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ABSTRACT

Dictionary learning (DL) has emerged as a powerful interpretability tool for large
language models. By extracting known concepts (e.g., Golden-Gate Bridge) from
human-interpretable data (e.g., text), sparse DL can elucidate a model’s inner
workings. In this work, we ask if DL can also be used to discover unknown concepts
from less human-interpretable scientific data (e.g., cell images), ultimately enabling
modern approaches to scientific discovery. As a first step, we use DL algorithms
to study microscopy foundation models trained on multi-cell image data, where
little prior knowledge exists regarding which high-level concepts should arise. We
show that sparse dictionaries indeed extract biologically-meaningful concepts such
as cell type and genetic perturbation type. We also propose a new DL algorithm,
Iterative Codebook Feature Learning (ICFL) and combine it with a pre-processing
step which uses PCA whitening from a control dataset. In our experiments, we
demonstrate that both ICFL and PCA improve the selectivity or “monosemanticity”
of extracted features compared to TopK sparse autoencoders.

1 INTRODUCTION

Large scale machine learning systems are extremely effective at generating realistic text and images.
However, these models remain black boxes: it is difficult to understand how they produce such
detailed reconstructions, and to what extent they encode semantic information about the target
domain in their internal representations. One approach to better understanding these models is to
investigate how models encode and use high-level, human-interpretable concepts. A challenge to this
endeavor is the “superposition hypothesis” (Bricken et al. 2023), which states that neural networks
encode many more concepts than they have neurons, and as a result, one cannot understand the model
by inspecting individual neuron. One hypothesis for how neurons encode multiple concepts at once
is that they are low-dimensional projections of some high-dimensional, sparse feature space. Quite
surprisingly, there is now a large body of empirical evidence that supports this hypothesis in language
models (Mikolov et al., 2013; Elhage et al., 2022; Park et al., 2023), games (Nanda et al., 2023)
and multimodal vision models (Rao et al., 2024), by showing that high-level features are typically
predictable via linear probing. Further, recent work has shown that model representations can be
decomposed into human-interpretable concepts using a dictionary learning model, estimated via
sparse autoencoders (Templeton, 2024; Rajamanoharan et al., 2024b;a; Gao et al., 2024).

However, all of these successes have relied on some form of text supervision, either directly through
next-token prediction or indirectly via contrastive objectives like CLIP (Radford et al., 2021), which
align text and image representations. Further, these successes appear in domains which are naturally
human-interpretable (i.e. text, games and natural images), and as a result, one may worry that
high-level features can be extracted only in settings that we already understand. This raises a natural
question: can we extract similarly meaningful high-level concepts from completely unsupervised
models in domains where we lack strong prior knowledge? For example, in computational biology,
masked autoencoders (MAE) trained on cellular microscopy images have been shown to be very
effective at learning representations that recover known biological relationships (Kraus et al., 2024).
However, it is not known whether analogous high-level concepts can be extracted from these large
MAEs. These settings are precisely where extracting high-level concepts could be most valuable:
given that models can detect subtle differences in images (even those that are very challenging for
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Figure 1: Cell images ranked according to the correlation strength with three selected features learned by our
dictionary learning algorithm. Each feature captures distinct cellular morphologies: Feature A activates for cells
with an elongated, spindle-like shape (left) and anti-correlates for sparser or aggregated cells (right); Feature B
activates for cells that are densely packed with closely arranged nuclei (left) and deactivates when cell density
drops (right); and Feature C activates for small-shaped, compact, brights cells without cell-cell contacts almost
entirely made up from just nuclei (left), in contrast to multi-nucleated cells which occupy larger areas (right).

human experts to interpret), we might hope that we can use these techniques to better understand
subtle differences.

We study the extraction of high-level concepts from large-scale MAEs trained on microscopy images
of cells that have been perturbed in genetic and small molecule perturbations screens (Fay et al., 2023).
Understanding the morphological changes induced by genetic and small molecule perturbations is an
inherently difficult and fundamental problem that plays a crucial role in drug discovery (Celik et al.,
2022). Recent progress in this field using machine learning has been made by building similarity
maps of genetic perturbations via cosine-similarities of post-processed representations from MAEs
(Kraus et al., 2024; Celik et al., 2022; Lazar et al., 2024). However, a limitation of these deep
learning-based methods is that we only gain limited insights about the morphological changes arising
from the perturbations: we can tell whether two perturbations are similar (or dissimilar) via cosine
similarity, but we cannot tell why (or the ways in which) they are different. That is, we collapse the
multidimensional similarities and dissimilarities down to a single score.

In this paper, we train dictionary learners on top of intermediate representations of large-scale
MAEs (Kraus et al., 2024) and find features correlated with single concepts such as individual
cell types or genetic perturbations in an unsupervised manner. Moreover, via linear probing, we
show that the reconstructed representations from the sparse features preserve significant amounts of
biologically-meaningful information. Through this research, we make several key contributions:

• We show that dictionary learning can be used to extract biologically-meaningful concepts from
microscopy foundation models (see Figure 1), opening the path to scientific discovery using tools
from mechanistic interpretability.

• We propose a new dictionary learning algorithm—Iterative Codebook Feature Learning (ICFL)—
which naturally avoids “dead” features (Section 4).

• We further show how PCA whitening on a control dataset can act as a form of weak supervision
for dictionary learning (Section 5), resulting in more meaningful features.

• We demonstrate empirically that both ICFL and PCA improve the selectivity or “monosemanticity”
of extracted features compared to TopK sparse autoencoders (Section 6).
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Algorithm 1 Iterative Codebook Feature Learning

1: Input: Parameters Wdec, bpre; model representation x; # sparse features K and iterations J
2: Initialize x(1) := x− bpre
3: for t = 1 to J do
4: Select top K columns of Wdec which maximize ⟨Wdec,m, x(t)⟩
5: Solve z(t) = argminz ∥x(t) −Wdecz∥22 with z non-zero only for selected columns
6: Update x(t+1) := x(t) −Wdecz

(t)

7: end for
8: Output: Sparse features z :=

∑J
t=1 z

(t)

2 RELATED WORK

The disentanglement and causal representation literature (CRL) share the goal of learning high-level,
interpretable concepts (Bengio et al., 2013; Kulkarni et al., 2015; Higgins et al., 2017; Chen et al.,
2016; Eastwood & Williams, 2018; Schölkopf et al., 2021). Two key differences with the dictionary
learning approach are: (i) disentanglement/CRL methods consider low-dimensional representa-
tions to capture the factors of variation in data, whereas overcomplete dictionary learning seeks a
higher-dimensional representation to capture a large set of sparsely-firing concepts; and (ii) disentan-
glement/CRL methods aim to be inherently interpretable, whereas this paper considers a post-hoc
approach to interpret pre-trained models. Related work on post-hoc explainability also learns “concept
vectors” in neural network internal states (Kim et al., 2018; Ghorbani et al., 2019); a key difference
is that these methods use class-labeled data, whereas this paper uses an unsupervised approach to
discover concepts. Additionally, feature-visualization works aim to interpret internal states/neurons
by finding the data points (or gradient-optimized inputs) that lead to maximal activation (Mordvintsev
et al., 2015; Olah et al., 2017; Borowski et al., 2021).

3 BACKGROUND

The superposition hypothesis. Let xi ∈ Rd denote a representation for token i; as an example,
xi may be the embedding of token i after a transformer layer. Bricken et al. (2023) hypothesize
that (i) such token representations xi ∈ Rd are linear combinations of concepts; (ii) the number of
available concepts M significantly exceed the dimension of the representation d; and (iii) each token
representation is the sum of a sparse set of concepts. These desiderata are satisfied by the following
model that is widely studied in compressed sensing and dictionary learning:

xi ≈ Wzi where ∥zi∥0 ≪ d (1)
where W ∈ Rd×M is a latent concept matrix and zi ∈ RM is a sparse latent concept-selector (resp.
feature) vector.

Feature learning using TopK SAEs. Given a set of token representations {xi}Ni=1, learning both
W and {zi}Ni=1 is a dictionary learning or sparse coding problem Olshausen & Field (1997), with
a long history of works proposing efficient algorithms with provable guarantees (Aharon et al.,
2006; Arora et al., 2014; 2015). In the context of mechanistic interpretability, the dominant choice
for learning these parameters are two-layer sparse autoencoders. In this paper, we compare to the
state-of-the-art method called TopK SAE, originally proposed by Makhzani & Frey (2013) and
recently studied by Gao et al. (2024). Following their notation, the model is:

xi = Wdeczi + bpre, with zi = TopK(Wencxi − bpre)

where TopK(·) is an operator that sets all but the K largest elements to zero. The parameters
{Wdec,Wenc, bpre} are learned by minimizing the reconstruction loss:

L(W, b) :=
∑
i

∥xi − x̂i∥22, where x̂i = WdecTopK(Wencxi − bpre) + bpre (2)

A problem with the above optimization is that some concept vectors Wdec,m are barely used; that is,
features zim = 0 for almost all i ∈ [N ]. This is called the “dead feature” phenomenon. To reduce the
amount of dead features, Gao et al. (2024) introduce an additional reconstruction error term using
only these concept vectors to encourage their usage in the model (see Table 1).
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4 ITERATIVE CODEBOOK FEATURE LEARNING (ICFL)

Sparse autoencoders such as TopK SAEs face two major limitations: (i) they require regularization to
avoid “dead features” after training (Gao et al., 2024; Bricken et al., 2023) and (ii) some concepts may
be overrepresented in the samples {xi}Ni=1, biasing the estimation. To overcome these limitations,
we propose Iterative Codebook Feature Learning (ICFL). ICFL retains the decoder of TopK SAEs,
however, instead of using an encoder to learn the features z, ICFL updates z using a variant of
the orthogonal matching pursuit algorithm of Mallat & Zhang (1993) as described in Algorithm 1.
Specifically, given the current decoder/feature matrix Wdec, we first select the top-k columns most
aligned with x(1) = x. Then, we learn the features z(1) that best reconstruct x ≈ Wdecz

(1), using
only these columns (i.e. z(1) is K-sparse). Next, to obtain z(2), we repeat this step, but replace
x with the residual x(2) = x −Wdecz

(1). Repeating this process, the final output z is taken to be
z =

∑J
t=1 z

(t). Consequently, z is at most Jk-sparse.

The key idea of ICFL is that early iterations subtract dominant concepts from x, allowing the
algorithm in later iterations to select a broader set of concepts that are not as correlated with the main
concepts in x. After updating z as detailed in Algorithm 1, the decoder parameters {Wdec, bpre} are
updated to minimize the reconstruction loss from equation 2 with x̂ = Wdecz + bpre. As z is fixed in
this gradient step, the algorithm does not propagate gradients through z. Consequently, the algorithm
results in very few “dead” features. As a result, we do not require any additional regularization to
address this “dead feature” issue that often hinders SAEs, as shown in Table 1.

w/o w/

ICFL 55 341
TopK 7640 8026

Table 1: The number of “dead
features” (out of 8192) that have
been activated less than a fraction
of 10−5 many times during the
last 1000 training steps, for both
TopK and ICFL with and without
PCA whitening (see Section 5).

In practice, we leverage random resets to ensure that the columns of
Wdec are not too correlated. To prevent the collapse of the feature
directions (columns of Wdec), after every 100 stochastic gradient
descent steps, we take every pair of columns of Wdec that have
cosine-similarity above 0.9 and randomly initialize one of the pairs
with a vector selected uniformly at random from the hypersphere.
Before running Algorithm 1, we always center the representations
by the average representation with unperturbed samples from the
control distribution. By doing so, we center the representations
such that the origin represents the unperturbed state. Finally, we
normalize the representations before applying the dictionary learner.

5 EXPERIMENTAL SETUP

Data source and foundation model We evaluated our dictionary learning approach on two large-
scale masked autoencoders trained on cellular microscopy Cell Painting image data using 256x256x6
pixel crops as input and a patch size of 8, following the same procedures as those described in Kraus
et al. (2024). These models were trained on data from multiple cell types that were perturbed with
both CRISPR gene-knockouts and small molecule perturbations. Both models used the architecture
hyperparameters from Kraus et al. (2024), with the smaller of the two using the ViT-L/8 configuration,
while the larger model used the ViT-G/8 configuration. We refer to these models as MAE-L and MAE-
G, respectively. We obtain a single token per input crop by aggregating all patch tokens (excluding
the class token). For both the residual stream and the attention output (after the out-projection), the
dimension d of the tokens (representations) are 1024 and 1664 for MAE-L and MAE-G, respectively.
All the visualizations used Cell Painting microscopy images from the public RxRx1 (Sypetkowski
et al., 2023) and RxRx3 (Fay et al., 2023) datasets.

We extract the tokens from layer 16 (MAE-L) and layer 33 (MAE-G), respectively. The motivation for
using intermediate instead of final layers is that these tokens are more-likely to capture abstract high
level concepts that are internally used by the model to solve the SSL task (Alkin et al., 2024). We
selected this layer by finding the layer which maximized linear probing performance on the functional
group tasked (described below) from the original embeddings.

Preserving linear probing signals To investigate whether the features found by sparse dictionary
learning retain important information from the original representation, we define five different
classification tasks, summarized in Table 2. For each classification task, we use a separate (potentially
overlapping) dataset and split it into train and test data to distinguish labels across:
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Task Cell Type Experiment
Batch

siRNA
Perturbation

CRISPR
Perturbation

Functional
Gene Group

# Classes 23 272 1 138 5 39
# Samples 110,971 80,000 81,224 79,555 57,863

Bal. Test Acc. 97.2% 87.8% 51.6% 94.6% 32.1%

Table 2: The five classification tasks and the test bal. acc. for linear probes trained on well-level aggregated
representations from the residual stream from an intermediate layer from MAE-G.

(1) 23 different cell types which are almost perfectly distinguishable via linear classification.

(2) 272 different experiment batches. Even in controlled conditions, subtle changes in experi-
mental conditions can induce strong batch effects, i.e. changes in experimental outcomes
due to experiment-specific variations unrelated to the perturbation that is being tested.

(3) 1138 siRNA perturbations from the RxRx1 dataset (Sypetkowski et al., 2023), where the
single-gene expression (i.e. gene mRNA level) is partially (or completely) silenced using
short interfering (si-)RNA. siRNA targets the gene mRNA for destruction via the RNA
interference pathway (Tuschl, 2001). As the extent of siRNA knock-downs is hard to
quantify and prone to significant but consistent off-target effects, we also evaluated:

(4) 5 single-gene CRISPR perturbation knockouts which induce strong and consistent morpho-
logical profiles across cell types, known as "perturbation signal benchmarks" (Celik et al.,
2024). Unlike the siRNA approach, CRISPR cuts the gene DNA directly, which induces
mutation in the sequence and represses the gene function. To evaluate whether our method
retrieves signal which corresponds to similar phenotypes, we also assessed:

(5) 39 functional gene groups composed of CRISPR single-gene knockouts categorized by
phenotypic relationships between the genes, including major protein complexes, metabolic
and signaling pathways. Each gene group targets similar or related cellular process, which
results in inducing morphologically similar changes in the cells (Celik et al., 2022).

To remove the impact of spurious correlations between perturbations and batch effects on the test
accuracy, we always use mutually exclusive experiments for test and train data, except for (ii) where
the task is to predict the experiment. Except for (i), all classification tasks use HUVEC cells and
always use well-level aggregated representations: that is, we take the mean over tokens from all 36
non-edge crops from an image of a given well of cells. Because some of the classes are heavily
imbalanced (particularly for Task (1)), we always report the balanced test accuracy and train our
linear probes using logistic regression on a class-balanced cross-entropy loss.

PCA whitening using a control dataset As dictionary learners seek to minimize the Euclidean
distance between the model representations x and their reconstructions x̂ = Wz, the learned features
z are naturally biased towards capturing the dominant directions in the data (i.e., those that explain
the most variance). Unfortunately, these directions often do not align with meaningful concepts. To
address this, we use a dataset of control samples as a form of weak supervision, downweighting
dominant directions in this control dataset as we know they do not correspond to the biological pertur-
bations of interest. In particular, we learn a PCA-and-centerscale transform on this control dataset and
apply it to the entire dataset before normalization. For our multi-cell data, unperturbed HUVEC-cell
images act as our control dataset. Note that similar PCA whitening on a control dataset has been used
to improve the quality of the learned multi-cell image representations (Kraus et al., 2024).

Training the DL models By default, we always choose a sparsity of K = 100 for TopK SAEs and
J = 20, k = 5 (resulting in a max sparsity of 100) for ICFL as described in Section 4, and use a
total of 8192 features. Unless otherwise specified, we always apply the PCA whitening described in
Section 5 and use representations from the residual stream. We train the sparse autoencoders using
40M tokens (one token per crop) with a batch size of 8192 for 300k iterations. Our learning rate is
5× 10−5 for all experiments. Similar to Gao et al. (2024), we observed that changing the learning
rate has a limited impact on the outcome. We present an ablation for the learning rate in Appendix C.
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Figure 2: Top row: a) Test bal. acc. of linear probes trained on the original representation (solid line) and
reconstructions from ICFL and TopK SAEs in combination with PCA whitening and with out. b) Test bal. acc. as
a function of the sparsity (dashed line is the original representation) for classification Task 5. c) Cosine similarity
of reconstruction and original representations as a function of sparsity for tokens from a hold-out validation
dataset. Bottom row: The highest selectivity scores among all features for each label. We separately order the
labels for each line starting with the maximum score. We plot the avg (solid) and max (dashed) selectivity scores.

6 EXPERIMENTAL RESULTS

In this section we present our experimental results. If not further specified, we always use features
extracted from ICFL in combination with PCA whitening.

6.1 DICTIONARY FEATURES ARE CORRELATED WITH BIOLOGICAL CONCEPTS

Preserving linear probing signals By comparing linear probes on the representations and recon-
structions from ICFL sparse features, we can measure how much “biologically-relevant” information
is lost when extracting sparse features. Figure 2a shows that almost the entire signal is preserved
for simple concepts such as cell types (1), batch effects (2) and perturbations with strong morpho-
logical changes (4). For the difficult tasks of distinguishing between many genetic perturbations
(3,5), a substantial amount of the linear signal is preserved. Both TopK SAEs and ICFL features
yield a similar linear probing accuracy, while we can see a clear drop if no PCA whitening is used
during pre-processing. We further present in Figure 2b an ablation for the sparsity of the extracted
feature vector. While increasing the number of non-zeros improves the accuracy, the effect is limited
compared to PCA whitening.

Reconstruction loss To evaluate the quality of unsupervised DL, the cosine similarity (or ℓ2-error)
has been often used as a benchmark (Rajamanoharan et al., 2024a; Gao et al., 2024). Figure 2c
shows that the reconstruction quality of ICFL is much higher than TopK SAE for the same sparsity
constraints when using PCA whitening. We provide further ablations in Appendix C.

Selectivity of features for biological concepts As a third experiment, we investigate how strongly
correlated the features are with labels from the classification tasks in Table 2. For each dataset
associated with a classification task, we extract from every image a feature vector using the center
crop as input to the MAE. For each feature, we then compute two selectivity scores: the avg selectivity
score, which is the % of times that the feature is active given that label i occurs minus the % of times
the feature is active given any other label. As a stronger notion of correlation, we also use the max
selectivity score, that subtracts the maximum % for any other label. The selectivity score has been
originally proposed in the context of neuroscience (Hubel & Wiesel, 1968) and has also been used by
Madan et al. (2022) to measure the “monosemanticity” of neurons.
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(a) ALG3 - F7647 (b) DERL2 - F8144 (c) SPATA2 - F3827 (d) TMED2 - F7188
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Figure 3: Top row: Cosine-similarity histograms for selected pairs of representations from perturbations from
Task 3 and features directions (as shown in the caption), given that its associated perturbation is applied (blue)
and that any other perturbation is applied (orange). Bottom row: Comparison of the average selectivity score
of features from CP and ICFL. a) Maximum average selectivity scores for each label, displayed in descending
order. b) The scores from (a) averaged across labels at different thresholds for CP and sparsity levels for ICFL,
as a function of the average number of non-zero values. c) Correlation of maximum average selectivity scores
for each label between CP and ICFL.

We plot in Figure 2d-2f the selectivity scores for both ICFL features and TopK SAEs. We see that
ICFL features consistently achieve higher selectivity scores than TopK SAE features. Moreover,
especially for cell types, we observe a high max selectivity across almost all cell types, while for
more complex features we still observe a moderate selectivity score of more than 0.1 across all
labels. We present in Table 3 the number of features exhibiting an average selectivity greater than
a given threshold for at least one label, across all five classification tasks. This is done using three
different thresholds for ICFL with PCA whitening. We observe that dominant concepts, such as cell
types, batch effects, and siRNA perturbations that induce strong morphological changes, lead to a
substantial portion of features displaying high selectivity. However, also for labels from the functional
gene groups (Task 5), we identify more than 100 features with selectivity scores of at least 0.1.

Separation along feature directions The selectivity score analysis showed that activation patterns
of the sparse features can be strongly correlated with genetic perturbations. To further strengthen
this argument, we illustrate in Figure 3 the cosine similarities between representations from different
genetic perturbations and selected feature directions, that is the i-th column of Wdec for Feature i.
While we could also directly look at the feature values zi, due to the sparsity, most of the values are 0.

We plot Figure 3 the cosine similarities between selected feature directions and the crop-level
aggregated tokens. The histogram in blue represent tokens from specific siRNA perturbations, while
the histogram in orange represent all other tokens from Task 3. The plot shows that feature directions
effectively separate the two groups, showing that certain features capture important biological
information, which shed light on the morphological changes caused by genetic perturbations.

Threshold Cell Type Experiment
Batch

siRNA
Perturbation

CRISPR
Perturbation

Functional
Gene Group

0.5 73 11 0 0 0
0.2 455 77 141 2 37
0.1 928 243 681 13 166

Table 3: Feature count (max 8192) with avg selectivity above thresholds for at least one label

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6.2 COMPARISON WITH FEATURES FROM CellProfiler

As a second set of experiments, we compare the average selectivity scores of features from ICFL
with those from a set of 964 handcrafted features generated by CellProfiler (CP) (Carpenter et al.,
2006). These features are designed by domain experts and are widely used for microscopy image
analysis. This task compares the monosemanticity of unsupervised features extracted from foundation
models to that of human expert-designed features. We obtain sparse features by thresholding the
average CP features obtained from all cells from a multi-cell image taken form a subset of the public
RxRx1-dataset (Sypetkowski et al., 2023). We threshold at the α and 1− α quantiles with α such
that the average number of non-zeros is ≈ 100. A feature was classified as "activated" when its value,
under perturbation conditions, exceeded these quantiles. The selectivities corresponding to both CP
and our SAEs, measured using the same datasets.

Comparison of selectivity scores In Figure 3e, we plot the highest average selectivity score for
each genetic perturbation (a subset of Task 3 in sorted order for both CP features and ICFL features).
The results show that the features extracted by ICFL almost match the selectivity scores of the
handcrafted, human-designed features. Additionally, in Figure 3f, we show the average score across
all labels as a function of various thresholding levels for the CP features. On the x-axis, we plot
the average number of non-zero elements. We again observe that our features perform comparably
to CP features. Interestingly, CP features peak at high levels of non-zeros (≈ 300), leaving future
work to assess whether this peak selectivity can be matched using deep learning-based approaches
while using significantly fewer non-zero elements. We further illustrate the correlation between the
best average selectivity scores from the CP and ICFL features for each label (Figure 3g). The plot
demonstrates a strong correlation (Pearson coefficient of 0.71), suggesting that ICFL is capable of
identifying features that capture patterns similar to those detected by CP.

7 QUALITATIVE ANALYSIS OF SELECTED FEATURES

In this section, we illustrate striking, non-trivial patterns captured by selected features and provide an
example for how domain experts can interpret, study and validate features found by DL. To study
the "semanticity" of features in ViTs, we propose interpreting them at the pixel level by examining
which patches exhibit the highest cosine similarities with the feature directions. More precisely, for
the multi-cell image crops strongly correlated with selected feature directions, we compute heatmaps
of the cosine-similarities of the individual tokens from 8× 8 patches and feature directions (Figure 4
and Figure 5, top rows).

7.1 TOKEN-LEVEL FEATURES IN FUNCTIONAL GENE GROUP

We begin by examining a single feature for our interpretabiliy analysis, and its corresponding feature
direction, that we chose because it demonstrated a clear biological relationship. The feature is strongly
correlated with gene knockouts from the adherens junctions pathway, a label from the functional
gene perturbation group from Task 5 (§ 5). The adherens junctions connect cell membranes to
cytoskeletal elements and form cell-cell adhesions; they can be thought of as “glue proteins” that
stick cells together. Our microscopy images visualization in Figure 4 strongly correlated with the
feature direction, reflecting this disrupted cellular morphology. The images comprise of small, bright
and isolated cells which appear unable to establish proper connections with the neighboring cells
(Figure 4, middle row). Note that despite the similar appearance, the images do not originate from the
perturbation of a single gene, but rather from a group of genes related in a functional family (Task 5).
The regions most correlated with the concept direction (Figure 4, top row, most white) belong to areas
surrounding perturbed cells. These tokens appear to form a ring-like pattern around the compact cells
(top row), which suggests that the concept corresponds to the expected but missing actin (rendered in
red) around the cell nucleus (rendered in blue), which is indicative of the perturbation phenotype.

By contrast, the tokens that are not aligned with the feature direction associate with cells where
the actin meshwork extensively protrudes away from the cell center (yellow bounding boxes). The
CRISPR gene editing process (§ 5) is imperfect and as a result in any well, a small proportion of cells
remains unperturbed. We found that tokens least correlated with the concept direction (Figure 4, top
row, most black) belong to what appear to be unperturbed cells (yellow bounding boxes). Examining
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Figure 4: Visualization of composite images (middle row) and their actin-staining channel (bottom row) which
strongly correlate with a selected feature from a single functional gene group — adherens junctions. Plotted
above are the token-level heatmaps of the inner products of the individual tokens with the selected feature
direction (top row) for 5 out of 8 strongest correlated images per feature direction. Highlighted are the cells
which most likely remain unperturbed (yellow bounding boxes), which are the only instances attempting to
establish cell-cell connections (cyan arrows) as they produce the gene to form functional adherens junctions.

the corresponding channel-specific image for actin (Figure 4, bottom row) clearly shows that these
cells differ from the rest of the well in that they do not contribute to the overall morphology of the
image as they manage to form an extensive actin meshwork, and are the only instances which attempt
to make connections with neighboring cells (cyan arrows).

7.2 CHANNEL-SPECIFIC PROPERTIES OF SINGLE-GENE PERTURBATIONS

Finally, we examine the extent to which we can recover channel-specific signal associated with the
gene perturbations. For this exercise, we queried 3 specific gene perturbations: (i) OPA-1, which
contributes to the maintenance of correct shape of mitochondria, (ii) ALG-3, which aids in the
modification of proteins and lipids in the endoplasmic reticulum (ER) after synthesis, and (iii) TSC-2,
which contributes to the control of the cell size (Figure 5).

OPA-1 The mitochondrial channel shows that most correlated tokens are overlaid with distant
regions where enlarged mitochondria are present (pink arrows). Quantitatively, this nuanced relation-
ship does not show a strong correlation in the mitochondrial channel (0.41) due to the aberrant image
background, but qualitative examination of the mitochondrial channel highlights this delicate detail
which is not obvious from the composite images (Figure 5, 1st column, middle row).

ALG-3 The most aligned tokens appear specific to regions of endoplasmic reticulum (ER) and
RNA with which ALG-3 co-localizes, where it aids with attachment of a sugar-like groups to proteins.
In this dense image, we report that the correlation of endoplasmic reticulum (0.63) and RNA-specific
channels (0.63) are much higher than for channels staining other cellular compartments, e.g. plasma
membrane (0.24) or actin (0.16). This suggests that our token heatmap is prevalently focused on
ER-specific information (Figure 5, 2nd column), which is consistent with what we would expect from
our understanding of the protein function.

TSC-2 We examine the plasma membrane- and Golgi apparatus-specific channel to relate perturbed
cell size control to the token alignment. We confirm that this channel correlates most strongly with
the queried concept direction, but this time in a negative direction. As the plasma membrane — and,
hence, cytoplasmic area — are the most extensive from the cell center, the mostly aligned tokens
appear to focus specifically on regions which are not covered by the cell membrane, or the membrane

9
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Figure 5: Visualization of representative images from selected single-gene perturbations as in Figure 4 out
of 25 strongest correlated images per feature direction. Plotted are the channel-specific staining images of
subcellular compartments: mitochondria (orange), endoplasmic reticulum (green) and membrane with Golgi
(yellow). Displayed are per-image correlation coefficients between token heatmaps and channel-specific images.

pixel intensity fades away (Figure 5, 3rd column, bottom row). This relationship shows highly
negative correlation (-0.71), making it a stronger signal than actin (-0.43) or mitochondria (-0.49),
and is likely monitoring the lack of channel-specific signal, similarly to the finding from Section 7.1.

Inverse focus Finally, we show that the tokens are not always co-localized with regions occupied
by cells. Here, we selected two genes which appear to follow an “inverse” trend, namely affecting
PLK-1, which enables cell cycle progression through mitosis, and TMED-2, which helps to regulate
intracellular protein transport. While both of these gene perturbations render the cells in a charac-
teristic affected state (small, clumped cells struggling to divide vs. large, spread out and actively
dividing cells), it appears that their most aligned tokens correspond to areas not covered by cells,
which we confirm with highly negative correlations across all channels (Figure 5, last 2 columns).
This suggests that the salient feature for these perturbations is the lack of cell density in a well.

8 CONCLUSION

In this paper we have explored the extent to which dictionary learning can be used to extract
biologically-meaningful concepts from microscopy foundation models. The results are encouraging:
with the right approach, we were able to extract sparse features that are associated with distinct and
biologically-interpretable morphological traits. That said, these sparse features are clearly incomplete:
we see significant drops in their linear-probing performance on tasks that involve more subtle changes
in morphology. It is not clear to what extent this is a limitation of our current dictionary learning
techniques, the scale of our models, or whether these more subtle changes are simply not represented
linearly in embedding space. Nonetheless, it is clear that the choice of dictionary learning algorithm
matters to extract meaningful features.

We also proposed a new dictionary learning algorithm, Iterative Codebook Feature Learning (ICFL),
and the use of PCA whitening on a control dataset as a form of weak supervision for the feature
extraction. In our experiments, we found that both ICFL and PCA significantly improve the selectivity
or “monosemanticity” of extracted features, compared to TopK sparse autoencoders. We hope that
future work further explores the use of dictionary learning for scientific discovery, as well as the use
of ICFL for other modalities like text.
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(a) reconstructions (b) probing accuracies

Figure 6: a) Reconstructions when decoding from intermediate layers. b) The relative linear probing accuracy
when using the component from the null space, row space and a random 512-dimensional subspace as component
compared to the full component. Both Figures use the MAE-G model.

A DISCUSSION: LINEAR CONCEPT DIRECTIONS IN VIT MAES

We have shown that DL is a powerful approach for finding linear concept directions (features) that
are strongly correlated with biological concepts such as cell-types and genetic perturbations. From an
interpretability perspective, a question that remains, however, is whether these correlations solely
appear due to first order effects of complex non-linear structures used by the model to store abstract
information, or whether linear directions are actually inherently meaningful to the model? While
linear causal interventions offer strong evidence that the latter may indeed at least be partially true for
large language models (see e.g.., (Ferrando et al., 2024) for an overview), there exists relatively little
evidence for ViT MAEs besides the high linear probing accuracies on e.g., natural and microscopy
image classification tasks Huang et al. (2022); Alkin et al. (2024).

In this section, we provide an argument further supporting the hypothesis that MAEs may rely on
linear concept directions when processing data by analyzing at which point in the model are the
concepts are the most linearly separable.

Separation into row- and nullspace. We note that standard MAE architectures (Huang et al., 2022)
use two different embedding dimensions for the encoder block and the decoder block. Both blocks
are connected via an encoder-decoder projection matrix W : Rde×dd with, in our case, de = 1664
(ViT-G model from (Zhai et al., 2022)) and dd = 512. This projection matrix gives raise to a
separation of the the tokens into the row-space and null space of W , x = xrow + xnull where only
the information stored in xrow is passed to the decoder. ViTs and more generally transformer models
have shown to align the basis across layers, allowing for decoding of tokens from intermediate layers
(Alkin et al., 2024). We visualize this behavior in Figure 6a where we show the reconstructions when
using the tokens from intermediate layers. Thus, we observe that the row-space component xl

row of
tokens from early and intermediate layers x(l) already store a reconstruction of the masked image
that is refined over the layers. Thus the question appears what is the role of the null space component
xnull which won’t be passed to the decoder and thus serves as a “register” (in analogy to Darcet et al.
(2023))?

Component-wise linear probing We analyze in Figure 6b the different components, showing the
relative linear probing accuracy of the probing accuracies using the null and row space components,
compared to the entire token (dashed line at 1) across different layers. As observed, the null
space component consistently yields the same probing accuracy as the entire token, while the row
space component yields significantly lower accuracy. For comparison, we also show the relative
probing accuracy when using a random dd-dimensional subspace (the same dimension as the row
space), which consistently yields higher accuracy than that obtained from the row space. These
findings suggest that biological concepts (i.e., genetic perturbations) are most linearly separable
in the component used only for internal processing during the forward pass and not passed to the
decoder, and therefore aligns with the hypothesis that the model represents abstract concepts as linear
directions accessed by the layers while processing the data Bricken et al. (2023).
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(b) w/o PCA whitening

Figure 7: The cosine similarity between the original tokens and the reconstructed tokens for ICFL and TopK-
SAE, a) with PCA whitening and b) without, as a function of the sparsity (first and third), i.e. # of non-zeros,
and log10 learning rate (second and fourth).

B INTERPRETABLE FEATURES

In this section, we present additional visualizations of crops strongly correlated with selected feature
directions. In the spirit of recent works for LLMs (Bricken et al., 2023), we only present a qualitative
analysis that aims to highlight non-trivial, complex, and interpretable patterns captured by these
features.

For completeness, Figure 8 shows the same crops as Figure 1 but this time all 6 most correlated and
anti-correlated crops. We further present in Figures 9 to 13 additional examples similar to Figure 4
for images strongly correlated with different features. In addition to the heat-map and the entire crop,
we also plot the patches that are most strongly correlated with the feature. We make two important
observations: a) we can see clear interpretable patterns for which patches are most strongly correlated
with the cells, posing a promising area for future research on interpreting and validating concept
directions found in large foundation models for microscopy image data; b) we see that the most
correlated patches are robust to light artifacts, which can be seen best in the last column in Figure 9.

C ABLATIONS

In this section we present ablations on type of token, model size, sparsity and learning rate. If not
further specified, we always use features extracted from ICFL using PCA whitening.

Attention block It is common in the literature to use representations from the MLP output or
the attention output (Bricken et al., 2023; Tamkin et al., 2023; Rajamanoharan et al., 2024a). We
compare in Table 4 the test balanced accuracy when taking representations from the residual stream
and attention output. We observe that both result in similaraccuracies. We make the same observation
in Figure 14a and 14b showing an ablation for the linear probes trained on the reconstruction using
the same setting as described in Section 6. Moreover, we compare in Figure 15 the selectivity scores
as in Figure 2, confirming further that the residual stream and the attention output show a similar
behavior. The only exception is TopK for cell types, where the attention outputs result in significantly
better selectivity scores, however, still substantially below the ones obtained by ICFL.

Residual stream 97.2% 87.8% 51.6% 94.6% 32.1%
Attention output 96.8% 85.8% 52.5% 94.6% 32.1%

Table 4: The test bal. acc. for representations taken from the residual stream (Test. Bal. Acc. row from Table 4)
and the attention output.

Model size We further investigate the model size, as shown in Figures 14a and 14b, where we
compare the linear probes for the MAE-G (referred to as Ph2 with 1.9B parameters) with the much
smaller model MAE-L (referred to as Ph1 with 330M parameters). We observe that for simple
tasks like classifying cell types, both models yield similar performances. However, we observe
consistent improvements on complex classification tasks (3,5), both for the probes trained on the
original representations, as well as the reconstructions from ICFL and TopK. This demonstrates that
dictionary learning benefits from scaling the model size.
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We further plot in Figure 16 the selectivity scores. For ICFL, we consistently observe improvements
when increasing the model size, while for TopK SAE, we see a significant drop. Interestingly, this
drop does not occur for the probing accuracy on the reconstructions in Figures 14a and 14b. This
suggests that, although capturing meaningful signals in the reconstructions, TopK SAE faces more
difficulties in finding “interpretable” features with high selectivity scores from richer representations
post-processed using PCA whitening.

Sparsity As a third ablation, we plot in Figure 7 the cosine similarity of the original tokens and the
reconstructed token from the DL for both TopK-SAE and ICFL. We observe that the reconstruction
quality of ICFL is much higher than TopK SAE for the same sparsity constraints. This trend persists
across all levels of sparsity. The unsupervised reconstruction quality measured by the cosine similarity
(or the related ℓ2-error) has been often used as a benchmark for SAEs (Rajamanoharan et al., 2024a;
Gao et al., 2024).

Learning rate As a last ablation, we also plot in Figure 7 the cosine-similarity for different learning
rates. Since PCA whitening leads to more dense tokens, we expect that a decrease in the cosine-
similarities, which is also the case when comparing the solid lines (w/o PCA whitening) with the
dashed lines (w PCA whitening). Except for TopK-SAE with PCA whitening the reconstruction
quality slightly increases with the learning rate (likely due to too few training for small learning
rates) and flattens after a learning rate of 5 × 10−5, which we choose for all experiments in this
paper. Moreover, we observe that TopK-SAE experiences high instabilities when combined with
PCA whitening, which is not the case for ICFL.
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(a) Feature 1 from Figure 1.

(b) Feature 2 from Figure 1

(c) Feature 3 from Figure 1

Figure 8: For each row in Figure 1 we also include the crops that are the most correlated with the feature
direction in the opposite direction. More precisely, for each feature we show the 6 most positively (first row) and
negatively (second row) correlated crops. For each of the three features we observe a clear concept shift along
the feature direction (going from negatively correlated to positively correlated).
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Figure 9: This feature appears to be focusing on the endoplasmic reticuli and nucleoli channel (cyan
area) surrounding the nucleus. These are expanded relative to the usual morphology of HUVEC cells.

Figure 10: This feature appears to be firing for cells that are unusually large with spread out actin.
Note that the feature focuses on the actin channel (red) surrounding the cell.
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Figure 11: This feature appears to be active for long spindly cells, with the features are most aligned
for the long “stretched out” section of the cells.

Figure 12: This feature is active for tightly clumped cells. The heatmaps are less clearly interpretable
for these images, but appear to be active when neighboring nuclei are touching.
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Figure 13: This feature shows a similar behavior to the feature in Figure 10
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(a) Ablation for the test bal. acc.
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Figure 14: a) The test bal. acc. of linear probes trained on the original representation (solid lines) and
reconstructions from ICFL features and TopK SAEs for representations taken from the residual stream and
attention output of Ph2 (larger model) and Ph1 (smaller model), as well as with PCA whitening and without.
b) Same as a) but depicting the relative difference in linear probing accuracy compared to Ph2 residual stream
using PCA
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(a) ICFL cell type (b) ICFL siRNA pert. (c) ICFL CRISPR group

(d) TopK cell type (e) TopK siRNA pert. (f) TopK CRISPR group

Figure 15: The selectivity scores as in Figure 2 for ICFL (first row) and TopK (second row) when using
representations from the residual stream (green) and the attention block (yellow).

(a) ICFL cell type (b) ICFL siRNA pert. (c) ICFL CRISPR group

(d) TopK cell type (e) TopK siRNA pert. (f) TopK CRISPR group

Figure 16: The selectivity scores as in Figure 2 for ICFL (first row) and TopK (second row) when using
representations from the residual stream from Ph2 (green) and Ph1 (yellow) using PCA whitening.
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