, shown in Appendix B and
Appendix C and available at https://huggingface.co/spaces/emilylearning/
spurious_correlation_evaluation and https://huggingface.co/spaces/
emilylearning/llm_uncertainty, respectively. We will make all code available at
https://github.com/2dot71mily/exploiting_selection_bias.

7 Discussion

In this paper we have argued that underspecified prediction tasks leave models vulnerable to selection
collider bias induced spurious associations, and have introduced a technique for injecting spurious sig-
nals into inference tasks to determine if the task is well-specified or underspecified, and demonstrated
this in the form of an uncertainty metric on an established evaluation set.

We have generalized our approach to address a wider range of prediction tasks and shown that our
empirical results measured from LLMs can be demonstrated with toy data as well.
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A Extended Winogender Uncertainty Results on More LLMs

Figure 6 shows Uncertainty results for all Winogender occupations where the masked pronoun is
coreferent with the professional. Because the injected text (one of: {‘man’, ‘woman’, ‘someone’,
‘other’}) is referring to the participant and not the professional, all these sentences remain underspec-
ified. The plots show all tested models tend to report uncertainty results above 0 for all occupations,
regardless of the word injected into the evaluation text for the participant, thus the models do not
become erroneously certain about gender when the words ‘man’ and ‘woman’ are injected into the
text.

Figure 7 shows uncertainty results for all Winogender occupations where the masked pronoun is
coreferent with the participant, unlike Figure 6 where the pronoun is coreferent with the professional.
Because the injected text (again one of: {‘man’, ‘woman’, ‘someone’, ‘other’}) is referring to the
participant, the sentences containing ‘man’ and ‘woman’ become well-specified, while the rest
remain underspecified. We see uncertainty results closer to 0 for most occupations when ‘man’
or ‘woman’ has been injected into the evaluation text for the participant, and generally above 0
otherwise, in particular for more highly over-parameterized models like BERT large and RoBERTA
base & large in Figure 3(b).

B Spurious Correlations Demo

See Figure 8 for our open source freely available demonstration where users can choose their own
input text and select almost any BERT-like model hosted on Hugging Face to test for selection collider
bias induced spurious correlations.

C Model Uncertainty Demo

See Figure 9 for our open source freely available demonstration where users can choose their
own input text and select almost any BERT-like model hosted on Hugging Face to test for model
uncertainty using selection collider bias induced spurious correlations.
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(a) BERT base

(b) BERT large

(c) RoBERTa base

Figure 6: Uncertainty results for all Winogender occupations where the masked pronoun is coreferent
with the gender-unidentified professional, thus all sentences remain underspecified. The plots show
that generally, the models do not become erroneously certain about gender when the words ‘man’
and ‘woman’ are injected into the text.
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(a) BERT base

(b) BERT large

(c) RoBERTa base

Figure 7: Uncertainty results for all Winogender occupations where the masked pronoun is coreferent
with the participant, thus the sentences containing ‘man’ and ‘woman’ become well-specified, while
the rest remain underspecified. Accordingly, the plots show that the uncertainty metric for the models
is closer to 0 for the well-specified sentences containing ‘man’ and ‘woman’, and higher than 0
otherwise, particularly in the case of the more highly over-parameterized models like BERT large
and RoBERTA base & large in Figure 3(b).

10



Figure 8: Demo where users can choose their own input text and select almost any BERT-like model
hosted on Hugging Face to test for selection collider bias induced spurious correlations.
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Figure 9: Demo where users can choose their own input text and select almost any BERT-like model
hosted on Hugging Face to test for model uncertainty using selection collider bias induced spurious
correlations.
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