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Abstract

This work presents a simple, inexpensive, theoretically motivated regularization term to
enhance the robustness of deep time-index models for time-series forecasting. Recently, Deep-
Time demonstrated that this class of models can rival state-of-the-art deep historical-value
models on the long time-series forecasting (LTSF) benchmarks. The DeepTime framework
comprises two key components: (1) a time-indexed basis parameterized as an implicit neural
representation (INR), and (2) a meta-learning formulation that fits observed data to this basis
via ridge regression, then extrapolates the result to generate forecasts. Our regularization
term encourages the time-indexed basis elements to be more unit standardized and less
mutually correlated, intended to enable more robust ridge regression. The regularized variant
matches or outperforms DeepTime on all LTSF benchmarks. Moreover, it is significantly
more resilient to missing values in the lookback window at test time, enhances forecast accu-
racy when applied to higher-frequency data than it was trained on, and boosts performance
when trained on smaller datasets. Overall, we conclude that our regularized approach sets a
new state-of-the-art for deep time-index models.

1 Introduction
Time-series forecasting is a rich topic with applications spanning science (e.g., in weather or climate science,
astronomy, biology (Ghaderpour et al., 2021; Rackauckas et al., 2020)), engineering (e.g., in control engineering,
communications engineering (Krishna et al., 2023; Hua et al., 2017)), and business (e.g., in econometrics,
mathematical finance, demand forecasting, capacity planning and management (Carbonneau et al., 2008;
Laptev et al., 2017)). The rise of deep learning models and the increasing availability of large time-series
datasets are stimulating a shift towards highly expressive time-series models calibrated using big data and
big compute, rather than the classical approach of simpler models calibrated using strong assumptions and
human expertise. However, leveraging large and expressive models based on deep learning for time-series
forecasting has proven challenging. For example, Zeng et al. (2022) showed that many state-of-the-art

†Work was while the author was an intern at RBC Borealis

1

https://openreview.net/forum?id=uDRzORdPT7


Published in Transactions on Machine Learning Research (01/2025)

Transformer-based time-series models could be outperformed by “embarrassingly simple” linear models on
common long time-series forecasting (LTSF) benchmarks.

Recently, the DeepTime model (Woo et al., 2023) demonstrated the promise of deep time-index models, as
opposed to the more popular historical-value models. Historical-value models (e.g., ARIMA (Box et al., 2015)
and popular Transformer-based models (Vaswani et al., 2017)) typically produce forecasts at pre-defined
moment(s) in the future based on a pre-defined sequence of recent values, e.g., ŷt+∆t = ϕ(yt, yt−1, . . . , yt−L),
where t is the current time, ŷt+∆t is the model output for time t + ∆t, yt denotes ground truth observations at
time t, and ϕ is the function learned by the model. In contrast, time-index models are continuous functions of
time, e.g., ŷt+∆t = ϕ(t+∆t). In this case, some parameters of the model are typically refit at inference so that
ŷt+∆t ≈ yt+∆t for t + ∆t values in the past, and predictions are made by extrapolating ϕ(t + ∆t). Classical
examples of such approaches include Prophet (Taylor & Letham, 2018) and Gaussian processes (Rasmussen,
2004). Time-index models have some appealing properties. For instance, the continuous dependence of ϕ on
time is arguably a useful inductive bias for representing typical time-series data (Woo et al., 2023). Moreover,
historical-value models often struggle with inconsistent input sequences or target horizons, while time-index
models are well-suited for handling irregular sampling rates, missing values, and forecasts over a continuous
horizon.

The core idea of DeepTime is to parameterize a time-indexed basis of features f(∆t) by an implicit neural
representation (INR) network. However, simply fitting a generic neural network to past values of y at inference
time is slow and leads to poor extrapolation into the future. DeepTime overcomes this issue by framing
forecasting as a meta-learning problem: globally, learn a basis of time-indexed features f(∆t) such that,
locally, forecasting can be done by simple ridge regression. The INR training objective is the forecasting
error, with the goal of finding a basis that can simultaneously (a) fit lookback values in a reliable manner and
(b) extrapolate that fit to the forecast period accurately. This formulation achieves results competitive with
other deep forecasting models on common LTSF benchmarks (Woo et al., 2023).

In this work, we improve upon DeepTime via a regularization term designed to better condition the
ridge regression stage as shown in Figure 1. Essentially, we refine the meta-learning objective to be:
globally, learn a basis of normalized and uncorrelated time-indexed features such that, locally, forecasting
can be done robustly by simple ridge regression. As widely understood by practitioners, and provably
true under certain assumptions (Krikheli & Leshem, 2021), linear regression performs better when the
explanatory variables are more uniformly normalized and less mutually correlated. Our regularizer is
simple, efficient, and encourages these properties in the learned INR basis. Our model code is available
at https://github.com/BorealisAI/DeepRRTime. We call our robust, regularized DeepTime method
DeepRRTime and summarize our contributions as follows:

1. We introduce a novel regularization technique for improving the forecasting accuracy of Deep-
Time models. Our regularization technique is theoretically motivated, easy to implement, and
computationally inexpensive.

2. We demonstrate empirically that the proposed regularizer facilitates the learning of more unit-
normalized and less mutually correlated basis representations, improving performance on several
benchmarks at little cost and setting a new state-of-the-art for time-index models.

3. We show that the proposed regularizer helps to improve forecast accuracy in more challenging
settings: (a) forecasting with missing values, (b) training on smaller datasets, (c) forecasting at a
higher-frequency at test-time compared to the training data.

2 Related work
2.1 Models for time-series forecasting
Classically, time-series forecasting has typically been conducted using simple models and strong assumptions
about the underlying data generation process, relying on human expertise. Famous examples of classical
historical-value models include exponential smoothing models like ETS (Holt, 2004; Hyndman, 2018) and the
ARIMA family of models (Box et al., 2015). Classical time-series models in the class of time-index models
(as defined by Woo et al. (2023)) include the Prophet algorithm (Taylor & Letham, 2018) and Gaussian
processes (Rasmussen, 2003). DeepTime (Woo et al., 2023) and TimeFlow (Naour et al., 2024) are recent
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(a) Comparison of our approach with DeepTime.
(b) Similarity matrices for DeepTime
(top) and DeepRRTime (bottom).

Figure 1: (a): Our proposed approach is similar to DeepTime, which takes time indices as input, maps them
into a basis, and applies ridge regression to predict future time series. However, DeepRRTime includes an
additional regularization term added to the forecast loss, promoting more standardized and less correlated
time-indexed basis elements. This regularization leads to more distinct basis elements, resulting in better
conditioning for ridge regression and more robust forecasting. (b): Cosine similarity matrices for 100 of the
256 basis elements (truncated for visibility), demonstrating that the basis learned by DeepRRTime is much
closer to orthonormal. The top matrix shows the similarity between the bases learned by DeepTime, while
the bottom matrix illustrates the similarity between the bases learned by DeepRRTime on the same dataset
(ETTm2, forecast horizon 96).

models that utilize time-index models for time-series forecasting, and DeepTime in particular was the first
demonstration of a deep time-index model with performance competitive to historical-value models.

The time-series forecasting research community has shown significant interest in historical-value models based
on deep learning, with the hope that their increased expressivity will capture more complex relationships in
data. Oreshkin et al. (2019) proposed N-BEATS, a deep learning model based on a trend and seasonality
decomposition, while Challu et al. (2023) introduced N-HiTS, which employs hierarchical interpolation and
multi-rate sampling. LogTrans (Li et al., 2019), FEDformer (Zhou et al., 2022), and ETSFormer (Woo et al.,
2022) models attempt to leverage attention-based architectures (Vaswani et al., 2017) to model dependencies
across time steps. Adaptive RNNs (Du et al., 2021), RevIN (Kim et al., 2021), and Non-stationary Transformers
(Liu et al., 2022) introduce various methods aimed at handling distribution shifts.

Zeng et al. (2022) recently published simple linear models that outperform all the Transformer-based models
listed above on all the standard LTSF benchmarks, and argued against applying attention layers to individual
time steps. PatchTST (Nie et al., 2023) effectively addressed this concern, segmenting time-series data into
patches to address the potential lack of semantic meaning in individual time steps. PatchTST achieved
state-of-the-art performance on almost all the LTSF benchmark problems, matching or outperforming the
linear baselines of (Zeng et al., 2022). However, one notable exception is the Exchange dataset, which was
omitted from the PatchTST experiments. The authors highlighted it as singularly challenging among all the
benchmarks, and noted that even a simple martingale model is a formidable baseline to overcome for this
dataset.

2.2 Meta-learning
Meta-learning, or the “learning to learn” paradigm, entails training across multiple tasks to learn to generalize
to new, unseen tasks. The widely recognized MAML (Finn et al., 2017) algorithm consists of an outer-step
optimization spanning multiple tasks and an inner-step optimization on each task. The goal of the inner step is
to perform well on a query set by fitting a neural network to a corresponding support set. The outer step aims
to learn a neural network initialization such that, for all tasks, a small amount of fine-tuning on the support
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set is sufficient to perform well on the query set. Reptile (Nichol et al., 2018) and ANIL (Raghu et al., 2020)
demonstrated that MAML’s expensive inner-loop fine-tuning can often be replaced by cheaper approximate
or partial fine-tuning without hindering performance. Bertinetto et al. (2019a) eschewed the expensive
iterative inner step entirely by employing a closed-form ridge regression solver for the classification head
in a meta-learning model, significantly enhancing their efficiency. In DeepTime’s meta-learning framework,
each forecast is considered a distinct task. The support sets correspond to the recently observed data in the
lookback window, and the query sets are the future values in the horizon window. In this framework, learning
the INR basis is the outer loop, while ridge regression is the inner loop. As in Bertinetto et al. (2019a),
DeepTime employs a closed-form solution to the inner-loop optimization, improving efficiency.

While we are not aware of previous work applying covariance regularization to meta-learning frameworks,
as proposed in this paper, we note that covariance regularization has been considered for supervised and
self-supervised tasks in computer vision (Cogswell et al., 2016; Zbontar et al., 2021; Bardes et al., 2022).

2.3 Implicit Neural Representation
Implicit neural representations (INR) are deep neural networks trained to approximate various types of
signal including views of a scene (Mildenhall et al., 2021), images (Chen et al., 2021; Dupont et al., 2021),
and 3D shapes (Chen & Zhang, 2019). For example, an INR trained to reconstruct an image might map a
two-dimensional vector representing coordinates of an image pixel to a three-dimensional vector representing
RGB colors at this pixel. Many INR architectures are relatively simple, consisting of simple variations of
multilayer perceptrons (MLPs). SIRENs, proposed by (Sitzmann et al., 2020b), are MLPs with sinusoidal
activation functions, chosen to facilitate the representation of high-frequency features. DeepTime uses a
variant of the INR design proposed in (Tancik et al., 2020). Similar to SIRENs, the architecture of (Tancik
et al., 2020) is also designed to capture high-frequency features, but uses a single Fourier embedding layer at
the beginning of the network rather than periodic activations after each layer. Besides forecasting, INRs have
been explored for other time-series applications: Jeong & Shin (2022) utilize INR representation errors as a
metric for anomaly detection while Fons et al. (2022) and Szatkowski et al. (2023) explore applications to
time-series generative-modeling and missing value imputation respectively. Meta-learning on INRs, as done in
DeepTime, has been interpreted as learning a prior over the space of signals (Sitzmann et al., 2020a; Tancik
et al., 2021; Dupont et al., 2022) and shown to have analogies to dictionary learning (Yüce et al., 2022).

3 Background
In this section, we review DeepTime and then present our method DeepRRTime. We first describe inference,
which is the same for both approaches, and then contrast their training procedures.

3.1 Notation
Consider an INR network fθ : τ 7→ zτ where τ ∈ [0, 1] is called the time-index and zτ ∈ RD represents the
values of the D-dimensional basis at time τ . The time index τ is divided between the lookback and forecast
regions as follows: given a lookback length L and a forecast horizon H, the range 0 ≤ τ ≤ L−1

L+H−1 indexes the
lookback window while L

L+H−1 ≤ τ ≤ 1 indexes the forecast period. Specifically, τ = L
L+H−1 is the moment

at which a forecast is to be made, in keeping with the convention of Woo et al. (2023).

We denote observed values of the target variable y in the lookback window by Yℓ = {yτ1 , yτ2 , . . . yτℓ
}, with

τi < τj when i < j, τ1 ≥ 0, and τℓ ≤ L−1
L+H−1 . For regularly sampled data, we specialize this to τ1 = 0,

τ2 = 1
L+H−1 , and so on to τℓ = L−1

L+H−1 . We will refer to the model’s forecast by ŷ(τ) for L
L+H−1 ≤ τ ≤ 1.

We will generally consider a discrete set of forecasts Ŷh = {ŷτℓ+1 , ŷτℓ+2 , . . . ŷτℓ+h
}. For regularly sampled

data, we specialize this to τℓ+1 = L
L+H−1 , τℓ+2 = L+1

L+H−1 , and so on to τℓ+h = 1.

3.2 Inference of DeepTime and DeepRRTime
The inference step of our method DeepRRTime is essentially identical to that of the original DeepTime
method, which we repeat here. Inference begins with the evaluation of the INR basis at the time index values
for which lookback data are available: Zℓ = {zτ1 , zτ2 , . . . zτℓ

} = {fθ(τ1), fθ(τ2), . . . , fθ(τℓ)}. We then “explain
the past” by solving the following system of equations for W and b: Yℓ = ZℓW + b. Specifically, we solve for
the ridge-regression optimal parameters:

W ∗, b∗ = arg min
W,b

||Yℓ − ZℓW − b||22 + λ1
(
||W ||22 + ||b||22

)
, (1)
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where λ1 is an L2 penalty coefficient.

The parameters (W ∗, b∗) which solve the ridge regression problem over the lookback window can be obtained
with the closed-form solution (W ∗, b∗) = (Z̃T

ℓ Z̃ℓ+λ1I)−1Z̃T

ℓ Yℓ where Z̃ℓ = [Zℓ; 1] is obtained by concatenating
a vector of ones. They are then used to extrapolate ŷ(τ) = zτ W ∗ + b∗ into the forecast region and generate
the set of predictions:

Ŷh = ZhW ∗ + b∗, (2)

where Zh = {zτℓ+1 , zτℓ+2 , . . . zτℓ+h
}.

3.3 Training of DeepTime
We begin by reviewing the training procedure for DeepTime, and later explain how our method DeepRRTime
differs. The core idea is that the meta-learner, fθ, is exposed during training to the way in which the base
learner, ridge regression, solves for the optimal parameters (W ∗, b∗). The meta-learning routine can therefore
learn an INR basis that allows the base learner to forecast the future reliably.

DeepTime optimizes the INR fθ to learn a basis {zτ } that, through the above inference procedure, minimizes
the forecasting error. Specifically, given Yℓ, Zℓ and Zh, we first compute (W ∗, b∗) and then use Equation 2 to
compute Ŷh. We then optimize the INR parameters, θ, to minimize the forecast mean squared error (MSE):

LForecast(y, ŷ, θ) = arg min
θ

||Yh − Ŷh(θ, W ∗(θ), b∗(θ))||22, (3)

where Yh represents the ground-truth observations at the same time indices as Ŷh. Note that the inner
optimization step itself depends on θ, as implied by the notation (W ∗(θ), b∗(θ)). The closed form solution
to ridge regression enables DeepTime to propagate efficient, high-quality gradients through the entire inner
optimization step. The meta-learning step is key to DeepTime’s adaptation for time-series forecasting: among
all possible representations, the INR seeks to learn one that allows the ridge regression solver to explain the
past values, Yℓ, in such a way as to reliably forecast the future values, Yh.

4 DeepRRTime: regularized basis for improved forecasting
In this section, we introduce a regularization technique to improve the forecasting accuracy of the DeepTime
model by refining the basis functions learned by the INR. Informally, we consider the question of how
to learn temporal patterns in the basis elements that will improve the forecasting accuracy. Since “good”
temporal patterns are highly dependent on the specific forecasting task, it is difficult to define them in a
domain-agnostic way. Therefore, we approach this problem through the lens of the ridge regression employed
by DeepTime, asking instead how to learn basis elements that are better suited for ridge regression. In the
following, we identify key properties of such a basis and propose a regularization objective to encourage these
properties during the training process.

We first note the sharp contrast between our method and traditional regularization techniques to improve
the conditioning of linear regression on correlated variates, e.g., (Adnan & Hura Ahmad, 2006; Paul, 2006;
Herawati et al., 2018; Chan et al., 2022). As a rule, such methods assume that the correlated variates are
specified externally to the problem, and then seek to process them one way or another to minimize the
impact of the collinearity on the regression process. In contrast, the INR representation in DeepTime is
entirely learned; there are no externally specified collinear variates to disentangle. Our method exploits the
unique freedom in this setting to construct these variates specifically such that they lead to a well-conditioned
regression problem.

Linear regression problems have been the subject of numerous theoretical analyses owing to their simplicity
and efficiency. In the following, we use the theoretical results from Krikheli & Leshem (2021) to develop
an understanding of how the basis influences the prediction errors. Theorem III.1 in (Krikheli & Leshem,
2021) suggests that the smallest and the largest eigenvalues (λmin and λmax) of the sample covariance matrix
influence the sample-efficiency for a required error threshold. Therefore, for a given number of train samples,
a basis whose covariance matrix has larger λmin and smaller λmax would result in lower prediction error.
Motivated by this observation, we propose to improve the ridge regression optimization by controlling the
eigenvalues of the covariance matrix through a regularization term.
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In standard applications, linear regression is applied directly to observed data with a fixed data-determined
covariance matrix. In contrast, the basis zτ in our case is learned, enabling direct control of the covariance
matrix properties. While it is possible in principle to directly minimize the largest eigenvalue and maximize
the smallest eigenvalue of the sample covariance matrix, the key parameters in the theorems of Krikheli &
Leshem (2021), we have found it more practical to make two variations as discussed below.
4.1 Centered covariance matrix regularizer
Motivated by the theory of Krikheli & Leshem (2021) on robust regression, we aim to develop a regularizer
that encourages the INR to learn a basis with a better-conditioned covariance matrix. Instead of regularizing
the uncentered covariance matrix, which arises directly in the theory, we instead regularize the centered
covariance matrix,

Gθ = 1
L + H

ZZ⊤ − µµ⊤, (4)

where Gθ(ij) indicates the covariance between the i-th and j-th basis elements, Z = [Zℓ; Zh] is the con-
catenation of the lookback and forecast bases and µ = 1

L+H

∑
τ zτ ∈ RD is the mean along the temporal

axis for each of the D basis dimensions. Compared to regularizing the uncentered covariance matrix, this
approach leaves the absolute means of the basis elements unconstrained; preliminary experiments suggested
this flexibility was advantageous to the learning process.

From the Weyl inequalities, we show below that controlling the eigenvalues of the centered covariance matrix
will also control most of the eigenvalues of the uncentered covariance matrix. The exception is the largest
eigenvalue, which can be poorly controlled if the basis elements are large.
Theorem 1. (Weyl, 1912) For Hermitian matrices A, B ∈ Cn, the eigenvalues of A + B is related to the
eigenvalues of the individual matrices as follows:

λi+j−1(A + B) ≤ λi(A) + λj(B), i + j ≤ n + 1 (5)
λi(A) + λj(B) ≤ λi+j−n(A + B), i + j ≥ n + 1 (6)

where i, j = 1, . . . , n and λn ≤ λn−1 ≤ · · · ≤ λ1.

Specifically, if A = Gθ, B = µµ⊤ and A + B = 1
L+H ZZ⊤, we can find upper- and lower-bounds for the

eigenvalues of the uncentered covariance matrix∗. Considering i = n and j = n in Equation (6), we conclude
that λn(Gθ) ≤ λn

(
1

L+H ZZ⊤
)

. That is, the smallest eigenvalue of the uncentered covariance matrix (which
must not be too small, according to the theory of Krikheli & Leshem (2021)) is lower-bounded by the smallest
eigenvalue of the centered covariance Gθ. Thus, it is sufficient to control the smallest eigenvalue via Gθ.
Considering j = 1 and i = 1 in Equation (5), we see that λ1

(
1

L+H ZZ⊤
)

≤ λ1(Gθ) + µ⊤µ. That is, the
largest eigenvalue of the uncentered covariance matrix can exceed that of Gθ by µ⊤µ for basis means µ.

In practice, we have found that the INR generally does not appear to learn basis elements with pathologically
large means. The INR initialization and training protocols do not seem conducive to representing such
functions a priori, and we would expect the forecast error term to be sufficient to prevent them from emerging
during training. Conversely, as noted above, our early experiments empirically showed that the extra flexibility
of unconstrained basis means appears to be very advantageous to the training process. Thus, we find that
regularizing Gθ instead of the uncentered covariance matrix is the more practical approach.
4.2 Indirect regularization of eigenvalues
In our preliminary experiments, directly regularizing the largest and smallest eigenvalues of Gθ led to
instabilities in the optimization process. Instead, we found it more tractable and effective to regularize Gθ

towards the identity matrix, thereby regularizing all of its eigenvalues towards 1, using a term of the form:

LCov(θ) = 1
D2

 ∑
1≤i̸=j≤D

Gθ(ij)2 +
∑

1≤i≤D

(Gθ(ii) − 1)2

 = 1
D2 ∥Gθ − I∥2

F , (7)

where ∥·∥F stands for Frobenius norm. Intuitively, the first sum in LCov(θ) penalizes non-zero covariances
between elements in the centered basis, while the second sum encourages the variances of each element in the

∗Note that since (µµ⊤)µ = µ(µ⊤µ) = (µ⊤µ)µ, and since µµ⊤ is rank one, the only non-zero eigenvalue of µµ⊤ is µ⊤µ ≥ 0.

6



Published in Transactions on Machine Learning Research (01/2025)

centered basis to be close to 1. Therefore, when LCov(θ) is small the centered basis is closer to orthonormal,
and it is orthonormal if and only if Gθ equals the identity matrix. The fact that all the eigenvalues of Gθ

lie within an interval near 1, with the size of the interval upper-bounded in proportion to LCov(θ), directly
follows from Theorem 2 and we refer the reader to Appendix A for further details.
Theorem 2. (Gershgorin, 1931); or, e.g., (Johnson & Horn, 1985) for an English presentation.
Let A be a complex n × n matrix with entries aij. For i ∈ {1, . . . , n} let Ri be the sum of the absolute values
of the non-diagonal entries in the i-th row:

Ri =
∑
j ̸=i

|aij |. (8)

Let D(aii, Ri) ⊂ C be a closed disc centered at aii with radius Ri. Such a disc is called a Gershgorin disc.

Then every eigenvalue of A lies within at least one of the Gershgorin discs D(aii, Ri).

Although the theory of Krikheli & Leshem (2021) does not directly require all eigenvalues to be near 1 for
regression to be robust, this is certainly a sufficient condition for their robustness results to apply. Specifically,
this theory’s regression error bounds diverge as the smallest eigenvalue of the uncentered covariance matrix
approaches zero, which is an outcome that LCov(θ) directly discourages.

4.3 Summary of DeepRRTime
In summary, our proposed method, DeepRRTime, differs from the original framework of DeepTime by altering
the primary objective for the outer loop of training to the following:

LForecast(y, ŷ, θ) + λ2LCov(θ), (9)
where λ2 is the covariance regularizer coefficient.

Constraining LCov(θ) provably improves the conditioning of the INR basis. The smallest eigenvalue of the
uncentered covariance matrix is discouraged from being too small, with an upper bound of its distance below 1
controlled in proportion to LCov(θ). The largest eigenvalue of the centered covariance matrix is also bounded
near 1, with the largest eigenvalue of the uncentered covariance matrix growing only insofar as the basis means
are large (which does not appear to occur in practice). As we show in Figure 6 in the Appendix, minimizing
Equation (9) does reduce LCov of the DeepRRTime model substantially compared to DeepTime. In fact, LCov
grows with training epochs for DeepTime, suggesting that the basis is becoming increasingly ill-conditioned
over time. In the following section, we demonstrate empirical evidence to support these views: DeepTime
indeed exhibits the instabilities that one would expect from a correlated basis, whereas DeepRRTime exhibits
the robustness we anticipated from a basis better suited for regression.

5 Results
In this section, we evaluate the effectiveness of our regularization method, DeepRRTime, on real-world
datasets and compare it with relevant baselines. In addition to the regular timeseries forecasting problem,
we also test its robustness in three more challenging settings to illuminate advantages of the proposed
regularization technique: forecasting with missing values in the lookback window, training with reduced
dataset size, and forecasting on a finer time grid at test time than the one used during training.

5.1 Experimental setup
For evaluation, we use 6 real-world benchmarks for LTSF which include Electricity Transformer Temperature
(ETTm2), Electricity Consumption Load (ECL), Exchange, Traffic, Weather, and Influenza-like Illness (ILI),
detailed in Appendix B. For each dataset, we evaluate our model on tasks with four distinct forecast horizons,
as is standard practice in the related literature. We also use the standard train, validation, and test sets
splits: 60/20/20 for ETTm2 and 70/10/20 for the remaining 5 datasets (Woo et al., 2023). We preprocess
each dataset by standardization based on train set statistics. To compare our method with other approaches,
we employ two metrics: mean squared error (MSE) and mean absolute error (MAE). For each experiment,
we report error statistics across 10 random network initializations: only average errors are reported in the
main text, with standard deviations included in the Appendix. Hyperparameter selection, when applied, is
performed for the lookback length multiplier µ which defines the length of the lookback window L relative
to the prediction horizon H as L = µH. We search through the values µ ∈ {1, 3, 5, 7, 9}, and select the
best value based on the validation loss. Throughout this work, we use identical values for all common
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hyperparameters of DeepTime and DeepRRTime besides the lookback multiplier µ. We recompute the results
of DeepTime using the original open source code implementation, and report errors over 10 random network
initializations. We emphasize that our implementation is largely based on the original code of DeepTime and
the proposed regularization requires minimal code changes. Please refer to Appendix C for a complete list of
hyper parameters and further implementation details.
5.2 Multivariate forecasting
In Table 1, we consider the regular multivariate time-series forecasting problem and compare our proposed
approach, DeepRRTime, with other time-index models for multivariate time-series forecasting including
TimeFlow (Naour et al., 2024) and Gaussian Processes (GP) (Rasmussen, 2004). We emphasize the comparison
of DeepRRTime with DeepTime in particular, to understand the relative benefits of our proposed regularization.
We also compare DeepRRTime to historical-value models including recent Transformer-based architectures
such as PatchTST (Nie et al., 2023) as well as NLinear, a linear timeseries forecasting model, shown to be
competitive with many of the far more computationally expensive Transformer models (Zeng et al., 2022).
Lastly, we include the performance of a simple martingale model that outputs the last observed value as a
forecast and was shown to be competitive on some LTSF benchmarks. Additionally, Tables 5a and 5b in the
Appendix extends the comparison of DeepRRTime to a broader set of historical-value models including NS
Transformer (Liu et al., 2022), N-HiTS (Challu et al., 2023), ETSFormer (Woo et al., 2022), FEDformer (Zhou
et al., 2022), CrossFormer (Wang et al., 2022), TimesNet (Wu et al., 2023) and iTransformer (Liu et al.,
2023). All experiments in this section are conducted with the regularization coefficient fixed to λ2 = 1, as
jointly optimizing λ2 with the lookback multiplier µ for the full set of benchmarks was prohibitively expensive.

Time-index models Historical-value models
DeepRRTime DeepTime GP TimeFlow NLinear Martingale PatchTST

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
T

m
2 96 0.166 0.258 0.166 0.258 0.442 0.422 0.269 0.322 0.167 0.255 0.266 0.328 0.166 0.256

192 0.224 0.300 0.223 0.299 0.605 0.505 0.394 0.399 0.221 0.293 0.340 0.371 0.223 0.296
336 0.276 0.338 0.278 0.339 0.731 0.569 0.523 0.471 0.274 0.327 0.412 0.410 0.274 0.329
720 0.368 0.397 0.383 0.411 0.959 0.669 0.663 0.557 0.368 0.384 0.521 0.465 0.362 0.385

EC
L

96 0.137 0.238 0.137 0.238 0.503 0.538 0.141 0.240 0.141 0.237 1.588 0.946 0.129 0.222
192 0.152 0.251 0.152 0.252 0.505 0.543 0.155 0.251 0.154 0.248 1.595 0.950 0.147 0.240
336 0.165 0.267 0.166 0.268 0.612 0.614 0.170 0.268 0.171 0.265 1.617 0.961 0.163 0.259
720 0.202 0.303 0.202 0.302 0.652 0.635 0.203 0.300 0.210 0.297 1.647 0.975 0.197 0.290

Ex
ch

an
ge 96 0.078 0.197 0.079 0.199 0.136 0.267 0.307 0.395 0.089 0.208 0.081 0.196 0.088* 0.207*

192 0.153 0.284 0.152 0.285 0.229 0.348 1.450 0.658 0.180 0.300 0.167 0.289 0.191* 0.312*
336 0.257 0.375 0.324 0.424 0.372 0.447 3.691 1.063 0.331 0.415 0.305 0.396 0.358* 0.436*
720 0.541 0.540 0.675 0.592 1.135 0.810 8.184 1.626 1.033 0.780 0.823 0.681 0.932* 0.728*

Tr
affi

c 96 0.390 0.274 0.390 0.274 1.112 0.665 2.623 0.287 0.410 0.279 2.723 1.079 0.360 0.249
192 0.402 0.278 0.402 0.278 1.133 0.671 5.621 0.305 0.423 0.284 2.756 1.087 0.379 0.256
336 0.416 0.285 0.416 0.289 1.274 0.723 23.648 0.331 0.435 0.290 2.791 1.095 0.392 0.264
720 0.450 0.307 0.450 0.308 1.280 0.719 15.013 0.357 0.464 0.307 2.811 1.097 0.432 0.286

W
ea

th
er 96 0.166 0.222 0.167 0.223 0.395 0.356 0.186 0.242 0.182 0.232 0.259 0.254 0.149 0.198

192 0.207 0.260 0.207 0.260 0.450 0.398 0.252 0.299 0.225 0.269 0.309 0.292 0.194 0.241
336 0.251 0.298 0.252 0.300 0.508 0.440 0.318 0.343 0.271 0.301 0.377 0.338 0.245 0.282
720 0.312 0.348 0.313 0.350 0.498 0.450 0.393 0.394 0.338 0.348 0.465 0.394 0.314 0.334

IL
I

24 2.317 1.044 2.558 1.115 2.331 1.036 3.199 1.228 1.683 0.858 6.587 1.701 1.319 0.754
36 2.253 1.022 2.264 1.042 2.167 1.002 3.166 1.212 1.703 0.859 7.130 1.884 1.579 0.870
48 2.292 1.033 2.302 1.027 2.961 1.180 3.128 1.180 1.719 0.884 6.575 1.798 1.553 0.815
60 2.301 1.035 2.292 1.030 3.108 1.214 3.563 1.277 1.819 0.917 5.893 1.677 1.470 0.788

Table 1: Comparison of DeepRRTime with time-index models on multivariate benchmarks for long sequence
time-series forecasting. For reference, we also provide the corresponding results for representative historical-
value models. Best results for time-index models are bolded, and best results overall are colored in blue.
*The results of PatchTST on the Exchange dataset were not reported by the authors and are therefore
computed by us while the remaining results are obtained from the respective papers.
We summarize our findings from these experiments as follows:
(a) DeepRRTime matches or exceeds the performance of other time-index models overall.

DeepRRTime achieves the best performance out of the time-index models in 38 out of 48 settings in
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Table 1. Moreover, considering the standard deviations and the fourth digit of precision reported in
Table 6 in the Appendix, we find that the cases where DeepTime outperforms DeepRRTime are generally
not statistically significant: only the difference in MSE on ECL/720 comes close, with a difference
slightly exceeding two standard errors. Similarly, the underperformance relative to GP on ILI/24 is
not statistically significant, although the underperformance relative to TimeFlow in 1 of 2 metrics
on ECL/720 and relative to GP on ILI/36 are significant. Altogether, accounting for measurement
uncertainty, DeepRRTime matches or exceeds the other time-index models in 45 out of 48 results, and
matches or exceeds DeepTime in all settings. Conversely, 17 of the cases where DeepRRTime outperforms
DeepTime are statistically significant as determined by a one-sided Welch’s t-test with a significance
level of 0.05. Most notably, the covariance regularization introduces significant improvements on the
Exchange dataset, especially on the longest forecast horizons (336, 720) where we achieve between 10%
and 20% improvement in MAE and MSE over DeepTime. Altogether, these results suggest that the
DeepRRTime regularizer is a clear improvement to DeepTime’s already state-of-the-art performance
among time-index models.

(b) DeepRRTime achieves state-of-the-art performance on the challenging Exchange dataset and
performs comparably with historical-value models on other datasets. Despite the improvements
of DeepRRTime over DeepTime, PatchTST outperforms both almost uniformly on 5 out of 6 of the
LTSF benchmarks. We find this suggestive of a strong inductive bias in the PatchTST model that is
very beneficial to modelling many types of time-series data. However, we see that both DeepTime and
DeepRRTime outperform PatchTST by a large margin on the Exchange dataset, suggesting this same
inductive bias can be counterproductive for some data types. The Exchange dataset is considered to be a
very challenging LTSF benchmark due to its low signal-to-noise ratio and its low degree of stationarity
(see Table 8 in the Appendix reporting the ADF test statistic (Liu et al., 2022), a measure of non-
stationarity). Indeed, the authors of PatchTST (Nie et al., 2023) acknowledged omitting Exchange from
their experiments for this reason. Besides PatchTST, Table 5a in the Appendix shows that DeepRRTime
outperforms the other Transformer-based historical-value models uniformly on ECL, Exchange, and
Traffic, and on nearly all the ETTm2 metrics, although results are more mixed on Weather and ILI
datasets.

The results of this section demonstrate that DeepRRTime is a state-of-the-art time-index model, and that
time-index models can be competitive with state-of-the-art historical-value models in at least some cases.
Although PatchTST still exhibits a strong advantage in predictive performance on many LTSF datasets, it is
also worth noting that time-index models have other practical advantages. For one, time-index models are
generally less computationally expensive, especially at inference time (in particular, DeepRRTime is much
more efficient than PatchTST as shown in Table 11 in Appendix). The next several sections explore use cases
highlighting other putative advantages of time-index models over historical-value models, and demonstrate
that the regularization added to DeepRRTime is key to capitalizing on these advantages.

Evaluation No missing values 50% missing lookback values
Average improvement Highest improvement Average improvement Highest improvement

Train portion Data MSE MAE MSE MAE MSE MAE MSE MAE

Full

ETTm2 1.05% 0.84% 3.92% 3.41% 4.15% 3.21% 8.66% 5.77%
ECL 0.15% 0.11% 0.60% 0.40% 0.50% 0.56% 0.94% 0.93%

Exchange 10.28% 5.42% 20.68% 11.56% 24.46% 11.58% 53.66% 23.52%
Traffic 0.00% 0.43% 0.00% 1.38% 0.44% 0.88% 0.71% 1.60%

Weather 0.33% 0.42% 0.60% 0.67% -0.11% 0.12% 0.50% 0.72%
ILI 2.49% 1.80% 9.42% 6.37% 1.85% 0.99% 6.84% 3.97%

10% of data

ETTm2 22.65% 16.39% 41.94% 28.80% 23.75% 16.92% 42.33% 29.20%
ECL 14.64% 13.07% 20.40% 16.96% 10.13% 8.52% 16.59% 12.12%

Traffic 0.43% 1.21% 0.65% 1.94% 0.52% 0.96% 0.68% 0.99%
Weather 40.53% 31.11% 60.36% 46.70% 46.92% 37.62% 60.95% 47.89%

Table 2: Summary of improvements introduced with the proposed regularizer (i.e., DeepTime vs DeepRRTime)
for all combinations of training (e.g., full-data vs 10% of training data) and evaluation (e.g., 50% missing
lookback values vs no missing values). We observe that the regularization technique introduces higher
improvements for more challenging settings of train and/or evaluation. For each dataset, we average results
over 4 forecast horizons and report average and highest relative improvements in terms of MSE and MAE.
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Figure 2: Plots of mean squared error (MSE) of DeepRRTime and DeepTime as a function of missing lookback
values percentage for different forecast horizons on Exchange dataset. The shadow areas report standard
deviations over 10 network initializations. While the performance of DeepTime deteriorates significantly for
higher missing rates, our model exhibits a remarkable level of robustness to the missing values, even when
90% of the values are missing.

50% missing lookback values No missing values
Methods DeepTime DeepRRTime DeepRRTime
Metrics MSE MAE MSE MAE MSE MAE

ET
T

m
2 96 0.200 0.301 0.183 0.284 0.165 0.258

192 0.233 0.315 0.230 0.312 0.224 0.300
336 0.282 0.347 0.278 0.343 0.276 0.337
720 0.383 0.414 0.363 0.394 0.368 0.397

EC
L

96 0.155 0.263 0.154 0.262 0.136 0.237
192 0.166 0.274 0.165 0.272 0.151 0.250
336 0.180 0.289 0.179 0.287 0.165 0.266
720 0.215 0.319 0.214 0.319 0.201 0.302

Ex
ch

an
ge 96 0.175 0.268 0.081 0.205 0.077 0.197

192 0.166 0.303 0.158 0.292 0.152 0.284
336 0.311 0.416 0.259 0.379 0.256 0.375
720 0.665 0.593 0.516 0.532 0.541 0.539

50% missing lookback values No missing values
Methods DeepTime DeepRRTime DeepRRTime
Metrics MSE MAE MSE MAE MSE MAE

Tr
affi

c 96 0.417 0.295 0.417 0.293 0.389 0.273
192 0.424 0.297 0.422 0.295 0.401 0.278
336 0.438 0.305 0.435 0.300 0.416 0.285
720 0.475 0.325 0.473 0.322 0.450 0.307

W
ea

th
er 96 0.176 0.242 0.177 0.243 0.166 0.222

192 0.216 0.275 0.218 0.277 0.207 0.260
336 0.262 0.314 0.260 0.312 0.251 0.298
720 0.318 0.359 0.316 0.357 0.312 0.348

IL
I

24 2.571 1.120 2.395 1.076 2.317 1.043
36 2.309 1.046 2.291 1.033 2.252 1.022
48 2.352 1.032 2.344 1.039 2.291 1.033
60 2.328 1.033 2.341 1.039 2.301 1.034

Table 3: Our covariance regularization introduces further improvements upon DeepTime when forecasting
with 50% of lookback values missing. For reference, we also include the results of DeepRRTime when the
whole lookback window is available. See Table 9 for the standard-deviations.

5.3 Missing values in the lookback window

We now explore a more challenging setting to showcase additional benefits of the covariance regularization:
forecasting with missing observations in the lookback window. In contrast to historical-value models, which
typically assume a fixed lookback window, time-index models can, in principle, handle missing values in
lookback windows without any extra architectural modifications even when trained with regularly-sampled
training data (i.e., no missing values). While other model families, such as Neural ODEs (Rubanova et al.,
2019) and Graph Networks (Yalavarthi et al., 2024), have been designed to handle irregular time-series, we
do not compare to them in this work and focus instead on time-index models. We will show in this section,
however, that although DeepTime is technically capable of making forecasts in spite of missing values, it does
not perform very well in this setting. In contrast, we find DeepRRTime is extremely robust to missing values
in the lookback window, consistent with the expected advantages of learning a better-conditioned basis.

For this experiment, we do not change the training of DeepTime and DeepRRTime, but randomly mask out
50% of the samples in the lookback window at test time when computing the regression coefficients W ∗ and b∗

(Equation 1). Table 3 presents the performance of both models in this setting, compared to the performance
of DeepRRTime without missing lookback values. We notice that DeepRRTime is more resilient to this
test than DeepTime on all datasets except Weather; on the shortest two horizons of Weather, DeepRRTime
underperforms DeepTime by a statistically significant but nonetheless small amount. Importantly, the missing-
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(a) No missing lookback values

10% of data Full data
Methods DeepTime DeepRRTime DeepRRTime
Metrics MSE MAE MSE MAE MSE MAE

ET
T

m
2 96 0.210 0.306 0.181 0.276 0.165 0.258

192 0.285 0.357 0.241 0.313 0.224 0.300
336 0.374 0.412 0.301 0.351 0.276 0.337
720 0.653 0.566 0.379 0.403 0.368 0.397

EC
L

96 0.200 0.313 0.159 0.260 0.136 0.237
192 0.209 0.323 0.175 0.276 0.151 0.250
336 0.231 0.343 0.193 0.292 0.165 0.266
720 0.264 0.365 0.249 0.342 0.201 0.302

Tr
affi

c 96 0.414 0.288 0.411 0.283 0.389 0.273
192 0.428 0.302 0.425 0.299 0.401 0.278
336 0.446 0.298 0.446 0.295 0.416 0.285

W
ea

th
er 96 0.273 0.346 0.188 0.252 0.166 0.222

192 0.394 0.435 0.256 0.317 0.207 0.260
336 0.535 0.509 0.344 0.388 0.251 0.298
720 0.900 0.713 0.357 0.380 0.312 0.348

(b) 50% missing lookback values

10% of data Full data
Methods DeepTime DeepRRTime DeepRRTime
Metrics MSE MAE MSE MAE MSE MAE

ET
T

m
2 96 0.214 0.309 0.180 0.277 0.183 0.284

192 0.287 0.359 0.239 0.312 0.230 0.312
336 0.374 0.412 0.299 0.350 0.278 0.343
720 0.652 0.565 0.376 0.400 0.363 0.394

EC
L

96 0.217 0.330 0.181 0.290 0.154 0.262
192 0.217 0.331 0.192 0.299 0.165 0.272
336 0.240 0.351 0.220 0.325 0.179 0.287
720 0.270 0.370 0.259 0.352 0.214 0.319

Tr
affi

c 96 0.438 0.303 0.435 0.300 0.417 0.293
192 0.448 0.315 0.445 0.312 0.422 0.295
336 0.473 0.316 0.472 0.313 0.435 0.300

W
ea

th
er 96 0.313 0.389 0.185 0.249 0.177 0.243

192 0.425 0.464 0.237 0.293 0.218 0.277
336 0.543 0.518 0.317 0.364 0.260 0.312
720 0.886 0.710 0.346 0.370 0.316 0.357

Table 4: The proposed regularizer further improves forecast upon DeepTime when models are trained using
10% of the most recent data. For reference, we also provide the results when using the full training dataset.

value experiment helps to reveal differences between DeepTime and DeepRRTime that were not evident in
the regular forecasting setup — in Table 2, aggregating the improvements of DeepRRTime over DeepTime in
different scenarios, we generally observe that the difference between DeepTime and DeepRRTime widens in
the missing-value setting as compared to the default setting: examples where average MSE improves are ECL
(0.15%→0.50%), Traffic (0.00%→0.44%), ETTm2 (1.05%→4.15%) and Exchange (10.28%→24.46%). Based
on the Welch’s one-sided t-test, we find that DeepRRTime achieves statistically significant improvements in
30 out of 40 metrics on the missing-value test. Interestingly, the state-of-the-art performance of DeepRRTime
on the longer forecasting horizons of Exchange barely degrades at all, compared to its performance without
masked inputs, illustrating the robustness conferred by our regularization.

We further extend our analysis and plot MSE of DeepRRTime and DeepTime with missing rates of 25%, 50%,
75%, 90%, and 99% on the Exchange dataset in Figure 2. The plots show that while the MSE of DeepTime
grows up to an order of magnitude with increasing masking rate, DeepRRTime exhibits little degradation
even when 90% of the lookback values are missing. Also see Figure 8 in Appendix for results extended to
other datasets.

In summary, the regularization we have added to DeepRRTime enables robust forecasting in the presence of
missing lookback values. This is a putative advantage of time-index models over historical-value models, but
our experiments reveal that the original DeepTime model does not actually perform stably in this setting. We
also reiterate that most historical-value models, including PatchTST, cannot natively operate with lookback
window samples that differ from the exact sequence on which they were trained ( for e.g., see Table 12 for an
evaluation of Patch-TST with missing-values using linear-interpolation/zero-substitution to handle missing
values): the forward evaluation of these models is simply undefined for sequences of a different length. We
expect that the robustness of DeepRRTime to missing samples in the lookback window should be particularly
useful in certain real-world scenarios where only irregularly sampled values are available at test time.

5.4 Smaller training dataset size
A common method to evaluate a new regularization technique is to test its ability to improve generalization
when training with smaller datasets (Srivastava et al., 2014). To create smaller training datasets, we select
the last 10% of the training set, resulting in 10× fewer observations. As this leads to reduced updates per
epoch as compared to the default training scenario, we increase the number of epochs, early-stopping patience
and warmup epochs by 10×. We normalize the data using mean and standard deviation statistics estimated
using the reduced training dataset. To obtain error metrics comparable to the other settings, we report MSE
and MAE obtained by renormalizing model outputs using statistics estimated using the full training dataset.
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Figure 3: Plots showing influence of the regularizer strength λ2 on MSE when models are trained on 10% of the
most recent data. The results are shown for different datasets and forecast horizons (color-coded according to the
legend). The baseline performance of DeepTime is shown with dashed lines, while performance of DeepRRTime is
shown with solid lines. The shadow areas report standard deviations over 10 network initializations. We observe that
the covariance regularization introduces significant improvements with increasing regularization strength. Note that
λ2 is shown on a logarithmic-scale.

We exclude the Exchange and ILI datasets as well as Traffic/720 from this experiment, since reducing these
datasets 10× leaves too few training samples to form a single training batch. In this section, we evaluate
DeepRRTime by selecting λ2 from {1, 10, 25, 50, 75, 100} based on the validation loss.

Table 4 presents a comparison between DeepRRTime and DeepTime when trained on 10% of data for both
the settings without missing lookback values and with 50% of lookback values missing. As observed in
Table 4a, DeepTime experiences a significant performance drop when trained on reduced datasets. In contrast,
our regularization considerably narrows this performance gap, with DeepRRTime outperforming DeepTime
by approximately 20%, and the average MSE of DeepRRTime increasing by 11.8% with reduced dataset
sizes compared to a 30% increase in the case of DeepTime. A similar trend is observed in Table 4b when
forecasting with missing lookback values. Figure 3 shows the performance of DeepRRTime on every dataset
for different values of λ2 varying from λ2 = 0 (i.e., no regularization corresponding to DeepTime) to λ2 = 100.
These results suggest that, in most cases, tuning λ2 for a specific problem improves performance, and that
the results in Section 5.2 might be further improved if sufficient resources were allocated to training with
different values of λ2. Based on these experiments, we suggest that our regularization objective is particularly
likely to add value over the unregularized DeepTime when training on relatively small training datasets.
5.5 Test-time interpolation

𝐿
𝐿 + 𝐻 − 1

𝜏 = 0 Lookback Window Forecast Horizon 𝜏 = 1
𝐿 − 0.5
𝐿 + 𝐻 − 1

𝐿 − 1
𝐿 + 𝐻 − 1

𝐿 − 2
𝐿 + 𝐻 − 1

𝐿 + 2
𝐿 + 𝐻 − 1

Figure 4: An illustration of the test-time interpolation setting where the time-index model is used to generate
forecasts at 2× the frequency it was trained at. At train time, the grey points on the time grid are used to
estimate the linear-regression parameters while the green points on the time grid are used to compute the
train loss. At test time, we exploit the flexibility of time-index models to interpolate between the training
time grid (i.e., green points) to forecast at a higher frequency (i.e. both green and red points). Note that the
red points on the time grid denote time indexes that are only seen at test time.

In this section, we consider the problem of forecasting at a greater frequency at test-time (e.g., every 30 minutes)
using a model trained to forecast at a smaller frequency (e.g., every hour). Recall that the DeepTime model
first solves the least-squares optimization problem defined in Equation (1) to compute the optimal parameters
W ∗, b∗ based on lookback observations; next, the optimal parameters are applied to the basis zτ = fθ(τ) to
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Figure 5: Comparison of our regularized method with the baseline on the test-time interpolation setting
on the ETTm2 dataset. The shadow areas report standard deviations over 10 network initializations. We
observe that DeepRRTime achieves significant improvements over DeepTime when forecasting at a frequency
that is ν times higher at test time than the frequency observed during training.

generate the forecast for the following values of τ :
{

L
L+H−1 , L+1

L+H−1 , · · · 1
}

where L is the lookback window
and H is the forecast horizon. If the model is trained over hourly observations, then 1

L+H−1 corresponds to a
temporal difference of one hour. In order to use this model to generate a forecast at a frequency of 30 minutes,
we could use the following sequence of time indexes instead:

{
L−0.5

L+H−1 , L
L+H−1 , L+0.5

L+H−1 , L+1
L+H−1 , · · · 1

}
, see

Figure 4 for an illustration. More generally, to forecast at an integer frequency ν higher at test time compared
to train time, we apply the parameters W ∗, b∗ over the basis representation obtained for the following time
indexes:

{
νL−1

ν(L+H−1) , νL
ν(L+H−1) , νL+1

ν(L+H−1) , · · · 1
}

. Note that this setting interpolates between time indexes
seen by the network at train time and evaluates the network in terms of its ability to generalize to novel time
indexes seen only at test time.

To evaluate the model’s ability to forecast at a higher frequency, we subsample the training data at different
frequencies, using the ETTm2 dataset with observations spaced 15 minutes apart. For instance, when
ν = 4, the training data is subsampled to simulate observations at hourly intervals. At test time, we
generate forecasts at the original higher frequency (e.g., every 15 minutes). We evaluate models on different
combinations of ν and forecast horizons H, choosing µ ∈ {1, 3, 5, 7, 9} for both DeepTime and DeepRRTime
and λ2 ∈ {1, 10, 50} for DeepRRTime based on the validation loss. The results presented in Figure 5 show that
covariance regularization significantly improves performance across all (ν, H) pairs compared to DeepTime.

6 Conclusion
Our simple, inexpensive covariance regularizer leads to improvements on several LTSF benchmarks, including
very significant improvements on the Exchange dataset. The enhanced robustness is particularly evident in
the more challenging test settings: where lookback window values are missing at test time, forecasting is done
at a higher frequency than training, or training is restricted to datasets with reduced sizes. These results
suggest that regularization can greatly enhance deep time-index models. While we have only conducted
preliminary hyperparameter tuning in this work, we expect that further tuning could potentially yield
additional performance enhancement in practice.

7 Future Work

We believe that the results shown in our work open new opportunities for further research of deep time-index
models. Moreover, we believe that the impact of our regularization method is not limited to the DeepTime
model or time-series forecasting and consider the following directions for future work. Below, we list several
directions for future work that we consider promising and important:

• Efficient hyperparameter tuning. Future work may consder exploring learning the optimal λ2
and µ through gradient-based optimization or, more broadly speaking, employing techniques for
automated hyperparameter tuning methods. Furthermore, developing techniques to enhance the
computational efficiency of hyperparameter search presents a valuable future research direction in
the field of time-index models as well as time-series forecasting, in general.
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• Direct control of covariance matrix eigenvalues. Given the demonstrated efficacy of the
simple covariance-regularization technique presented in our work, we believe that directly controlling
the eigenvalues of the covariance matrix may be a fruitful direction for developing more powerful
regularization techniques.

• Non-linear generalization. The benefits of the covariance regularization presented in our paper
can motivate further exploration of time-index models employing non-linear base-learners (e.g., an
MLP operating on the meta-learner’s feature space) and regularization techniques that go beyond
linear correlations.

• Extensions to other applications. We believe that our proposed regularization is not specific to
time-series applications and can benefit other applications that use linear networks atop meta-learner’s
representations (e.g., (Bertinetto et al., 2019b)) which should be considered as future work.

• Extending the evaluation to more benchmarks. Given that deep time-index models is an
emerging research area, it is important to understand their competitive advantages over better
studied historical-value models by expanding the evaluation to diverse datasets: such as datasets with
high frequency seasonal patterns, highly non-stationary behavior, or data from specific application
domains.
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Figure 6: LCov[Gθ] = ∥Gθ − I∥F plotted across training epochs on the ETTm2 dataset with forecast horizon
96 and lookback multiplier µ = 1. The shadow areas report standard deviations over 10 network initializations.
While ∥Gθ − I∥F for DeepTime grows with epochs, our regularizer effectively decreases this value which
results in a less mutually correlated basis. As predicted by theory discussed in Section 4, this leads to
empirical improvements discussed throughout this section.

A Connection between the DeepRRTime regularizer and eigenvalues of Gθ

By the Gershgorin circle theorem (Theorem 2), we see more precisely that when LCov(θ) is small all the
eigenvalues of Gθ will indeed be close to 1.

In the context of regularizing Gθ by LCov(θ), note first that the radii of the Gershgorin discs of Gθ are
constrained to be small when LCov(θ) is small because

R2
i [Gθ] =

 ∑
1≤i ̸=j≤D

|Gθ(ij)|

2

≤ (D − 1)
∑

1≤i̸=j≤D

Gθ(ij)2 ≤ (D − 1)D2LCov(θ). (10)

Moreover, the center of each i-th disc is close to 1 according to
(Gθ(ii) − 1)2 ≤ D2LCov(θ). (11)

For sufficiently small LCov(θ) (for any fixed choice of D) all eigenvalues therefore lie within Gershgorin discs
having small radii and centers close to 1.

Since Gθ is Hermitian, its eigenvalues are real, and for small LCov(θ) the eigenvalues must therefore lie in
small intervals near 1. In particular, the smallest eigenvalue is bounded below by

λn(Gθ) ≥ 1 −
(√

(D − 1)D2LCov(θ) +
√

D2LCov(θ)
)

= 1 −
(√

D − 1 + 1
)

D
√

LCov(θ), (12)

so when
√

LCov(θ) < 1/
(√

D − 1 + 1
)

D we have λn(Gθ) > 0 and the basis is non-degenerate. Similarly, the
largest eigenvalue of Gθ also cannot be very large when LCov(θ) is small.

B Datasets

ETTm2† (Zhou et al., 2021) - Electricity Transformer Temperature dataset provides measurements from an
electricity transformer such as load and oil temperature at a 15 minutes frequency.

ECL‡ - The Electricity Consumption Load dataset comprises electricity usage data for 321 households,
gathered between 2012 and 2014. Originally recorded every 15 minutes, the data is compiled into hourly
aggregates.

Exchange§ (Lai et al., 2018) - Dataset provides exchange rates of USD with currencies of eight countries
(Australia, United Kingdom, Canada, Switzerland, China, Japan, New Zealand, and Singapore) from 1990 to
2016 at a daily frequency.

†https://github.com/zhouhaoyi/ETDataset
‡https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
§https://github.com/laiguokun/multivariate-time-series-data
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Methods DeepRRTime PatchTST NS Transformer N-HiTS ETSformer FEDformer NLinear DLinear Martingale
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
T

m
2 96 0.166 0.258 0.166 0.256 0.192 0.274 0.176 0.255 0.189 0.280 0.203 0.287 0.167 0.255 0.167 0.260 0.266 0.328

192 0.224 0.300 0.223 0.296 0.280 0.339 0.245 0.305 0.253 0.319 0.269 0.328 0.221 0.293 0.224 0.303 0.340 0.371
336 0.276 0.338 0.274 0.329 0.334 0.361 0.295 0.346 0.314 0.357 0.325 0.366 0.274 0.327 0.281 0.342 0.412 0.410
720 0.368 0.397 0.362 0.385 0.417 0.413 0.401 0.426 0.414 0.413 0.421 0.415 0.368 0.384 0.397 0.421 0.521 0.465

EC
L

96 0.137 0.238 0.129 0.222 0.169 0.273 0.147 0.249 0.187 0.304 0.183 0.297 0.141 0.237 0.140 0.237 1.588 0.946
192 0.152 0.251 0.147 0.240 0.182 0.286 0.167 0.269 0.199 0.315 0.195 0.308 0.154 0.248 0.153 0.249 1.595 0.950
336 0.165 0.267 0.163 0.259 0.200 0.304 0.186 0.290 0.212 0.329 0.212 0.313 0.171 0.265 0.169 0.267 1.617 0.961
720 0.202 0.303 0.197 0.290 0.222 0.321 0.243 0.340 0.233 0.345 0.231 0.343 0.210 0.297 0.203 0.301 1.647 0.975

Ex
ch

an
ge 96 0.078 0.197 0.088* 0.207* 0.111 0.237 0.092 0.211 0.085 0.204 0.139 0.276 0.089 0.208 0.081 0.203 0.081 0.196

192 0.153 0.284 0.191* 0.312* 0.219 0.335 0.208 0.322 0.182 0.303 0.256 0.369 0.180 0.300 0.157 0.293 0.167 0.289
336 0.257 0.375 0.358* 0.436* 0.421 0.476 0.371 0.443 0.348 0.428 0.426 0.464 0.331 0.415 0.305 0.414 0.305 0.396
720 0.541 0.540 0.932* 0.728* 1.092 0.769 0.888 0.723 1.025 0.774 1.090 0.800 1.033 0.780 0.643 0.601 0.823 0.681

Tr
affi

c 96 0.390 0.274 0.360 0.249 0.612 0.338 0.402 0.282 0.607 0.392 0.562 0.349 0.410 0.279 0.410 0.282 2.723 1.079
192 0.402 0.278 0.379 0.256 0.613 0.340 0.420 0.297 0.621 0.399 0.562 0.346 0.423 0.284 0.423 0.287 2.756 1.087
336 0.416 0.285 0.392 0.264 0.618 0.328 0.448 0.313 0.622 0.396 0.570 0.323 0.435 0.290 0.436 0.296 2.791 1.095
720 0.450 0.307 0.432 0.286 0.653 0.355 0.539 0.353 0.632 0.396 0.596 0.368 0.464 0.307 0.466 0.315 2.811 1.097

W
ea

th
er 96 0.166 0.222 0.149 0.198 0.173 0.223 0.158 0.195 0.197 0.281 0.217 0.296 0.182 0.232 0.176 0.237 0.259 0.254

192 0.207 0.260 0.194 0.241 0.245 0.285 0.211 0.247 0.237 0.312 0.276 0.336 0.225 0.269 0.220 0.282 0.309 0.292
336 0.251 0.298 0.245 0.282 0.321 0.338 0.274 0.300 0.298 0.353 0.339 0.380 0.271 0.301 0.265 0.319 0.377 0.338
720 0.312 0.348 0.314 0.334 0.414 0.410 0.351 0.353 0.352 0.388 0.403 0.428 0.338 0.348 0.323 0.362 0.465 0.394

IL
I

24 2.317 1.044 1.319 0.754 2.294 0.945 1.862 0.869 2.527 1.020 2.203 0.963 1.683 0.858 2.215 1.081 6.587 1.701
36 2.253 1.022 1.579 0.870 1.825 0.848 2.071 0.969 2.615 1.007 2.272 0.976 1.703 0.859 1.963 0.963 7.130 1.884
48 2.292 1.033 1.553 0.815 2.010 0.900 2.346 1.042 2.359 0.972 2.209 0.981 1.719 0.884 2.130 1.024 6.575 1.798
60 2.301 1.035 1.470 0.788 2.178 0.963 2.560 1.073 2.487 1.016 2.545 1.061 1.819 0.917 2.368 1.096 5.893 1.677

(a) Best results are highlighted in bold, and second best results are underlined. *The results of PatchTST on the Exchange
dataset were not reported by the authors and are therefore computed by us while the remaining results are obtained from the
respective papers.

Methods DeepRRTime CrossFormer TimesNet iTransformer PatchTST
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
T

m
2 96 0.166 0.258 0.287 0.366 0.187 0.267 0.18 0.264 0.166 0.256

192 0.224 0.3 0.414 0.492 0.249 0.309 0.25 0.309 0.223 0.296
336 0.276 0.338 0.597 0.542 0.321 0.351 0.311 0.348 0.274 0.329
720 0.368 0.397 1.73 1.042 0.408 0.403 0.412 0.407 0.362 0.385

EC
L

96 0.137 0.238 0.219 0.314 0.168 0.272 0.148 0.24 0.129 0.222
192 0.152 0.251 0.231 0.322 0.184 0.289 0.162 0.253 0.147 0.240
336 0.165 0.267 0.246 0.337 0.198 0.3 0.178 0.269 0.163 0.259
720 0.202 0.303 0.28 0.363 0.22 0.32 0.225 0.317 0.197 0.290

Ex
ch

an
ge 96 0.078 0.197 0.256 0.367 0.107 0.234 0.086 0.206 0.088 0.207

192 0.153 0.284 0.47 0.509 0.226 0.344 0.177 0.299 0.191 0.312
336 0.257 0.375 1.268 0.883 0.367 0.448 0.331 0.417 0.358 0.436
720 0.541 0.54 1.767 1.068 0.964 0.746 0.847 0.691 0.932 0.728

Tr
affi

c 96 0.39 0.274 0.522 0.29 0.593 0.321 0.395 0.268 0.360 0.249
192 0.402 0.278 0.53 0.293 0.617 0.336 0.417 0.276 0.379 0.256
336 0.416 0.285 0.558 0.305 0.629 0.336 0.433 0.283 0.392 0.264
720 0.45 0.307 0.589 0.328 0.64 0.35 0.467 0.302 0.432 0.286

W
ea

th
er 96 0.166 0.222 0.158 0.23 0.172 0.22 0.174 0.214 0.149 0.198

192 0.207 0.26 0.206 0.277 0.219 0.261 0.221 0.254 0.194 0.241
336 0.251 0.298 0.272 0.335 0.28 0.306 0.278 0.296 0.245 0.282
720 0.312 0.348 0.398 0.418 0.365 0.359 0.358 0.347 0.314 0.334

(b) Best results amongst DeepRRTime, CrossFormer, TimesNet and iTransformer are highlighted in bold, and second best
results are underlined. The best results overall are highlighted in blue. The CrossFormer, TimesNet and iTransformer results in
this table are copied directly from Liu et al. (2023).

Table 5: Comparison of DeepRRTime with historical-value models on multivariate forecasting benchmarks
for long sequence time-series forecasting.

Traffic¶ - Dataset from the California Department of Transportation provides road occupancy rates from
862 sensors located on the freeways of the San Francisco Bay area at a hourly frequency.

Weather‖ - Dataset provides measurements of 21 meteorological indicators such as air temperature and humid-
ity throughout 2020 at a 10 minute frequency from the Weather Station of the Max Planck Biogeochemistry
Institute.

¶https://pems.dot.ca.gov/
‖https://www.bgc-jena.mpg.de/wetter/
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Methods DeepTime DeepRRTime
Metrics MSE MAE MSE MAE

ET
T

m
2 96 0.1658±0.0009 0.2581±0.0019 0.1656±0.0008 0.2585±0.0021

192 0.2227±0.0019 0.2994±0.0015 0.2241±0.0022 0.3004±0.0029
336 0.2778±0.0049 0.3386±0.0039 0.2764±0.0025 0.3378±0.0030
720 0.3830±0.0062 0.4114±0.0056 0.3681±0.0037 0.3970±0.0048

EC
L

96 0.1373±0.0002 0.2381±0.0004 0.1369±0.0002 0.2375±0.0003
192 0.1523±0.0004 0.2517±0.0005 0.1517±0.0003 0.2507±0.0004
336 0.1656±0.0006 0.2677±0.0009 0.1653±0.0003 0.2669±0.0004
720 0.2015±0.0002 0.3023±0.0003 0.2018±0.0004 0.3025±0.0005

Ex
ch

an
ge 96 0.0786±0.0018 0.1993±0.0035 0.0775±0.0005 0.1974±0.0006

192 0.1519±0.0015 0.2854±0.0019 0.1528±0.0032 0.2840±0.0025
336 0.3245±0.0287 0.4241±0.0190 0.2568±0.0087 0.3752±0.0041
720 0.6751±0.2371 0.5918±0.1004 0.5411±0.0664 0.5396±0.0301

Tr
affi

c 96 0.3902±0.0003 0.2744±0.0005 0.3899±0.0005 0.2738±0.0004
192 0.4016±0.0004 0.2784±0.0005 0.4018±0.0004 0.2784±0.0005
336 0.4160±0.0021 0.2885±0.0019 0.4162±0.0008 0.2854±0.0006
720 0.4505±0.0006 0.3078±0.0007 0.4502±0.0008 0.3073±0.0013

W
ea

th
er 96 0.1667±0.0012 0.2233±0.0015 0.1661±0.0006 0.2223±0.0010

192 0.2070±0.0010 0.2603±0.0014 0.2073±0.0005 0.2603±0.0007
336 0.2522±0.0010 0.3001±0.0009 0.2510±0.0011 0.2983±0.0016
720 0.3131±0.0008 0.3501±0.0011 0.3121±0.0007 0.3481±0.0016

IL
I

24 2.5578±0.1427 1.1151±0.0357 2.3171±0.1312 1.0437±0.0486
36 2.2642±0.1279 1.0417±0.0441 2.2527±0.0597 1.0224±0.0204
48 2.3019±0.1443 1.0270±0.0315 2.2919±0.1645 1.0330±0.0419
60 2.2921±0.1186 1.0296±0.0369 2.3014±0.1531 1.0349±0.0457

Table 6: Comparison of DeepRRTime with DeepTime on multivariate benchmarks for long sequence time-
series forecasting. Best results are highlighted in bold. The table reports mean and standard deviation over
10 random network initializations.

Hyperparameter Value

Parameters inherited
from DeepTime

Epochs 50
Learning rate 1e-3
λ1 learning rate 1.0
Warm up epochs 5
Batch size 256
Early stopping patience 7
Max gradient norm 10.0
Layer size 256
λ1 initialization 0.0
Scales [0.01, 0.1, 1, 5, 10, 20, 50, 100]
Fourier features size 4096
INR dropout rate 0.1
Lookback length multiplier, µ µ ∈ {1, 3, 5, 7, 9}

Our parameters λ2 1.0

Table 7: Hyperparameters used in our experiments. We emphasize that we do not change any of the
parameters inherited from DeepTime.
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Dataset Number of variables Frequency Number of samples ADF test statistic
Exchange 8 1 Day 7,588 -1.889
ILI 7 1 Week 966 -5.406
ETTm2 7 15 Minutes 69,680 -6.225
ECL 321 1 Hour 26,304 -8.483
Traffic 862 1 Hour 17,544 -15.046
Weather 21 10 Minutes 52,695 -26.661

Table 8: Summary of LTSF datasets with their ADF test statistics (Liu et al., 2022) where smaller ADF
means a more stationary dataset.

ILI∗∗ - Influenza-like Illness dataset provides ratio of patients seen with ILI and the total number of patients,
collected by the Centers for Disease Control and Prevention of the United States between 2002 and 2021 at a
weekly frequency.

Table 8 presents further characteristics of the datasets including number of variables and samples, frequency,
and ADF test statistic.

C Implementation details
We use the code provided by the authors of DeepTime paper while only making minimal changes related
to the proposed regularizer and the conditioning network. We do not change any of the hyperparameters
inherited from DeepTime and provide their values in Table 7. Below we repeat the description given by the
authors in their paper (Woo et al., 2023).

DeepTime model hyperparameters. DeepTime is trained using Adam optimizer (Kingma & Ba, 2014)
with a learning rate scheduler following a linear warm-up and a cosine annealing scheme. We use gradient
clipping by norm. The ridge regressor regularization coefficient, λ1, is trained at a higher learning rate
compared to the rest of meta parameters. The model is trained with early stopping based on validation
loss, with a fixed patience parameter defined as the number of epochs for which the loss can increase before
the training is stopped. We learn the ridge regression regularization coefficient parameter and constrain
it to positive values via a softplus function. We apply ReLU activation, Dropout (Srivastava et al., 2014),
and LayerNorm (Ba et al., 2016) after each INR layer. The dimension of Fourier embedding layer of INR is
defined independently of the size of other layers. Here we specify the total size of the Fourier embedding
layer where the number of dimensions for each Fourier frequency scale is computed as the size of the layer
divided by the number of scales. We refer the reader to (Woo et al., 2023) for complete details of the model.

TimeFlow implementation and reproducibility. To compare our approach with another time-index
model, TimeFlow (Naour et al., 2024), which only reports results on a subset of our benchmarks, we used the
implementation opensourced by Naour et al. (2024). The original code loads data from pre-processed files and
does not have an interface to read CSV files. We augmented the original implementation with DeepTime data
loaders to read data directly from CSV files and did our best to redefine the concepts of batches and epochs
to align with TimeFlow code’s interpretation. However, we were unable to reproduce the results reported by
the authors on the ECL and Traffic datasets. We shared our implementation with the authors and asked
them to verify the correctness of our reproduction. The authors confirmed that our implementation was
correct and identified the normalization procedure as the source of the performance difference. Upon further
investigation, we found that the discrepancy arose from TimeFlow’s use of both the train and test data to
compute statistics (i.e., mean and variance) for input data pre-processing. Following standard practices, this
paper reports the results of TimeFlow that were obtained while using train set statistics to normalize both
train and test sets.

D Univariate forecasting
We evaluate our proposed approach in the unviariate setting where the model predicts the last variable
of 2 multivariate datasets. We follow the literature and use the Exchange and ETTm2 datasets for this

∗∗https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Methods DeepTime DeepRRTime
Metrics MSE MAE MSE MAE

ET
T

m
2 96 0.2009±0.0129 0.3015±0.0151 0.1835±0.0047 0.2841±0.0063

192 0.2336±0.0073 0.3153±0.0087 0.2303±0.0048 0.3120±0.0060
336 0.2824±0.0063 0.3473±0.0061 0.2787±0.0044 0.3434±0.0054
720 0.3834±0.0077 0.4145±0.0067 0.3634±0.0028 0.3942±0.0042

EC
L

96 0.1551±0.0005 0.2638±0.0006 0.1545±0.0005 0.2620±0.0009
192 0.1667±0.0006 0.2740±0.0008 0.1659±0.0004 0.2727±0.0006
336 0.1808±0.0005 0.2897±0.0007 0.1791±0.0004 0.2870±0.0007
720 0.2150±0.0003 0.3197±0.0004 0.2146±0.0005 0.3192±0.0006

Ex
ch

an
ge 96 0.1750±0.0696 0.2683±0.0406 0.0811±0.0007 0.2052±0.0013

192 0.1668±0.0106 0.3037±0.0087 0.1582±0.0046 0.2927±0.0052
336 0.3114±0.0315 0.4162±0.0228 0.2594±0.0091 0.3797±0.0044
720 0.6655±0.1931 0.5937±0.0848 0.5168±0.0593 0.5320±0.0291

Tr
affi

c 96 0.4174±0.0005 0.2951±0.0007 0.4172±0.0007 0.2937±0.0004
192 0.4246±0.0005 0.2973±0.0004 0.4229±0.0004 0.2955±0.0003
336 0.4385±0.0007 0.3054±0.0007 0.4354±0.0004 0.3005±0.0005
720 0.4759±0.0011 0.3250±0.0011 0.4730±0.0048 0.3223±0.0044

W
ea

th
er 96 0.1766±0.0012 0.2423±0.0016 0.1778±0.0013 0.2431±0.0023

192 0.2168±0.0017 0.2758±0.0019 0.2184±0.0006 0.2772±0.0007
336 0.2620±0.0016 0.3146±0.0012 0.2607±0.0020 0.3127±0.0028
720 0.3183±0.0008 0.3596±0.0012 0.3168±0.0014 0.3570±0.0023

IL
I

24 2.5713±0.1238 1.1205±0.0255 2.3953±0.1274 1.0760±0.0493
36 2.3090±0.1166 1.0469±0.0430 2.2915±0.0495 1.0338±0.0173
48 2.3526±0.1320 1.0326±0.0294 2.3446±0.1482 1.0395±0.0407
60 2.3287±0.0835 1.0335±0.0283 2.3414±0.1340 1.0397±0.0411

Table 9: Comparison of DeepRRTime with DeepTime on multivariate benchmarks for long sequence time-
series forecasting with 50% of lookback values missing. Best results are highlighted in bold. The table
reports mean and standard deviation over 10 random network initializations.

Methods DeepRRTime DeepTime N-HiTS ETSformer FEDformer N-BEATS DeepAR Prophet ARIMA GP
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
T

m
2 96 0.071 0.192 0.072 0.194 0.066 0.185 0.080 0.212 0.063 0.189 0.082 0.219 0.099 0.237 0.287 0.456 0.211 0.362 0.125 0.273

192 0.096 0.232 0.096 0.231 0.087 0.223 0.150 0.302 0.102 0.245 0.120 0.268 0.154 0.310 0.312 0.483 0.261 0.406 0.154 0.307
336 0.121 0.265 0.120 0.264 0.106 0.251 0.175 0.334 0.130 0.279 0.226 0.370 0.277 0.428 0.331 0.474 0.317 0.448 0.189 0.338
720 0.177 0.327 0.178 0.328 0.157 0.312 0.224 0.379 0.178 0.325 0.188 0.338 0.332 0.468 0.534 0.593 0.366 0.487 0.318 0.421

Ex
ch

an
ge 96 0.086 0.226 0.086 0.225 0.093 0.223 0.099 0.230 0.131 0.284 0.156 0.299 0.417 0.515 0.828 0.762 0.112 0.245 0.165 0.311

192 0.174 0.329 0.174 0.331 0.230 0.313 0.223 0.353 0.277 0.420 0.669 0.665 0.813 0.735 0.909 0.974 0.304 0.404 0.649 0.617
336 0.302 0.445 0.308 0.452 0.370 0.486 0.421 0.497 0.426 0.511 0.611 0.605 1.331 0.962 1.304 0.988 0.736 0.598 0.596 0.592
720 0.836 0.741 0.845 0.752 0.728 0.569 1.114 0.807 1.162 0.832 1.111 0.860 1.890 1.181 3.238 1.566 1.871 0.935 1.002 0.786

Table 10: Univariate forecasting benchmarks on long sequence time-series forecasting. Best results are
highlighted in bold, and second best results are underlined.

experiment (Liu et al., 2022; Challu et al., 2023; Woo et al., 2023). We compare our approach with both time-
index models including DeepTime, Prophet (Taylor & Letham, 2018), Gaussian Processes (GP) (Rasmussen,
2004), and with historical-value models including N-HiTS (Challu et al., 2023), ETSFormer (Woo et al.,
2022), FEDformer (Zhou et al., 2022), DeepAR (Salinas et al., 2020), and ARIMA (Anderson & Kendall,
1976). We note that the baseline models Prophet, DeepAR, and ARIMA are strictly univariate. We set the
lookback multiplier to µ = 1 for this experiment and report the results and report results in Table 10. We
observe that our approach achieves the best performance across the baselines on 4 out of 16 metrics and
scores as the second one on 5 more metrics. At the same time, N-HiTS outperforms our method on all the
metrics on the ETTm2 dataset which we believe to be explained by its inductive bias for smoother data.
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Figure 7: Performance of our regularized method with on the test-time interpolation setting on the ETTm2 dataset
(λ2 = 0 corresponds to DeepTime). The shadow areas report standard deviations over 10 network initializations. We
observe that DeepRRTime achieves significant improvements when forecasting at an integer frequency ν higher at test
time as compared the frequency observed at train time.

Training Inference

Dataset/Horizon Model
Peak

memory
(GB) ↓

Time
per epoch

(s) ↓

Peak
memory
(GB) ↓

Time
per epoch

(s) ↓

Exchange/96 DeepRRTime 0.207 0.67 0.065 0.058
PatchTST 0.449 3.68 0.153 1.45

Exchange/720 DeepRRTime 2.98 1.88 0.774 0.257
PatchTST 0.491 3.89 0.208 1.41

ETTm2/96 DeepRRTime 1.05 6.39 0.448 1.43
PatchTST 1.62 12.98 0.496 3.54

ETTm2/720 DeepRRTime 1.48 8.13 1.32 2.8
PatchTST 1.7 13.51 0.556 5.24

Traffic/96 DeepRRTime 4.79 32.88 3.94 15.69
PatchTST OOM N/A N/A N/A

Table 11: We measure the wall-clock time per epoch and peak memory usage in both train and inference modes
when using PatchTST and DeepRRTime on a single NVIDIA Tesla V GPU (16GB). We observe that DeepRRTime is
consistently faster than PatchTST in terms of both training and evaluation time. We also found DeepRRTime to
be more memory efficient on average, however some exceptions exist such as Exchange/720. At the same time, we
encountered a GPU out-of-memory error for PatchTST on all forecast horizons of Traffic while there was no such
issue for DeepRRTime.
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No missing lookback values 50% missing lookback values

H
PatchTST DeepRRTime PatchTST (replace with 0) PatchTST (linear interpolation) DeepRRTime

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 0.1651±0.0010 0.2533±0.0011 0.1656±0.0008 0.2585±0.0021 0.9213±0.0580 0.6990±0.0211 0.6411±0.0478 0.5039±0.0157 0.1835±0.0047 0.2841±0.0063
192 0.2220±0.0009 0.2933±0.0007 0.2241±0.0022 0.3004±0.0029 0.9943±0.0253 0.7245±0.0096 0.5564±0.0388 0.4830±0.0141 0.2303±0.0048 0.3120±0.0060
336 0.2762±0.0009 0.3289±0.0007 0.2764±0.0025 0.3378±0.0030 1.0337±0.0247 0.7372±0.0077 0.5265±0.0417 0.4761±0.0160 0.2787±0.0044 0.3434±0.0054
720 0.3654±0.0013 0.3837±0.0006 0.3681±0.0037 0.3970±0.0048 1.0436±0.0446 0.7378±0.0160 0.5748±0.0696 0.5026±0.0268 0.3634±0.0028 0.3942±0.0042

Table 12: Comparison of DeepRRTime with PatchTST on ETTm2 with 50% of lookback values missing. We
explore two techniques to enable PatchTST forecasting with missing values: (a) replacing missing values
with 0, (b) linear interpolation. While we observe a significant drop of performance for PatchTST with both
techniques, DeepRRTime remains robust on this cahllenging setting which highlights its advantage over
historical-valued models. Best results with the missing values are highlighted in bold. The table reports
means and standard deviations over 10 network initializations.
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Figure 8: Plots of mean squared error (MSE) of DeepRRTime and DeepTime as a function of missing lookback
values percentage for different forecast horizons on ETTm2 (top), Weather (middle) and ECL (bottom)
dataset. The shadow areas report standard deviations over 10 network initializations. For the ETTm2
dataset, the performance of DeepTime deteriorates more significantly for higher missing rates than our model.
For the bigger datasets (i.e., Weather, ECL, and Traffic), the performances of DeepRRTime and DeepTime
are very similar. We skip this experiment for ILI due to the shorter forecast horizons used for this dataset.
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Figure 9: Forecasting Plots on Exchange: We visually compare between DeepTime, DeepRRTime and
PatchTST. The 8 rows of a column denote the 8 different time-variates and all plots within the same column
are taken from the same time-period. The sample-IDs for the visualisation are randomly sampled and
indicated at the top of each column along with the mean-squared error (MSE) of forecasts for each method.
More specifically, the MSE at the top of each column is the MSE averaged over all 8 plots in that column. In
several cases, we observe that the DeepRRTime are
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