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ABSTRACT

Graph Neural Networks (GNNs) are a flexible and powerful family of models
that build nodes’ representations on irregular graph-structured data. This paper
focuses on explaining or interpreting the rationale underlying a given prediction
of already trained graph neural networks for the node classification task. Existing
approaches for interpreting GNNs try to find subsets of important features and
nodes by learning a continuous mask. Our objective is to find discrete masks that
are arguably more interpretable while minimizing the expected deviation from
the underlying model’s prediction. We empirically show that our explanations
are both more predictive and sparse. Additionally, we find that multiple diverse
explanations are possible, which sufficiently explain a prediction. Finally, we
analyze the explanations to find the effect of network homophily on the decision-
making process of GNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) are a flexible and powerful family of models that build representa-
tions of nodes or edges on irregular graph-structured data and have experienced significant attention
in recent years. These methods are based on the so-called “neighborhood aggregation” scheme in
which a node representation is learned by aggregation of features from their neighbors and have
achieved state-of-the-art performance on node and graph classification tasks. Despite their pop-
ularity, approaches investigating their interpretability have received limited attention. This paper
focuses on explaining or interpreting the rationale underlying a given prediction of already trained
graph neural networks.

There have been numerous approaches proposed in the literature for the general interpretability
of machine learning models. The most popular approaches are feature attribution methods that
intend to attribute importance to input features given an input prediction either agnostic to the model
parameter (Ribeiro et al. 2018} |2016) or using model-specific attribution approaches (Xu et al.,
2015; Binder et al.||2016;|Sundararajan et al.,2017). However, models learned over graph-structured
data have some unique challenges. Specifically, predictions on graphs are induced by a complex
combination of nodes and paths of edges between them in addition to the node features. Thus
explanations for a prediction should ideally be a small subgraph of the input graph and a small
subset of node features that are most influential for the prediction (Ying et al., 2019).

The only existing approach for GNN explainability proposes to learn a real-valued graph mask that
selects the important subgraph of the GNNs computation graph to maximize the mutual informa-
tion with the GNNs prediction (Ying et al.| [2019). We identify two crucial limitations of such an
approach. Firstly, although mathematically tractable, a continuous mask does not ensure sparsity
compared to a discrete mask — a desirable property for interpretability. Secondly, suitable notions of
what constitutes an explanation in a GNN model and its evaluation are missing.

This paper proposes an alternate notion of interpretability for GNNs grounded in ideas from data
compression in information theory. Specifically, we consider an explanation as a compressed form
of the original feature matrix. The goodness of the explanation is measured by the expected de-
viation from the prediction of the underlying model. We formalize this idea of interpreting GNN
decisions as an explicit optimization problem in a rate-distortion framework. A subgraph of the
node’s computational graph and its set of features are relevant for a classification decision if the
expected classifier score remains nearly the same when randomizing the remaining features. This
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Figure 1: Computing hard masks for explaining the prediction of GNN.

formulation is arguably both a crisp, robust, and understandable notion of interpretability that is
easy to evaluate. We propose a simple combinatorial procedure ZORRO that aims to find a sparse
subset of features and nodes in the computational graph while adhering to a user-specified level of
fidelity. Our method aims to find multiple disjoint explanations (whenever possible) that guarantee
an acceptable lower bound on fidelity to the model’s decision.

Another key problem in post-hoc interpretability of GNNGs is that of evaluating explanation methods.
Current evaluation methods, such as those used by GNNEXPLAINER, are primarily anecdotal and
lack principled metrics. Secondly, especially for real-world datasets, there is no ground truth for the
explanation, making comparison difficult. We, on the other hand, posit that an explanation is faithful
to the underlying model if it retains enough predictive power — a crisp and measurable quantity.
To this extent, our optimization metric, fidelity, encodes an information-theoretic interpretation of
explanation — if the explanation is highly predictive in expectation, then it is a high qualitative
explanation.

We conducted extensive experimentation on three datasets and four diverse GNN approaches —
Graph Convolution Networks (Kipf & Welling, |2017), Graph Attention Networks (Velickovi¢ et al.,
2018), GIN (Xu et al., [2019), and APPNP (Klicpera et al., [2019). Our main key findings are as
follows.

1. We show that not one but multiple diverse explanations are possible that sufficiently explain
a prediction. This multiplicity of explanations indicates the possible configurations that
could be utilized by the model to arrive at a decision.

2. Unlike earlier mutual-information preserving interpretability approaches, i.e. GNNEX-
PLAINER (Ying et al.,|2019), we show that our explanations are both more predictive and
sparse. We show that even with sparser explanations, our approach contains far more pre-
dictive capacity than GNNEXPLAINER.

3. We then analyze the explanations across multiple GNN models to showcase differences
between their learning behavior. We specifically show that GNN models rely heavily on
homophily and that prediction errors are due inability to capture homophilic signals from
their neighborhoods.

2 RELATED WORK

Representation learning approaches on graphs encode graph structure with or without node fea-
tures into low-dimensional vector representations, using deep learning and nonlinear dimensionality
reduction techniques. These representations are trained in an unsupervised (Perozzi et al., |2014;
Khosla et al.||2019; [Funke et al.l 2020) or semi-supervised manner by using neighborhood aggrega-
tion strategies and task-based objectives (Kipf & Welling, [2017} |Velickovi€ et al.,|2018)).
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This work focuses on the post-hoc interpretability of decisions made by semi-supervised models
based on graph convolution networks for node classification tasks. Inspired by the success of con-
volutional neural networks, graph convolution network (GCN)(Kipf & Welling| |2017) generalizes
the convolution operation for irregular graph data. GCN and several of its variants follow a neigh-
borhood aggregation strategy where they compute a node’s representation by recursive aggregation
and transformation of feature representations of its neighbors. For the node classification task, the
final node representations are then used to predict unlabelled nodes’ classes.

Interpretability in Machine Learning. Post-hoc approaches to model interpretability are popular-
ized by feature attribution methods that aim to assign importance to input features given a prediction
either agnostic to the model parameters (Ribeiro et al., 2018} |2016) or using model specific attri-
bution approaches (Xu et al. [2015; Binder et al.l [2016; Sundararajan et al., 2017). Instance-wise
feature selection (IFS) approaches (Chen et al., 2018; |Carter et al., [2018; [Yoon et al.l 2018), on
the other hand, focuses on finding a sufficient feature subset or explanation that leads to little or
no degradation of the prediction accuracy when other features are masked. The advantage of this
formulation is that the output explanation has a precise meaning in terms of the predictive power of
the chosen subset. Applying these works directly for graph models is infeasible due to the complex
form of explanation, which should consider the complex association among nodes in addition to the
input features.

Interpretability in GNNs. Model agnostic approaches like ours to interpretability in GNNs include
GNNEXPLAINER (Ying et al.,|2019) and XGNN(Yuan et al.,[2020). GNNEXPLAINER learns a real-
valued graph mask and feature mask such that the mutual information with GNN’s predictions is
maximized. XGNN proposed a reinforcement learning-based graph generation approach to generate
explanations for the predicted class for a graph. We instead focus on explaining node level decisions.
As a model introspective approach, [Pope et al.| (2019) extended the gradient-based saliency map
methods to GCNs, which rely on propagating gradients/relevance from the output to the original
model’s input features. Other works (Kang et al., 2019} Idahl et al., [2019) focus on explaining
unsupervised network representations, which is out of scope for the current work.

3 PROBLEM DEFINITION AND APPROACH

X (I)(X) Noisy Channel N R @(YS)
Ys
Encoder Decoder
A
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Reconstruction Loss

Figure 2: Our approach is based on the rate-distortion framework, which assumes two parties, the
encoder and decoder. The encoder has the original (restricted) feature matrix X and sends it through
a noisy channel to the decoder, which receives Ys. The goal is to determine, which parts of Y5 have
to have the original values from X, such that the fidelity is high, i.e., the decoder predicts the same
label as the encoder with a high probability.

3.1 BACKGROUND ON GNNSs

Let G = (V, E) be a graph where each node is associated with d dimensional input feature vector.
Graph neural networks compute node representations by recursive aggregation and transformation
of feature representations of its neighbors which are finally used for label prediction. Formally for

a L-layer GNN, let a:%) denote the feature representation of node n € V at a layer £ € L and NV,

denotes the set of its 1-hop neighbors. :c£,0) corresponds to the input feature vector of n. The /-th
layer of a GNN can then be described as an aggregation of node features from the previous layer
followed by a transformation operation.

29 = AGGREGATION® ({x(H), {x@‘” |je N}}) 1)

n J
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() = TRANSFORMATION) (z§f>) 2)
Each GNN defines its own aggregation function which is differentiable and usually a permutation
invariant function. The transformation operation is usually a non-linear transformation employing

ReLU non-linear activation. The final node’s embedding z,(LL) is then used to make the predictions

®(n) + argmax o (z{HW), 3)

where o is a sigmoid or softmax function depending on whether the node belongs to multiple or a
single class. and W is a learnable weight matrix. The ith element of zT(lL)W corresponds to the

(predicted) probability that node n is assigned to some class <.

3.2 PROBLEM FORMULATION

We are interested in explaining the prediction of a GNN ®(n) for any node n. We note that for a
particular node, n the subgraph taking part in the computation of neighborhood aggregation opera-
tion, see Eq. (I), fully determines the information used by GNN to predict its class. In particular,
for a L-layer GNN, this subgraph would be the graph induced on nodes in the L-hop neighborhood
of n. We will call this subgraph as the computational graph of the query node. We would like to
pint out that the term computational graph should not be confused with the computational graph of
the neural network. Let G(n) C G denote the computational graph of the node n. Let X (n), or
briefly X denotes the feature matrix restricted to the nodes of G(n), where each row corresponds to
a d-dimensional feature vector of the corresponding node in the computational graph.

We formulate the task of explaining the model prediction for a node n, as finding a partition of
the components of its computational graph into a subset, S of relevant nodes and features, and its
complement S¢ of non-relevant components. In particular, the subset S should be such that fixing its
value to the true values already determines the model output for almost all possible assignments to
the non-relevant subset S¢. The subset S is then returned as an explanation. To quantify relevance,
we compute the expected value of fidelity in model’s prediction for the noisy assignment to the
non-relevant components.

Let us denote with Y the new perturbed feature matrix obtained by fixing the components of the S
to their actual values and otherwise noisy entries. The values of components in §¢ are then drawn
from some noisy distribution, . Let § = {V;, F} be the explanation with selected nodes V; and
selected features F§;. Let S be the mask matrix such that each element .S; ; = 1 if and only if ith
node (in G(n)) and jth feature are included in sets V and F respectively and 0 otherwise.

Ys=X0S+Zo(1-5),Z~N, 4)

where © denotes an element-wise multiplication, and 1 a matrix of ones with the corresponding
size. FigureE] shows how the fixed elements are selected by Fs and V.

Definition. The fidelity of explanation S with respect to the graph neural network ® and the noise
distribution N is given by
F(8) = Eygizon [La(x)=a(vs)) - 5)

By fixing the fidelity to a certain user-defined threshold, say 7, we are then interested in all possible
disjoint sets of explanations that would have the fidelity of at least 7. More precisely, our resulting
set of explanations R is given as

R=— {51,52,... | ViF(S;) > 7 and ?Si:w} ©)

CONNECTION TO THE RATE-DISTORTION THEORY

Our problem formulation is inspired by rate-distortion theory (Simsl 2016) which addresses the
problem of determining the minimal information of a source signal that should be communicated
over a leaky channel so that the source (input signal) can be approximately reconstructed at the
receiver (output signal) without exceeding an expected distortion D. In our problem, we are in-
terested in finding a small subset S such that having knowledge only about the signal on & and
filling in the rest of the information randomly will almost surely preserve the class prediction if our
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chosen subset contains the information that is relevant for the model’s decision. Rather than mea-
suring distortion or disagreement in the model’s decisions, we instead measure fidelity or agreement
among the model’s decisions with the original and the distorted signal, respectively. Distortion can
be computed using fidelity as D = 1 — F. A schematic representation of our problem in terms of
rate-distortion framework is shown in Figure

3.3 OUR APPROACH: ZORRO

We propose a simple but effective greedy combinatorial approach, which we call ZORRO, to find
the set of disjoint explanations with a desired level of fidelity. The pseudocode is provided in Algo-
rithm Let for any node n, V,, denote the vertices in its computational graph G(n) and F denote
the complete set of features. We start with zero-sized explanations and select as first element

argmax F(V,,{f}) or argmax F({v}, F), @)
feFr veV,

whichever yields the highest fidelity value. We iteratively add new features or nodes to the expla-
nation such that the fidelity is maximized over all evaluated choices. Let V, and F}, respectively
denote the set of possible candidate nodes and features that can be included in an explanation at any
iteration. We save for each possible node v € V), and feature f € F} the ordering Ry, and Rp,
given by the fidelity values F({v}, F},) and F(V,, {f}) respectively. To reduce the computational
cost, we only evaluate each iteration the top K remaining nodes and features determined by Ry,
and Rp,.

Once we found an explanation with the desired fidelity, we discard the chosen elements from the
feature matrix X, i.e., we never consider them again as possible choices in computing the next
explanation. We repeat the process by finding relevant selections completely disjoint from the ones
already found. To ensure that disjoint elements of the feature matrix X are selected, we recursively
call Algorithm [3|with either remaining (not yet selected in any explanation) set of nodes or features.
Finally, we return the set of explanations such that the fidelity of 7 cannot be reached by using all the
remaining components that are not in any explanation. For a detailed explanation of the algorithm
details and the reasoning behind various design choices, we refer to Appendix [A]

Algorithm 3 GetExplanations(r, K, V,, F})

Algorithm 1 ZoRRO(n, 7, K)

11S:(B,Vr:‘/p,Fr:Fp,‘/szw,Fszw
1: V;, < set of vertices in G(n) 2: Ry, < listof v € V}, sorted by F({v}, F}y)
2: F < set of node features 3: R, < listof f € F}, sorted by F(V;, {f})
3: return GetExplanations(r7, K, V,, F') 4: Add maximal element to V; or Fi as in (7)
5: while 7 (Vs, F5) > 7 do
6: Ve =V, U argmax F({v}UVs, Fs)
. vetopg (Vi)
Algorithm 2 F(V, F%,) 7: Fy=F,U argmax F(Vs,{f} UF))
1: fori =0,...,samples do fetopg (Fr)
2: Set Yiv, r.}, ie. fix the selected values 8: if 7(Vs, Fy) < F(Vs, F) then
and otherwise retrieve random values from the 9: Fr=F\{f}.F= F,
respective columns of X’ 10: else
3: if ®(Y{y, r,}) matches the original pre- 11: Ve =Vi\ {v} Vi = V.
" diction ((:)(f) rtrléec tr:l_oiellthen 12: S =SU{Vi, )
) correct 13: S = S U GetExplanations(r, K, Vp, F})
> return ol 14: S = S U GetExplanations(r, K, V;, F})
15: return S

The pseudocode to compute fidelity is provided in Algorithm[2} Specifically we generate the obfus-
cated instance for a given explanation S = {Vj, Fi}, Y by setting the feature values for selected
node-set V; corresponding to selected features in F to their true values. Figure [I] visualizes how
the fixed elements of the feature matrix are determined by choice of node mask V; and feature mask
F. To set the irrelevant values, we randomly choose a value from the set of all possible values for
that particular feature in the dataset X'. To approximate the expected value in Eq. (5), we generate a
finite number of samples of Ys. We then compute fidelity as the fraction of samples for which the
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Figure 3: The number of explanations found with ZORRO at 7 = 0.85.

model’s decision matches its original decision. Our implementation of the proposed algorithm will
be made public after publication.

CHOICE OF NOISY DISTRIBUTION N\

One might argue that the irrelevant components can be set to 0 rather than any specific noisy value.
However, this might lead to several side effects: in the case of datasets for which a feature value of 0
is not allowed or have some specific semantics or for models with some specific pooling strategy, for
example, minpool. More specifically, the idea of an irrelevant component is not that it is missing, but
its value does not matter. Therefore to account for the irrelevancy of certain components given our
explanation, we need to check for multiple noisy instantiations for the unselected components. Our
choice of using the global distribution of features as the noisy distribution ensures that only plausible
feature values are used. Next, our choice does not increase the bias towards specific values, which
we would have by taking fixed values such as O or averages.

4 EXPERIMENTS

In our experiments, we tried to answer three primary research questions:

RQ 1. How often do multiple explanations exist for a given prediction? What are the sparsity-
fidelity trade-offs for our approach?

RQ 2. How effective is ZORRO as compared to existing approaches in terms of fidelity and sparsity?

RQ 3. Can we discover differences in model behavior by post-hoc analysis of explanations?

To answer these research question, we use the datasets Cora, CiteSeer and PubMed fromYang et al.
(2016). We evaluate our approach on four different two-layer graph neural networks: graph convo-
lutional network (GCN) (Kipf & Welling} 2017)), graph attention network (GAT) (VelickoviC et al.,
2018)), the approximation of personalized propagation of neural predictions (APPNP) (Klicpera
et al, |2019), and graph isomorphism network (GIN) (Xu et al.,2019). Table |5|shows the statistics
of the datasets and models. For more details of our experimental setup, we refer to Appendix

4.1 MULTIPLICITY AND SIZE OF EXPLANATIONS

Our first result is that multiple (disjoint) explanations are indeed possible and are frequent. Figure 3|
shows the number of nodes having multiple explanations. We observe that, without exception, all
GNN models yield multiple disjoint explanations with ~ 50% of the 300 nodes under study have
2 to 10 explanations. The disjoint explanations produced by our algorithm can be understood as a
disjoint piece of evidence that would lead the model to the same decision. We expect a much larger
number of overlapping explanations if the restrictive condition on disjointness is relaxed. However,
the objective here is to show that a decision can be reached in multiple ways, and each explanation
is a practical realization of a possible combination of nodes and features that constitutes a decision.
We are the first to establish the multiplicity of explanations for model predictions, unlike Ying et al.
(2019) that outputs only one explanation as a soft mask over features and edges.

In general, shorter or sparser explanations are more human interpretable and hence more desirable.
We conducted experiments using two fidelity thresholds (7 = 0.85 and 7 = 0.98) and compared the
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Figure 4: Comparison of ZORRO’s explanation size measured by the proportion of selected elements,
i.e., the number of selected nodes is divided by the number of nodes in the computational graph,
and the number of selected features is divided by the number of features. For the results of all
combinations, see Figure

sizes of the first found explanation (see Figure ). A key observation in this result is that ZORRO is
still able to find sparse explanations for high fidelity requirements, i.e., at 7 = 0.98, suggesting that
only a small number of nodes and features are required for most of the predictions. Although there
are differences between datasets, the choice of 7 has a limited influence on the explanations’ size.
Finally, we interestingly find that mispredictions tend to require a larger explanation size where
explanation size is the fraction of nodes/features selected by ZORRO in comparison to the entire
computation graph for the node.

4.2 COMPARISON WITH GNNEXPLAINER

We first note that unlike ZORRO an explanation from GNNEXPLAINER is a soft mask of importance
scores € [0, 1] for node features and edges of the computational graph. In principle, one can choose
the top-k features of GNNEXPLAINER with the highest importance values for comparing both the
fidelity of both approaches. However, we choose the best settings of GNNEXPLAINER, i.e., the soft
mask, to compare the fidelity distributions of both approaches (see Figure [3)).

As expected, the fidelity of explanations by ZORRO for all nodes is high [0.85,0.95] or very high
(0.95, 1]. However, GNNEXPLAINER exhibits low fidelity, i.e.,< 0.70 for a fairly large ~ 40% of
the nodes. The results show that our explanations are much likelier to preserve the model predictions
than the soft explanations of GNNEXPLAINER.

Table 1: Average entropy H of the retrieved feature masks

Cora CiteSeer PubMed
method GCN GAT GIN APPNP GCN GAT GIN APPNP GCN GAT GIN APPNP

ZORRO (7 =.98) 2.69 3.07 434 3.18 258 2.60 468 278 255 2.58 321 286
GNNEXPLAINER 7.27 7.27 727 727 821 821 821 821 621 6.21 621 6.21

But do the explanations from ZORRO have high fidelity because they are less sparse than GNNEX-
PLAINER? To systematically measure this, we computed the entropy of normalized probability dis-
tributions over feature masks output by both approaches as a measure of sparsity, see Table[I] Note
that entropy is upper bounded by the log of the number of features (see Proposition [I). The high
entropy for GNNEXPLAINER corresponds to mask distribution closer to a uniform distribution, i.e.,
all features would have equal importance. In the case of ZORRO, the entropy is precisely equal to the
log of the number of selected elements. The much lower entropy (as compared to GNNEXPLAINER)
achieved by ZORRO shows that the hard masks are sparse.

Proposition 1. Let p be the normalized distribution of explanation (feature) masks. Then H (p) <
log(|F|) where M corresponds to complete set of features. In particular for ZORRO we have
H(p) = log(selection-size). [Proof see Appendix@]

We also visualize the output of the soft explanation of a node that achieves a fidelity of 1, see Fig-
ures [I0]and[TT] We observe that the mask values are distributed around a given value explaining the
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low entropy. In such cases, when all masks for all features take low values, a small-sized explanation
cannot be obtained as all components have similar importance. Effectively all features are kept in
the input and no wonder that the highest value of fidelity is achieved. From the above two experi-
ments, we conclude that ZORRO produces both sparse and high-fidelity explanations in comparison
to GNNEXPLAINER.

300
GCN GAT GIN APPNP
250
Method Method Method Method
+ 200 = GNNExplainer = GNNExplainer = GNNExplainer = GNNExplainer
= = Zorro .85 = Zorro .85 = Zorro .85 = Zorro .85
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Figure 5: Comparison of fidelity, GNNEXPLAINER vs. ZORRO . Low: < 0.7, Med.: [0.7,0.85),
High: [0.85,0.95) and V. High: > 0.95

4.3 HOMOPHILY OF THE EXPLANATIONS

One of the motivations of post-hoc interpretability is to use explanations to derive insights into a
model’s inner workings. Towards this, we investigate the homophily of the selected nodes from
our explanations since GNNs are known to exploit the homophily in the neighborhood to learn
powerful function approximators. We define homophily of the node as the fraction of the number of
its neighbors, which share the same label as the node itself. Intuitively, it should be easier to label a
node with the correct label if a larger fraction of nodes in its computational graph shares its label.

In what follows, we use homophily to refer to the homophily of a node with respect to the selected
nodes in its first found explanation. True/Predicted homophily refers to the case when true/predicted
node labels are used. We investigate the joint distribution of true and predicted homophily exhibited
by the studied node sample. The results are shown in Figure[f] We make the following observations.

Observation 1 - Nodes depicting the orange regions on the extreme left side of the plots are nodes
that exhibited low true homophily but high predicted homophily. The class labels for such nodes are
correctly predicted. However, the corresponding nodes in the explanation were assigned the wrong
labels (if they were assigned the same labels as that of the particular node in question, its predicted
homophily would have been increased).

Observation 2 - Several vertices corresponding to blue regions spread over the bottom of the plots
have low predicted homophily. These nodes are incorrectly predicted, and their label differs from
those predicted for the nodes in their explanation set. The surprising fact is that even though some of
them have high true homophily close to 1, their predicted homophily is low. This also points to the
usefulness of our found explanation in which we conclude that nodes influencing the current node
do not share its label.

Observation 3 - We also note that for GIN and APPNP, we have some nodes with true homophily
and predicted homophily close to 1 but are incorrectly predicted. This implies the node itself and
the most influential nodes from its computational graph have been assigned the same label. We can
conclude that the model based its decision on the right set of nodes but assigned the wrong class to
the whole group.

4.4 RETRAINING BASED ON LOCAL MASKS

To evaluate our ZORRO independent from our proposed fidelity measure, we use our local method
as a global feature selection method and study the induced performance drop. We retrieved the
explanations for all training nodes of the GNN on Cora and selected the top k features, which were
most often in the first explanation. Similarly, we retrieved all explanations with GNNExplainer and
selected the top k features with the highest summed feature mask values. As Table[2]shows, ZORRO
outperforms GNNExplainer in all cases. Selecting the 100 most important features (with respect to
ZORRO), has only a minor effect (A 0.01) on the test accuracy compared to the training on all 1433
features.
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Figure 6: Dataset - PubMed. The joint distribution of the homophily with respect to the nodes
selected in the ZORRO’s explanation (7 = 0.85) with true and predicted labels. The orange contour
lines correspond to the distributions for correctly predicted nodes, and the blue one corresponds to
incorrectly predicted nodes.

Table 2: Test accuracy after, retraining GCN on Cora based on the top k features. We repeated the
retraining 20 times, report the mean and observed a variation of below .001 in all cases.

Method k=1 k=5 k=10 k=50 k=100 all
ZORRO (T = .85) 0.24 0.50 0.71 0.77 0.78 0.79
GNNEXPLAINER 0.15 0.21 0.35 0.54 0.66 0.79

4.5 EXPERIMENT ON SYNTHETIC DATASET

In GNNExplainer (Ying et al., 2019), the authors proposed to use synthetic datasets built from at-
taching motifs, such as house’, grid, or rings, to random Barabasi—Albert (BA) graphs or regular
trees. We evaluated our approach ZORRO on the synthetic dataset, which has features. The details
of the experiment on the synthetic dataset are stated in Appendix [E{and includes some node expla-
nations as well as the explanation of the random closest neighborhood baseline (in which we sample
nodes randomly from the closest neighborhood). The task is to explain all the nodes from the house
motif, and the ground truth are the five nodes from the corresponding house.

Table E] shows the performance of ZORRO with 7 = .85 and 7 = .98, GNNEXPLAINER and the
random closest neighborhood heuristic. The heuristic outperforms all methods with respect to recall
because it selects nodes only from the closest neighborhood. However, ZORRO achieves the highest
precision and accuracy and outperforms GNNEXPLAINER.

Table 3: Average performance of the node (first) explanation on the synthetic dataset.

Method #Nodes Recall Precision Accuracy
Zorro (T = .85) 2.48 0.35 0.94 0.90
Zorro (7 = .98) 5.42 0.50 0.90 0.90
GNNEXPLAINER 5.34 0.35 0.33 0.79
Random Closest Neighborhood 5.00 0.67 0.67 0.90

5 CONCLUSION

We propose ZORRO as a post-hoc explanation method for the decisions made by GNN models.
Inspired by rate-distortion theory, we frame the problem of explaining GNN models as a feature
and node selection problem so as to minimize the expected deviation from the original decision. We
proposed a simple combinatorial procedure ZORRO, which retrieves disjoint explanations consisting
of binary masks for the features and relevant nodes while trying to optimize for fidelity. With
our extensive experiments, we show multiple explanations are possible for a given decision, unlike
earlier approaches that provide a soft mask. Furthermore, our explanations are sparser and achieve
higher fidelity than existing approaches. Finally, our analysis of the homophily in the explanations
highlighted differences in the models’ behavior between correctly and wrongly predicted nodes.
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APPENDIX

A ADDITIONAL DETAILS TO OUR ALGORITHM

In the design of our ZORRO algorithm, we have made several choices, which we explicitly want to
explain in detail here. In general, we have to make the following design choices: initialization of
first element, iterative adding further elements, recursive design. Table {4| contains the description
(which we repeat for completeness) of all variables used within the Algorithms[I] 2] and 3]

Table 4: Notation used in the algorithms

Variable | Description

n Explained node
T Threshold of fidelity
K Number of nodes and features to evaluate per iteration
Vo Nodes in the computational graph of n
G(n) | Computational graph of n
F Set of all possible features
Vb Set of possible nodes that can be included in an explanation
F, Set of possible features that can be included in an explanation
S Set of all explanations
V. Set of remaining nodes
F. Set of remaining features
Vs Selected nodes, i.e., nodes in the current explanation
F Selected features, i.e., features in the current explanation
Ry, Ordered list of the possible nodes
Rp, Ordered list of the possible features
F(-,-) | Fidelity, which takes a node set as first argument and a feature set as
second argument
s Best node candidate set found
F Best feature candidate set found
Yiv.,r,; | Randomized feature matrix, where the features F; of the nodes V; are
kept fixed, see Eq.
o) GNN evaluated on a specific feature matrix, in Alg.[2]only evaluated to
retrieve the class label of node n
X Feature matrix of all nodes in G

Initialization of first element. A single explanation {V, F} consist of selected nodes V; and
selected features F. The challenge to select the first node and feature is the following: Selecting
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only a node or only a feature yields a non-informative value, i.e., F({v},0) = cand F(0, {f}) = ¢
forall v € V, and f € F and some constant ¢ € [0,1]. The search for the optimal first pair
would require |V, ||F},| evaluations of the fidelity, which is in most cases too expensive. Therefore,
we propose to use a different strategy, which also contains information for the following iterations.
Instead of evaluating, which pair of feature and node yields the highest increase, we assess the nodes
and features in a maximal setting of the other. To be more precise, we assume that, if we search for
the best node, all (possible) features F}, were unmasked:

argmax F({v}, F}) 8)
veVy

Similarly for the features, we assume that all (possible) nodes are unmasked:
argmax F(V,, {f}) 9
fEFy

Whichever of the nodes or features yields the highest value is the first element of our explanation.
Consequently, the next selected element is of a different type than the first element, e.g., if we first
choose a node, the next element is always that feature, which yields the highest fidelity based on that
single node. We perform this initialization again for each explanation since for each explanation,
the maximal sets of possible elements V}, and F}, are different.

Iterative search. The next part of our algorithm, which is the main contributor to the computational
complexity, is the iterative search for additional nodes and features after the first element. A full
search of all remaining nodes and features would require |V;.| + |F| fidelity computations. To
significantly reduce this amount, we limited ourselves to a fixed number K nodes and features,
see Algorithm 3] To systematically select the K elements, we use the information retrieved in the
initialization by Eq. (8) and @I) We order the remaining nodes V. and F}, by their values retrieved for
Eq. (3) and (9) and only evaluate the top K. In Algorithm 3| we have denoted these orderings by Ry,
and R, and the retrieval of the top K remaining elements by top (V;., Ry, ) and top (Fy, Rr, ).
We also experimented with evaluating all remaining elements but observed no performance gain
or inferior performance to the above heuristic. As a reason, we could identify that in some cases,
the addition of a single element (feature or node) could not increase the achieved fidelity. Using
the ordering retrieved from the “maximal setting”, we enforce that those elements are still selected,
which contain valuable information with a higher likelihood. In addition, we experimented with
refreshing the orderings Ry, and Rp, after some iterations but observed similar issues as in the
unrestricted search.

Recursive design. We explicitly designed our algorithm in a way such that we can retrieve multiple
explanations, see line[T3]and line[T3|of Algorithm[3] We recursively call the Algorithm[3|twice, once
with a disjoint node-set, the call in line 5] (only elements from the remaining set of nodes V;. can be
selected), and similarly in line[T3]with a disjoint feature set. Hence, the resulting explanation selects
disjoint elements from the feature matrix since either the rows or columns are different from before.
As greedy and fast stop criteria, we used each further iteration, the maximal reachable fidelity of
F(Vy, Fp).

Complexity analysis. The computational complexity of Algorithm [3]to retrieve an explanation
{Vs, F} with possible nodes V,, and possible features F}, is
O(#samples x (|Vp| + |Fp| + K(|Vs| + [F5])O(®)),

where O(®) is the computational complexity for the forward pass of the GNN on the computational
graph G(n). For the first explanation, we have

Otsamples x (V| + |F| + K(|Vi| + |E.])O(®)).

B PROOF OF PROPOSITION 1

Proof. We first compute the normalized feature mask distribution, p(f) for f € F' (F is the complete
set of features). In particular, denoting the mask value of f by mask(f), we have

B mask(f)
p(f) = e mask()

12
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Then H(p) = — 3 ;cp p(f)log p(f) which achieves its maximum value for the uniform distribu-

tion, i.e., p(f) = ﬁ For ZORRO, let F; be the set of selected features. For each f € F, we then

have p(f) = ﬁ and 0 otherwise. The computed entropy is then equal to log(|Fs|). We want to
point out that the proposition also follows for the case of node masks. O

C EXPERIMENTAL SETUP

We focus on explaining the decisions of GNN models with respect to the task of node classification.
We fix the number of layers to two for all models and keep the rest of the model architectures
and parameters as in the original paper. We train the models 200 epochs with ADAM optimizer
and a learning rate of 0.01 and a weight decay of 0.0005. We use the model and GNNExplainer
implementations of PyTorch Geometric Library (Fey & Lenssen, 2019). For GNNExplainer, we use
the default values of 100 epochs and a learning rate of 0.01. For each dataset, we randomly selected
300 nodes and retrieved the explanations of GNNExplainer, and our method for the fidelity values
7 € {0.85,0.98}. We will publish the list of selected nodes together with the implementation. We
used 100 samples to calculate the fidelity with Algorithm 2]and set &' = 10 in our experiments.

Our implementation is based on PyTorch Geometric 1.6 and Python 3.7. All methods were executed
on a server with 128 GB RAM and Nvidia GTX 1080Ti.

Datasets. Three well-known citation network datasets Cora, CiteSeer and PubMed from |Yang
et al.|(2016) where nodes represent documents and edges represent citation links. The class label is
described by a similar word vector or an index of category. Statistics for these datasets can be found
in Table 1. We used the datasets, including their training and test split from the PyTorch Geometric
Library, which corresponds to the data published by [Yang et al.|(2016)).

Table 5: Datasets and statistics. The test accuracy is calculated on 1000 nodes.

Test Accuracy

Name Classes Features |V |E| GCN GAT GIN APPNP
Cora 7 1433 2708 10556 0.794 0.791 0.679 0.799
CiteSeer 6 3703 3327 9104 0.675 0.673 0.480 0.663
PubMed 3 500 19717 88648 0.782 0.765 0.590 0.782

Models. As models we selected the well-known graph convolutional network (GCN) (Kipf &
Welling), 2017)) and graph attention network (GAT) (Velickovié et al.| 2018)) as well as the approxi-
mation of personalized propagation of neural predictions (APPNP) (Klicpera et al.,|2019)), and graph
isomorphism network (GIN) (Xu et al.,|2019). APPNP utilizes a connection between PageRank and
GCN, especially those with many layers, and extends GCNs based on the personalized PageRank.
Xu et al.[(2019) proposed GIN to match the representational power of the Weisfeiler-Lehman graph
isomorphism test by extending the expressiveness of the feature aggregation.

D ADDITIONAL EXPERIMENT RESULTS

This section contains additional visualizations:

Figureshows the explanation size of Cora, CiteSeer, and PubMed for the models GCN, GIN, GAT,
and APPNP.

Figure[§]and Figure 9] visualize the joint homophily distributions for the dataset Cora and CiteSeer.

Figure [T0] shows the feature mask distribution of GNNEXPLAINER for single nodes with fidelity 1.
Figure|l1|shows the feature mask distribution of GNNEXPLAINER for all explained nodes.

To be transparent about the time of executing ZORRO, Figure [I2] visualizes the runtime recorded
during our experiments to retrieve the first explanation for ZORRO. For the runtime experiments,
we include the gradient approach used as baseline in GNNEXPLAINER: GRAD is a gradient-based
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Figure 7: Comparison on ZORRO’s explanation size measured by the proportion of selected ele-
ments, i.e. the number of selected nodes is divided by the number of nodes in the computational
graph and the number of selected features is divided by the number of features.
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Figure 8: Dataset-Cora. Joint distribution of the homophily with respect to the selected subgraph (in
the explanation of ZORRO (7 = .85)) with true and predicted labels. The orange contour lines cor-
respond to the distributions for correctly predicted nodes and the blue one correspond to incorrectly
predicted nodes.
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Figure 9: Dataset-CiteSeer. Joint distribution of the homophily with respect to the selected sub-
graph (in the explanation of ZORRO (7 = .85)) with true and predicted labels. The orange contour
lines correspond to the distributions for correctly predicted nodes and the blue one correspond to
incorrectly predicted nodes.

method in which we compute gradient of the GNN’s loss function with respect to the adjacency
matrix and the associated node features (Ying et al.l[2019) As stated in the computational complexity
above, we note that the runtimes do not directly follow the graph size. To be precise, our approach is
strictly local, i.e., it is independent of the input graph, however large it might be. The fastest average
runtime we observed on PubMed, which has the highest number of nodes. Secondly, we indeed have
a tunable relationship between fidelity threshold and runtime.

Currently, our implementation follows the presented Algorithms[T}j2] i.e., is designed for explained a
single node. If multiple explanations V' C V are requested, this initialization step can be performed
for all requested nodes at the same time (for the first explanation). Then V,, has to be replaced by
U{V,, : n € V} and in each step of the fidelity, the prediction agreement with respect V' has to
be checked and saved separately. Hence, the orderings Ry, and Rp, are computed for all nodes

Cora CiteSeer PubMed
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Figure 10: Distribution of GNNEXPLAINER’ feature mask values corresponding to explanations of
a single node of GCN, where a fidelity of 1.0 is achieved. For the distribution of all nodes, models,
and datasets, we refer to Figure@
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Figure 11: Distribution of GNNEXPLAINER’s feature mask values corresponding to explanations of
all explained nodes.
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Figure 12: Comparison of the runtime by model and dataset. The cirlce and the cross mark the av-
erage fidelity and average time of GNNEXPLAINER and gradient baseline. The boxplots correspond
to ZORRO and visualize the runtime for retrieving the first explanation, which has at least the given
fidelity. For ZORRO, we recorded the time after the initilization, which can be pre-computed for all
nodes simultaneously. Time is measured in seconds.

simultaneously. Limiting the maximum number of features or neighbors would additionally reduce
the runtime because the outliers would be avoided.

E EXPERIMENTS ON SYNTHETIC DATASET

The synthetic dataset is generated by generating two communities consisting of house motifs at-
tached to BA graphs. Each node has eight feature values drawn from N(0,1) and two features
drawn from N (—1,.5) for nodes of the first community or A/(1,.5) otherwise. In addition, to fol-
low the published implementation of GNNExplainer, the feature values are normalized within each
community, and within each community, 0.01 % of the edges are randomly perturbed.

The eight labels are given by the following: for each community, the nodes of the BA graph form
a class, the ’basis’ of the house forms a class, the 'upper’ nodes form a class, and the rooftop is a
class. The used model is a three-layer GCN, which stacks each layer’s latent representation and uses
a linear layer to make the final prediction. The training set includes 80% of the nodes.

Since GNNEXPLAINER only returns soft edge mask, we sorted them and added both nodes from
the highest-ranked edges until at least five nodes were selected. In this way, we retrieved hard node
masks, which are necessary to compare with the ground truth.

To highlight this task’s insufficient design, we added as a very simple baseline, a random closest
neighborhood heuristic, which randomly selects nodes from the nearest neighborhood. For example,
if a node has two direct neighbors and 15 nodes in the second neighborhood, we select the two
immediate neighbors and sample another three randomly from the second neighborhood.
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For the synthetic dataset, we know how many features are not only randomly distributed but contain
information about the community. Therefore, we selected the two features correlated with nodes’
community membership as ground truth and evaluated the methods’ performance with respect to
their feature selection. For GNNEXPLAINER, we selected from the calculated soft feature mask
those two features with the highest value. In contrast, ZORRO directly select this number during
inference. Table 6] shows that GNNEXPLAINER fails to select the informative features and that
ZORRO consistently selects the informative features. The configuration with a lower threshold (7 =
.85) shows that we only need one of the two informative features in most cases. However, to reach
a higher threshold of 7 = .98, more features are required.

Table[/|shows how connected the retrieved explanation is. In other words, how close is the explana-
tion to a connected subgraph? We measure this by counting the number of connected components
in the explanation with and without the explained node. As we can see, even though in GNNEX-
PLAINER the number of connected components is limited to four or three in the case with respec-
tively without the explained nodes. This is the case since we select the nodes based on edges, i.e.,
each connected component consists of at least two nodes. The explanation tends to be way more
disconnected than those of ZORRO.

Table 6: Performance of the feature masks on the synthetic dataset

Method # Features Recall Precision
Zorro (T = .85) 1.48 0.98 0.68
Zorro (T = .98) 2.21 0.94 0.88
GNNEXPLAINER 2.00 0.08 0.08

Table 7: Number of the connected components in the explanations of the synthetic dataset.
Componentsyinou 1S the number of connected components in the subgraph induced by the selected
nodes. # Componentsy;s, is same, only with the explained node added to the selected nodes.

Method # Components;, # ComponentSyinout
. mean 1.14 1.06

Zorro (T = .85) Gy 0.50 0.68
_ mean 1.27 1.35

Zorro (1 =98) 4 1.14 122
mean 1.73 1.56

GNNEXPLAINER std 085 0.64

To exemplify the performance of our method, the Figure [I4] and Figure [I5] show some examples
of found explanations for correctly respectively wrongly predicted nodes. We compare the expla-
nation of ZORRO against the baseline GNNEXPLAINER. The first node in Figure [I4] shows that
ZORRO finds multiple explanations, which correspond to the ground truth motif. In contrast, GN-
NEXPLAINER ranks four nodes from the BA graph among the highest, which should not affect the
prediction of the GCN. The illustrations in ¢) and d) show a similar pattern. In addition, we see in
c) the reason for a low recall of ZORRO. Often only 2-3 nodes of the ground truth are sufficient to
reach a high fidelity.

Figure [I5] shows some explanations of wrongly predicted nodes. The first node 307 is not in the
training set, and from ZORRO’s explanation, we get some reasoning about the prediction. The GCN
only needs the value from the node itself and two neighbors, which are (wrongly) predicted as the
”basis” of the house. Hence, the node is predicted as the top wall, which would follow the following
pattern: If from its first neighborhood and its second neighborhood each a node is the basis, then
the node is a top wall node. However, both neighbors, which are important for the prediction, were
predicted false, and hence the resulting prediction is also wrong. This observation agrees with the
observed “homophily of wrong predictions” of the real datasets. GNNEXPLAINER’s explanation of
the same node is way larger and includes nodes from the house graph of the second community.
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Figure 13: Legend showing the symbols for the different classes of the synthetic dataset. Left and
right the house graphs and both nodes (square and rotated square) represent the nodes in the BA
graphs of the two communities.

The second example in Figure |[15| shows an example, where the explanations of ZORRO and GN-
NEXPLAINER are more similar. Both methods retrieve (mostly) members of the ground truth as an
explanation for the false prediction.
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Figure 14: Two nodes of the synthetic example explained by ZORRO and GNNEXPLAINER, which
are correctly predicted. The first column shows the nodes with the ground truth labels. All nodes
from the ground truth (house graph), as well as all the nodes selected in the explanation colored
as green (training set) and blue (test set). The second column shows the predicted classes and the
explanation(s), where we included in black all unselected nodes of the ground truth. All other colors
correspond to each explanation, e.g., three disjoint explanations in a). The red circle highlights the
node, which is explained. The last column shows the computational graph of the explained node
again with the ground truth labels.
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(a) Node 307: ZORRO

b) Node 307: GNNEXPLAINE

-

(c) Node 371: ZORRO
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(d) Node 371: GNNEXPLAINER

Figure 15: Two nodes of the synthetic example explained by ZORRO and GNNEXPLAINER, which
are wrongly predicted. Style same as Figure Ef}
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