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ABSTRACT

Efficient key-value (KV) cache management is essential for large language models
(LLMs) performing long-text inference. Traditional methods, which retain all
original KV pairs, lead to high memory usage and degraded performance due to
outdated contextual representations. While existing solutions predominantly focus
on cache eviction or compression to reduce memory and computation, they largely
neglect the issue of semantic degradation in the cache itself. In this paper, we
identify two critical limitations in long-context inference—Progressive Cluster-
ing and Context Degradation—which cause the model to lose global contextual
awareness over time. To address these issues, we propose VAM, a plug-and-
play KV cache optimization algorithm that dynamically merges attention outputs
into value states. Unlike cache compression methods that aim to reduce cache
size, VAM specifically targets the preservation of contextual semantics in the
cached representations, thereby improving the model’s ability to retain and utilize
long-range dependencies. VAM is lightweight, easy to integrate, and comple-
mentary to existing compression strategies. Experiments on LongBench tasks
across LLaMA and Mistral models (7B–70B) show consistent improvements
of 0.36–6.45 in absolute score (0.64%–4.26% relative), and up to 8.33% when
combined with state-of-the-art KV compression methods, demonstrating VAM’s
effectiveness in enhancing long-sequence inference quality. Our code is available
at https://anonymous.4open.science/r/vam-torch-386B/.

1 INTRODUCTION

Long-text inference plays a pivotal role in enabling large language models (LLMs) to excel in
applications such as book summarization, legal document analysis, and multi-turn dialogues Li et al.
(2024a); Zhang et al. (2020); Chalkidis et al. (2020); Song et al. (2022). By effectively processing
extended contexts, LLMs generate coherent and contextually rich output, addressing tasks that require
a comprehensive understanding of long or complex information. As models like GPT-4 Achiam et al.
(2023) and Gemini 1.5 Pro Team et al. (2024) expand their context-length capabilities to hundreds of
thousands or even millions of tokens, they unlock unprecedented potential for real-world scenarios
that rely on long-text reasoning Liu et al. (2024a).

The KV cache Pope et al. (2023) is a common optimization in LLM inference, reducing the attention
mechanism’s complexity from quadratic to linear by storing the key and value tensors of previous
tokens. However, in long-text inference, the cache size grows linearly with sequence length, often
exceeding the memory required for model weights. This leads to significant GPU memory overhead,
complicating deployment in resource-constrained environments. To address this, methods such as
token eviction Zhang et al. (2023); Liu et al. (2024b), KV cache quantization Hooper et al. (2024);
Liu et al. (2024c), and other compression techniques Yang et al. (2024); Sun et al. (2024); Wan et al.
(2024) focus on reducing the memory footprint of the KV cache.

In addition to the well-known challenge of high memory consumption, we identify a critical yet
underexplored limitation of the KV cache: its inability to capture higher-level semantic and structural
relationships, such as discourse dependencies and topic continuity, which are essential for tasks
like summarization, story generation, and multi-turn dialogue. To better understand this issue, we
analyze t-SNE visualizations of LLaMA2-7B inference and uncover two key phenomena: Progressive
Clustering, where token embeddings become increasingly localized as the sequence lengthens, and
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Context Degradation, where the model increasingly prioritizes recent tokens, weakening its ability to
maintain long-range dependencies. These phenomena, shaped by the cumulative effect of Softmax
over time, reveal a key gap in existing research that this paper addresses.

More
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Figure 1: Design space of KV cache optimizations. Exist-
ing methods (e.g., token eviction, quantization) focus on
efficiency, while ours enhances contextual representation
with zero overhead. VAM integrates seamlessly with Ori-
gin and other optimizations, demonstrating orthogonality
and complementarity.

In this paper, we propose a technique,
Value-Attention Merging (VAM), that en-
hances the KV cache in LLMs by fusing
the value tensor with the attention output
and addressing its limitation of overlook-
ing contextual information. This fusion
method preserves both token-level and
higher-order contextual insights, improv-
ing the capture of long-range dependen-
cies and semantic relationships. As a
result, it enhances performance on tasks
like document-level reasoning and multi-
turn dialogue, while reducing redundant
attention computations. This balance be-
tween efficient storage and contextual
expressiveness enables scalable and ac-
curate long-text processing.

As a plug-and-play approach, VAM re-
quires no additional training, introduces

minimal modifications to the inference process, and delivers measurable performance improve-
ments with negligible time and space overhead. Specifically designed to tackle long-text tasks, this
lightweight and effective method enhances the model’s ability to maintain long-range dependencies.
Furthermore, its orthogonality to other KV cache optimization techniques increases its applicability,
making it a versatile solution for improving LLM performance on long-text inference tasks. Figure 1
illustrates the design space for KV cache optimizations.

The contributions of this work are summarized as follows:

• Identification of Key Limitations in KV Cache: We highlight the challenges of Progressive
Clustering and Context Degradation in traditional KV cache mechanisms, which impair
long-range semantic retention essential for tasks like discourse and topic continuity.

• VAM for KV Cache Optimization: We propose VAM, a simple yet effective optimization
technique that fuses value tensors with attention outputs to better capture long-range de-
pendencies, thereby improving contextual understanding without additional computational
cost.

• Comprehensive Empirical Validation: Extensive experiments on LLaMA and Mistral
models show that our method consistently improves LongBench performance, with abso-
lute gains of 0.36 to 6.45 and relative improvements of 0.64% to 4.26%, demonstrating
robust long-text understanding. When used as a plug-in to existing KV cache optimization
methods, it further enhances performance by up to 8.33%, validating its effectiveness across
architectures.

2 MOTIVATION

This section investigates context degradation during long-sequence inference with traditional KV
caching in LLMs. Using t-SNE visualizations, we analyze token distribution evolution throughout
inference, revealing a shift from global to local attention that motivates our novel strategy.

2.1 PROBLEM INTRODUCTION

The KV cache mechanism stores intermediate states (keys and values) for efficient self-attention
calculations in LLMs. However, during long-sequence inference, the cache grows proportionally
with input length, creating significant computational and memory overhead. This expansion strains
hardware resources and challenges real-time inference for tasks involving extensive contexts.
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The increase in the size of the KV cache does not always translate to improved model performance.
During inference, the attention mechanism initially captures dependencies across the entire sequence,
operating in a global context. However, as the sequence length grows, the attention weights begin
to prioritize more recent tokens, diminishing the contribution of earlier tokens. This shift from a
global to a local focus reduces the KV cache’s ability to maintain long-term dependencies, leading to
performance inefficiencies despite the growing storage demands.

These challenges highlight the need for efficient KV cache management that minimizes storage while
preserving the model’s ability to capture both global and local contexts.

2.2 T-SNE ANALYSIS OF CONTEXT DEGRADATION

To understand KV cache behavior during long-sequence inference, we visualize token embedding
evolution using t-SNE. We record value states from LLaMA2-7B’s KV cache and project these
high-dimensional representations into 2D space, revealing evolving attention patterns (Figure 2).
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Figure 2: t-SNE visualization of the value vectors stored in the KV cache of the LLaMA2-7B model
across different layers. Token positions are color-coded, with darker colors indicating earlier positions
in the sequence and lighter colors representing later positions. As the token position increases, the
token distributions transition from a globally dispersed pattern to increasingly localized clusters
dominated by lighter-colored tokens. This progressive clustering of later-position tokens highlights
the context degradation phenomenon, where the model increasingly attends to recent tokens while
earlier ones lose influence during inference.

The t-SNE visualization of KV cache values reveals how token distributions evolve during inference,
exposing attention mechanism dynamics and limitations in handling long sequences. Three key
phenomena emerge:

Attention Equilibrium. Early in inference, token embeddings are widely distributed in 2D space
(dark points in Figure 2), reflecting the model’s global dependency capture. Tokens from the entire
sequence are equally represented in the KV cache, with the diverse spread indicating attention to
broad contextual elements for coherent predictions. At this stage, the KV cache operates optimally,
with all tokens contributing meaningfully to attention.

Progressive Clustering. As inference progresses, token embeddings cluster into localized regions
(light-colored points in Figure 2), reflecting increased focus on recent tokens while de-prioritizing
earlier ones. Cluster centers shift away from earlier contexts, indicating reduced global coverage.
Softmax-driven attention weight decay for distant tokens enhances short-term efficiency but dimin-
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ishes long-range dependency retention. This marks context degradation onset as attention range
narrows.

Context Degradation. In later inference stages, token embeddings form compact clusters, showing
intensified focus on recent context while de-prioritizing earlier tokens. This sharpens short-term
dependency handling but weakens long-term retention. Earlier tokens remain in the KV cache but
contribute minimally to predictions, creating inefficiency where maintenance costs exceed utility.
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Figure 3: The first-layer KV cache lacks context,
leading to misaligned attention and degraded long-
range dependency modeling.

2.3 ANALYSIS

In multi-layer LLMs, the KV cache updates be-
fore each attention computation. At the first
layer, the cache contains only raw token em-
beddings without contextual information, as no
attention output has been computed yet. This ini-
tial context absence creates errors that propagate
through subsequent layers—each layer operates
on increasingly flawed inputs from previous lay-
ers (Figure 3). The misalignment widens gaps
between contextually related tokens, impairing
long-range dependency tracking. Consequently,
the attention mechanism shifts toward localized,
short-term dependencies, degrading long-range
attention capabilities.

To address this issue, we must transform the
KV cache from a static storage mechanism into
a dynamic, adaptive system that continuously
incorporates contextual information. The key in-
sight is injecting the first layer’s attention output
directly into the KV cache, enabling the model
to capture contextual relationships from the ini-
tial computation and preventing propagation of

incomplete token representations through subsequent layers. This dynamic update mechanism
resolves the initial context absence while preserving representation integrity throughout inference.

3 RELATED WORK AND SHORTCOMINGS

This section reviews existing KV cache optimization approaches for transformer-based LLMs. While
these methods address memory and computational overhead, they fail to resolve context degradation
and stale representations (Section 2). We examine their limitations to establish the foundation for our
proposed approach.

Cache Compression. There has been substantial prior work on compressing the KV cache, focusing
on retaining important tokens while evicting less significant ones to reduce memory usage Ge et al.
(2023); Adnan et al. (2024). Some methods also retrieve only a subset of tokens at each step to
save memory bandwidth Ribar et al. (2023). Recent approaches, such as H2O Zhang et al. (2023),
PyramidKV Cai et al. (2024), and SnapKV Li et al. (2024b), optimize memory efficiency by selecting
high-utility tokens based on attention scores or token utility patterns. While these methods improve
memory usage and decoding speed, they often rely on heuristics or fixed observation windows, which
can struggle with preserving context in long sequences. More recent efforts explore norm-based
metrics, such as using the value vector norm Guo et al. (2024) or key vector norm Devoto et al. (2024)
to estimate token utility, providing a simple yet effective alternative to attention-based heuristics.

Quantization. Extensive research on LLM quantization aims to reduce memory and runtime costs.
Weight quantization has led to techniques like dense-and-sparse decomposition Dettmers et al. (2023);
Kim et al. (2023) and non-uniform schemes using adaptive clustering Dettmers et al. (2024). For KV
cache, methods such as ZipCache He et al. (2024) and GEAR Kang et al. (2024) achieve efficient
compression via per-channel quantization and low-rank representations, though preserving accuracy
over long sequences remains challenging. Other approaches extend quantization to activations and
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Figure 4: Illustration of the VAMP algorithm for optimized KV cache update, where value are
updated with a weighted sum of attention using a factor α. This method enhances inference efficiency
by minimizing redundant computations and provides a simple, plug-and-play design for seamless
integration with existing systems.

KV cache jointly, reaching 4-bit precision with fine-grained grouping, albeit with perplexity trade-offs
Sheng et al. (2023); Zhao et al. (2024).

Existing KV cache optimization methods are often complex and difficult to implement. These
approaches involve advanced techniques like non-uniform quantization, matrix approximations, and
token selection strategies, all requiring careful optimization and fine-tuning. Additionally, some
methods necessitate custom hardware or specialized software for full effectiveness. The complexity
and resource demands of these methods make them challenging to scale, highlighting the need for
simpler, more accessible solutions.

4 VALUE-ATTENTION MERGING

In this section, we introduce VAM, a novel key-value cache optimization framework designed to
mitigate context degradation and enhance efficiency in Transformer-based models. We begin with an
overview of the methodology (Section 4.1), followed by a detailed explanation of its mathematical
foundation (Section 4.2), and conclude with practical implementation details (Section 4.3).

4.1 OVERVIEW

Figure 4 illustrates the architecture of VAM, our proposed KV cache optimization framework.
VAM dynamically updates the KV cache by merging static value representations with attention
output. The core design principle of VAM is to integrate dynamic contextual information into the
KV cache, thereby mitigating context degradation and preventing stale representations. Unlike
traditional KV cache mechanisms that store static key-value pairs, VAM continuously refreshes
the value representations to ensure their relevance throughout the inference process. This dynamic
updating mechanism enhances the model’s ability to maintain coherent and contextually accurate
representations, especially during extended autoregressive generation tasks.

4.2 MATHEMATICAL FOUNDATION

Transformer models use the attention mechanism to compute contextual representations for each token
by attending to all tokens within the sequence. This mechanism relies on three primary components:
the query (Q), the key (K), and the value (V ), all derived from the input embeddings. The attention
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operation is mathematically defined as:

Attention(Q,K, V ) = Softmax

(
QK⊤
√
dk

)
V. (1)

Here, dk denotes the dimensionality of the key vectors, and the softmax function ensures that the
attention weights sum to one, facilitating a weighted sum of the value vectors V .

During inference, particularly in autoregressive generation, the key-value cache stores the key and
value matrices to prevent redundant computations for previously processed tokens, thereby improving
efficiency. The cache update mechanism is formalized as follows.

Kcache = [K1;K2; . . . ;Kt], Vcache = [V1;V2; . . . ;Vt], (2)

where Kt and Vt denote the key and value matrices for the token at timestep t, respectively. At each
inference step, the attention mechanism uses the cached keys and values, along with the current query
Qt to compute the attention output:

Attention(Qt,Kcache, Vcache) = softmax
(
QtK

⊤
cache√
dk

)
Vcache. (3)

This formulation ensures that each new token integrates information from all preceding tokens without
necessitating the recomputation of their representations, thereby optimizing the inference process.

4.3 DYNAMIC KV CACHE OPTIMIZATION WITH VAM

VAM introduces a dynamic mechanism for updating the KV cache during autoregressive inference
in Transformer models. Its primary goal is to address the limitations of static KV caches, such as
stale representations and context degradation, while ensuring seamless compatibility with existing
Transformer architectures.

VAM fundamentally alters the standard KV cache update procedure by dynamically integrating the
output of the attention mechanism directly into the value vectors. In traditional Transformer-based
models, the KV cache is updated by sequentially appending static key-value pairs as tokens are
processed. Specifically, at each timestep t, the key vectors Kt and value vector Vt are computed and
appended to their respective caches without modification:

K
(t)
cache =

[
K

(t−1)
cache ,Kt

]
, V

(t)
cache =

[
V

(t−1)
cache , Vt

]
. (4)

While this static approach is efficient, it can lead to context degradation and the accumulation of stale
representations, particularly in long sequences where the relevance of earlier tokens diminishes over
time.

VAM addresses these limitations by modifying the update mechanism for the value cache. Rather
than directly appending the static value vectors Vt, VAM dynamically updates Vt by integrating them
with the attention output. This integration is controlled by a hyperparameter α, which determines the
degree to which the attention output influences the updated value vectors:

V updated
t = Vt + α ·At. (5)

The updated value vector V updated
t retains token-specific information from Vt while integrating

contextual insights from the attention output At. This approach resolves context absence in the first
layer and mitigates context degradation, ensuring that cached representations remain relevant and
up-to-date, thus preserving the integrity of the generated outputs over long sequences.

The updated value vector is then appended to the value cache:

V
(t)

cache =
[
V

(t−1)
cache ;V updated

t

]
. (6)

VAM enhances the Transformer’s value cache by dynamically merging each value vector with the
corresponding attention output, controlled by a single hyperparameter α. A coarse grid search on
LongBench Bai et al. (2024) tasks shows that α ∈ [0.3, 0.7] achieves the best trade-off—smaller
values fail to inject sufficient context, while larger values risk overwriting token semantics. This
range consistently delivers stable gains and strong overall performance across models and tasks,
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offering a reliable balance between contextual expressiveness and semantic fidelity without the need
for task-specific tuning.

VAM modifies only the value cache, preserving full compatibility with existing Transformer architec-
tures and acceleration frameworks like FlashAttention Dao et al. (2022) and Group-Query Attention
Ainslie et al. (2023). It requires no change to the attention computation and can be seamlessly
integrated into existing inference pipelines.

VAM brings two key benefits: (1) it improves long-range context retention by preventing stale value
accumulation; and (2) it accelerates semantic flow from the first layer, addressing the cold-start issue.
These advantages enhance generation quality with negligible overhead.

5 EXPERIMENTS

In this section, we demonstrate that VAM, a simple yet effective KV cache optimization strategy,
significantly enhances long-text inference by improving memory efficiency, reducing latency, and
maintaining or even improving model performance. With minimal computational overhead, VAM
seamlessly integrates with existing KV cache mechanisms, making it highly applicable to various
LLMs and real-world tasks.

5.1 EXPERIMENTAL SETTINGS

Models. We conducted experiments on a diverse set of models, including the LLaMA and Mistral
series, with parameter sizes ranging from 7B to 70B. These models were selected for their widespread
adoption and architectural diversity, allowing for a comprehensive evaluation of our method across
varying scales and design paradigms.

Evaluation Strategies. (1) Long-sequence Language Modeling: We first evaluate the performance
of our proposed method by comparing it with the original inference approach using LongBench Bai
et al. (2024), a comprehensive benchmarking suite designed to assess language models across a range
of tasks. (2) Plug-in Effectiveness. We evaluate VAM as a plug-in enhancement to existing KV cache
compression methods, including H2O Zhang et al. (2023), PyramidKV Cai et al. (2024), SnapKV Li
et al. (2024b), and ZipCache He et al. (2024). Experiments are conducted on Code, Few-shot learning,
and Synthetic tasks, with detailed settings provided in Appendix B.(3) Retrieval-based Evaluation:
Finally, we assess the precision of our method using the Needle-in-a-Haystack test, which tests the
model’s ability to retrieve specific information from large datasets.

5.2 MAIN RESULTS

Long-sequence Language Modeling. As shown in Table 1, our method achieves consistent and
notable improvements across multiple LongBench tasks, with absolute gains ranging from 0.36 to
6.45 and relative improvements of 0.64% to 4.26% across different models. These results highlight the
robustness of our approach in enhancing long-text understanding. The most stable gains are obtained
with moderate α values (e.g., 0.1–1.0), which strike an effective balance between incorporating new
contextual signals and preserving token-specific semantics. Although very large α values (α > 1.2)
may occasionally degrade performance, the overall trend clearly demonstrates that our method
provides broad and reliable benefits across tasks and models.

Enhancement of KV Cache Optimization. In Table 2, we report the experimental results demonstrat-
ing that VAM consistently improves the performance of existing KV cache compression algorithms
across diverse tasks from LongBench. With α = 0.35, our method achieves substantial improvements
on LLaMA3.1-8B-Instruct across all base methods and task categories, with improvements ranging
from +0.01 (ZipCache on TriviaQA) to +3.00 (PyramidKV on TREC) across code understanding tasks
(LCC and RepoBench-P), few-shot learning tasks (TREC and TriviaQA), and synthetic tasks (Pas-
sageCount). The average improvements per base method demonstrate consistent effectiveness: H2O
(+1.04), PyramidKV (+1.17), SnapKV (+0.85), and ZipCache (+1.46), indicating that our method
serves as a highly effective plug-in module that enhances the semantic capacity of compressed caches
across different compression strategies.
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Table 1: Comparison of performance across various LLMs under different configurations of the
hyperparameter α. For each model, the first (gray-shaded) row presents the baseline results obtained
with the original KV cache without modification. Datasets are indexed by IDs, with their correspond-
ing descriptions and evaluation metrics provided in Table 3 in Appendix C. Bold values highlight
improvements over the baseline, while underlined values indicate the best performance within each
setting. Our method outperforms the original approach in most cases (75%).

Model Setting(α) Single-Doc QA Multi-Doc QA Summarization Avg.
1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4

L
L

aM
A

-2
-7

B

- 19.14 21.81 37.66 11.82 27.85 31.30 8.27 6.21 26.92 20.81 26.05 0.21 19.84
0.1 19.24 22.31 36.82 12.06 27.91 31.57 8.21 6.44 27.29 20.96 26.24 0.21 19.94
0.2 18.94 22.34 37.31 12.55 27.97 31.82 8.86 6.41 27.91 20.97 26.40 1.82 20.28

0.35 19.00 22.23 36.54 12.41 27.91 31.71 8.53 7.14 27.48 20.91 26.19 2.17 20.18
0.5 18.80 22.31 37.28 13.17 28.06 31.73 8.58 7.34 27.59 20.84 26.70 0.18 20.22
1.0 19.23 20.78 36.14 12.87 27.27 31.91 8.54 5.09 23.18 19.84 24.71 0.36 19.16

1.25 19.07 12.22 28.97 5.52 27.28 30.20 8.07 12.09 25.21 20.29 25.30 0.32 17.88

M
is

tr
al

-7
B

- 29.41 39.66 50.43 55.59 49.32 34.58 26.96 31.42 34.44 25.51 26.41 15.81 34.96
0.1 29.42 39.72 50.46 55.66 49.29 34.79 26.97 32.69 34.36 25.73 26.70 16.08 35.15
0.2 29.47 39.57 50.53 55.66 49.11 34.63 27.34 32.39 34.63 26.16 26.72 16.72 35.25

0.35 29.06 39.98 50.69 55.88 49.37 34.22 27.22 31.63 34.96 25.86 27.38 17.22 35.29
0.5 29.58 40.13 50.51 55.82 49.14 34.07 27.37 31.92 34.71 26.24 26.90 16.93 35.28
1.0 28.62 40.27 49.97 55.96 50.03 34.09 27.84 31.91 34.89 25.36 26.13 17.06 35.18
1.5 25.31 38.03 49.01 55.39 49.92 33.21 29.13 32.01 34.53 25.08 26.26 16.17 34.50

L
L

am
a-

3.
1-

8B

- 24.23 21.84 40.21 37.56 42.06 33.86 21.01 30.66 34.91 24.27 27.33 17.17 29.59
0.1 24.32 22.64 40.72 37.88 42.10 34.06 20.82 31.21 35.21 24.24 27.52 17.38 29.84
0.2 24.18 22.96 40.74 37.85 42.31 34.00 21.37 31.16 35.26 24.17 27.57 17.72 29.94

0.35 24.88 22.98 40.89 38.17 42.50 34.41 21.13 30.91 35.39 24.27 27.33 18.23 30.09
0.5 24.90 22.53 41.00 37.83 42.31 34.08 21.55 31.55 36.01 23.63 27.45 17.34 30.01
1.0 23.27 22.51 40.54 37.64 41.74 33.67 21.82 32.43 35.73 24.17 28.01 17.49 29.94
1.5 24.33 22.30 40.03 36.66 41.38 33.67 20.88 32.20 18.62 24.96 21.04 16.79 27.74

L
L

aM
A

-3
.1

-7
0B - 26.48 45.17 49.27 24.81 50.43 51.84 27.61 34.27 39.47 24.09 27.58 20.24 35.10

0.1 26.54 45.33 49.36 25.08 51.27 51.96 27.27 34.48 40.37 24.11 27.54 20.29 35.30
0.2 26.81 45.28 49.44 25.16 51.61 53.04 27.66 35.19 41.22 24.17 27.27 21.28 35.68

0.35 26.87 45.62 49.72 24.75 50.74 52.77 28.28 34.72 41.08 25.22 27.62 21.44 35.65
0.5 26.74 45.53 49.19 25.22 50.97 51.97 28.42 35.09 40.29 25.32 27.94 20.97 35.55
1.0 25.92 45.17 49.13 24.93 50.24 51.83 27.08 34.18 40.07 23.87 26.87 21.06 35.03

1.25 25.43 44.32 48.74 24.90 50.07 51.71 26.44 34.32 39.12 23.09 27.04 20.23 34.62
a Details of used LLMs in this table are presented in 4.

Table 2: Plug-in effectiveness of VAM: enhancing semantic capacity of compressed KV caches across
different compression strategies on LongBench evaluation tasks using α = 0.35.

Base Method LCC RepoBench-P TREC TriviaQA PssageCount Avg.

H2O 62.30 → 63.06 55.39 → 56.91 68.00 → 70.05 91.23 → 91.83 6.11 → 6.36 +1.04
PyramidKV 61.58 → 62.37 53.89 → 55.44 68.00 → 71.00 91.65 → 92.09 6.00 → 6.05 +1.17
SnapKV 62.62 → 63.23 56.56 → 56.66 68.00 → 70.50 91.48 → 92.03 6.00 → 6.50 +0.85
ZipCache 60.73 → 62.76 52.64 → 55.32 68.00 → 70.50 91.48 → 91.49 5.92 → 6.00 +1.46

Average improvement across all methods and datasets +1.13
Each cell displays baseline score → VAM-enhanced score. Underlined values indicate best performance per dataset.

Retrieval-based Evaluation. Figure 5 presents the experimental results comparing the original
model (top) with our proposed method (bottom), where the α parameter in our method is set to 0.35.
The white vertical line indicates the pre-trained window size. As observed, our method consistently
achieves higher accuracy across various window sizes and insertion depths. The green regions, which
represent higher accuracy, are more prevalent in our approach, particularly beyond the pre-trained
window size. In contrast, the original model shows a noticeable decline in accuracy, especially
as the window size increases and needle insertion depth deepens. These results demonstrate the
effectiveness of our method in maintaining robust performance, even in more challenging scenarios,
thereby improving the model’s overall accuracy.

5.3 T-SNE VISUALIZATION: RESOLVING LONG-TEXT CONTEXTUAL DEGRADATION

In this experiment, we set α = 0.35 and re-conducted t-SNE visualizations to assess the effect of
our method on long-context inference. As shown in Figure 6 and Figure 7, our approach alleviates
two major issues in the original model: the drift from global to local attention and the degradation

8
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Needle-in-a-Haystack sentence retrieval test, comparison between our method v.s. baseline
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Figure 5: Results of the Needle-in-a-Haystack experiment comparing the original model (top) and
our method (bottom). Green regions show higher accuracy, with our method excelling beyond the
pre-trained window size (white line) and at deeper insertion depths.

of contextual representations. The resulting plots show more compact and uniform token clusters,
indicating stronger global context retention. By augmenting cached values with attention outputs,
our method mitigates delayed context propagation, enabling the model to preserve long-range
dependencies and maintain coherence over extended sequences.

(a) Baseline: Progressive Context Degradation Across Layers
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(b) VAM: Consistent Semantic Structure Preservation
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Figure 6: Layer-wise evolution of token representations in KV cache. (a) Baseline methods show
progressive context degradation where early tokens (darker colors) become increasingly dispersed
in deeper layers while recent tokens (lighter colors) dominate the representation space. (b) VAM
maintains structured token distributions across all layers, ensuring balanced attention to both historical
and recent context, effectively addressing the context degradation phenomenon.

6 CONCLUSION

In this paper, we introduced VAM to improve long-text inference in large language models by
alleviating context degradation and the drift from global to local attention. Extensive experiments
and t-SNE analyses demonstrate that VAM effectively preserves contextual coherence across long
inference windows while maintaining computational efficiency. As a lightweight and easily integrable
mechanism, VAM holds strong potential for real-world applications requiring long-context reasoning,
and it also opens future directions such as combining with cache compression, retrieval-augmented
inference, or multimodal extensions to further enhance scalability and robustness.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026
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This work does not involve human subjects, sensitive personal data, or experiments that could directly
cause harm. All datasets used are publicly available and widely adopted in the research community,
and we followed their intended licensing and usage guidelines. Our methods focus on improving the
efficiency and scalability of large language models without altering their underlying behaviors. We
also considered potential risks such as model misuse, fairness, and bias, but our contributions are
methodological and do not introduce additional ethical concerns. The authors have adhered to the
ICLR Code of Ethics throughout the research and submission process.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our workps, are included in the appendix.
Upon acceptance, we will release anonymized source code, scripts for running experiments, and
dataset preprocessing instructions as supplementary materials. . Detailed descriptions of the model
architectures, training configurations, and evaluation protocols are provided in the main text, while
additional implementation details, such as hyperparameter settings, baseline configurations, and
ablation study seturted in the paper can be regenerated using the released resources.
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A ALGORITHMIC FLOW OF VAM

We present a detailed description of the algorithmic components of the proposed KV cache optimiza-
tion framework, VAM. Unlike static KV caches, our framework dynamically updates the value vectors
during autoregressive inference in Transformer models, thereby overcoming their inherent limitations.
The step-by-step procedure is outlined below and illustrated in the accompanying flowchart, which
shows how the KV cache is updated with attention outputs. The formal procedure is summarized in
Algorithm 1.

B DETAILED EXPERIMENTAL SETUP

All experiments were conducted on a server equipped with an Intel Xeon Gold 6258R processor
(2.70 GHz), 503 GB of RAM, and an NVIDIA A100 GPU (80 GB). The system ran Ubuntu
18.04.5 LTS, with Python 3.7.11, NumPy 1.21.2, and PyTorch 1.10.2. For the experiments in the
Enhancement of KV Cache Optimization part, we used datasets from the LongBench tasks, including
NarrativeQA, Qaspe, MultiFieldQA-en, MultiFieldQA-zh, HotpotQA, 2WikiMultihopQA, MuSiQue,
and DuReader.

For fair comparison and reproducibility, we align the hyperparameter configurations of all baseline
and enhancement methods evaluated in our experiments. Specifically:

• For our proposed method, VAM, we use α = 0.35 by default in all experiments reported
in Table 2, based on empirical tuning that balances contextual integration and token-level
fidelity.

• PyramidKV, H2O, SnapKV, and ZipCache are configured with a fixed KV cache size of
2048, following their recommended settings for long-context scenarios.

C DATASET AND EVALUATION METRIC MAPPING

Table 3 provides the detailed mapping between dataset identifiers (IDs) and their corresponding
datasets, as well as the evaluation metrics used in the experiments. This mapping ensures clarity and
reproducibility, following the approach of Bai et al. (2024), and complements the results presented in
the main text.
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Algorithm 1 VAM: Value-Attention Merging for KV Cache Update
Require: Sequence length L, model dimension dk, KV cache (Kcache, Vcache), parameter α

1: Initialize Kcache ← [ ], Vcache ← [ ]
2: Phase 1: Pre-Fill Phase
3: Objective: Populate the KV cache for input tokens.
4: for t = 1 to Linput do
5: Compute key Kt and value Vt for input token t.
6: Append Kt to the key cache:

Kcache ← [Kcache,Kt]

7: Append Vt to the value cache:

Vcache ← [Vcache, Vt]

8: Phase 2: Decode Phase
9: Objective: Dynamically update the value cache during autoregressive decoding.

10: for t = 1 to Ldecode do
11: Key Calculation:
12: Compute Kt for the current token and append to Kcache:

Kcache ← [Kcache,Kt]

13: Value Calculation:
14: Compute Vt for the current token (as in standard transformers).
15: Attention Output Calculation:
16: Compute the attention output using Qt, Kcache, and Vcache:

Attn Outputt = softmax
(
QtK

⊤
cache√
dk

)
Vcache

17: Dynamic Value Update:
18: Update Vt by merging it with Attn Outputt:

V updated
t ← Vt + α · Attn Outputt

19: Cache Update:
20: Append the updated value to Vcache:

Vcache ← [Vcache, V
updated
t ]

21: Output: Updated KV cache (Kcache, Vcache)

D DETAIL OF LLMS

We provide the links to the details of the LLMs used in our experiments in Table 4.

E T-SNE VISUALIZATION: RESOLVING LONG-TEXT CONTEXTUAL
DEGRADATION

To further investigate the effectiveness of our proposed method in preserving semantic consistency
over long sequences, we conducted a t-SNE analysis of token embeddings across the inference
process. For this experiment, the interpolation coefficient α was fixed at 0.35. The t-SNE plots
presented in Figure 7 compare the contextual token representations between the original model and
our enhanced version.
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Table 3: An overview of the dataset statistics in LongBench. Chinese datasets are highlighted.
‘Source’ denotes the origin of the context. ‘Avg len’ (average length) is computed using the number of
words for the English (code) datasets and the number of characters for the Chinese datasets. ‘Accuracy
(CLS)’ refers to classification accuracy, while ‘Accuracy (EM)’ refers to exact match accuracy.

Dataset ID Source Avg len Metric Language #data

Single-Document QA
NarrativeQA 1-1 Literature, Film 18,409 F1 English 200
Qasper 1-2 Science 3,619 F1 English 200
MultiFieldQA-en 1-3 Multi-field 4,559 F1 English 150
MultiFieldQA-zh 1-4 Multi-field 6,701 F1 Chinese 200

Multi-Document QA
HotpotQA 2-1 Wikipedia 9,151 F1 English 200
2WikiMultihopQA 2-2 Wikipedia 4,887 F1 English 200
MuSiQue 2-3 Wikipedia 11,214 F1 English 200
DuReader 2-4 Baidu Search 15,768 Rouge-L Chinese 200

Summarization
GovReport 3-1 Government report 8,734 Rouge-L English 200
QMSum 3-2 Meeting 10,614 Rouge-L English 200
MultiNews 3-3 News 2,113 Rouge-L English 200
VCSUM 3-4 Meeting 15,380 Rouge-L Chinese 200

Table 4: LLMs used in the experiments
Model Name URL
Llama-2-7b-chat-hf https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
Llama-3.1-8B-Instruct https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
Llama-3.1-70B-Instruct https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
Mistral-7B-Instruct-v0.3 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

F USE OF LLMS

LLMs were used solely for minor language refinement, including improvements in clarity, grammar,
and readability. All conceptual development, technical contributions, experimental design, and results
are entirely the responsibility of the authors.
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Figure 7: t-SNE visualization of the values stored in the KV cache of the LLaMA2-7B model
after applying our method. The visualization shows a more uniform distribution of token values,
maintaining a global context focus even in deeper layers, indicating the effective mitigation of context
degradation.
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