
Under review as a conference paper at ICLR 2024

BOOSTING BACKDOOR ATTACK WITH A LEARNABLE
POISONING SAMPLE SELECTION STRATEGY

Anonymous authors
Paper under double-blind review

ABSTRACT

Data-poisoning based backdoor attacks aim to inject backdoor into models by
manipulating training datasets without controlling the training process of the target
model. Existing backdoor attacks mainly focus on designing diverse triggers or
fusion strategies to generate poisoned samples. However, all these attacks randomly
select samples from the benign dataset to be poisoned, disregarding the varying
importance of different samples. In order to select important samples to be poisoned
from a global perspective, we first introduce a learnable poisoning mask into the
regular backdoor training loss. Then we propose a Learnable Poisoning sample
Selection (LPS) strategy to learn the mask through a min-max optimization. During
the two-player game, considering hard samples contribute more to the training
process, the inner optimization maximizes loss w.r.t. the mask to identify hard
poisoned samples by impeding the training objective, while the outer optimization
minimizes the loss w.r.t. the model’s weight to train the surrogate model. After
several rounds of adversarial training, we finally select poisoned samples with
high contribution. Extensive experiments on benchmark datasets demonstrate the
effectiveness and efficiency of our LPS strategy in boosting the performance of
various data-poisoning based backdoor attacks.

1 INTRODUCTION

Training deep neural networks (DNNs) necessitates a substantial volume of data. Considering the
high cost of collecting or annotating massive data, users may resort to downloading publicly free
datasets from open-sourced repositories or purchasing from third-party data suppliers. However,
such unverified datasets may expose the DNNs to a serious threat of data-poisoning based backdoor
attacks. By manipulating a subset of training samples, the adversary can inject a malicious backdoor
into a trained model. During the inference stage, the backdoored model exhibits normal behavior
when processing benign samples, but classifies any poisoned sample embedded with the trigger as
the target class.

Several seminal backdoor attacks, including BadNets (Gu et al., 2019), Blended (Chen et al., 2017),
SSBA (Li et al., 2021b), SIG (Barni et al., 2019), TrojanNN (Liu et al., 2018b), etc., have demon-
strated noteworthy success in compromising mainstream DNNs. Most of these attacks focus on
developing diverse triggers (e.g. patch triggers in BadNets, signal triggers in SIG) or employing
fusion strategies of inserting the trigger into the benign samples (e.g. alpha-blending in Blended,
digital steganography in SSBA), which make the poisoned samples stealthy and effective. Neverthe-
less, all these attacks randomly select samples from the benign training dataset to create poisoned
samples, disregarding the varying importance of different samples. Recent research (Koh & Liang,
2017; Katharopoulos & Fleuret, 2018; Paul et al., 2021) has substantiated that not all data contribute
equally to the training of DNNs. Some specific samples carry greater significance for particular tasks.
Consequently, several selection strategies, such as uncertainty-based (Coleman et al., 2020), influence
function (Koh & Liang, 2017), forgetting events (Toneva et al., 2018), have been proposed to identify
important samples in the context of various tasks, including coreset selection (Borsos et al., 2020;
Killamsetty et al., 2021b;a), data valuation (Yoon et al., 2020; Nohyun et al., 2023; Just et al., 2023),
and active learning (Chang et al., 2017; Kaushal et al., 2019).

It inspires us to investigate whether the performance of backdoor attacks could be boosted if the
samples to be poisoned are selected according to well-designed strategies rather than random selection.

1

Under review as a conference paper at ICLR 2024

This underexplored issue has not received comprehensive attention within the backdoor learning
community. Recently, Xia et al. (2022) proposes a filtering-and-updating (FUS) strategy based on the
concept of forgetting events (Toneva et al., 2018). FUS filters out forgettable data from the poisoned
samples, which are determined by forgetting events obtained through training on the entire poisoned
dataset. And then these filtered data are replenished randomly from a candidate poisoned dataset.
This process is iteratively employed to derive the final refined poisoned samples. However, it is
noteworthy that FUS filters only in the poisoned subset at each step with a local perspective, thereby
limiting its ability to comprehensively consider the entire poisoned dataset. Besides, the computation
of forgetting events at each step requires the whole training process, resulting in a significant increase
in computational cost. Therefore, how to efficiently and effectively select samples for poisoning from
the complete dataset with a global perspective, while maintaining generalization to various backdoor
attacks is still an urgent problem to be solved.

To address the aforementioned challenge, we propose a Learnable Poisoning sample Selection
strategy (LPS), which takes into account triggers, fusion strategies, and benign data simultaneously.
The key intuition is that if a backdoor can be implanted into a model via hard poisoned samples
during the training stage, the backdoor behavior can be effectively generalized to other easy poisoned
samples at the inference stage. To achieve this objective, firstly, a learnable binary poisoning mask
m is introduced into the regular backdoor training loss (See Eq. (2)). Thereby finding hard samples
can intuitively be obtained by impeding the backdoor training process (i.e., maximize loss w.r.t.m),
while the normal backdoor training can be achieved by minimizing loss w.r.t. θ. To this end, we
formulate the poisoning sample selection as a min-max optimization via an adversarial process.
During the min-max two-player game, the inner maximization optimizes the mask to identify hard
poisoned samples, while the outer minimization optimizes the model’s weight to train a backdoored
model based on the selected samples. By adversarially training the min-max problem over multiple
rounds, we finally obtain the high-contributed poisoned samples that serve the malicious backdoor
objective. The proposed LPS strategy can be naturally adopted in any off-the-shelf data-poisoning
based backdoor attacks. Extensive evaluations with state-of-the-art backdoor attacks are conducted
on benchmark datasets. The results demonstrate the superiority of our LPS strategy over both the
random selection and the FUS strategy while resulting in significant computational savings.

The main contributions of this work are three-fold. 1) We propose to identify hard poisoned samples
from a global perspective. 2) We propose a learnable poisoning sample selection strategy by
formulating it as a min-max optimization problem. 3) We provide extensive experiments to verify
the effectiveness of the proposed selection strategy on significantly boosting existing data-poisoning
backdoor attacks.

2 RELATED WORK

Backdoor attack. According to the threat model, existing backdoor attacks can be partitioned into
two categories: data-poisoning based (Gu et al., 2019; Chen et al., 2017; Li et al., 2021b; Nguyen
& Tran, 2021; Barni et al., 2019; Liu et al., 2018b) and training-controllable based (Nguyen &
Tran, 2020; Doan et al., 2021a;b; Wang et al., 2022). In this work, we focus on the former threat
model, where the adversary can only manipulate the training dataset and the training process is
inaccessible. Thus, here we mainly review the related data-poisoning based attacks, and we refer
readers to recent surveys (Wu et al., 2023; Li et al., 2020b; Wu et al., 2022b) for a detailed introduction
to training-controllable based backdoor attacks. BadNets (Gu et al., 2019) was the first attempt to
stamp a patch on the benign image as the poisoned image, revealing the existence of backdoor in deep
learning. Blended (Chen et al., 2017) used the alpha blending strategy to make the trigger invisible
to evade human inspection. SIG (Barni et al., 2019) generated a ramp or triangle signal as the trigger.
TrojanNN attack (Liu et al., 2018b) optimized the trigger by maximizing its activation on selected
neurons related. SSBA (Li et al., 2021b) adopted a digital stenography to fuse a specific string
into images by autoencoder, to generate sample-specific triggers. Subsequently, more stealthy and
effective attacks (Zeng et al., 2021b; Zhang et al., 2022; Salem et al., 2022; Turner et al., 2019; Souri
et al., 2022; Nguyen & Tran, 2020; Doan et al., 2022) have been successively proposed. Meanwhile,
some defence methods (Tran et al., 2018; Huang et al., 2022; Wang et al., 2023; Chai & Chen, 2022;
Chen et al., 2019; Doan et al., 2023; Zeng et al., 2022) have been proposed as shields to resist attacks.
The commonality of the above attacks is that they focus on designing triggers or the fusion strategy
and simply adopt the random selection strategy while overlooking how to select benign samples for

2

Under review as a conference paper at ICLR 2024

Figure 1: The general procedure of data-poisoning based backdoor attack and examples of representative triggers.

generating poisoned samples. Instead, we aim to boost existing data-poisoning backdoor attacks
through a learnable poisoning sample selection strategy depending on the trigger and benign data.

Poisoning sample selection in backdoor attack. Poisoning sample selection has not been comprehen-
sively studied in the backdoor attack community. Xia et al. (2022) proposes a filtering-and-updating
strategy, which iteratively filters and updates selected samples from a local perspective. FUS filters
out easily forgotten samples from the poisoned subset based on forgetting events (Toneva et al., 2018),
which are obtained by completely training DNNs on the entire poisoned dataset. And then additional
poisoned samples are randomly sampled from a candidate poisoned set to update the pool. This
process are iteratively employed to obtain the final refined poisoned samples. As a pioneering work,
FUS improves the performance of backdoor attacks compared to random selection strategy. However,
FUS overlooks considering the entire poisoned dataset from a global perspective and the computation
of forgetting events at each step requires tens of times more computing cost.

3 PRELIMINARY

Threat model. Following existing attacks (Doan et al., 2021b; Wang et al., 2022), we assume that the
adversary has full control of the dataset, which is a widely adopted threat model in data-poisoning
based backdoor attacks (Li et al., 2021b; Souri et al., 2022). In this scenario, the adversary, as the
data provider, has access to select samples from the entire dataset for poisoning. It is noteworthy that
the user, who downloads the dataset, retains control over the training process, whereas the adversary
has no access to other training components, such as model architecture or hyperparameters of the
target model. Therefore, the adversary resorts to a surrogate model to simulate the backdoor attack
and select poisoned samples, which is the same settings adopted in Xia et al. (2022).

General procedure of data-poisoning based backdoor attacks. Here we define the general
procedure of data-poisoning based backdoor attacks. As shown in Fig. 1, it consists of five steps:

❶ Design trigger (by adversary). The first step of backdoor attack is to design a trigger ϵ, of which
the format could be diverse in different applications, such as a patch (Gu et al., 2019) or a specific
image (Chen et al., 2017), as shown in the right part of Fig. 1.

❷ Select samples to be poisoned (by adversary). Let D = {(xi, yi)}|D|
i=1 denote the original

benign training dataset that contains |D| i.i.d. samples, where xi ∈ X denotes the input image,
yi ∈ Y = {1, . . . ,K} is the ground-truth label of xi. There are K candidate classes, and the size of
class k is denoted as nk. For clarity, we assume that all training samples are ranked following the
class indices, i.e., (samples of class 1), (samples of class 2), . . . , (samples of class K). To ensure
stealthiness and avoid harm to clean accuracy, the adversary often selects a small fraction of benign
samples to be poisoned. Here we define a binary vector m =

[
m1,m2, . . . ,m|D|

]
∈ {0, 1}|D| to

represent the poisoning mask, where mi = 1 indicates that xi is selected to be poisoned and mi = 0

means not selected. We denote α :=
∑|D|

i=1 mi

/
|D| as the poisoning ratio.

❸ Generate poisoned samples (by adversary). Given the trigger ϵ and the selected sample xi

(i.e., mi = 1), the adversary will design some strategies to fuse ϵ into xi to generate the poisoned
sample x̃i = g(xi, ϵ), with g(·, ·) denoting the fusion operator (e.g. the alpha-blending used in

3

Under review as a conference paper at ICLR 2024

Figure 2: Different poisoning sample selection strategies.

Blended (Chen et al., 2017)). Besides, the adversary has the authority to change the original ground-
truth label yi to the target label ỹi. If target labels remain the same for all poisoned samples (i.e.,
ỹi = yt), it is called all-to-one attack. If target labels have differnt types (e.g., ỹi = yi + 1), it
is called all-to-all attack. If adversary does not change the ground-truth label (i.e., ỹi = yi), it
is called clean label attack. Thus, the generated poisoned training dataset could be denoted as
D̃ = {(xi, yi)|mi=0} ∪ {(x̃i, ỹi)|mi=1}.

❹ Train the target model (by user). Given the poisoned training dataset D̃, the user trains the target
model fθt

by minimizing the following loss function:

L(θt; D̃) =
1

|D̃|

∑
(x,y)∈D̃

ℓ(fθt(x), y)) (1)

≡L(θt;D,m, ϵ, g) =
1

|D|

|D|∑
i=1

[
(1−mi) · ℓ(fθt

(xi), yi)) +mi · ℓ(fθt
(x̃i), yt)

]
, (2)

where ℓ(·, ·) is the loss function for an individual sample, such as cross-entropy loss. In Eq. (2), we
extend Eq. (1) by introducing binary poisoning mask m that is described in step 2.

❺ Activate the backdoor using the trigger during the inference stage (by the adversary) Given
the trained model fθt

, the adversary expects to activate the injected backdoor using the trigger ϵ, i.e.,
fooling fθt

to predict any poisoned sample g(xi, ϵ) as the target label ỹi.

Most backdoor attacks concentrate on designing diverse triggers (i.e., step 1) or fusion strategies
(i.e., step 3). These attacks typically randomly select samples for poisoning (i.e., step 2, shown
in Fig. 2a), neglecting the unequal influence of each poisoned sample for backdoor injection. The
recent FUS strategy (Xia et al., 2022), illustrated in Fig. 2b, involves filtering out less significant
poisoning samples based on forgetting events (Toneva et al., 2018) and updating the poisoned
subset by resampling from the candidate. However, it operates from a local perspective rather than
considering all alternate poisoned samples together. Therefore, the development of a poisoning
sample selection strategy encompassing the entire dataset remains a challenge.

4 METHODOLOGY: LEARNABLE POISONING SAMPLE SELECTION STRATEGY

This work aims to design a poisoning sample selection strategy to boost the performance of backdoor
attacks. As the target model fθt

is agnostic to the adversary, we resort to a surrogate model fθs
as an

alternative. In order to select samples for poisoning from the entire dataset with a global perspective,
we directly generate the poisoning mask m in step 2. We suppose that if a backdoor can be implanted
into the model through hard poisoned samples, the backdoor can be generalized to other more easy
poisoned samples during the inference stage. To find such hard poisoned samples, an intuitive way is
to hinder the normal backdoor training, i.e., maximizing the loss in Eq. (2) w.r.t. m. To combine
it with the normal training objective (i.e., minimizing Eq. (2) w.r.t. θs), we propose a Learnable
Poisoning sample Selection (LPS) strategy to learn the poisoning mask m along with the surrogate
model’s parameters θs through a min-max optimization, as shown in Fig. 2c:

min
θs

max
m∈{0,1}|D|

{
L(θs,m;D, ϵ, g) s.t.Hm = α̃ · µ

}
, (3)

4

Under review as a conference paper at ICLR 2024

where L is extended loss including poisoning mask that defined in Eq. (2). H ∈ {0, 1}K×|D| is
defined as: in the k-th row, the entries H(k,

∑k−1
j=1 nj + 1 :

∑k
j=1 nj) = 1, while other entries are

0. α̃ = α·|D|∑
k ̸=yt

nk
and α̃nk is integer for all k. µ = [µ1;µ2; . . . ;µK] ∈ NK is defined as: if k ̸= yt,

then µk = nk, otherwise µk = 0. This equation captures three constraints, including: 1) α · |D|
samples are selected to be poisoned; 2) the target class samples cannot be selected to be poisoned; 3)
each non-target class has the same selected ratio α̃ to encourage the diversity of selected samples.
Note that here we only consider the setting of all-to-one attack, but the constraint can be flexibly
adjusted for all-to-all and clean label settings.

Algorithm 1 LPS strategy via min-max optimization

Input: Benign training dataset D, architecture of the
surrogate model fθs

, maximal iterations T , poi-
soning ratio α, trigger ϵ, fusion operator g

Output: poisoning mask m

1: Randomly initialize m
(0)
s , θ(0)

s

2: for each iteration t = 0 to T − 1 do
3: ▷ Given m(t), update θ

(t+1)
s by solving outer

sub-problem in Eq. (4).
4: ▷ Given θ

(t+1)
s , update m(t+1) by solving

inner sub-problem in Eq. (5).
5: end for
6: return mT

Remark. This min-max objective function
(3) is designed for finding hard poisoned
samples with high-contribution for back-
door injection via an adversarial process.
Specifically, the inner loop encourages to
select hard poisoned samples for the given
model’s parameters θs by maximizing the
loss w.r.t. m, while the outer loop aims to
update θs by minimizing the loss w.r.t. fθs

to ensure that a good backdoored model can
be still learned, even based on the hard poi-
soning mask m. Thus, the two-palyer game
between m and θs is expected to encour-
age the selected samples to bring in good
backdoor effect.

Optimization. As summarized in Algorithm 1, the min-max optimization (3) could be efficiently
solved by alternatively updating m and θs as follows:

♦ Outer minimization: given m, θs could be updated by solving the following sub-problem:

θs ∈ argmin
θs

L(θs;m,D, ϵ, g). (4)

It could be optimized by the standard back-propagation method with stochastic gradient descent
(SGD) (Bottou & Bousquet, 2007). Here we update θs for one epoch in each iteration.

♦ Inner maximization: given θs, m could be achieved by solving the maximization problem as:

m ∈ arg max
m∈{0,1}|D|

{
L(m;θs,D, ϵ, g), s.t. Hm = α̃ · µ

}
. (5)

Although it is a constrained binary optimization problem, it is easy to decompose it into K independent
linear optimization sub-problems, i.e., for ∀k ∈ {1, 2, . . . ,K},

max
mk∈{0,1}nk

1

|D|

nk∑
i=1

mk
i ·

[
ℓ(fθs

(x̃ik), yt)−ℓ(fθs
(xik), yik)

]
, s.t. 1⊤

nk
mk= α̃ · µk, (6)

where mk denotes the sub-mask vector of m corresponding to samples of class k and (xik, yik) is
the i-th sample of the set Dk = {(x, y) | y = k, (x, y) ∈ D} that is the subset with class k. Obtaining
the optimal solution is a straightforward process, which involves computing δi = ℓ(fθs

(x̃i), yt)−
ℓ(fθs

(xi), yi) for all samples, then for each class k sorting the subset ∆k = {δi | (xi, yi) ∈ Dk} in
descending order and selecting the corresponding top-(α̃ · µk) samples. The decomposition of Eq. (5)
and the solution of Eq. (6) are proved in Appendix B.

Remark. Above selection criterion ensures that the selected poisoned samples exhibit a large loss
gap between ℓ(fθs

(x̃i), yt) and ℓ(fθs
(xi), yi) in each iteration. Such poisoned samples with large

backdoor loss ℓ(fθs
(x̃i), yt) are characterized by being difficult to learn, which aligns with the

conclusion in Coleman et al. (2020); Nguyen et al. (2022) that hard-to-learn samples contribute more
to the learning process. Meanwhile, the clean loss ℓ(fθs

(xi), yi) of corresponding benign samples
are small, indicating that they are relatively easy to learn, which demonstrates that the original benign
feature of poisoned samples should be more conspicuous to enhance the generalization of backdoor
to other samples. A more detailed analysis can be found in Section 6.

5

Under review as a conference paper at ICLR 2024

Figure 3: Clean accuracy of Blended attack with different backdoor sample selection strategies.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Implementation details. For the inner minimization of the surrogate model and the train of target
model, we adopt SGD optimizer with weight decay set as 5e−4, the batch size set as 128, the initial
learning rate set as 0.01 and reduced by 10 after 35 and 55 epochs, respectively. The maximal
iteration T is set as 15. The training epoch for the target model is set as 100.

Datasets and models. We evaluate on three commonly used benchmark datasets: CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009) and Tiny-ImageNet (Le & Yang, 2015). The surrogate model
and target model are chosen from ResNet (He et al., 2016), VGG (Simonyan & Zisserman, 2015),
MobileNet (Howard et al., 2017) and DenseNet Huang et al. (2017).

Baselines of poisoning sample selection. We compare our proposed LPS strategy with two existing
poisoning sample selection strategies: Random and Filtering-and-Updating Stragtegy (FUS)1 (Xia
et al., 2022). Following the original setting in FUS, we set 10 overall iterations and 60 epochs for
updating the surrogate model in each iteration.

Backdoor attacks. We consider five representative backdoor attacks: 1) visible triggers: BadNets (Gu
et al., 2019), Blended (Chen et al., 2017); SIG (Barni et al., 2019); 2) optimized triggers: Trojan-
Watermark (Trojan-WM) (Liu et al., 2018b); 3) sample-specific triggers: SSBA (Li et al., 2021b).
In addition, we consider 3 poisoning label types: all-to-one, all-to-all and clean label. We visualize
different triggers with the same benign image in Fig. 1. The detailed settings of each attack can been
found in Appendix E.

Backdoor defenses. We select six representative backdoor defenses to evaluate the resistance of
above attack methods with different poisoning sample selection strategies, including Fine-Tuning
(FT), Fine-Pruning (FP) (Liu et al., 2018a), Anti-Backdoor Learning (ABL) (Li et al., 2021a), Channel
Lipschitzness Pruning (CLP) (Zheng et al., 2022), Neural Attention Distillation (NAD) (Li et al.,
2020a), Implicit Backdoor Adversarial Unlearning (I-BAU) (Zeng et al., 2021a). The detailed settings
of each defense can be found in Appendix E.

5.2 MAIN RESULTS

We evaluate our LPS strategy under various experimental settings, including comparisons with
baseline strategies on various attacks and poisoning ratios, comparisons on different datasets and
resistance to defenses. Besides, we find that due to the low poisoning ratios, the impacts of different
poisoning sample selection strategies on the clean accuracy are almost similar (as shown in Fig. 3).
Thus, for clarity, we omit ACC in most result tables, except for Tab. 4. Three random trials are
conducted for the main experiments to report the mean and standard deviation. More results about
different models can be found in Appendix F.

Compare with state-of-the-art baselines. To verify the effectiveness of our proposed LPS strategy,
we first compare with two existing strategies on CIFAR-10, in which the surrogate model is ResNet-18
and the target model is ResNet-34. Different from Xia et al. (2022), we conduct experiments under
low poisoning ratios (< 1%), which is more stealthy and more likely to escape human inspection. The
attack success rate is shown in Tab. 1, where #Img/Cls denotes the number of samples to be poisoned

1Note that in the experiments reported in Xia et al. (2022), FUS appended the generated poisoned samples
onto the original benign dataset, rather than replacing the selected benign samples, leading to |D̃| ≥ |D|. To
ensure fair comparison, we change it to the traditional setting in existing attacks that the selected benign samples
to be poisoned are replaced by the generated samples, thus |D̃| = |D|.

6

Under review as a conference paper at ICLR 2024

Table 1: Attack success rate (%) on CIFAR-10, where the surrogate and target model are ResNet-18 and
ResNet-34 respectively. Bold means the best.

Dataset: CIFAR-10 Surrogate: ResNet-18 =⇒ Target: ResNet-34
Attack Pratio (#Img/Cls) 0.054% (#3) 0.108% (#6) 0.216% (#12) 0.432% (#24) 0.864% (#48)

BadNets
(all-to-one)

Random 0.86 ± 0.09 1.71 ± 0.48 62.57 ± 5.15 81.71 ± 1.51 89.21 ± 1.05
FUS 0.75 ± 0.08 1.37 ± 0.22 64.67 ± 5.88 83.41 ± 2.09 90.05 ± 0.34
LPS (Ours) 0.77 ± 0.04 5.70 ± 1.77 76.41 ± 5.03 85.77 ± 5.43 91.62 ± 1.25

BadNets
(all-to-all)

Random 0.69 ± 0.05 0.73 ± 0.06 0.93 ± 0.22 39.91 ± 14.35 75.54 ± 2.84
FUS 0.72 ± 0.01 0.75 ± 0.02 1.03 ± 0.13 33.37 ± 2.60 76.76 ± 0.24
LPS (Ours) 0.70 ± 0.10 0.76 ± 0.05 36.64 ± 2.71 66.95 ± 1.02 80.18 ± 2.08

Blended
(all-to-one)

Random 8.87 ± 2.75 23.69 ± 3.09 50.65 ± 4.05 75.67 ± 1.51 89.47 ± 0.93
FUS 10.51 ± 2.01 22.29 ± 0.81 51.13 ± 2.83 80.46 ± 1.18 92.11 ± 0.79
LPS (Ours) 9.09 ± 3.54 29.84 ± 3.86 64.6 ± 4.51 87.16 ± 0.84 97.53 ± 0.19

Blended
(all-to-all)

Random 2.48 ± 0.11 4.05 ± 0.66 9.32 ± 1.25 37.33 ± 5.01 67.54 ± 1.12
FUS 2.40 ± 0.16 4.17 ± 0.60 6.67 ± 0.49 29.54 ± 2.34 64.90 ± 2.02
LPS (Ours) 3.35 ± 0.45 7.37 ± 0.78 34.6 ± 2.34 60.12 ± 1.60 72.92 ± 1.00

SIG
(clean label)

Random 3.48 ± 0.74 6.16 ± 1.74 11.98 ± 0.75 18.72 ± 3.18 36.46 ± 5.34
FUS 3.30 ± 0.59 8.67 ± 2.10 16.06 ± 3.16 28.50 ± 1.14 46.99 ± 8.77
LPS (Ours) 11.38 ± 1.50 19.00 ± 1.66 32.67 ± 3.06 51.32 ± 4.17 65.77 ± 5.80

SSBA
(all-to-one)

Random 1.01 ± 0.12 1.05 ± 0.04 2.06 ± 0.15 20.34 ± 5.58 60.36 ± 2.42
FUS 1.10 ± 0.16 1.04 ± 0.28 2.02 ± 0.45 16.81 ± 3.47 60.64 ± 3.29
LPS (Ours) 0.98 ± 0.17 1.03 ± 0.05 2.30 ± 0.51 22.92 ± 2.74 64.39 ± 2.96

Trojan-WM
(all-to-one)

Random 3.39 ± 1.37 23.26 ± 11.74 80.04 ± 7.19 94.96 ± 1.92 98.27 ± 0.34
FUS 3.07 ± 1.62 19.22 ± 6.12 78.85 ± 4.70 96.59 ± 1.57 99.25 ± 0.38
LPS (Ours) 3.66 ± 0.33 33.77 ± 10.47 94.32 ± 0.81 99.77 ± 0.06 99.97 ± 0.01

Table 2: Attack success rate (%) on CIFAR-100, where the surrogate and target model are ResNet-18 and
ResNet-34 respectively. Bold means the best.

Dataset: CIFAR-100 Surrogate: ResNet-18 =⇒ Target: ResNet-34
Attack Pratio (#Img/Cls) 0.198% (#1) 0.396% (#2) 0.594% (#3) 0.792% (#4) 0.99 % (#5)

BadNets
(all-to-one)

Random 8.09 ± 2.31 36.74 ± 6.22 50.68 ± 2.68 59.50 ± 4.56 64.81 ± 5.97
FUS 10.41 ± 4.20 43.60 ± 6.79 51.06 ± 6.74 62.28 ± 6.22 68.34 ± 6.30
LPS (Ours) 17.98 ± 2.58 52.02 ± 4.05 58.46 ± 1.87 63.49 ± 5.90 70.45 ± 3.49

Blended
(all-to-one)

Random 37.53 ± 2.23 59.98 ± 1.09 68.53 ± 1.26 77.37 ± 0.67 81.47 ± 0.26
FUS 38.65 ± 1.58 65.75 ± 0.98 69.04 ± 5.40 82.25 ± 0.69 86.14 ± 0.46
LPS (Ours) 38.64 ± 1.72 66.94 ± 1.75 81.73 ± 1.73 89.88 ± 1.19 93.29 ± 0.67

SIG
(clean label)

Random 2.79 ± 0.44 6.09 ± 0.99 14.3 ± 2.38 22.08 ± 3.28 43.95 ± 1.35
FUS 3.79 ± 1.12 7.80 ± 1.60 15.84 ± 2.50 N/A N/A
LPS (Ours) 4.49 ± 1.43 7.01 ± 1.73 16.11 ± 1.99 25.12 ± 1.37 46.43 ± 0.55

SSBA
(all-to-one)

Random 1.42 ± 0.24 7.45 ± 1.62 18.73 ± 3.33 31.61 ± 0.63 43.37 ± 1.77
FUS 1.51 ± 0.40 7.99 ± 1.11 18.44 ± 1.51 33.35 ± 1.06 44.00 ± 2.66
LPS (Ours) 1.49 ± 0.10 8.03 ± 1.09 21.46 ± 1.81 34.12 ± 2.85 48.77 ± 3.18

Trojan-WM
(all-to-one)

Random 39.44 ± 4.24 68.64 ± 1.83 82.13 ± 0.47 88.08 ± 0.93 91.16 ± 1.52
FUS 39.74 ± 2.42 75.43 ± 3.23 84.80 ± 0.79 92.58 ± 0.95 93.87 ± 0.33
LPS (Ours) 44.90 ± 3.51 84.75 ± 3.24 96.36 ± 1.18 98.16 ± 0.33 99.30 ± 0.16

per class for all-to-one setting, and pratio is short for poisoning ratio. 1) From a global view, we
observe that LPS strategy outperforms the baselines under most of the settings. For example, with
0.216% poisoning ratio, LPS strategy can boost BadNets (all-to-all) by 30.61% compared to FUS,
and Blended (all-to-one) can be improved by 13.53%. 2) From the perspective of poisoning ratios,
LPS strategy can be widely applied to different poisoning ratios, but the degree of improvement is
also related to the poisoning ratio. Specifically, when the poisoning ratio is extremely low (e.g., 1
Img/Cls, 0.054% pratio), although the improvement of our method is not obvious compared with
other strategies due to the attack itself being weak, it also shows similar results. However, once
the poisoning ratio is increased, LPS shows a strong advantage over other strategies. 3) From
the perspective of attacks, our LPS strategy consistently improves different types of triggers and
poisoning labels, demonstrating that LPS strategy is widely applicable to various backdoor attacks.

Comparisons across different datasets. To verify whether our proposed LPS strategy supports
larger datasets (more images and classes, larger image size), we also evaluate these three strategies
on CIFAR-100 and Tiny-ImageNet. The results in Tabs. 2 and 3 further demonstrate the superiority
of LPS strategy to both the random selection and the FUS strategy.

7

Under review as a conference paper at ICLR 2024

Table 3: Attack success rate (%) on Tiny-ImageNet, where the surrogate and target model are ResNet-18 and
ResNet-34 respectively. Bold means the best.

Dataset: Tiny-ImageNet Surrogate: ResNet-18 =⇒ Target: ResNet-34
Attack Pratio (#Img/Cls) 0.199% (#1) 0.398% (#2) 0.597% (#3) 0.796% (#4) 0.995% (#5)

BadNets
(all-to-one)

Random 4.93 ± 6.19 37.18 ± 6.61 42.98 ± 1.89 48.91 ± 3.46 60.52 ± 2.35
FUS 5.44 ± 3.54 32.93 ± 1.69 43.74 ± 3.67 48.72 ± 3.58 60.76 ± 4.72
LPS (Ours) 5.21 ± 3.10 38.05 ± 2.26 47.21 ± 3.90 49.34 ± 3.41 61.22 ± 2.12

Blended
(all-to-one)

Random 66.73 ± 0.52 78.79 ± 0.63 84.87 ± 1.50 87.81 ± 0.72 89.96 ± 0.43
FUS 70.95 ± 1.47 82.01 ± 0.50 88.38 ± 0.94 90.70 ± 1.37 93.19 ± 0.39
LPS (Ours) 82.76 ± 2.52 93.55 ± 0.45 96.20 ± 0.11 97.65 ± 0.10 98.08 ± 0.09

SIG
(all-to-one)

Random 61.80 ± 3.30 81.15 ± 0.62 87.87 ± 1.83 90.80 ± 0.55 92.77 ± 0.95
FUS 60.02 ± 1.76 84.95 ± 2.53 86.36 ± 6.11 92.47 ± 1.41 94.56 ± 0.59
LPS (Ours) 62.90 ± 3.07 91.57 ± 2.00 96.59 ± 1.07 98.02 ± 0.45 98.97 ± 0.17

SSBA
(all-to-one)

Random 34.34 ± 2.93 60.05 ± 3.32 76.09 ± 0.88 81.60 ± 0.25 85.65 ± 0.30
FUS 34.80 ± 0.71 60.68 ± 1.58 76.83 ± 1.55 84.53 ± 0.54 88.48 ± 0.51
LPS (Ours) 33.68 ± 0.96 61.58 ± 1.27 82.61 ± 0.39 91.72 ± 2.53 94.5 ± 0.80

Trojan-WM
(all-to-one)

Random 6.75 ± 1.31 28.55 ± 3.17 61.06 ± 3.9 74.18 ± 0.42 80.74 ± 0.77
FUS 6.35 ± 1.13 26.47 ± 6.56 51.05 ± 6.86 75.21 ± 3.15 85.34 ± 1.20
LPS (Ours) 6.26 ± 0.81 48.26 ± 8.35 77.56 ± 2.93 86.16 ± 1.85 92.89 ± 1.72

Table 4: Results of various defenses against attacks on CIFAR-10. Bold means the best

Attack Defense No Defense FT FP ABL NAD CLP I-BAU
ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

BadNets
0.216%

(all-to-one)

Random 69.73 93.97 35.82 93.87 3.88 93.43 18.86 62.42 1.18 88.23 9.57 92.91 2.18 84.64
FUS 68.97 93.74 39.31 93.99 6.3 93.59 18.84 72.94 1.82 87.34 35.51 93.65 3.86 76.67
LPS (Ours) 81.94 93.76 51.48 92.57 10.88 93.45 23.17 63.59 7.33 91.77 39.29 93.35 7.01 88.99

Blended
0.216%

(all-to-one)

Random 53.22 94.01 33.26 93.85 24.39 93.47 30.07 71.75 23.58 91.59 32.53 93.33 9.77 76.32
FUS 48.96 93.99 34.04 93.94 21.67 93.54 29.19 75.84 25.16 92.83 38.51 93.62 6.29 83.6
LPS (Ours) 59.73 93.96 34.68 93.23 28.02 93.79 38.01 71.92 25.98 91.56 37.66 93.37 9.18 75.7

SIG
0.216%

(clean label)

Random 12.61 93.86 12.58 93.59 10.84 93.45 13.99 73.69 2.08 90.88 15.48 93.63 2.99 87.26
FUS 14.19 93.88 11.83 93.87 12.81 93.44 10.91 76.7 4.21 90.34 15.04 93.27 6.31 84.96
LPS (Ours) 41.31 93.82 38.01 93.94 36.59 93.52 34.06 72.19 29.52 91.37 48.73 93.64 7.92 89.42

Trojan-WM
0.216%

(all-to-one)

Random 89.43 93.73 86.4 93.6 46.59 93.15 51.71 71.5 43.21 91.2 2.74 92.75 7.29 84.57
FUS 82.9 93.83 68.7 93.73 35.52 93.57 48.86 74.97 40.48 92.69 6.72 93.41 11.96 81.53
LPS (Ours) 93.76 94.01 86.94 94.17 30.09 93.44 62.66 69.58 46.65 91.69 59.21 93.84 9.70 86.36

Resistance to backdoor defense. We further evaluate the resistance against defenses of different
poisoning sample selection strategies. The defense results are shown in Tab. 4. It can be seen
our method outperforms others in most cases (higher ASR is better), indicating that a reasonable
poisoning sample selection strategy probably makes the attack better resistant to defenses.

Resistance to noisy samples. In the real world, the dataset may contain noisy samples, such as noisy
labels and outliers. Hence, it is necessary to evaluate whether the poisoning sample selection strategies
have the potential to be immune to such noisy samples. The results of resistance against noisy labels
and outliers are shown in Appendix F.1. We find that LPS still outperforms other selection strategies,
showing the robustness of LPS against noisy samples, demonstrating the practicality of LPS.

5.3 ABLATION STUDIES

Table 5: Ablation studies of LPS’s constraints.

Attack Pratio LPS LPS\ET LPS\ET,PC FUS

BadNets 0.216% 80.58 75.33 71.47 68.01
Blended 0.432% 87.20 85.72 82.71 79.06
SSBA 0.432% 23.29 21.18 20.36 14.86
Trojan-WM 0.216% 93.27 89.91 87.80 77.63

Effects of different constraints in LPS. As
demonstrated under Eq. (3), the equation
Hm = α̃ · µ captures three constraints, in-
cluding satisfying the poisoning ratio, excluding
the target class (dubbed ET), and selecting the
same number of samples per class (dubbed PC),
respectively. Here we compare LPS with its two
variants of changing the last two constraints, in-
cluding: 1) LPS without excluding target class (LPS\ET), 2) LPS\ET without selecting the same
number of poisoned samples per class (LPS\ET,PC). The results in Tab. 5 show that both constraints are
important for the LPS strategy. Note that even removing two constraints, LPS\ET,PC still outperforms
FUS.

8

Under review as a conference paper at ICLR 2024

5 10 15 20 25 30 35 40 45 50 55 60 65 70
The number of iterations T

0

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(A
SR

 %
)

0.108% Ours
0.108% FUS
0.306% Ours
0.306% FUS
1.008% Ours
1.008% FUS

Figure 4: Attack results of LPS strategy on CIFAR-
10 under different iterations T .

25 50 75 100 125 150 175
Feasible Classes

0.0

0.1

0.2

0.3

0.4

0.5

SS
IM

Ours
FUS

Figure 5: Average pairwise SSIM for each class
computed over samples selected by our method
and FUS on Tiny-ImageNet.

Effect of the number of iterations T . In Algorithm 1, our LPS method requires iteratively solving a
min-max optimization problem. Here we explore the effect of different iterations T on the attack
results. As shown in Fig. 4, we evaluate LPS strategy in a wide range of iterations from 1 to 50. We
can see that LPS strategy shows stable and high performance in the range T ∈ [10, 20]. Therefore,
we choose T = 15 as the default setting of the main experiments.

Effect of the training setting of the target model. As we make no assumptions about the training
process of the target model, we also investigate the impact of various training settings of the target
model on the attack performance in the Appendix F. Our experiments demonstrate substantial
improvements across different settings.

6 ANALYSIS

Analysis of computational complexity. LPS uses an iterative algorithm by alternately updating
the surrogate model and the poisoning mask. Concerning the update of the surrogate model in each
iteration, the complexity is O(|D|C(F +B)), where |D| is the size of the training data, F is the cost
of the forward pass in a DNN model, B is the cost of the backward pass (Rumelhart et al., 1986),
and C is the number of epochs. Regarding the update of the poisoning mask, it requires one forward
pass for all training samples, making the complexity O(|D|F). Consequently, the overall complexity
for LPS is O(T |D|((C + 1)F +KB)), where T is the number of iterations. A comparison of the
computation times of various methods is provided in the Appendix F. As LPS doesn’t necessitate
retraining in each iteration, the inner loop is executed only once. Consequently, the calculation time
for LPS is significantly lower than that of other sample selection methods.

Analysis of selected samples. We examine the distinctions between samples selected by different
strategies. First, we provide visualizations of some benign samples selected by LPS and FUS from the
Tiny-ImageNet dataset in Appendix D. The results reveal that LPS tends to prioritize samples with
distinct patterns. We further calculate the average pairwise structural similarity index (SSIM) (Wang
et al., 2004) in each class for the selected samples to evaluate inter-class similarity. As shown in
Fig. 5, samples selected by LPS exhibit a higher degree of inter-class similarity. These findings
collectively suggest that the samples selected by LPS possess more pronounced characteristics.

7 CONCLUSION AND FUTURE WORK

This work has explored an often overlooked step in data-poisoning based backdoor attacks, i.e.,
selecting which benign samples to generate poisoned samples. We innovatively propose a learnable
poisoning sample selection strategy that is formulated as a min-max optimization, where a binary
poisoning mask and a surrogate model are learned together, to select hard poisoned samples that
contribute more to the backdoor learning. Extensive results validate the effectiveness and efficiency
of the proposed LPS strategy in boosting various data-poisoning based backdoor attacks.

Limitations and future works. In the case of an extremely low poisoning ratio, the improvement of
LPS is limited, mainly due to the fact that the poisoning information of few poisoned samples with
fixed triggers is insufficient to inject backdoor, no matter which samples are selected. It inspires that
learning trigger and poisoning sample selection simultaneously may further enhance the backdoor
attack, which will be explored in future. In addition, the proposed LPS strategy is specially designed
for data-poisoning based backdoor attack. Developing the similar selection strategy for training
controllable backdoor attack also deserves to be explored in future.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training set
corruption without label poisoning. In 2019 IEEE International Conference on Image Processing,
2019.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. Advances in Neural Information Processing Systems, 33:14879–14890,
2020.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. Advances in neural
information processing systems, 20, 2007.

Shuwen Chai and Jinghui Chen. One-shot neural backdoor erasing via adversarial weight masking.
In Thirty-Sixth Conference on Neural Information Processing Systems, 2022.

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more
accurate neural networks by emphasizing high variance samples. Advances in Neural Information
Processing Systems, 30, 2017.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
activation clustering. In The AAAI Conference on Artificial Intelligence Workshop, 2019.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

C Coleman, C Yeh, S Mussmann, B Mirzasoleiman, P Bailis, P Liang, J Leskovec, and M Zaharia.
Selection via proxy: Efficient data selection for deep learning. In International Conference on
Learning Representations (ICLR), 2020.

Khoa Doan, Yingjie Lao, and Ping Li. Backdoor attack with imperceptible input and latent modifica-
tion. Advances in Neural Information Processing Systems, 34:18944–18957, 2021a.

Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust
backdoor attacks. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2021b.

Khoa D Doan, Yingjie Lao, and Ping Li. Marksman backdoor: Backdoor attacks with arbitrary target
class. In Thirty-Sixth Conference on Neural Information Processing Systems, 2022.

Khoa D Doan, Yingjie Lao, and Ping Li. Defending backdoor attacks on vision transformer via patch
processing. In AAAI Conference on Artificial Intelligence, 2023.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via decoupling
the training process. In International Conference on Learning Representations, 2022.

Hoang Anh Just, Feiyang Kang, Tianhao Wang, Yi Zeng, Myeongseob Ko, Ming Jin, and Ruoxi Jia.
LAVA: Data valuation without pre-specified learning algorithms. In The Eleventh International
Conference on Learning Representations, 2023.

10

Under review as a conference paper at ICLR 2024

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International conference on machine learning, 2018.

Vishal Kaushal, Rishabh Iyer, Suraj Kothawade, Rohan Mahadev, Khoshrav Doctor, and Ganesh
Ramakrishnan. Learning from less data: A unified data subset selection and active learning
framework for computer vision. In IEEE Winter Conference on Applications of Computer Vision,
2019.

Krishnateja Killamsetty, S Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Grad-match:
Gradient matching based data subset selection for efficient deep model training. In International
Conference on Machine Learning, 2021a.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
Generalization based data subset selection for efficient and robust learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2021b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In International Conference on
Learning Representations, 2020a.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
Training clean models on poisoned data. Advances in Neural Information Processing Systems,
2021a.

Yiming Li, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey.
arXiv preprint arXiv:2007.08745, 2020b.

Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
attack with sample-specific triggers. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021b.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring
attacks on deep neural networks. In International Symposium on Research in Attacks, Intrusions,
and Defenses, 2018a.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. In 25th Annual Network and Distributed System
Security Symposium, 2018b.

Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. Advances in Neural
Information Processing Systems, 33:3454–3464, 2020.

Tuan Anh Nguyen and Anh Tuan Tran. Wanet - imperceptible warping-based backdoor attack. In
International Conference on Learning Representations, 2021.

Vu-Linh Nguyen, Mohammad Hossein Shaker, and Eyke Hüllermeier. How to measure uncertainty
in uncertainty sampling for active learning. Machine Learning, 111(1):89–122, 2022.

Ki Nohyun, Hoyong Choi, and Hye Won Chung. Data valuation without training of a model. In
International Conference on Learning Representations, 2023.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in Neural Information Processing Systems, 34:
20596–20607, 2021.

11

Under review as a conference paper at ICLR 2024

Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Revisiting the assump-
tion of latent separability for backdoor defenses. In The eleventh international conference on
learning representations, 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. Dynamic backdoor attacks
against machine learning models. In IEEE 7th European Symposium on Security and Privacy
(EuroS&P), 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Hossein Souri, Liam Fowl, Rama Chellappa, Micah Goldblum, and Tom Goldstein. Sleeper agent:
Scalable hidden trigger backdoors for neural networks trained from scratch. Advances in Neural
Information Processing Systems, 35:19165–19178, 2022.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159, 2018.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. Advances in
Neural Information Processing Systems, 31, 2018.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks. arXiv
preprint arXiv:1912.02771, 2019.

Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient trojan attacks against
deep neural networks via image quantization and contrastive adversarial learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Zhenting Wang, Kai Mei, Juan Zhai, and Shiqing Ma. UNICORN: A unified backdoor trigger
inversion framework. In International Conference on Learning Representations, 2023.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao Shen.
Backdoorbench: A comprehensive benchmark of backdoor learning. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022a.

Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao Shen.
Backdoorbench: A comprehensive benchmark of backdoor learning. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022b.

Baoyuan Wu, Li Liu, Zihao Zhu, Qingshan Liu, Zhaofeng He, and Siwei Lyu. Adversarial machine
learning: A systematic survey of backdoor attack, weight attack and adversarial example. arXiv
preprint arXiv:2302.09457, 2023.

Pengfei Xia, Ziqiang Li, Wei Zhang, and Bin Li. Data-efficient backdoor attacks. In Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence, 2022.

Jinsung Yoon, Sercan Arik, and Tomas Pfister. Data valuation using reinforcement learning. In
International Conference on Machine Learning, 2020.

Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of
backdoors via implicit hypergradient. In International Conference on Learning Representations,
2021a.

Yi Zeng, Won Park, Z Morley Mao, and Ruoxi Jia. Rethinking the backdoor attacks’ triggers: A
frequency perspective. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 16473–16481, 2021b.

12

Under review as a conference paper at ICLR 2024

Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi Jia. Narcissus: A
practical clean-label backdoor attack with limited information. arXiv preprint arXiv:2204.05255,
2022.

Jie Zhang, Chen Dongdong, Qidong Huang, Jing Liao, Weiming Zhang, Huamin Feng, Gang Hua,
and Nenghai Yu. Poison ink: Robust and invisible backdoor attack. IEEE Transactions on Image
Processing, 31:5691–5705, 2022.

Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal based on channel
lipschitzness. In European Conference on Computer Vision, 2022.

13

Under review as a conference paper at ICLR 2024

A OVERVIEW OF THE APPENDIX

The overall structure of the Appendix is listed as follows:

• Appendix B: Proof of solution of internal optimization

– Appendix B.1: Proof of the decomposition of Eq. (5)
– Appendix B.2 The solution of Eq. (6)

• Appendix C: Modification of LPS under different poisoning strategies

• Appendix D: Visual analysis of selected samples

– Appendix D.1: Visualization of selected samples by different sample selection strategies
– Appendix D.2: t-SNE analysis of the poisoned dataset with selected samples
– Appendix D.3: The loss of selected samples when the users train the target model on

the poisoned dataset

• Appendix E: Experimental settings.

– Appendix E.1: The experimental settings of backdoor attack.
– Appendix E.2: The experimental settings of backdoor defense.

• Appendix F Additional experiments

– Appendix F.1: Experiments of resistance to noisy samples.
– Appendix F.2: The computation cost of different sample selection strategies
– Appendix F.3: Experiments about different model architectures.
– Appendix F.4: Experiments about different training hyper-parameters of the target

model.

B PROOF OF SOLUTION OF INNER MAXIMIZATION OPTIMIZATION PROBLEMS

B.1 THE DECOMPOSITION OF EQ. (5)

Theorem 1 Under the setting of our optimization algorithm, the solution of the optimization problem
of Eq. (5) is equivalent to the solution of the optimization problem of Eq. (6)

Proof 1

max
m∈{0,1}|D|,Hm=α̃·µ

L(m;θs,D, ϵ, g)

= max
m∈{0,1}|D|,Hm=α̃·µ

1

|D|

|D|∑
i=1

[
(1−mi) · ℓ(fθt

(xi), yi)) +mi · ℓ(fθt
(x̃i), yt)

]

= max
m∈{0,1}|D|,Hm=α̃·µ

1

|D|

|D|∑
i=1

[
ℓ(fθt

(xi), yi)) +mi ·
(
ℓ(fθt

(x̃i), yt)− ℓ(fθt
(xi), yi))

)]

= max
m∈{0,1}|D|,Hm=α̃·µ

1

|D|

|D|∑
i=1

[
mi ·

(
ℓ(fθt

(x̃i), yt)− ℓ(fθt
(xi), yi))

)]
+ C,

(7)

where the last equation is bacause C = 1
|D|

∑|D|
i=1 ℓ(fθt(xi), yi)) is constant with respect to m.

For the condtion Hm = α̃ · µ, according to the definition of H , it is easy to get that

Hm = α̃ · µ ↔
∑

i∈{j|yj=k}

mi = α̃µk ∀k ∈ Y = {1, . . . ,K}.

14

Under review as a conference paper at ICLR 2024

For each class k, we can decompose the objective function as follows:

max
m∈{0,1}|D|,Hm=α̃·µ

1

|D|

|D|∑
i=1

[
mi ·

(
ℓ(fθt

(x̃i), yt)− ℓ(fθt
(xi), yi))

)]
= max

m∈{0,1}|D|,Hm=α̃·µ

K∑
k=1

∑
{i|yi=k}

1

|D|

[
mi ·

(
ℓ(fθt

(x̃i), yt)− ℓ(fθt
(xi), yi))

)]
= max

m ∈ {0, 1}|D|∑
{i|yi=k} mi = α̃µk ∀k ∈ Y

∑
k∈Y

∑
{i|yi=k}

1

|D|

[
mi ·

(
ℓ(fθt

(x̃i), yt)− ℓ(fθt
(xi), yi))

)]
= max

mk ∈ {0, 1}nk∑
i mk

i = α̃µk ∀k ∈ Y

∑
k∈Y

fk(m
k),

where we set mk =
[
mi | yi = k

]T
∈ {0, 1}nk which represents the vector of the mask for the class

k and fk(·) as:

fk(z) =
∑
j

1

|D|

[
zj ·

(
ℓ(fθt

(x̃jk), yt)− ℓ(fθt
(xjk), yjk))

)]
,

where (xjk, yjk) is the j-th sample of the set Dk = {(x, y) | y = k, (x, y) ∈ D} that is the sample
with class k.

We can also simplify the constraints as follows:∑
{i|yi=k}

mi = 1T
nk
mk,

where 1nk
is the all-ones vector with nk dimension. Because each sample belongs to only one label,

no variables are shared between mk.

Since the constraints can be decomposed to uncontacted equations, the above optimization objective
function can also be decomposed into K terms. Consequently, we can get K independent sub-
problems, as follows: ∀k ∈ {1, 2, . . . ,K}

max
mk∈{0,1}nk

nk∑
j=1

1

|D|

[
mk

j ·
(
ℓ(fθt

(x̃jk), yt)− ℓ(fθt
(xjk), yjk))

)]
,

s.t. 1T
nk
mk= α̃ · µk

B.2 THE SOLUTION OF EQ. (6)

Eq. (6) is a constrained 0-1 integer programming problem. We denote δki as ℓ(fθt(x̃ki), yt) −
ℓ(fθt(xki), yki)) and simplify the optimization objective function to

nk∑
i=1

1

|D|
mk

i · δki .

For the constraint 1T
nk
mk= α̃µk, with regrad to mk ∈ {0, 1}nk , the number of elements in vector

mk that equals to 1 is α̃ · µk. Therefore, the procedure for solving Eq. (6) is finding top-(α̃ · µk)
of δki and setting the corresponding mk

i to 1, which means for each class k we select the sample
corresponding to top-(α̃ · µk) of ℓ(fθt(x̃ki), yt)− ℓ(fθt(xki), yki)).

C MODIFICATION OF LPS UNDER DIFFERENT POISING STRATEGIES

In Sec. 4, our LPS sample selection strategy is mainly divided into two modules: constructing a min-
max optimization problem and optimizing this optimization problem. The constraint Hm = α̃ ·µ in
3 corresponds to the situation of poisoning samples under different poisoning strategies, that is, for
different poisoning strategies, we first need to modify α̃ and µ.

15

Under review as a conference paper at ICLR 2024

Figure 6: Visualization of samples selected by our LPS (a) and FUS (b).

• For all-to-all: Since all labels are target labels and each label is a source label, in optimization
problem (3), α̃ is changed to α∗|D|∑

k nk
and µk equals nk for any label k which means we

poison all the labels evenly in the α̃ ratio.

• For clean-label: Since the target label is still a source label and no other labels are poisoned,
in optimization problem (3), α̃ is changed to α∗|D|

nyt
, µk equals nk for target label yt and

equals 0 for other label k which means we only poison data whose label is target label.

In the context of the outer minimization within the optimization process, no adjustments are necessary
as the objective function remains unaltered. However, for the inner maximization during optimization,
where modifications are made to both α̃ and µk while leaving H unaffected, the sole requirement is
to perform a sorting algorithm on the non-zero indices of α̃ · µ. Specifically, this involves sorting the
losses associated with data labelled as k throughout the optimization process.

D VISUAL ANALYSIS

D.1 VISUALIZATION OF SELECTED IMAGES

Fig. 6 shows the benign samples selected by different sample selection strategies, which is consistent
with the phenomenon described in our manuscript.

D.2 T-SNE OF POISONED DATASET

Appendix D.2 shows t-SNE embeddings about the poisoned dataset to analyze the latent space of
backdoor models. We plot embeddings of 10% benign samples and all poisoned samples of the
CIFAR-10 training set according to the features of layer4.1.conv2 of ResNet-34.

It shows that: 1) The poisoned samples selected by LPS are more relatively scattered, while the
samples selected by random selection and FUS are more likely to cluster together, especially at a
low poisoning ratio. This phenomenon implies that it is more difficult for backdoor model to learn
the backdoor mapping using the poisoned sample selected by LPS, i.e., the selected samples are
more harder. 2) From the defence perspective, the scattered poisoned samples exhibit more latent
inseparability (Qi et al., 2022), thus may bypass some latent separation-based backdoor defenses.

D.3 THE LOSS OF SELECTED IMAGES DURING TRAINING THE TARGET MODEL

In Fig. 8, we present the loss of poisoned images chosen through various strategies during the training
of the target model, specifically ResNet34, on the contaminated dataset. It is observed that 1) the

16

Under review as a conference paper at ICLR 2024

(a) Badnets,Random,0.054% (b) Badnets,Random,0.108% (c) Badnets,Random,0.216% (d) Badnets,Random,0.432% (e) Badnets,Random,0.864%

(f) Badnets,FUS,0.054% (g) Badnets,FUS,0.108% (h) Badnets,FUS,0.216% (i) Badnets,FUS,0.432% (j) Badnets,FUS,0.864%

(k) Badnets,LPS(Ours),0.054% (l) Badnets,LPS(Ours),0.108% (m) Badnets,LPS(Ours),0.216% (n) Badnets,LPS(Ours),0.432% (o) Badnets,LPS(Ours),0.864%

(p) Blended,Random,0.054% (q) Blended,Random,0.108% (r) Blended,Random,0.216% (s) Blended,Random,0.432% (t) Blended,Random,0.864%

(u) Blended,FUS,0.054% (v) Blended,FUS,0.108% (w) Blended,FUS,0.216% (x) Blended,FUS,0.432% (y) Blended,FUS,0.864%

(z) Blended,LPS(Ours),0.054%
(aa)
Blended,LPS(Ours),0.108%

(ab)
Blended,LPS(Ours),0.216%

(ac)
Blended,LPS(Ours),0.432%

(ad)
Blended,LPS(Ours),0.864%

Figure 7: t-SNE visualization on CIFAR-10. Each point in the plots corresponds to a training sample. We
randomly chose 10% benign samples and all poisoned samples for plotting, in which the poisoned samples are
coloured in black.

17

Under review as a conference paper at ICLR 2024

(a) Blended,Random,0.432% (b) Blended,LPS,0.432%

Figure 8: The loss of poisoned images selected by different strategies when the users train the target model
on the poisoned dataset. The solid line denotes the mean loss value, while the dashed line spans an area two
standard deviations wide.

loss of samples selected by our LPS strategy is comparatively higher than that of randomly chosen
samples, and simultaneously, the convergence speed of LPS-selected poisoned samples is relatively
slower. These phenomena suggest that the samples chosen by LPS pose a greater challenge for the
target model to assimilate. 2) In the later stages of the training process, the losses of samples selected
by both methods converge almost to 0, indicating that the target model ultimately comprehensively
learns these poisoned data.
In summary, the samples we selected exhibit a stronger poisoning effect, thereby enhancing the
overall impact on the target model.

E IMPLEMENTATION DETAILS

E.1 DETAILS OF BACKDOOR ATTACKS

In this section, we describe the general idea and detailed settings of 5 representative backdoor
attack methods evaluated in the main manuscript. For all attacks, we use the codes implemented in
BackdoorBench2 Wu et al. (2022a).

• BadNets (Gu et al., 2019) is the pioneering study in the field of backdoor attacks, which
replaces certain pixels in the original benign image with a visual patch to create a poisoned
image. In our experiments, regardless of image sizes, we choose a 3 × 3 white square
positioned 1 pixel away from the bottom right corner of the image as the trigger.

• Blended (Chen et al., 2017) firstly adopted the alpha blending strategy to fuse the trigger
into the benign image. In our experiments, as the settings in Chen et al. (2017), we use a
“Hello Kitty” cartoon image as a trigger, and the blend ratio is set as 0.15.

• SIG (Barni et al., 2019) adds a sinusoidal signal designed by v(i, j) = ∆ sin(2πjf/m),
for a certain frequency f , on the original image, where m is the number of columns of the
image and l the number of rows. We set ∆ = 20, f = 6 for CIFAR-10 and CIFAR-100,
∆ = 10, f = 6 for Tiny-ImageNet.

• Sample-specific backdoor attack (SSBA) (Li et al., 2021b) adopted a double-loop auto-
encoder to merge the string information into the benign image based on digital steganography,
such that invisible and sample-specific triggers could be generated. The auto-encoder is
trained for 140000 steps and the encoded bit is set as 1.

• Trojaning Attack on Neural Networks (Trojan-WM) (Liu et al., 2018b) inverse the neural
network to optimise the trigger by maximizing its activation on selected neurons related. We
use a watermark as the trigger shape and the trigger transparency is set as 85%.

• All-to-one attack: For all-to-one attacks, we set the target label of poisoning samples as 0.
• All-to-all attack: For all-to-all attacks, we set the target label of poisoning samples as the

ground-truth label minus one, e.g., 1 ⇒ 0, 2 ⇒ 1.
2https://github.com/SCLBD/BackdoorBench/tree/main/attack

18

https://github.com/SCLBD/BackdoorBench/tree/main/attack

Under review as a conference paper at ICLR 2024

Table 6: Results of attack success rate with noise labels/outliers

Attack Settings Noise Lable(ratio = 1%) Noise Lable(ratio = 10%) Outliers(ratio = 1%) Outliers(ratio = 10%)
Pratio 0.216% 0.432% 0.864% 0.216% 0.432% 0.864% 0.216% 0.432% 0.864% 0.216% 0.432% 0.864%

BadNets Random 55.96% 80.53% 88.68% 3.62% 81.4% 87.4% 70.72% 83.75% 87.88% 64.49% 84.64% 89.7%
LPS 61.99% 83.05% 90.71% 9.18% 86.39% 90.56% 76.01% 85.34% 89.19% 74.98% 85.57% 91.46%

Blended Random 45.76% 68.33% 84.8% 35.88% 63.91% 82.32% 47.19% 73.42% 88.28% 46.45% 69.24% 86.03%
LPS 54.61% 86.34% 97.2% 37.29% 69.59% 94.51% 60.59% 88.91% 97.68% 60.9% 85.84% 97.7%

• Clean label attack: For clean label attacks, we set the target label of testing poisoning
samples as 0, and do not change the trained poisoning samples’ target label.

E.2 DETAILS OF BACKDOOR DEFENSES

In this section, we describe the general idea and detailed settings of 6 representative backdoor defense
methods evaluated in the main manuscript. For all defenses, we use the codes implemented in
BackdoorBench3 (Wu et al., 2022a).

• Fine-tuning (FT): This defense fine-tune the backdoored model on a subset of clean samples
to mitigate the backdoor. We use 5% ratio of validation dataset to fine-tune with 100 epochs.

• Fine-pruning (FP) (Liu et al., 2018a): firstly prunes some inactivated neurons of clean
samples with the maximum relative drop of clean accuracy is 10%. The ratio of validation
data is 5%.

• Anti-Backdoor Learning (ABL) (Li et al., 2021a): isolates poisoned samples from benign
samples according to their difference on loss dropping speed, then mitigates the backdoor
effect by maximizing the loss of the isolated poisoned samples. The isolation ratio of
training data is 0.01, the tuning epochs, fine-tuning epochs, unlearning epochs are set as 10,
60, 20, respectively.

• Neural Attention Distillation (NAD) (Li et al., 2020a): adopts fine-tuned model as a teacher,
and fine-tunes the backdoored model again by encouraging the consistency of the attention
representation between the new fine-tuned model and the teacher model. The teacher model
fine-tunes with 5% for 10 epochs, and β1, β2, β3 of the loss are set as 500, 1000, 2000,
respectively.

• Channel Lipschitzness Pruning (CLP) (Zheng et al., 2022): proposes a Lipschitz constant
of the mapping from the input images to the output of each channel to prune channels. The
hyperparameter u is defaulted to be 3 on CIFAR-10 and 5 on Tiny-ImageNet.

• Implicit Backdoor Adversarial Unlearning (I-BAU) (Zeng et al., 2021a): proposes a
minimax formulation for removing backdoor from a given poisoned model based on a small
set of clean data. The outer and inner iteration numbers are set as 5 and 1. The ℓ2-norm
bound is 10.

F ADDITIONAL EXPERIMENTS

F.1 RESISTANCE TO NOISE SAMPLES

Setting For noise labels, we replace their original labels with randomly assigned labels. For outliers,
we blend such the chosen samples with other samples randomly chosen from the same classes.
Blending ratio is set as 0.5.

It can be seen our methods achieve high ASR in Tab. 6. We find that among the samples selected
by LPS, the proportion of noisy labels and outliers is small. LPS tend to select samples with high
gap between backdoor loss ℓ(fθs

(x̃i), yt) and clean loss ℓ(fθs
(xi), yi) according to Eq.6. For noisy

labels, the clean loss of these noisy samples is relatively large. For outliers, due to their different
feature distribution, the backdoor mapping learned from these samples is hard to generalize to normal
samples, which causes the loss gap of other samples to become larger. Therefore, LPS is minimally
affected by these data points.

3https://github.com/SCLBD/BackdoorBench/tree/main/defense

19

https://github.com/SCLBD/BackdoorBench/tree/main/defense

Under review as a conference paper at ICLR 2024

F.2 COMPARISON OF RUNNING TIME IN SECTION 6

In this section, we compare actual running time of different poisoning sample selection strategies
under the same experimental environment. All experiments are performed on a machine with Intel
Xeon 8170 CPU and NVIDIA GeForce RTX 3090 GPUs. Tab. 7 shows the average running time of
Blended attack on three datasets with ResNet-18. It can be seen that our proposed LPS strategy saves
about 82% of the running time compared to FUS. In the meantime, it only takes 27% more running
time compared to random strategy to achieve a more effective attack, which is consistent with their
computational complexities mentioned in Sec. 6 of the main manuscript.

Table 7: Average running time of Blended attack with ResNet-18.

CIFAR-10 CIFAR-100 Tiny-ImageNet

Random 37m 29s 40m 41s 173m 23s
FUS 264m 51s 295m 32s 1197m 12s
Ours 47m 17s 51m 26s 206m 38s

F.3 COMPARISON OF DIFFERENT MODEL ARCHITECTURES

To evaluate the generalization of our LPS strategy on various model architectures, we conduct
external experiments using ResNet (He et al., 2016), VGG (Simonyan & Zisserman, 2015), Mo-
bileNet (Howard et al., 2017), and DenseNet (Huang et al., 2017).

F.3.1 SURROGATE: RESNET-18, TARGET: RESNET-18

When both the surrogate model and target model have the same architecture, chosen as ResNet-18 (He
et al., 2016), the attack results are presented in Tab. 8. It is evident that the performance improvement
achieved by our LPS strategy is more significant compared to when the target model is ResNet-34, as
mentioned in the main manuscript.

F.3.2 SURROGATE: VGG11, TARGET: RESNET-18

Tab. 9 illustrates the attack results when the surrogate model is VGG11 (Simonyan & Zisserman,
2015) and the target model is ResNet-18 (He et al., 2016). These results indicate the applicability of
our LPS strategy to various model architectures.

F.3.3 SURROGATE: MOBILENET-V2, TARGET: RESNET-18

The attack results presented in Tab. 10 correspond to the case where the surrogate model is MobileNet-
v2 (Howard et al., 2017) and the target model is ResNet-18 (He et al., 2016). These results further
validate the generalization ability of our LPS strategy.

F.3.4 SURROGATE: DENSENET-121, TARGET: RESNET-18

Tab. 11 presents the attack results obtained when the surrogate model is DenseNet-121 (Huang
et al., 2017) and the target model is ResNet-18 (He et al., 2016). These results further confirm the
generalization ability of our LPS strategy.

F.4 COMPARISON OF DIFFERENT TRAINING HYPER-PARAMETERS

To further analyze how different hyper-parameters of the surrogate model and the target model will
influence the attack results, we conduct external experiments using different optimizers(SGD (Bottou
& Bousquet, 2007)/Adam (Kingma & Ba, 2014)) and parameters(batch-size and learning-rate).

F.4.1 COMPARISON OF DIFFERENT OPTIMIZERS

We conducted experiments under two distinct scenarios. In the first scenario, both the surrogate
model and the target model employed the SGD optimizer, with a learning rate (lr) of 0.01 and a

20

Under review as a conference paper at ICLR 2024

Table 8: Attack success rate (%) on CIFAR-10, where the surrogate and target model are ResNet-18 and
ResNet-18 respectively. Bold means the best.

Dataset: CIFAR-10 Surrogate: ResNet-18 =⇒ Target: ResNet-18
Attack Pratio (#Img/Cls) 0.00054 (#3) 0.00108 (#6) 0.00216 (#12) 0.00432 (#24) 0.00864 (#48)

BadNets
(all-to-one)

Random 0.9 2.88 61.84 82.39 90.86
FUS 1.01 1.72 64.92 83.8 91.51
LPS (Ours) 1.09 29.44 82.73 89.49 89.26

BadNets
(all-to-all)

Random 0.75 0.78 1.08 40.53 73.15
FUS 0.75 0.64 0.99 26 68.36
LPS (Ours) 0.87 0.91 19.9 55.81 73.55

Blended
(all-to-one)

Random 10.01 26.83 57.28 79.44 89.69
FUS 13.88 24.19 55.71 83.32 93.4
LPS (Ours) 10.34 43.8 71.47 89.53 98.29

Blended
(all-to-all)

Random 2.25 3.27 9.75 40.03 70.79
FUS 1.94 2.86 5.43 35.39 66.66
LPS (Ours) 3.1 8.64 35.51 61.48 71.76

SIG
(clean label)

Random 3.24 6.72 15.38 25.9 46.69
FUS 2.34 9.66 15.14 21.76 40.23
LPS (Ours) 12.07 31.66 45.99 60.34 66.83

SSBA
(all-to-one)

Random 0.97 1.78 3.43 30.54 64.12
FUS 1.21 1.48 2.97 23.71 69.48
LPS (Ours) 0.99 1.52 5.37 30.61 68.5

Trojan-WM
(all-to-one)

Random 3.42 21.6 87.4 96.27 98.84
FUS 5.74 26.43 80.44 96.72 99.11
LPS (Ours) 4.36 60.63 96.43 99.98 99.99

Table 9: Attack success rate (%) on CIFAR-10, where the surrogate and target model are VGG11 and ResNet-18
respectively. Bold means the best.

Dataset: CIFAR-10 Surrogate: VGG11 =⇒ Target: ResNet-18
Attack Pratio (#Img/Cls) 0.00054 (#3) 0.00108 (#6) 0.00216 (#12) 0.00432 (#24) 0.00864 (#48)

BadNets
(all-to-one)

Random 0.9 2.88 61.84 82.39 90.86
FUS 0.76 1.44 51.29 81.98 88.3
LPS (Ours) 0.91 6.71 76.13 87.54 89.08

BadNets
(all-to-all)

Random 0.75 0.78 1.08 40.53 73.65
FUS 0.82 0.73 1.05 22.54 67
LPS (Ours) 0.81 0.88 15.38 61.72 73.43

Blended
(all-to-one)

Random 10.01 26.83 57.28 79.44 89.69
FUS 11.97 25.77 53.82 80.83 92.37
LPS (Ours) 15.69 43.16 70.22 85.63 95.17

Blended
(all-to-all)

Random 2.25 3.27 9.75 40.03 70.79
FUS 2.47 3.6 5.32 37.11 67.63
LPS (Ours) 3.56 7.66 31.12 55.66 71.4

SIG
(clean label)

Random 3.24 6.72 15.38 25.9 46.69
FUS 12.01 19.87 72.68 91.71 97.01
LPS (Ours) 11.39 59.34 85.31 93.06 98.26

SSBA
(all-to-one)

Random 0.97 1.78 3.43 30.54 64.12
FUS 1.21 1.48 3.21 28.22 67.1
LPS (Ours) 1.2 1.52 5.61 35.99 68.18

Trojan-WM
(all-to-one)

Random 3.42 21.6 87.4 96.27 98.84
FUS 5.06 22.24 77.58 96.2 99.39
LPS (Ours) 6.74 68.57 95.14 99.19 99.83

21

Under review as a conference paper at ICLR 2024

Table 10: Attack success rate (%) on CIFAR-10, where the surrogate and target model are MobileNet-v2 and
ResNet-18 respectively. Bold means the best.

Dataset: CIFAR-10 Surrogate: MobileNet-v2 =⇒ Target: ResNet-18
Attack Pratio (#Img/Cls) 0.00054 (#3) 0.00108 (#6) 0.00216 (#12) 0.00432 (#24) 0.00864 (#48)

BadNets
(all-to-one)

Random 0.9 2.88 61.84 82.39 90.86
FUS 0.9 1.3 41.18 81.13 89.54
LPS (Ours) 1.16 15.94 76.46 88.02 90.31

BadNets
(all-to-all)

Random 0.75 0.78 1.08 40.53 71.65
FUS 0.84 1.56 1.19 9.54 61.89
LPS (Ours) 0.85 0.96 8.14 59.08 71.72

Blended
(all-to-one)

Random 10.01 26.83 57.28 79.44 89.69
FUS 12.47 22.06 49.72 78.17 91.49
LPS (Ours) 15.92 36.56 71.64 83.73 94.66

Blended
(all-to-all)

Random 2.25 3.27 9.75 70.03 70.79
FUS 3.17 8.07 5.27 76.91 68.39
LPS (Ours) 4.95 7.2 21.93 75.73 67.59

SIG
(clean label)

Random 3.24 6.72 15.38 25.9 46.69
FUS 3.06 30.9 71.36 24.72 97.03
LPS (Ours) 9.46 42.49 79.73 93.41 99.1

SSBA
(all-to-one)

Random 0.97 1.78 3.43 30.54 64.12
FUS 1.24 1.56 2.73 24.09 62.67
LPS (Ours) 1.12 1.27 5.71 33.61 67.68

Trojan-WM
(all-to-one)

Random 3.42 21.6 87.4 96.27 98.84
FUS 6.1 27.04 62.36 95.3 99.38
LPS (Ours) 6.3 50.28 96.63 98.82 99.61

Table 11: Attack success rate (%) on CIFAR-10, where the surrogate and target model are DenseNet-121and
ResNet-18 respectively. Bold means the best.

Dataset: Cifar10 Surrogate: DenseNet-121 =⇒ Target: ResNet-18
Attack Pratio (#Img/Cls) 0.00054 (#3) 0.00108 (#6) 0.00216 (#12) 0.00432 (#24) 0.00864 (#48)

BadNets
(all-to-one)

Random 0.9 2.88 61.84 82.39 90.86
FUS 1.09 1.84 48.51 79.94 89.93
LPS (Ours) 0.9 10.72 84.81 86.36 88.84

BadNets
(all-to-all)

Random 0.75 0.78 18.08 40.53 71.65
FUS 1 1.93 20.52 68.71 70.3
LPS (Ours) 0.89 1.91 21.29 66.05 72.27

Blended
(all-to-one)

Random 10.01 26.83 57.28 79.44 89.69
FUS 12.28 22.66 54.71 78.81 92.28
LPS (Ours) 15.61 45.43 69.27 85.14 94.7

Blended
(all-to-all)

Random 2.25 3.27 9.75 40.03 70.79
FUS 10.21 27 31.46 57.21 69.8
LPS (Ours) 4.07 8.86 32.43 59.5 71.49

SIG
(clean label)

Random 3.24 6.72 15.38 25.9 46.69
FUS 3.09 25.41 80.34 33.02 97.82
LPS (Ours) 13.44 49.56 79.93 93.23 98.89

SSBA
(all-to-one)

Random 0.97 1.78 3.43 30.54 64.12
FUS 1.19 1.63 2.86 23.52 63.23
LPS (Ours) 1.04 1.33 4.92 35.09 65.38

Trojan-WM
(all-to-one)

Random 3.42 21.6 87.4 96.27 98.84
FUS 4.76 21.06 69.13 97.14 99.1
LPS (Ours) 7.27 58.42 93.41 99.38 99.96

22

Under review as a conference paper at ICLR 2024

weight decay of 5e-4. In the second scenario, the surrogate model utilized the Adam optimizer with
default parameters (betas set to [0.9, 0.999] and lr set to 0.01), while the target model continued to use
the SGD optimizer with the same lr and weight decay settings. Tab. 12 shows discrepancies between
these two scenarios, which exhibit the difference between the optimizers used in the surrogate model
and the target model resulting in slightly reduced ASR. This indicates that the choice of optimizers
has a minor impact on our LPS strategy.

Table 12: Attack success rate (%) on CIFAR-10, where the surrogate and target model use different optimizers.
Bold means the best.

Dataset: CIFAR-10
Attack Pratio (#Img/Cls) 0.00216 (#12) 0.00432 (#24)

BadNets
Random 62.57 81.71
LPS(SGD⇒ SGD) 76.41 85.77
LPS(Adam⇒ SGD) 74.81 83.7

Blended
Random 50.65 75.67
LPS(SGD⇒ SGD) 64.6 87.16
LPS(Adam⇒ SGD) 61.24 85.93

F.4.2 COMPARISON OF DIFFERENT PARAMETERS

We evaluate the generalization ability of our LPS method when the surrogate model and the target
model use different training parameters. Although we find that the training parameters can have a
significant influence on backdoor attacks, Tabs. 13 and 14 demonstrates a noteworthy enhancement
achieved through our LPS approach.

Table 13: Attack success rate (%) on CIFAR-10, where the surrogate and target model use different batch sizes.
Bold means the best.

Dataset: CIFAR-10 Pratio:0.43% batch size = 128
Attack Victim model batch size = 64 batch size = 128 batch size = 256

BadNets Random 88.35 81.71 76.04
LPS 92.37 85.77 81.6

blended Random 77.7 75.6 70.36
LPS 92.41 87.16 80.97

Table 14: Attack success rate (%) on CIFAR-10, where the surrogate and target model use different learning
rates(lr). Bold means the best.

Dataset: CIFAR-10 Pratio:0.43% lr=0.01
Attack Victim model lr=0.006 lr=0.01 lr=0.014

BadNets Random 80.57 81.71 85.59
LPS 82.26 85.77 86.84

blended Random 73.74 75.6 76.43
LPS 84.06 87.16 90.06

23

	Introduction
	Related work
	Preliminary
	Methodology: learnable poisoning sample selection strategy
	Experiments
	Experimental settings
	Main results
	Ablation studies

	Analysis
	Conclusion and future work
	Overview of the appendix
	Proof of solution of inner maximization optimization problems
	The decomposition of eq:inner max1
	The solution of eq:inner max2

	Modification of LPS under different poising strategies
	Visual analysis
	Visualization of selected images
	t-SNE of poisoned dataset
	The loss of selected images during training the target model

	Implementation details
	Details of backdoor attacks
	Details of backdoor defenses

	Additional experiments
	Resistance to noise samples
	Comparison of running time in section 6
	Comparison of different model architectures
	Surrogate: ResNet-18, Target: ResNet-18
	Surrogate: VGG11, Target: ResNet-18
	Surrogate: MobileNet-v2, Target: ResNet-18
	Surrogate: DenseNet-121, Target: ResNet-18

	Comparison of different training hyper-parameters
	Comparison of different optimizers
	Comparison of different parameters

