

EVALUATING THE LOGICAL REASONING ABILITIES OF LARGE REASONING MODELS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Large reasoning models, which are post-trained on long chain-of-thought (long CoT) data with reinforcement learning, achieve state-of-the-art performance on mathematical, coding, and domain-specific reasoning benchmarks. However, their logical reasoning capabilities—fundamental to human cognition and independent of domain knowledge—remain understudied. To address this gap, we introduce **LogiEval**, a holistic benchmark for evaluating logical reasoning in large reasoning models. LogiEval spans diverse reasoning types (deductive, inductive, analogical, and abductive) and task formats (e.g., logical sequence, argument analysis), sourced from high-quality human examinations (e.g., LSAT, GMAT). Our experiments demonstrate that modern reasoning models excel at 4-choice argument analysis problems and analogical reasoning, surpassing human performance, yet exhibit uneven capabilities across reasoning types and formats, highlighting limitations in their generalization. Our analysis reveals that human performance does not mirror model failure distributions. To foster further research, we curate **LogiEval-Hard**, a challenging subset identified through a novel screening paradigm where small-model failures (Qwen3-30B-A3B) reliably predict difficulties for larger models. Modern models show striking, consistent failures on LogiEval-Hard. This demonstrates that fundamental reasoning bottlenecks persist across model scales, and establishes LogiEval-Hard as both a diagnostic tool and a rigorous testbed for advancing logical reasoning in LLMs.

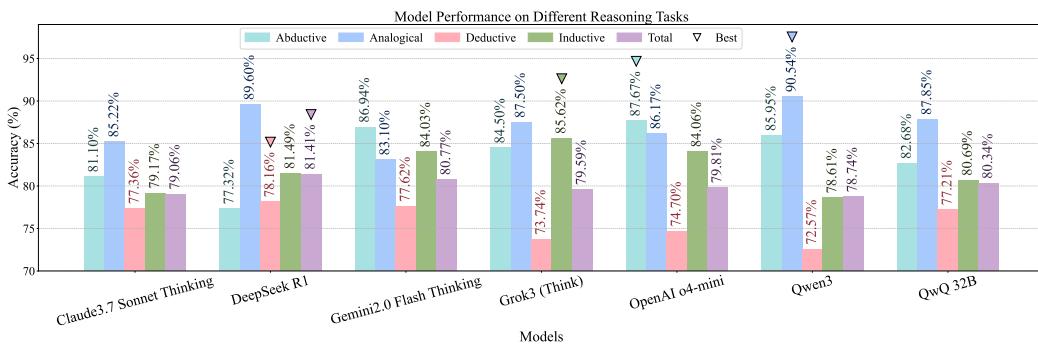


Figure 1: Model performance comparison on different subtasks

1 INTRODUCTION

Large language models (LLMs) with advanced reasoning capabilities—often termed reasoning language models or large reasoning models—have become pivotal in both industry (Guo et al., 2025; Qwen Team, 2025a; Anthropic, 2025; xAI, 2025; OpenAI, 2025) and academia (Muennighoff et al., 2025). These models acquire their “thinking” ability through post-training (Kumar et al., 2025) on long chain-of-thought (long CoT) examples (Chen et al., 2025a), which are either human-annotated (Muennighoff et al., 2025) or generated via reinforcement learning (RL) over action spaces (Xu et al., 2025). Such data enables LLMs to perform multi-step reasoning and plan for complex tasks.

054 This approach, now widely adopted (Qwen Team, 2025b;a), enables models to generate intermediate
 055 reasoning steps—either implicitly or explicitly—before delivering final outputs. Despite their
 056 success, evaluation remains skewed toward domain-specific benchmarks: mathematical reasoning
 057 (Ye et al., 2025; Lightman et al., 2023), coding (Penedo et al., 2025; Jimenez et al., 2024), and
 058 knowledge-intensive tasks (Wang et al., 2024; Rein et al., 2024). A critical gap persists in assessing
 059 logical reasoning—a fundamental capability independent of domain knowledge—leaving the true
 060 generalization of these models unclear.

061 We aim to give a systematic empirical evaluation of reasoning language models on logical reasoning,
 062 covering inductive (Sinha et al., 2019), deductive (Saparov & He, 2023; Tian et al., 2021; Sanyal
 063 et al., 2022; Parmar et al., 2024), abductive (Del & Fishel, 2023; Nguyen et al., 2023), and analogical
 064 (Petersen & van der Plas, 2023; Qin et al., 2024; Wijesiriwardene et al., 2023) reasoning types – the
 065 four basic logical reasoning categories (Liu et al., 2025). To this end, several benchmark datasets
 066 are available in exam-originated (e.g., LSAT, Civil Service tests) (Liu et al., 2021; Yu et al., 2020) or
 067 synthetically-generated (Sinha et al., 2019; Saparov & He, 2023) forms. However, existing bench-
 068 marks typically focus on one aspect of reasoning such as inductive (Sinha et al., 2019) or deductive
 069 (Saparov & He, 2023; Tian et al., 2021; Sanyal et al., 2022; Parmar et al., 2024) reasoning. In ad-
 070 dition, these challenges are typically represented by a single problem format, mostly multi-choice
 071 question answering (Liu et al., 2021; Yu et al., 2020), which may be subject to data artifacts (Ye
 072 et al., 2024; Chen et al., 2025b). Finally, existing benchmark suites such as GLoRE (liu et al., 2023)
 073 and LogiTorch (Helwe et al., 2022) assemble multiple reasoning benchmarks for increased reliabil-
 074 ity, yet they lack a unified representation, and recent LLMs have achieved very high performances
 075 on these datasets (liu et al., 2025).

076 To address this gap, we introduce **LogiEval**, a comprehensive logical reasoning benchmark curated
 077 from diverse human examinations (e.g., LSAT, GMAT, Civil Service Exams), covering multiple rea-
 078 soning types (deductive, inductive, analogical and abductive) and tasks (e.g., essential part, artificial
 079 language, syllogism) and problem formats(multi-choice QA, 3-way classification), providing a uni-
 080 fied evaluation suite for assessing fundamental reasoning abilities. The benchmark consists of 6,235
 081 instances in total. Some example questions are shown in Figure 2. We evaluate state-of-the-art mod-
 082 els—including DeepSeek-R1 (Guo et al., 2025), Qwen3 (Qwen Team, 2025a), Claude-3.7-Sonnet
 083 (Anthropic, 2025), Grok-3 (xAI, 2025), Gemini-2.0-Flash-thinking, and OpenAI o4-mini (OpenAI,
 084 2025)—revealing two key findings: (1) reasoning LLMs give varying performances across various
 085 tasks — while the *essential part* task is easily solved by most models, *artificial language* and *syl-
 086 logism* tasks remain rather challenging. (2) Different reasoning LLMs excel on different tasks and
 087 reasoning types, without a winner across the board. (3) LogiEval is challenging to existing reason-
 088 ing LLMs, with the best-performing model giving around 80% overall accuracy. (4) A subset of
 089 the most challenging questions to one model (i.e., QwQ-32B) is also the most challenging to all the
 090 other models, showing that there is some common challenge to existing reasoning LLMs. Accord-
 091 ingly, we extract the most difficult subset of LogiEval and name it **LogiEval-Hard** to further resolve
 092 the saturation issue. LogiEval is gated behind manual review to prevent adversarial optimization.
 093 We release our dataset on HuggingFace and enable access control to avoid misuse. Researchers who
 094 apply for access should adhere to usage guidelines.

095 Overall, our contributions are: (1) We introduce LogiEval, a comprehensive logical reasoning bench-
 096 mark curated from 7 high-stakes human examinations that unifies four fundamental reasoning types
 097 across 10 task formats - the first to combine diverse tasks and question formats into one evalua-
 098 tion suite. (2) Through systematic evaluation of 7 cutting-edge reasoning models (2025 releases),
 099 we reveal critical gaps in LLM capabilities: while models exceed human performance on 4-choice
 100 argument analysis, they show catastrophic failures on syllogisms and exhibit inverse difficulty cor-
 101 relations, solving "hard" human problems while failing "medium" ones. (3) We develop a novel
 102 screening paradigm where small-model failures (Qwen3-30B-A3B) reliably predict universal chal-
 103 lenges, producing LogiEval-Hard - the first benchmark subset where all models show striking,
 104 consistent failures (avg 37.97% accuracy), exposing fundamental reasoning bottlenecks that persist
 105 across model scales.

106
 107

108 109 110 111 112 113 114 115 116 117	<p>Deductive</p> <p>Context: All birds can fly. Penguins are birds.</p> <p>Question: Conclusion I: Penguins can fly; Conclusion II: Some birds can swim. Which conclusion follows?</p> <p>A. Only conclusion I follows ✓ B. Only conclusion II follows C. Either I or II follows D. Neither I nor II follows E. Both I and II follow</p>	<p>Inductive</p> <p>Context: For the past two months stereo shops all over the city have been hit by burglars in the early morning hours. Sergeant Adams tells Officer Bryant that he should carefully watch the stores in his area that specialize in stereo equipment.</p> <p>Question: Which one of the following situations should Officer Bryant investigate?</p> <p>A. A truck with its motor running backed up to the rear door of the House of Stereos at 2 a.m. ✓ B. An elderly couple window shopping at the House of Stereos at 10 p.m. C. a delivery van marked House of Stereos parked in the rear of the store at 11:30 p.m. D. Two teenaged boys intently examining a stereo system in the window of House of Stereos at midnight</p>
118 119 120 121 122 123 124 125 126 127 128 129 130	<p>Analogical</p> <p>Context: Identify the relationship between the first pair of words and select the answer that best replicates the same relationship in the second pair.</p> <p>Question: Cup is to coffee as bowl is to</p> <p>A. dish B. soup ✓ C. spoon D. food</p>	<p>Abductive</p> <p>Context: A research study revealed that, in most cases, once existing highways near urban areas are widened and extended in an attempt to reduce traffic congestion and resulting delays for motorists, these problems actually increase rather than decrease.</p> <p>Question: Which one of the following, if true, most helps to explain the discrepancy between the intended results of the highway improvements and the results revealed in the study?</p> <p>A. Widened and extended roads tend to attract many more motorists than used them before their improvement ✓ B. Typically, road widening or extension projects are undertaken only after the population near the road in question has increased and then leveled off, leaving a higher average population level C. As a general rule, the greater the number of lanes on a given length of highway, the lower the rate of accidents per 100,000 vehicles traveling on it D. Rural, as compared to urban, traffic usually includes a larger proportion of trucks and vehicles used by farmers</p>

Figure 2: Examples from the LoigEval benchmark

2 LOGIEVAL

Our motivation for the benchmark is to cover all the question types from all sorts of examinations concerning logical reasoning. Other than testing only one unique aspect of logical reasoning with one benchmark, our intention is to give the LLM providers the freedom to get an integrated solution with our benchmark. Moreover, compared to the benchmarks that are commonly used for testing new models that require intensive domain knowledge, a key advantage of LogiEval is its domain-agnostic nature. By decoupling reasoning from specialized knowledge, it mirrors the fundamental cognitive abilities shared across humans—regardless of educational background—and provides a purer measure of a model’s reasoning capacity. This makes LogiEval particularly valuable for evaluating whether LLMs can generalize logical principles beyond pattern recognition in narrow domains.

2.1 DATA COLLECTION AND CURATION

LogiEval is constructed from carefully selected logical reasoning sections of high-stakes human examinations, including the Chinese Civil Service Examination, Law School Admission Test (LSAT), Graduate Management Admission Test (GMAT), Banking Personnel Selection (IBPS), Common Admission Test (CAT), and several standardized IQ and aptitude tests. These examinations were chosen because they each contain dedicated logical reasoning components that have been rigorously developed to assess human reasoning capabilities. All questions were sourced from publicly available practice materials and are used strictly for academic research purposes. We maintain the original language of each examination (either English or Chinese) to preserve the linguistic nuances of logical reasoning tasks, avoiding potential biases introduced by translation (Liu et al., 2023; Song et al., 2025). This approach makes LogiEval a genuinely bilingual benchmark that can evaluate reasoning abilities across languages.

The difficulty level of the benchmark faithfully reflects that of the original examinations, ensuring that it maintains the same discriminative power for evaluating reasoning capabilities as the tests demonstrate for human test-takers. By preserving both the content and difficulty characteristics of these established examinations, LogiEval provides an authentic assessment environment for evaluating large language models’ logical reasoning abilities.

After de-duplication and validity verification, we obtain 6,235 high-quality problems, each annotated with gold labels. In addition to these labels, our dataset includes supplementary metadata such

162

163

Table 1: The dataset statistics of LogiEval

Reasoning Type	Count	Task Format	Count	Task Format	Count	Options	Count
abductive	961	argument analysis	1,354	logical sequence	135	2	10
analogical	379	artificial language	195	odd one out	71	3	3,766
deductive	3,681	blood relations	91	situational judgement	310	4	1,575
inductive	1,214	definition matching	324	syllogism	308	5	879
Total	6,235	essential part	55	textual entailment	3,402	6	5

169

as difficulty level, human accuracy rate, and explanations, derived directly from post-exam statistics. To enable fine-grained analysis, we further annotate each question with its task format and reasoning type. Annotation details are provided in Appendix A

170

Task formats are categorized into 10 distinct types based on question structure: *logical sequence*, *essential part*, *artificial language (coding and decoding)*, *blood relation*, *situation judgment*, *syllogism*, *definition matching*, *argument analysis*, *odd one out*, and *textual entailment*. To our knowledge, we are the first to cover *artificial language* questions, *essential part* questions, and *odd one out* questions in logical reasoning. For reasoning types, we employ a hybrid annotation pipeline: Qwen3-30B-A3B first proposes one of four reasoning categories (analogical, deductive, inductive, or abductive), followed by human verification to mitigate potential model hallucinations. Three annotators independently review each label, with final assignments determined by majority vote. Figure 2 shows 4 examples from LogiEval representing each reasoning type.

171

The dataset is partitioned into a few-shot development set and a test set. The development set includes 5 representative examples per task format, accompanied by task-specific instructions to guide model adaptation. The test set comprises 6,174 problems, while the development set contains 65, ensuring robust evaluation across diverse reasoning scenarios.

172

2.2 DATA STATISTICS

173

As shown in Table 1, LogiEval comprises 6,235 instances distributed across four reasoning types and ten task formats. Deductive reasoning constitutes the largest category with 3,681 instances, followed by inductive (1,214), abductive (961), and analogical reasoning (379). The task format distribution reveals textual entailment as the most prevalent (3,402 instances), followed by argument analysis (1,354), while niche formats like essential part (55) and odd one out (71) represent specialized challenges. The benchmark features diverse answer options ranging from 2 to 6 choices, with 3-option questions dominating (3,766), followed by 4-option (1,575) and 5-option formats (883). This composition ensures comprehensive evaluation across reasoning paradigms while maintaining examination authenticity through varied question structures.

174

175

3 EXPERIMENTS AND RESULTS

176

3.1 EXPERIMENTAL SETUP

177

We evaluate state-of-the-art large reasoning models released in 2025, all featuring advanced reasoning capabilities. Despite differences in scale (32B to 671B parameters), architecture (dense vs. MoE), and training strategies (RL-based long CoT vs. hybrid thinking modes), these models rank among the top 50 in the LMSYS Chatbot Arena Leaderboard¹ as of May 2025.

178

For consistency, we convert each instance into minimal-design prompts and extract answers using regex-based pattern matching (details in Appendix B). Accuracy is computed against gold labels, with task-specific normalization for multi-format evaluation.

179

For consistent evaluation, each data instance is converted into a standardized, minimal-design prompt. To extract answers from model responses, we apply exact string matching, following the approach of Er & Cicekli (2013). The extracted answers are then compared against the gold labels to compute accuracy. For model evaluation, we use the official API by the LLM provider. Apart

180

¹<https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard>

216

217

Table 2: The performance of large reasoning models on different tasks of LogiEval

218

219

Task Format	CLAUDE3.7 SONNET THINKING	DEEPSEEK R1	GEMINI2.0 FLASH THINKING	GROK3 (THINK)	OPENAI O4-MINI	QWEN3 -235B A22B	QWQ 32B
Argument Analysis	85.70%	81.20%	87.01%	88.22%	89.90%	87.72%	88.19%
Artificial Language	64.30%	72.34%	80.93%	91.67%	82.71%	80.99%	54.52%
Blood Relations	59.60%	74.94%	73.79%	73.68%	72.04%	58.24%	71.62%
Definition Matching	90.91%	91.65%	91.23%	88.60%	87.35%	96.12%	94.71%
Essential Part	100%	100%	95.99%	95.30%	100%	100%	94.88%
Logical Sequence	86.04%	89.24%	91.45%	93.68%	95.18%	83.46%	92.44%
Odd One Out	77.93%	79.05%	81.28%	88.69%	85.57%	83.99%	78.26%
Situational Judgement	77.34%	74.43%	74.26%	73.87%	69.14%	72.95%	67.57%
Syllogism	70.61%	73.38%	70.19%	51.86%	54.85%	56.93%	73.46%
Textual Entailment	79.55%	83.77%	75.20%	77.81%	78.48%	82.72%	77.50%
Total	79.06%	81.41%	80.77%	79.59%	79.81%	78.74%	80.34%

220

221

222

223

224

225

226

227

228

229

230

231

from that, we host a Qwen3-30B-A3B model on a server with 4 Nvidia 80G VRAM H100 GPUs for extended experiments.

232

233

234

235

Open-weighted models Open-weighted models are those that have released their model checkpoints to the public. Users can deploy their reasoning models and have access to the thinking process. We chose the following reasoning models:

236

237

238

DEEPSEEK R1 is released in January 2025 by DeepSeek AI. It is trained on top of DeepSeek V3 with 671 B MoE parameters. The key innovation is the massive implementation of reinforcement learning for long CoT reasoning.

239

240

241

QwQ 32B is a 32B parameter model developed by the Qwen team. As their first reasoning model, QwQ 32B has garnered a lot of attention for its superior performance on various reasoning tasks despite its size.

242

243

244

QWEN3-235B-A22B is the latest flagship reasoning model of Qwen. Released in April, 2025, It is a MoE model with 235B total parameters and 22B activated parameters. One of the key features of this model is the hybrid thinking modes, which allow users to control how much “thinking” the model performs based on the task.

245

246

247

248

249

250

251

Proprietary models Proprietary models are less open compared to open-weighted models, we can access to the responses of these models either through a ChatUI or API. We chose the following models, which are claimed to be reasoning models or have a thinking mode:

252

253

254

GEMINI2.0 FLASH THINKING is a model developed by Google. It was released in 2025 with 32B parameters as the company’s most capable reasoning model.

255

256

257

258

CLAUDE3.7 SONNET THINKING is a model developed by Anthropic. The parameter size of this model has not been revealed. It is the company’s most recent release to date.

259

260

261

GROK3 (THINK) is developed by xAI as its most advanced reasoning model yet. The thinking model is optimized for test-time compute and reasoning.

262

263

264

OPENAI O4-MINI is OpenAI’s most recent release of its reasoning models. The o-series of models is trained to think for longer before responding. However, the original thinking process of these models is not observable to users. Along with o3, OpenAI claims they are the smartest models they’ve released to date. As no API has been provided by OpenAI for o3, we include o4-mini in our experiment.

265

266

267

268

269

Human passing rate Human performance is benchmarked using historical passing rates from source examinations. These rates reflect real-world test-taker performance, providing a robust reference for model comparison.

270 3.2 RESULTS
271

272 As shown in Table 2, our comprehensive evaluation reveals several critical insights into the logical
273 reasoning capabilities of state-of-the-art models. Models consistently outperformed human test-
274 takers on 4-choice argument analysis problems, with human accuracy at 85.2% compared to model
275 performance ranging from 81.20% to 89.90%. Proprietary models like OpenAI o4-mini (89.90%)
276 and Grok3-Think (88.22%) led in this category, aligning with prior observations of LLM overfit-
277 ting to multiple-choice formats. The saturation effect—where all models cluster above 81%
278 accuracy—suggests diminishing returns in using this format to distinguish reasoning capabilities.
279

280 Performance varied dramatically across different task formats, exposing fundamental gaps in rea-
281 soning skills. Structured deductive reasoning, such as syllogisms, proved particularly challenging,
282 with Grok3-Think (51.86%) and OpenAI o4-mini (54.85%) performing near-random on 5-option
283 questions, while DeepSeek-R1 achieved 73.38%, likely due to its RL-based training on formal ver-
284 ification tasks. Contextual analogical reasoning, like artificial language tasks, showed the highest
285 variance (54.52%–91.67%), with Grok3-Think outperforming others by over 10 percentage points,
286 suggesting specialized training on coding/decoding tasks. Resource-intensive formats like textual
287 entailment (75.20%–83.77%) revealed clear scaling effects, with larger models like DeepSeek-R1
288 (83.77%) outperforming smaller ones like QwQ-32B (77.50%).
289

290 Notably, all models achieved 95%+ accuracy on essential part identification, with four models reach-
291 ing 100%—surpassing human performance (92.3% historical average). This suggests either an in-
292 herent strength in component-based reasoning or that these tasks rely on predictable pattern recog-
293 nition rather than genuine reasoning.
294

295 Error analysis revealed systematic failure patterns, with 18.3% of problems incorrectly answered by
296 all models. Errors concentrated in abductive reasoning (32% of hard subset) and situational judg-
297 ment tasks (27%), confirming that aggregate metrics mask critical reasoning deficiencies. LogiEval-
298 Hard, our challenging subset, provides a targeted evaluation suite for these gaps, with baseline ac-
299 curacies below 40% for all evaluated models.
300

301 These findings demonstrate that while modern reasoning models achieve strong examination perfor-
302 mance through format-specific optimization, their logical reasoning capabilities remain uneven and
303 task-dependent. LogiEval-Hard serves as a critical complement to existing benchmarks by focusing
304 on persistent failure modes.
305

306 Table 3: The performance of large reasoning models on different reasoning types of LogiEval
307

Reasoning Type	CLAUDE3.7 SONNET THINKING	DEEPMSEEK R1	GEMINI2.0 FLASH THINKING	GROK3 (THINK)	OPENAI O4-MINI	QWEN3 -235B A22B	QwQ 32B
Abductive	81.10%	77.32%	86.94%	84.50%	87.67%	85.95%	82.68%
Analogical	85.22%	89.60%	83.10%	87.50%	86.17%	90.54%	87.85%
Deductive	77.36%	78.16%	77.62%	73.74%	74.70%	72.57%	77.21%
Inductive	79.17%	81.49%	84.03%	85.62%	84.06%	78.61%	80.69%
Total	79.06%	81.41%	80.77%	79.59%	79.81%	78.74%	80.34%

311 4 DISCUSSION
312313 4.1 PERFORMANCE ACROSS REASONING TYPES
314

315 The results in Table 3 reveal distinct patterns in model performance across different reasoning types.
316 Models demonstrate strong capabilities in abductive reasoning, with OpenAI o4-mini achieving the
317 highest accuracy (87.67%) and Gemini2.0 Flash Thinking close behind (86.94%). This suggests
318 that current architectures are particularly adept at inference to the best explanation, a crucial skill
319 for real-world problem-solving.
320

321 For analogical reasoning, Qwen3-235B-A22B leads with 90.54% accuracy, followed by DeepSeek-
322 R1 (89.60%), indicating that larger models may have an advantage in identifying and applying analogies.
323 The relatively high performance across all models (83.10%–90.54%) suggests that analogical
324 reasoning may be more accessible to current architectures compared to other reasoning types.
325

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 4: The comparison between human performance and LLM performance.

Human Acc.	Model Acc.	n	95% CI	p-value
18%	85.71%	7	[42.13%, 99.64%]	0.0032
31%	0.00%	7	[0.00%, 35.43%]	1.0000
41%	100.00%	7	[59.04%, 100%]	<0.0001
63%	0.00%	7	[0.00%, 35.43%]	1.0000
85%	100.00%	7	[59.04%, 100%]	<0.0001

Deductive reasoning proves more challenging, with accuracies ranging from 72.57% to 78.16%. DeepSeek-R1 shows the strongest performance (78.16%), potentially benefiting from its reinforcement learning training on formal verification tasks. The narrower performance gap in this category suggests that deductive reasoning presents a more uniform challenge across models.

Inductive reasoning shows significant variation, with Grok3 (Think) performing best (85.62%) and Qwen3-235B-A22B the weakest (78.61%). The 7-point spread between top and bottom performers indicates that inductive reasoning capabilities may be more dependent on specific architectural choices or training approaches.

Overall, DeepSeek-R1 achieves the highest aggregate score (81.41%), demonstrating balanced performance across reasoning types. The close clustering of total scores (78.74%-81.41%) suggests that while individual strengths vary, current state-of-the-art models have reached similar overall levels of logical reasoning capability. However, the persistent gaps in specific reasoning types highlight areas needing further architectural innovation and training improvements.

4.2 LLM REASONING VS. HUMAN REASONING

As shown in Table 4, we compute Wilson score intervals for binomial proportions and Fisher’s exact tests for significance against human baselines. Our analysis reveals statistically significant differences between LLM and human reasoning patterns, demonstrating that models (1) outperform humans on challenging problems (85.71% vs 18% human accuracy, $p=0.0032$) yet fail at specific mid-difficulty points (0% accuracy at 31% human accuracy, $p=1.0$), (2) achieve perfect mastery (100% accuracy, $p<0.0001$) for problems humans solve at 41-85% rates, while (3) showing unexpected vulnerabilities in mid-difficulty ranges (28.57% accuracy at 46% human accuracy, $p=0.31$), with all comparisons using Wilson score intervals and Fisher’s exact tests, collectively indicating that LLMs develop non-monotonic reasoning strategies that excel on extreme difficulties but exhibit brittleness on specific problem types unexplained by human performance metrics.

4.3 LOGIEVAL-HARD: PREDICTING UNIVERSAL REASONING CHALLENGES VIA SMALL-MODEL SCREENING

Whereas human examination performance doesn’t mirror model failure distributions, we test whether small-model error patterns can forecast fundamental reasoning obstacles that persist at larger scales. To systematically identify universal reasoning challenges independent of model scale, we develop a novel screening methodology using Qwen3-30B-A3B (3B active parameters) as a diagnostic probe. By analyzing problems where this compact model consistently fails across multiple reasoning attempts (3 trials with majority-wrong consensus), we construct LogiEval-Hard - a challenge set that enhances the benchmark’s discriminative power.

The creation of LogiEval-Hard addresses a critical need in evaluating modern reasoning models by distinguishing true reasoning capabilities from pattern recognition. Table 5 shows the statistics. Overall, we have 1,617 hard examples. The composition of LogiEval-Hard shows a coverage across reasoning paradigms, with deductive reasoning dominating at 802 problems, reflecting its importance in formal logic applications, while textual entailment constitutes the largest task format with 982 cases that test core language understanding. The distribution presents challenging conditions with varied answer options, including 1,107 three-option and 295 five-option questions.

As shown in Table 5, experiments with GEMINI2.0 FLASH THINKING reveal striking alignment: 82.3% of small-model failures simultaneously perplex this 32B-parameter state-of-the-art reasoner. This cross-scale consistency manifests most acutely in formal logic tasks, where GEM-

378
 379 Table 5: The performance of GEMINI2.0 FLASH THINKING on different task format and reasoning
 380 types of LogiEval-Hard.

Reasoning Type	Accuracy	Task Format	Accuracy	Task Format	Accuracy
abductive (239)	45.61%	argument analysis (263)	65.40%	logical sequence (21)	61.90%
analogue (68)	52.94%	artificial language (120)	60.00%	odd one out (10)	50.00%
deductive (802)	35.66%	blood relations (22)	22.73%	situational judgment (70)	61.43%
inductive (508)	36.02%	definition matching (28)	42.86%	syllogism (100)	16.00%
Total (1,617)	37.97%	essential part (1)	100.00%	textual entailment (982)	28.00%

386 INI2.0 achieves only 16.00% accuracy on syllogisms and 22.73% on blood relations, despite its
 387 superior performance (87.01% overall) on standard LogiEval.
 388

389 This approach reveals fundamental reasoning bottlenecks that transcend model scale, as subsequent
 390 evaluation shows problems challenging for compact models prove equally formidable for state-of-
 391 the-art large reasoning models. The methodology demonstrates that reasoning difficulties rooted in
 392 logical structure rather than parametric capacity manifest consistently across model sizes, establishing
 393 small-model screening as an effective a priori technique for identifying universally challenging
 394 problems. This finding challenges conventional assumptions about the relationship between model
 395 scale and reasoning capability, suggesting that certain cognitive limitations may be intrinsic to cur-
 396 rent architectural paradigms rather than solvable through scaling alone.
 397

398 These findings suggest that current models develop non-human reasoning strategies that excel on
 399 certain complex problems but fail unexpectedly on others, with the benchmark successfully identifying
 400 specific reasoning types like deductive and syllogistic, where models struggle disproportionately.
 401 LogiEval-Hard provides meaningful differentiation between surface-level pattern matching and gen-
 402 uine reasoning capabilities, serving as both a diagnostic tool for identifying model weaknesses and
 403 a proving ground for next-generation reasoning architectures. The demonstrated performance pat-
 404 terns underscore the need for continued research into more robust reasoning architectures that can
 405 handle the full spectrum of logical challenges, with LogiEval-Hard offering a more discriminating
 406 alternative to aggregate metrics that often mask fundamental limitations in current language models.
 407

5 RELATED WORK

409 **Logical reasoning datasets** With the advance of pre-trained language models, logical reasoning
 410 has become a booming research area. Multiple logical reasoning datasets are brought up to chal-
 411 lenge or probe into the reasoning ability of large language models. LogiQA (Liu et al., 2021) and
 412 ReClor (Yu et al., 2020) first introduce multi-choice reading comprehension to the investigation.
 413 They are sourced from competitive examinations like the Chinese Civil Service Examination and
 414 LSAT. Because of the high-quality nature of these expert-designed questions, they become the most
 415 widely used datasets for logical reasoning. Over the years, language models have been tested or
 416 even trained on these datasets, making the performance on this question type increase drastically.
 417 Similarly, our dataset is sourced from examinations, but we cover a broader type of questions and
 418 task formats, making it a holistic benchmark for logical reasoning. Apart from sourcing from exams,
 419 researchers also use rule-based methods to synthesize logical reasoning datasets, deductive reason-
 420 ing in particular, for this type of reasoning is easy to create in massive quantities. RuleTaker (Clark
 421 et al., 2020) uses a theory generator and inference engine written in Lisp to generate a set of facts and
 422 rules to form a context, and a statement to infer. This forms a 2-way (true, false) classification task
 423 with more than 707K data instances. PrOntoQA (Saparov & He, 2023) starts by generating a small
 424 hierarchical ontology with a set of concepts and subtype relations between them. It generates proofs
 425 from the ontology using tree search and lastly translates FOL into natural language CoT examples.
 426 PrOntoQA is also in a true-or-false classification format, and it has 500 examples. LogicNLI (Tian
 427 et al., 2021) is a 4-way classification (entailment, contradiction, neutral, paradox) task with more
 428 than 30K data instances. Similarly, it generates FOL first and then natural language. Manual re-
 429 visions are implemented on the initial language expressions. CLUTRR (Sinha et al., 2019) uses a
 430 knowledge base to generate a kinship relation inference. It first forms a kinship graph and then uses
 431 this graph to make up short stories, which explicitly tests inductive reasoning and systematic gen-
 432 eralization. It contains 70K examples that infer the relationship between two family members. The
 433 aforementioned datasets have repetitive patterns because of their rule-based generation methodol-
 434 ogy, which diminishes their applicability to test large reasoning models. On the contrary, our dataset

432 contains the same logical deduction problem sets but was collected from examinations, which are
 433 diverse and unique. GLoRE (liu et al., 2025) reports the performance of DeepSeek R1 and QwQ
 434 32B on a collection of logical reasoning datasets. However, these models’ high scores on these
 435 datasets suggest the need for a more challenging benchmark.

436
 437
 438 **Evaluation benchmarks for large reasoning models** The performance on logical reasoning
 439 datasets is not reported at the release of large reasoning models. The evaluation benchmarks center
 440 on math, coding, and knowledge-based question answering. AIME (Ye et al., 2025) is a challenging
 441 mathematical competition held in America each year. There are 30 problem sets released in each
 442 examination. Recent large reasoning models report their results on AIME-2024 or AIME-2025.
 443 MATH-500 is a subset of the MATH dataset (Hendrycks et al., 2021b). With 500 testing examples,
 444 it is the go-to benchmark for testing mathematical reasoning in large reasoning models. Compared
 445 to our dataset, mathematical reasoning datasets deal with numbers, calculation, and other mathemat-
 446 ical concepts, which are not logical reasoning-intensive. Codeforces (Penedo et al., 2025) contains
 447 more than 10K unique programming problems that are hosted on the Codeforces website up to 2025.
 448 These challenging algorithmic optimization problems serve as an ideal testbed for complex multi-
 449 step reasoning in large reasoning models. LiveCodeBench (Jain et al., 2024) constantly collects new
 450 coding tests from LeetCode, AtCoder, and Codeforces. Currently, it contains over 300 high-quality
 451 coding problems published between May 2022 and February 2024. Although algorithmic problems
 452 are sophisticated reasoning problems that require logical reasoning abilities, they are not logical-
 453 reasoning centered. These coding datasets focus more on syntactic patterns of the coding languages,
 454 which are highly repetitive. The required logical reasoning abilities in our dataset are diverse and
 455 uniquely presented in different contexts. MMLU-pro (Wang et al., 2024) is a benchmark derived
 456 from the original MMLU (Hendrycks et al., 2021a) benchmark to solve the saturation issue of the
 457 original dataset. It expands the option choices from 4 to 10, drastically decreasing the performance
 458 of large language models. The dataset has 12K complex questions across various disciplines like
 459 law, physics, and chemistry. Like our dataset, MMLU-pro is multi-task, however, it only contains
 460 a small fraction of logic questions under the philosophy subject. On the contrary, all the tasks in
 461 LogicEval are focused on logical reasoning.

462 6 CONCLUSION

463
 464
 465 This work introduces LogiEval, a comprehensive benchmark for evaluating logical reasoning in
 466 large language models, revealing that while modern LLMs demonstrate impressive performance on
 467 certain tasks like multiple-choice argument analysis, their capabilities remain uneven across reason-
 468 ing types, which suggests fundamental gaps in formal logical reasoning. Our analysis uncovers an
 469 intriguing inverse difficulty relationship where models perform well on problems humans find chal-
 470 lenging yet fail unexpectedly on mid-difficulty items, indicating fundamentally different reasoning
 471 strategies from human cognition. While the creation of LogiEval-Hard provides a rigorous testbed
 472 that exposes current limitations, it also demonstrates that small models can serve as effective pre-
 473 dictors of universal reasoning challenges across large language models. While this enables more
 474 nuanced assessment beyond traditional domain-specific evaluations and paving the way for devel-
 475 oping more robust reasoning architectures capable of handling the full spectrum of logical chal-
 476 lenges, practitioners should note risks: (1) Logical perfection doesn’t represent factual correctness
 477 (2) Training on our data without safeguards could lead to potential misuse for generating persuasive
 478 misinformation. We advocate for human oversight when deploying reasoning systems evaluated
 479 through LogiEval.

480 481 LIMITATIONS

482
 483
 484 LogiEval’s current scope has two key limitations: (1) Text-only evaluation excludes multi-modal
 485 reasoning challenges; (2) Accuracy metrics overlook reasoning validity and explanation robustness.
 Future work will expand to multi-modal tasks and develop process-aware evaluation metrics.

486 REPRODUCIBILITY STATEMENT
487

488 To support reproducibility, we have made the following resources available: The LogiEval bench-
489 mark dataset, including the challenging LogiEval-Hard subset, will be released under access control
490 via Hugging Face to prevent misuse while enabling academic validation. Detailed dataset construc-
491 tion, annotation guidelines, and quality control procedures are provided in Appendix A. Experi-
492 mental setups, including prompt templates and evaluation parameters, are documented in Appendix
493 B.

494
495 REFERENCES
496

497 Anthropic. Claude 3.7 sonnet and claude code, 2025. URL <https://www.anthropic.com/claude/sonnet>.

498 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
499 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-
500 of-thought for reasoning large language models, 2025a. URL <https://arxiv.org/abs/2503.09567>.

501 Xiaoyang Chen, Xian Dai, Yu Du, Qian Feng, Naixu Guo, Tingshuo Gu, Yuting Gao, Yingyi
502 Gao, Xudong Han, Xiang Jiang, Yilin Jin, Hongyi Lin, Shisheng Lin, Xiangnan Li, Yuante Li,
503 Yixing Li, Zhentao Lai, Zilu Ma, Yingrong Peng, Jiacheng Qian, Hao-Yu Sun, Jianbo Sun, Zirui
504 Wang, Siwei Wu, Zian Wang, Bin Xu, Jianghao Xu, Yiyang Yu, Zichuan Yang, Hongji Zha, and
505 Ruichong Zhang. Deepmath-creative: A benchmark for evaluating mathematical creativity of
506 large language models, 2025b. URL <https://arxiv.org/abs/2505.08744>.

507 Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over language.
508 In Christian Bessiere (ed.), *Proceedings of the Twenty-Ninth International Joint Conference on
509 Artificial Intelligence, IJCAI-20*, pp. 3882–3890. International Joint Conferences on Artificial
510 Intelligence Organization, 7 2020. doi: 10.24963/ijcai.2020/537. URL <https://doi.org/10.24963/ijcai.2020/537>. Main track.

511 Maksym Del and Mark Fishel. True detective: A deep abductive reasoning benchmark undoable for
512 GPT-3 and challenging for GPT-4. In *Proceedings of the 12th Joint Conference on Lexical and
513 Computational Semantics (*SEM 2023)*, pp. 314–322, 2023.

514 Nagehan Pala Er and Ilyas Cicekli. A factoid question answering system using answer pattern
515 matching. In *Proceedings of the sixth international joint conference on natural language process-
516 ing*, pp. 854–858, 2013.

517 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
518 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
519 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

520 Chadi Helwe, Chloé Clavel, and Fabian Suchanek. LogiTorch: A PyTorch-based library for logical
521 reasoning on natural language. In Wanxiang Che and Ekaterina Shutova (eds.), *Proceedings of
522 the 2022 Conference on Empirical Methods in Natural Language Processing: System Demon-
523 strations*, pp. 250–257, Abu Dhabi, UAE, December 2022. Association for Computational Lin-
524 guistics. doi: 10.18653/v1/2022.emnlp-demos.25. URL <https://aclanthology.org/2022.emnlp-demos.25/>.

525 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
526 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-
527 tional Conference on Learning Representations (ICLR)*, 2021a.

528 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
529 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
530 2021b.

531 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
532 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
533 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

540 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
 541 Narasimhan. SWE-bench: Can language models resolve real-world github issues? In *The Twelfth*
 542 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=VTF8yNQM66>.

543

544 Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
 545 Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, Fahad Shahbaz Khan, and Salman Khan.
 546 Llm post-training: A deep dive into reasoning large language models. *arXiv preprint*
 547 *arXiv:2502.21321*, 2025.

548

549 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 550 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint*
 551 *arXiv:2305.20050*, 2023.

552 Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan Duan, Ming Zhou, and Yue Zhang. Logiqa
 553 2.0—an improved dataset for logical reasoning in natural language understanding. *IEEE/ACM*
 554 *Transactions on Audio, Speech, and Language Processing*, 31:2947–2962, 2023. doi: 10.1109/
 555 TASLP.2023.3293046.

556

557 Hanmeng liu, Zhiyang Teng, Ruoxi Ning, Jian Liu, Qiji Zhou, and Yue Zhang. Glore: Evaluating
 558 logical reasoning of large language models, 2023.

559 Hanmeng Liu, Zhizhang Fu, Mengru Ding, Ruoxi Ning, Chaoli Zhang, Xiaozhang Liu, and Yue
 560 Zhang. Logical reasoning in large language models: A survey. *arXiv preprint arXiv:2502.09100*,
 561 2025.

562 Hanmeng liu, Zhiyang Teng, Ruoxi Ning, Yiran Ding, Xiulai Li, Xiaozhang Liu, and Yue Zhang.
 563 Glore: Evaluating logical reasoning of large language models, 2025. URL <https://arxiv.org/abs/2310.09107>.

564

565 Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: a chal-
 566 lenge dataset for machine reading comprehension with logical reasoning. In *Proceedings of the*
 567 *Twenty-Ninth International Joint Conference on Artificial Intelligence*, IJCAI'20, 2021. ISBN
 568 9780999241165.

569

570 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 571 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 572 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

573

574 Ha-Thanh Nguyen, Randy Goebel, Francesca Toni, Kostas Stathis, and Ken Satoh. How well do
 575 sota legal reasoning models support abductive reasoning?, 2023.

576

577 OpenAI. Introducing openai o3 and o4-mini, 2025.

578

579 Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
 580 Arindam Mitra, and Chitta Baral. LogicBench: Towards systematic evaluation of logical rea-
 581 soning ability of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
 582 mar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
 583 guistics (Volume 1: Long Papers)*, pp. 13679–13707, Bangkok, Thailand, August 2024. As-
 584 sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.739. URL <https://aclanthology.org/2024.acl-long.739/>.

585

586 Guilherme Penedo, Anton Lozhkov, Hynek Kydlíček, Loubna Ben Allal, Edward Beeching,
 587 Agustín Piqueres Lajárn, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro von
 588 Werra. Codeforces. <https://huggingface.co/datasets/open-r1/codeforces>,
 589 2025.

590

591 Molly Petersen and Lonneke van der Plas. Can language models learn analogical reasoning? in-
 592 vestigating training objectives and comparisons to human performance. In *Proc. of EMNLP*, pp.
 593 16414–16425, 2023.

594

595 Chengwei Qin, Wenhan Xia, Tan Wang, Fangkai Jiao, Yuchen Hu, et al. Relevant or random: Can
 596 llms truly perform analogical reasoning?, 2024.

594 Qwen Team. Qwen3, April 2025a. URL <https://qwenlm.github.io/blog/qwen3/>.

595

596 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
597 <https://qwenlm.github.io/blog/qwq-32b/>.

598 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
599 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
600 benchmark. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=Ti67584b98>.

601

602 Soumya Sanyal, Zeyi Liao, and Xiang Ren. RobustLR: A diagnostic benchmark for eval-
603 uating logical robustness of deductive reasoners. In Yoav Goldberg, Zornitsa Kozareva, and
604 Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-
605 guage Processing*, pp. 9614–9631, Abu Dhabi, United Arab Emirates, December 2022. Associa-
606 tion for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.653. URL [https://aclanthology.org/2022.emnlp-main.653/](https://aclanthology.org/2022.emnlp-main.653).

607

608 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
609 of chain-of-thought. In *The Eleventh International Conference on Learning Representations*,
610 2023. URL <https://openreview.net/forum?id=qFVVBzXxR2V>.

611

612 Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. CLUTRR: A
613 diagnostic benchmark for inductive reasoning from text. In Kentaro Inui, Jing Jiang, Vincent Ng,
614 and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
615 guage Processing and the 9th International Joint Conference on Natural Language Process-
616 ing (EMNLP-IJCNLP)*, pp. 4506–4515, Hong Kong, China, November 2019. Association for
617 Computational Linguistics. doi: 10.18653/v1/D19-1458. URL [https://aclanthology.org/D19-1458/](https://aclanthology.org/D19-1458).

618

619 Yueqi Song, Tianyue Ou, Yibo Kong, Zecheng Li, Graham Neubig, and Xiang Yue. Visualpuz-
620 zles: Decoupling multimodal reasoning evaluation from domain knowledge. *arXiv preprint
621 arXiv:2504.10342*, 2025.

622

623 Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao, Hao He, and Yaohui Jin. Diagnosing the first-
624 order logical reasoning ability through LogicNLI. In Marie-Francine Moens, Xuanjing Huang,
625 Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical
626 Methods in Natural Language Processing*, pp. 3738–3747, Online and Punta Cana, Dominican
627 Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
628 emnlp-main.303. URL <https://aclanthology.org/2021.emnlp-main.303>.

629

630 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
631 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
632 multi-task language understanding benchmark. *arXiv preprint arXiv:2406.01574*, 2024.

633

634 Thilini Wijesiriwardene, Ruwan Wickramarachchi, Bimal Gajera, Shreeyash Gowaikar, Chandan
635 Gupta, et al. ANALOGICAL - a novel benchmark for long text analogy evaluation in large
636 language models. In *Proc. of ACL Findings*, pp. 3534–3549, 2023.

637

638 xAI. Grok 3 beta — the age of reasoning agents, 2025.

639

640 Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
641 Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
642 reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025.

643

644 Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, and Aidong Zhang. Spurious correlations in
645 machine learning: A survey. *arXiv preprint arXiv:2402.12715*, 2024.

646

647 Yixin Ye, Yang Xiao, Tiantian Mi, and Pengfei Liu. Aime-preview: A rigorous and immedi-
648 ate evaluation framework for advanced mathematical reasoning. [https://github.com/
649 GAIR-NLP/AIME-Preview](https://github.com/GAIR-NLP/AIME-Preview), 2025. GitHub repository.

650

651 Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng. Reclor: A reading comprehension dataset
652 requiring logical reasoning. In *International Conference on Learning Representations (ICLR)*,
653 April 2020.

648 **A ANNOTATION DETAILS**
649650 **Participant Recruitment** Participants were recruited with the following qualifications: minimum
651 100 prior approved studies, 95%+ approval rating, native English proficiency, and verified back-
652 ground in formal logic through a screening test. 3 qualified annotators were selected for the study.
653 We make sure that the compensation for their work is above local minimum wage.
654655 **Task Instructions** The evaluation instructions stated: "Evaluate whether the conclusion logically
656 follows from the premises. Select from: (1) Valid (2) Invalid (3) Uncertain." Two examples were
657 provided: "[Premise] All birds fly [Conclusion] Penguins fly → Invalid" and "[Premise] If A then B
658 [Conclusion] If not B then not A → Valid".
659660 **Quality Control** Ten percent of questions served as controls with verified answers. Annotators
661 maintaining below 80% accuracy were excluded from analysis. Inter-annotator agreement measured
662 Fleiss' $k = 0.72$, indicating substantial reliability. The interface included a tutorial with five practice
663 questions before beginning the actual evaluation tasks.
664665 **B EXPERIMENTAL SETUP**
666667 **B.1 PROMPT TEMPLATES**668 We designed three distinct prompt templates for different experimental phases:
669670 **Main Evaluation Prompt**
671672 Conclude with your answer using the format:
673 Answer: [A-D]
674675 Context: {context}
676 Question: {question}
677 Options:
678 A) {options[0]}
679 B) {options[1]}
680 C) {options[2]}
681 D) {options[3]}682 **Model Reasoning Analysis Prompt**
683684 Analyze the question and respond in this
685 exact format:
686 <thinking>687 [Step-by-step reasoning...]
688 </thinking>
689 <answer>
690 [ONLY the option number (0-3)]
691 </answer>692 Question context: {instance['text']}
693 Question: {instance['question']}
694 Options:
695 0: {instance['options'][0]}
696 1: {instance['options'][1]}
697 2: {instance['options'][2]}
698 3: {instance['options'][3]}
699700 **Reasoning Type Classification Prompt**
701

Classify the question's reasoning pattern

702 into ONE category:
703 [Analogical|Deductive|Inductive|Abductive]
704
705 Guidelines:
706 - Analogical: Requires comparing similar
707 cases
708 Example: ``How is X similar to Y?''
709
710 - Deductive: Applies general rules to
711 specifics
712 Example: ``Given the rules, what must
713 be true?''
714 - Inductive: Generalizes from examples
715 Example: ``What pattern emerges?''
716
717 - Abductive: Finds most likely explanation
718 Example: ``What probably caused this?''
719
720 Output format:
721 <category>[type]</category>
722
723 **B.2 EXPERIMENTAL PARAMETERS**
724
725 Evaluation experiments are conducted with a temperature of 0.7 and 16k token limit.
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755