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Abstract

Bayesian Optimization (BO) is a sample-efficient optimization algorithm widely
employed across various applications. In some challenging BO tasks, input uncer-
tainty arises due to the inevitable randomness in the optimization process, such
as machining errors, execution noise, or contextual variability. This uncertainty
deviates the input from the intended value before evaluation, resulting in signifi-
cant performance fluctuations in final result. In this paper, we introduce a novel
robust Bayesian Optimization algorithm, AIRBO, which can effectively identify a
robust optimum that performs consistently well under arbitrary input uncertainty.
Our method directly models the uncertain inputs of arbitrary distributions by em-
powering the Gaussian Process with the Maximum Mean Discrepancy (MMD)
and further accelerates the posterior inference via Nyström approximation. Rig-
orous theoretical regret bound is established under MMD estimation error and
extensive experiments on synthetic functions and real problems demonstrate that
our approach can handle various input uncertainties and achieve a state-of-the-art
performance.

1 Introduction

Bayesian Optimization (BO) is a powerful sequential decision-making algorithm for high-cost black-
box optimization. Owing to its remarkable sample efficiency and capacity to balance exploration
and exploitation, BO has been successfully applied in diverse domains, including neural architec-
ture search [32], hyper-parameter tuning [4, 29, 12], and robotic control [18, 5], among others.
Nevertheless, in some real-world problems, the stochastic nature of the optimization process, such
as machining error during manufacturing, execution noise of control, or variability in contextual
factor, inevitably introduces input randomness, rendering the design parameter x to deviate to x′
before evaluation. This deviation produces a fluctuation of function value y and eventually leads
to a performance instability of the outcome. In general, the input randomness is determined by the
application scenario and can be of arbitrary distribution, even quite complex ones. Moreover, in some
cases, we cannot observe the exact deviated input x′ but a rough estimation for the input uncertainty.
This is quite common for robotics and process controls. For example, consider a robot control task
shown in Figure 1a, a drone is sent to a target location x to perform a measurement task. However,
due to the execution noise caused by the fuzzy control or a sudden wind, the drone ends up at location
x′ ∼ P (x) and gets a noisy measurement y = f(x′) + ζ. Instead of observing the exact value of
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(a) An example case: drone mea-
surement with execution noise.

(b) Problem formulation.

Figure 1: Robust Bayesian optimization problem.
x′, we only have a coarse estimation of the input uncertainty P (x). The goal is to identify a robust
location that gives the maximal expected measurement under the process randomness.

To find a robust optimum, it is crucial to account for input uncertainty during the optimization
process. Existing works [24, 3, 7, 10] along this direction assume that the exact input value, i.e.,
x′ in Figure 1b, is observable and construct a surrogate model using these exact inputs. Different
techniques are then employed to identify the robust optimum: Nogueira et al. utilize the unscented
transform to propagate input uncertainty to the acquisition function [24], while Beland and Nair
integrate over the exact GP model to obtain the posterior with input uncertainty [3]. Meanwhile,
[7] designs a robust confidence-bounded acquisition and applies min-max optimization to identify
the robust optimum. Similarly, [10] constructs an adversarial surrogate with samples from the exact
surrogate. These methods work quite well but are constrained by their dependence on observable
input values, which may not always be practical.

An alternative approach involves directly modeling the uncertain inputs. A pioneering work by
Moreno et al. [20] assumes Gaussian input distribution and employs a symmetric Kullback-Leibler
divergence (SKL) to measure the distance of input variables. Dallaire et al. [13] implement a Gaussian
process model with an expected kernel and derive a closed-form solution by restricting the kernel to
linear, quadratic, or squared exponential kernels and assuming Gaussian inputs. Nonetheless, the
applicability of these methods is limited due to their restrictive Gaussian input distribution assumption
and kernel choice. To surmount these limitations, Oliveira et al. propose a robust Gaussian process
model that incorporates input distribution by computing an integral kernel. Although this kernel can
be applied to various distributions and offers a rigorous regret bound, its posterior inference requires
a large sampling and can be time-consuming.

In this work, we propose an Arbitrary Input uncertainty Robust Bayesian Optimization algorithm
(AIRBO). This algorithm can directly model the uncertain input of arbitrary distribution and propagate
the input uncertainty into the surrogate posterior, which can then be used to guide the search for
robust optimum. To achieve this, we employ Gaussian Process (GP) as the surrogate and empower its
kernel design with the Maximum Mean Discrepancy (MMD), which allows us to comprehensively
compare the uncertain inputs in Reproducing Kernel Hilbert Space (RKHS) and accurately quantify
the target function under various input uncertainties(Sec. 3.1). Moreover, to stabilize the MMD
estimation and accelerate the posterior inference, we utilize Nyström approximation to reduce the
space complexity of MMD estimation from O(m2) to O(mh), where h≪ m (Sec. 3.2). This can
substantially improve the parallelization of posterior inference and a rigorous theoretical regret bound
is also established under the approximation error (Sec. 4). Comprehensive evaluations on synthetic
functions and real problems in Sec.5 demonstrate that our algorithm can efficiently identify robust
optimum under complex input uncertainty and achieve state-of-the-art performance.

2 Problem Formulation

In this section, we first formulize the robust optimization problem under input uncertainty then briefly
review the intuition behind Bayesian Optimization and Gaussian Processes.

2.1 Optimization with Input Uncertainty

As illustrated in Figure 1b, we consider an optimization of expensive black-box function: f(x),
where x is the design parameter to be tuned. At each iteration n, we select a new query point xn
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according to the optimization heuristics. However, due to the stochastic nature of the process, such as
machining error or execution noise, the query point is perturbed to x′n before the function evaluation.
Moreover, we cannot observe the exact value of x′n and only have a vague probability estimation of
its value: Pxn

. After the function evaluation, we get a noisy measurement y = f(x′n) + ζn, where ζn
is homogeneous measurement noise sampled from N (0, σ2). The goal is to find an optimal design
parameter x∗ that maximizes the expected function value under input uncertainty:

x∗ = argmax
x

∫
x′∼Px

f(x′)dx′ = argmax
x

EPx [f ] (1)

Depending on the specific problem and randomness source, the input distribution Px can be arbitrary
in general and even become quite complex sometimes. Here we do not place any additional assump-
tion on them, except assuming we can sample from these input distributions, which can be easily
done by approximating it with Bayesian methods and learning a parametric probabilistic model [16].
Additionally, we assume the exact values of x′ are inaccessible, which is quite common in some
real-world applications, particularly in robotics and process control [25].

2.2 Bayesian Optimization

In this paper, we focus on finding the robust optimum with BO. Each iteration of BO involves two
key steps: I) fitting a surrogate model and II) maximizing an acquisition function.

Gaussian Process Surrogate: To build a sample-efficient surrogate, we choose Gaussian Process
(GP) as the surrogate model in this paper. Following [34], GP can be interpreted from a weight-
space view: given a set of n observations, Dn = {(xi, yi)|i = 1, ..., n}. Denote all the inputs as
X ∈ RD×n and all the output vector as y ∈ Rn×1. We first consider a linear surrogate:

f(x) = xTw, y = f(x) + ζ, ζ ∼ N (0, σ2), (2)

where w is the model parameters and ζ is the observation noise. This model’s capacity is limited due
to its linear form. To obtain a more powerful surrogate, we can extend it by projecting the input x into
a feature space ϕ(x). By taking a Bayesian treatment and placing a zero mean Gaussian prior on the
weight vector: w ∼ N (0,Σp), its predictive distribution can be derived as follows (see Section2.1
of [34] for detailed derivation):

f∗|x∗, X, y ∼ N
(
ϕT (x∗)Σpϕ(X)(A+ σ2

nI)
−1y,

ϕT (x∗)Σpϕ(x∗)− ϕT (x∗)Σpϕ(X)(A+ σ2
nI)

−1ϕT (X)Σpϕ(x∗)
)
,

(3)

where A = ϕT (X)Σpϕ(X) and I is a identity matrix. Note the predictive distribution is also a
Gaussian and the feature mappings are always in the form of inner product with respect to Σp.
This implies we are comparing inputs in a feature space and enables us to apply kernel trick.
Therefore, instead of exactly defining a feature mapping ϕ(·), we can define a kernel: k(x, x′) =
ϕ(x)TΣpϕ(x

′) = ψ(x) · ψ(x′). Substituting it into Eq. 3 gives the vanilla GP posterior:

f∗|X, y,X∗ ∼ N (µ∗,Σ∗),where µ∗ = K(X∗, X)[K(X,X) + σ2
nI]

−1y,

Σ∗ = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗).
(4)

From this interpretation of GP, we note that its core idea is to project the input x to a (possibly
infinite) feature space ψ(x) and compare them in the Reproducing Kernel Hilbert Space (RKHS)
defined by kernel.

Acquisition Function Optimization: Given the posterior of GP surrogate model, the next step is
to decide a query point xn. The exploitation and exploration balance is achieved by designing an
acquisition function α(x|Dn). Through numerous acquisition functions exist [28], we follow [25, 7]
and adopt the Upper Confidence Bound (UCB) acquisition:

α(x|Dn) = µ∗(x) + βσ∗(x), (5)

where β is a hyper-parameter to control the level of exploration.

3 Proposed Method

To cope with randomness during the optimization process, we aim to build a robust surrogate that can
directly accept the uncertain inputs of arbitrary distributions and propagate the input uncertainty into
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the posterior. Inspired by the weight-space interpretation of GP, we empower GP kernel with MMD
to compare the uncertain inputs in RKHS. In this way, the input randomness is considered during the
covariance computation and naturally reflected in the resulting posterior , which then can be used to
guide the search for a robust optimum(Sec. 3.1). To further accelerate the posterior inference, we
employ Nyström approximation to stabilize the MMD estimation and reduce its space complexity
(Sec. 3.2).

3.1 Modeling the Uncertain Inputs

Assume Px ∈ PX ⊂ P are a set of distribution densities over Rd, representing the distributions of
the uncertain inputs. We are interested in building a GP surrogate over the probability space P , which
requires to measure the difference between the uncertain inputs.

To do so, we turn to the Integral Probabilistic Metric (IPM) [23]. The basic idea behind IPM is
to define a distance measure between two distributions P and Q as the supremum over a class of
functions G of the absolute expectation difference:

d(P,Q) = sup
g∈G

|Eu∼P g(u)− Ev∼Qg(v)|, (6)

where G is a class of functions that satisfies certain conditions. Different choices of G lead to various
IPMs. For example, if we restrict the function class to be uniformly bounded in RKHS we can get the
MMD [15], while a Lipschitz-continuous G realizes the Wasserstein distance [14].

In this work, we choose MMD as the distance measurement for the uncertain inputs because of
its intrinsic connection with distance measurement in RKHS. Given a characteristic kernel k :
Rd × Rd → R and associate RKHS Hk, define the mean map ψ : P → Hk such that ⟨ψ(P ), g⟩ =
EP [g],∀g ∈ Hk. The MMD between P,Q ∈ P is defined as:

MMD(P,Q) = sup
||g||k≤1

[Eu∼P g(u)− Ev∼Qg(v)] = ||ψP − ψQ||, (7)

Without any additional assumption on the input distributions, except we can get m samples
{ui}mi=1, {vi}mi=1 from P,Q respectively, MMD can be empirically estimated as follows [21]:

MMD2(P,Q) ≈ 1

m(m− 1)

∑
1≤i,j≤m,i̸=j

(k(ui, uj) + k(vi, vj))−
2

m2

∑
1≤i,j≤m

k(ui, vj), (8)

To integrate MMD into the GP surrogate, we design an MMD-based kernel over P as follows:

k̂(P,Q) = exp(−αMMD2(P,Q)), (9)

with a learnable scaling parameter α. This is a valid kernel, and universal w.r.t. C(P) under mild
conditions (see Theorem 2.2, [11]). Also, it is worth to mention that, to compute the GP posterior, we
only need to sample m points from the input distributions, but do not require their corresponding
function values.

With the MMD kernel, our surrogate model places a prior GP(0, k̂(Px, Px′)) and obtain a dataset
Dn = {(x̂i, yi)|x̂i ∼ Pxi

, i = 1, 2, ..., n)}. The posterior is Gaussian with mean and variance:

µ̂n(P∗) = k̂n(P∗)
T (K̂n + σ2I)−1yn (10)

σ̂2
n(P∗) = k̂(P∗, P∗)− k̂n(P∗)

T (K̂n + σ2I)−1k̂n(P∗), (11)

where yn := [y1, · · · , yn]T , k̂n(P∗) := [k̂(P∗, Px1
), · · · , k̂(P∗, Pxn

)]T and [K̂n]ij = k̂(Pxi
, Pxj

).

3.2 Boosting posterior inference with Nyström Approximation

To derive the posterior distribution of our robust GP surrogate, it requires estimating the MMD
between each pair of inputs. Gretton et al. prove the empirical estimator in Eq. 8 approximates MMD
in a bounded and asymptotic way [15]. However, the sampling size m used for estimation greatly
affects the approximation error and insufficient sampling leads to a high estimation variance(ref.
Figure 3a).
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Such an MMD estimation variance causes numerical instability of the covariance matrix and propa-
gates into the posterior distribution and acquisition function, rendering the search for optimal query
point a challenging task. Figure 3b gives an example of MMD-GP posterior with insufficient samples,
which produces a noisy acquisition function and impedes the search of optima. Increasing the
sampling size can help alleviate this issue. However, the computation and space complexities of
the empirical MMD estimator scale quadratically with the sampling size m. This leaves us with a
dilemma that insufficient sampling results in a highly-varied posterior while a larger sample size can
occupy significant GPU memory and reduce the ability for parallel computation.

To reduce the space and computation complexity while retaining a stable MMD estimation, we resort
to the Nyström approximation [33]. This method alleviates the computational cost of kernel matrix by
randomly selecting h subsamples from them samples(h≪ m) and computes an approximated matrix
via K̃ = KmhK

+
h K

T
mh. Combining this with the MMD definition gives its Nyström estimator:

MMD2(P,Q) = Eu,u′∼P
⊗

P [k(u, u
′)] + Ev,v′∼Q

⊗
Q[k(v, v

′)]− 2Eu,v∼P
⊗

Q[k(u, v)]

≈ 1

m2
1T
mU1m +

1

m2
1T
mV 1m − 2

m2
1T
mW1m

≈ 1

m2
1T
mUmhU

+
h U

T
mh1n +

1

m2
1T
mVmhV

+
h V

T
mh1m − 2

m2
1T
mWmhW

+
h W

T
mh1m

(12)

where U = K(u,u′), V = K(v,v′), W = K(u,v) are the kernel matrices, 1m represents a
m-by-1 vector of ones, m defines the sampling size and h controls the sub-sampling size. Note that
this Nyström estimator reduces the space complexity of posterior inference from O(MNm2) to
O(MNmh), where M and N are the numbers of training and testing samples, m is the sampling
size for MMD estimation while h ≪ m is the sub-sampling size. This can significantly boost the
posterior inference of robust GP by allowing more inference to run in parallel on GPU.

4 Theoretical Analysis

Assume x ∈ X ⊂ Rd, and Px ∈ PX ⊂ P are a set of distribution densities over Rd, representing the
distribution of the noisy input. Given a characteristic kernel k : Rd × Rd → R and associate RKHS
Hk, we define the mean map ψ : P → Hk such that ⟨ψ(P ), g⟩ = EP [g],∀g ∈ Hk.

We consider a more general case. Choosing any suitable functional L such that k̂(P, P ′) :=
L(ψP , ψP ′) is a positive-definite kernel over P , for example the linear kernel ⟨ψP , ψP ′⟩k and radial
kernels exp(−α∥ψP − ψP ′∥2k) using the MMD distance as a metric. Such a kernel k̂ is associated
with a RKHS Hk̂ containing functions over the space of probability measures P .

One important theoretical guarantee to conduct GP model is that our object function can be ap-
proximated by functions in Hk̂, which relies on the universality of k̂. Let C(P) be the class of
continuous functions over P endowed with the topology of weak convergence and the associated
Borel σ-algebra, and we define f̂ ∈ C(P) such that

f̂(P ) := EP [f ],∀P ∈ P,

which is just our object function, For k̂ be radial kernels, it has been shown that k̂ is universal w.r.t
C(P) given that X is compact and the mean map ψ is injective [11, 22]. For k̂ be linear kernel which
is not universal, it has been shown in Lemma 1, [26] that f̂ ∈ Hk̂ if and only if f ∈ H and further
∥f̂∥k̂ = ∥f∥k. Thus, in the remain of this chapter, we may simply assume f̂ ∈ Hk̂.

Suppose we have an approximation kernel function k̃(P,Q) near to the exact kernel function k̂(P,Q).
The mean µ̂n(p∗) and variance σ̂2

n(p∗) are approximated by

µ̃n(P∗) = k̃n(P∗)
T (K̃n + σ2I)−1yn (13)

σ̃2
n(P∗) = k̃(P∗, P∗)− k̃n(P∗)

T (K̃n + σ2I)−1k̃n(P∗), (14)

where yn := [y1, · · · , yn]T , k̃n(P∗) := [k̃(P∗, P1), · · · , k̃(P∗, Pn)]
T and [K̃n]ij = k̃(Pi, Pj).
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The maximum information gain corresponding to the kernel k̂ is denoted as

γ̂n := sup
R∈PX ;|R|=n

Î(yn; f̂n|R) =
1

2
ln det(I+ σ−2K̂n),

Denote e(P,Q) = k̂(P,Q)− k̃(P,Q) as the error function when estimating the kernel k̂. We suppose
e(P,Q) has an upper bound with high probability:
Assumption 1. For any ε > 0, P,Q ∈ PX , we may choose an estimated k̃(P,Q) such that
the error function e(P,Q) can be upper-bounded by eε with probability at least 1 − ε, that is,
P (|e(P,Q)| ≤ eε) > 1− ε.

Remark. Note that this assumption is standard in our case: we may assume maxx∈X ∥ϕ∥k ≤ Φ,
where ϕ is the feature map corresponding to the k. Then when using empirical estimator, the error
between MMDempirical and MMD is controlled by 4Φ

√
2 log(6/ε)m−1 with probability at least 1− ε

according to Lemma E.1, [8]. When using the Nyström estimator, the error has a similar form as the
empirical one, and under mild conditions, when h = O(

√
m log(m)), we get the error of the order

O(m−1/2 log(1/ε)) with probability at least 1− ε. One can check more details in Lemma 1.

Now we restrict our Gaussian process in the subspace PX = {Px, x ∈ X} ⊂ P . We assume the
observation yi = f(xi) + ζi with the noise ζi. The input-induced noise is defined as ∆fpxi

:=

f(xi)−EPxi
[f ] = f(xi)− f̂(Pxi

). Then the total noise is yi −EPxi
[f ] = ζi +∆fpxi

. We can state
our main result, which gives a cumulative regret bound under inexact kernel calculations,
Theorem 1. Let δ > 0, f ∈ Hk, and the corresponding ∥f̂∥k̂ ≤ b,maxx∈X |f(x)| =M . Suppose
the observation noise ζi = yi − f(xi) is σζ-sub-Gaussian, and thus with high probability |ζi| < A
for some A > 0. Assume that both k and Px satisfy the conditions for ∆fPx to be σE-sub-Gaussian,
for a given σE > 0. Then, under Assumption 1 with ε > 0 and corresponding eε, setting σ2 = 1+ 2

n ,
running Gaussian Process with acquisition function

α̃(x|Dn) = µ̃n(Px) + βnσ̃n(Px) (15)

where βn =
(
b+

√
σ2
E + σ2

ζ

√
2 (γ̂n + 1− ln δ)

)
,

we have that the uncertain-inputs cumulative regret satisfies:

R̃n ∈ O
(√

nγ̂n(γ̂n − ln δ) + n2
√
(γ̂n − ln δ)eε + n3eε

)
(16)

with probability at least 1− δ − nε. Here R̃n =
∑n

t=1 r̃t, and r̃t = maxx∈X EPx [f ]− EPxt
[f ]

The proof of our main theorem 1 can be found in appendix B.3.

The assumption that ζi is σζ-sub-Gaussian is standard in GP fields. The assumption that ∆fPx
is

σE-sub-Gaussian can be met when Px is uniformly bounded or Gaussian, as stated in Proposition 3,
[26]. Readers may check the definition of sub-Gaussian in appendix, Definition 1.

To achieve an regret of order R̃n ∈ O(
√
nγ̂n) , the same order as the exact Improved GP regret (23),

and ensure this with high probability, we need to take ε = O(δ/n), eε = O(n−
5
2 γ̂n(γ̂

−2
n ∧ n− 1

2 )),
and this requires a sample size m of order O(n5γ̂−2

n (γ̂4n ∨ n) log(n)) for MCMC approximation, or
with a same sample size m and a subsample size h of order O(n

5
2+ν γ̂−1−ν

n (γ̂2n ∨ n 1
2 )) for Nyström

approximation with some ν > 0. Note that (16) only offers an upper bound for cumulative regret, in
real applications the calculated regret may be much smaller than this bound, as the approximation
error eϵ can be fairly small even with a few samples when the input noise is relatively weak.

To analysis the exact order of γ̂n could be difficult, as it is influenced by the specific choice of
embedding kernel k and input uncertainty distributions Pxi , xi ∈ X . Nevertheless, we can deduce
the following result for a wide range of cases, showing that cumulative regret is sub-linear under mild
conditions. One can check the proof in appendix B.4.
Theorem 2 (Bounding the Maximum information gain). Suppose k is r-th differentiable with bounded
derivatives and translation invariant, i.e., k(x, y) = k(x− y, 0). Suppose the input uncertainty is
i.i.d., that is, the noised input density satisfies Pxi(x) = P0(x− xi),∀xi ∈ X . Then if the space X
is compact in Rd, the maximum information gain γ̂n satisfies

γ̂n = O(n
d(d+1)

r+d(d+1) log(n)).

Thus, when r > d(d+ 1), the accumulate regret is sub-linear respect to n, with sufficiently small eε.
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(a) GP posterior with a
Gaussian input uncertainty
P = N (0, 0.01).

(b) MMDGP posterior
with an input uncertainty
P = N (0, 0.01).

(c) MMDGP posterior with
a variance-changing beta
distribution.

(d) MMDGP posterior
with a Chi-squared distri-
bution of changing DoF.

Figure 2: Modeling results under different types of input uncertainties.

5 Evaluation

In this section, we first experimentally demonstrate AIRBO’s ability to model uncertain inputs of
arbitrary distributions, then validate the Nyström-based inference acceleration for GP posterior,
followed by experiments on robust optimization of synthetic functions and real-world benchmark.

5.1 Robust Surrogate

Modeling arbitrary uncertain inputs: We demonstrate MMDGP’s capabilities by employing
an RKHS function as the black-box function and randomly selecting 10 samples from its input
domain. Various types of input randomness are introduced into the observation and produce training
datasets of D = {(xi, f(xi + δi))|δi ∼ Pxi

}10i=1 with different Px configurations. Figure 2a and 2b
compare the modeling results of a conventional GP and MMDGP under a Gaussian input uncertainty
Px = N (0, 0.012). We observe that the GP model appears to overfit the observed samples without
recognizing the input uncertainty, whereas MMDGP properly incorporates the input randomness into
its posterior.

To further examine our model’s ability under complex input uncertainty, we design the input dis-
tribution to follow a beta distribution with input-dependent variance: Px = beta(α = 0.5, β =
0.5, σ = 0.9(sin 4πx + 1)). The MMDGP posterior is shown in Figure 2c. As the input variance
σ changes along x, inputs from the left and right around a given location xi yield different MMD
distances, resulting in an asymmetric posterior (e.g., around x = 0.05 and x = 0.42). This suggests
that MMDGP can precisely model the multimodality and asymmetry of the input uncertainty.

Moreover, we evaluated MMDGP using a step-changing Chi-squared distribution Px = χ2(g(x), σ =
0.01), where g(x) = 0.5 if x ∈ [0, 0.6], and g(x) = 7.0 otherwise. This abrupt change in g(x)
significantly alters the input distribution from a sharply peaked distribution to a flat one with a long
tail. Figure 2d illustrates that our model can accurately capture this distribution shape variation,
as evidenced by the sudden posterior change around x = 0.6. This demonstrates our model can
thoroughly quantify the characteristics of complex input uncertainties.

Comparing with the other surrogate models: We also compare our model with the other surrogate
models under the step-changing Chi-squared input distribution. The results are reported in Figure 7
and they demonstrate our model outperforms obviously under such a complex input uncertainty (see
Appendix D.1 for more details)

5.2 Accelerating the Posterior Inference

Estimation variance of MMD: We first examine the variance of MMD estimation by employing
two beta distributions P = beta(α = 0.4, β = 0.2, σ = 0.1) and Q = beta(α = 0.4, β = 0.2, σ =
0.1) + c, where c is an offset value. Figure 3a shows the empirical MMDs computed via Eq. 8 with
varying sampling sizes as Q moves away from P . We find that a sampling size of 20 is inadequate,
leading to high estimation variance, and increasing the sampling size to 100 stabilizes the estimation.

We further utilize this beta distribution P as the input distribution and derive the MMDGP posterior
via empirical estimator in Figure 3b. Note that the MMD instability caused by inadequate sampling
subsequently engenders a fluctuating posterior and culminates in a noisy acquisition function, which
prevents the acquisition optimizer (e.g., L-BFGS-B in this experiment) from identifying the optima.
Although Figure 3c shows that this issue can be mitigated by using more samples during empirical
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(a) The empirical MMD
and covariance values be-
tween two beta distribu-
tions P and Q as Q moves
away from P .

(b) The noisy posterior de-
rived from a sampling size
of 20 (upper) traps the
acq. optimizer at x = 0
(lower).

(c) The posterior becomes
smoother with a sampling
size of 100 and acq. op-
timizer can easily identify
the optima.

(d) The Nyström estima-
tor with less memory con-
sumption also produces a
smooth posterior that is
easy to optimize.

Figure 3: The posterior derived from the empirical and Nyström MMD approximators with varying
sampling sizes.

Table 1: Performance of Posterior inference for 512 samples.
Method Sampling Size Sub-sampling Size Inference Time (seconds) Batch Size (samples)

Empirical 20 - 1.143 ± 0.083 512
Empirical 100 - 8.117 ± 0.040 128
Empirical 1000 - 840.715 ± 2.182 1
Nystrom 100 10 0.780 ± 0.001 512
Nystrom 1000 100 21.473 ± 0.984 128

MMD estimation, it is crucial to note that a larger sampling size significantly increases GPU memory
usage because of its quadratic space complexity of O(MNm2) (M and N are the sample number of
training and testing, m is the sampling size for MMD estimation). This limitation severely hinders
parallel inference for multiple samples and slows the overall speed of posterior computation.

Table 1 summarizes the inference time of MMDGP posteriors at 512 samples with different sampling
sizes. We find that, for beta distribution defined in this experiment, the Nyström MMD estimator
with a sampling size of 100 and sub-sampling size of 10 already delivers a comparable result to the
empirical estimator with 100 samples (as seen in the acquisition plot of Figure 3d). Also, the inference
time is reduced from 8.117 to 0.78 seconds by enabling parallel computation for more samples. For
the cases that require much more samples for MMD estimation (e.g., the input distribution is quite
complex or high-dimensional), this Nyström-based acceleration can have a more pronounced impact.

Effect of Nyström estimator on optimization: To investigate the effect of Nyström estimator on
optimization, we also perform an ablation study in Appendix D.2, the results in Figure 8 suggest that
Nyström estimator slightly degrades the optimization performance but greatly improves the inference
efficiency.

5.3 Robust Optimization

Experiment setup: To experimentally validate AIRBO’s performance, we implement our algorithm 1

based on BoTorch [2] and employ a linear combination of multiple rational quadratic kernels [6] to
compute the MMD as Eq. 9. We compare our algorithm with several baselines: 1) uGP-UCB [26]
is a closely related work that employs an integral kernel to model the various input distributions.
It has a quadratic inference complexity of O(MNm2), where M and N are the sample numbers
of the training and testing set, and m indicates the sampling size of the integral kernel. 3)GP-UCB
is the standard GP with UCB acquisition, which represents a broad range of existing methods that

1The code will be available on https://github.com/huawei-noah/HEBO, and more implementation
details can be found in Appendix C.1.
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(a) The RKHS function (b) Robust regrets of
RKHS function.

(c) The double-peak func-
tion

(d) Robust regrets of
double-peak function

Figure 4: Robust optimization results on synthetic functions.
focus on non-robust optimization. 3) SKL-UCB employs symmetric Kullback-Leibler divergence to
measure the distance between the uncertain inputs [20]. Its closed-form solution only exists if the
input distributions are the Gaussians. 4) ERBF-UCB is the robust GP with the expected Radial Basis
Function kernel proposed in [13]. It computes the expected kernel under input distribution using the
Gaussian integrals. Assuming the input distributions are sub-Gaussians, this method can efficiently
find the robust optimum. Since all the methods use UCB acquisition, we simply distinguish them by
their surrogate names in the following tests.

At the end of the optimization, each algorithm needs to decide a final outcome xrn, perceived to be
the robust optimum under input uncertainty at step n. For a fair comparison, we employ the same
outcome policy across all the algorithms: xrn = argmaxx∈Dn

µ̂∗(x), where µ̂∗(x) is the posterior
mean of robust surrogate at x and Dn = {(xi, f(xi + δi))|δi ∼ Pxi

} are the observations so far. The
optimization performance is measured in terms of robust regret as follows:

r(xrn) = Eδ∼Px∗ [f(x
∗ + δ)]− Eδ∼Pxr

n
[f(xrn + δ)], (17)

where x∗ is the global robust optimum and xrn represents the outcome point at step n. For each
algorithm, we repeat the optimization process 12 times and compare the average robust regret.

1D RKHS function: We begin the optimization evaluation with an RKHS function that is widely used
in previous BO works [1, 24, 10]. Figure 4a shows its exact global optimum resides at x = 0.892
while the robust optimum is around x = 0.08 when the inputs follow a Gaussian distribution
N (0, 0.012). According to Figure 4b, all the robust BO methods work well with Gaussian uncertain
inputs and efficiently identify the robust optimum, but the GP-UCB stagnates at a local optimum
due to its neglect of input uncertainty. Also, we notice the regret of our method decrease slightly
slower than uGP works in this low-dimensional and Gaussian-input case, but later cases with higher
dimension and more complex distribution show our method is more stable and efficient.

1D double-peak function: To test with more complex input uncertainty, we design a blackbox
function with double peaks and set the input distribution to be a multi-modal distribution Px =
beta(α = 0.4, β = 0.2, σ = 0.1). Figure 4c shows the blackbox function (black solid line) and the
corresponding function expectations estimated numerically via sampling from the input distribution
(i.e., the colored lines). Note the true robust optimum is around x = 0.251 under the beta distribution,
but an erroneous location at x = 0.352 may be determined if the input uncertainty is incorrectly
presumed to be Gaussian. This explains the results in Figure 4d: the performance of SKL-UCB and
ERBF-UCB are sub-optimal due to their misidentification of inputs as Gaussian variables, while our
method accurately quantifies the input uncertainty and outperforms the others.

10D bumped-bowl function: we also extend our evaluation to a 10D bumped-bowl function [27]
under a concatenated circular distribution. Figure 9 demonstrates AIRBO scales efficiently to high
dimension and outperforms the others under complex input uncertainty(see Appendix D.3).

Robust robot pushing: To evaluate AIRBO in a real-world problem, we employ a robust robot
pushing benchmark from [31], in which a ball is placed at the origin point of a 2D space and a robot
learns to push it to a predefined target location (gx, gy). This benchmark takes a 3-dimensional
input (rx, ry, rt), where rx, ry ∈ [−5,+5] are the 2D coordinates of the initial robot location
and rt ∈ [0, 30] controls the push duration. We set four targets in separate quadrants, i.e., g1 =
(−3,−3), g2 = (−3, 3), g3 = (4.3, 4.3), and a “twin” target at g′3 = (5.1, 3.0), and describe the input
uncertainty via a two-component Gaussian Mixture Model (defined in Appendix D.4). Following [7,
10], this blackbox benchmark outputs the minimum distance to these 4 targets under squared and
linear distances: loss = min(d2(g1, l), d(g2, l), d(g3, l), d(g

′
3, l)), where d(gi, l) is the Euclidean

distance between the ball’s ending location l and the i-th target. This produces a loss landscape as
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(a) Contour of the robot push world (b) Robust regrets of different algorithms

Figure 5: Robust optimization of the robot push problem.

Figure 6: The robot’s initial locations and push times found by different algorithms

shown in Figure 5a. Note that g2 is a more robust target than g1 because of its linear-form distance
while pushing the ball to quadrant I is the best choice as the targets, g3 and g′3, match the dual-mode
pattern of the input uncertainty. According to Figure 5b, our method obviously outperforms the others
because it efficiently quantifies the multimodal input uncertainty. This can be further evidenced by
the push configurations found by different algorithms in Figure 6, in which each dot represents the
robot’s initial location and its color represents the push duration. We find that AIRBO successfully
recognizes the targets in quadrant I as an optimal choice and frequently pushes from quadrant III
to quadrant I. Moreover, the pushes started close to the origin can easily go far away under input
variation, so our method learns to push the ball from a corner with a long push duration, which is
more robust in this case.

6 Discussion and Conclusion

In this work, we generalize robust Bayesian Optimization to an uncertain input setting. The weight-
space interpretation of GP inspires us to empower the GP kernel with MMD and build a robust
surrogate for uncertain inputs of arbitrary distributions. We also employ the Nyström approximation
to boost the posterior inference and provide theoretical regret bound under approximation error. The
experiments on synthetic blackbox function and benchmarks demonstrate our method can handle
various input uncertainty and achieve state-of-the-art optimization performance.

There are several interesting directions that worth to explore: though we come to current MMD-based
kernel from the weight-space interpretation of GP and the RKHS realization of MMD, our kernel
design exhibits a deep connection with existing works on kernel over probability measures [22, 11].
Along this direction, as our theoretic regret analysis in Section 4 does not assume any particular
form of kernel and the Nyström acceleration can also be extended to the other kernel computation, it
is possible that AIRBO can be further generalized to a more rich family of kernels. Moreover, the
MMD used in our kernel is by no means limited to its RKHS realization. In fact, any function class F
that comes with uniform convergence guarantees and is sufficiently rich can be used, which renders
different realizations of MMD. With proper choice of function class F , MMD can be expressed as
the Kolmogorov metric or other Earth-mover distances [15]. It is also interesting to extend AIRBO
with the other IPMs.
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A Nyström Estimator Error Bound

Nyström estimator can easily approximate the kernel mean embedding ψp1 , ψp2 as well as the MMD
distance between two distribution density p1 and p2. We need first assume the boundedness of the
feature map to the kernel k:
Assumption 2. There exists a positive constant K ≤ ∞ such that supx∈X ∥ϕ(x)∥ ≤ K

The true MMD distance between p1 and p2 is denoted as MMD(p1, p2). The estimated MMD
distance when using a Nyström sample size mi, sub-sample size hi for pi respectively, is denoted as
MMD(pi,mi,hi). Then the error

Err(pi,mi,hi) := |MMD(p1, p2)− MMD(pi,mi,hi)|

and now we have the lemma from Theorem 5.1 in [8]
Lemma 1. Let Assumption 2 hold. Furthermore, assume that for i ∈ 1, 2, the data points
Xi

1, · · · , Xi
mi

are drawn i.i.d. from the distribution ρi and that hi ≤ mi sub-samples X̃i
1, · · · , X̃i

hi

are drawn uniformly with replacement from the dataset {Xi
1, · · · , Xi

mi
}. Then, for any δ ∈ (0, 1), it

holds with probability at least 1− 2δ

Err(pi,mi,hi) ≤
∑
i=1,2

 c1√
mi

+
c2
hi

+

√
log(hi/δ)

hi

√
N pi(

12K2 log(hi/δ)

hi
)

 ,

provided that, for i ∈ {1, 2},

hi ≥ max(67, 12K2∥Ci∥−1
L(H)) log(hi/δ)

where c1 = 2K
√

2 log(6/δ), c2 = 4
√
3K log(12/δ) and c4 = 6K

√
log(12/δ). The notation N pi

denotes the effective dimension associated to the distribution pk.

Specifically, when the effective dimension N satisfies, for some c ≥ 0,

• either N ρi(σ2) ≤ cσ2−γ for some γ ∈ (0, 1),

• or N ρi(σ2) ≤ log(1 + c/σ2)/β, for some β > 0.

Then, choosing the subsample size m to be

• hi = m
1/(2−γ)
i log(mi/δ) in the first case

• or hi =
√
mi log(

√
mi max(1/δ, c/(6K2)) in the second case,

we get Err(ρi,mi,hi) = O(1/
√
mi)

B Proofs of Section 4

B.1 Exact Kernel Uncertainty GP Formulating

Following the same notation in Section 4, now we can construct a Gaussian process GP(0, k̂)

modelling functions over P . This GP model can then be applied to learn f̂ from a given set of
observations Dn = {(Pi, yi)}ni=1. Under zero mean condition, the value of f̂(P∗) for a given P∗ ∈ P
follows a Gaussian posterior distribution with

µ̂n(P∗) = k̂n(P∗)
T (K̂n + σ2I)−1yn (18)

σ̂2
n(P∗) = k̂(P∗, P∗)− k̂n(P∗)

T (K̂n + σ2I)−1k̂n(P∗), (19)

where yn := [y1, · · · , yn]T , k̂n(P∗) := [k̂(P∗, P1), · · · , k̂(P∗, Pn)]
T and [K̂n]ij = k̂(Pi, Pj).
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Now we restrict our Gaussian process in the subspace PX = {Px, x ∈ X} ⊂ P . We assume the
observation yi = f(xi) + ζi with the noise ζi. The input-induced noise is defined as ∆fpxi

:=

f(xi)−EPxi
[f ] = f(xi)− f̂(Pxi

). Then the total noise is yi−EPxi
[f ] = ζi+∆fpxi

. To formulate
the regret bounds, we introduce the information gain and estimated information gain given any
{Pt}nt=1 ⊂ P:

Î(yn; f̂n|{Pt}nt=1) :=
1

2
ln det(I+ σ−2K̂n), (20)

Ĩ(yn; f̂n|{Pt}nt=1) :=
1

2
ln det(I+ σ−2K̃n), (21)

and the maximum information gain is defined as γ̂n := supR∈PX ;|R|=n Î(yn; f̂n|R). Here f̂n :=

[f̂(p1), · · · , f̂(pn)]T .

We define the sub-Gaussian condition as follows:
Definition 1. For a given σξ > 0, a real-valued random variable ξ is said to be σξ-sub-Gaussian if:

∀λ ∈ R,E[eλξ] ≤ eλ
2σ2

ξ/2

Now we can state the lemma for bounding the uncertain-inputs regret of exact kernel evaluations,
which is originally stated in Theorem 5 in [26].

Lemma 2. Let δ ∈ (0, 1), f ∈ Hk, and the corresponding ∥f̂∥k̂ ≤ b. Suppose the observation noise
ζi = yi − f(xi) is conditionally σζ-sub-Gaussian. Assume that both k and Px satisfy the conditions
for ∆fPx to be σE-sub-Gaussian, for a given σE > 0. Then, we have the following results:

• The following holds for all x ∈ X and t ≥ 1:

|µ̂n(Px)− f̂(Px)| ≤

(
b+

√
σ2
E + σ2

ζ

√
2
(
Î(yn; f̂n|{Pt}nt=1) + 1 + ln(1/δ)

))
σ̂n(Px)

(22)

• Running with upper confidence bound (UCB) acquisition function α(x|Dn) = µ̂n(Px) +

β̂nσ̂n(Px) where

β̂n = b+
√
σ2
E + σ2

ζ

√
2
(
Î(yn; f̂n|{Pt}nt=1) + 1 + ln(1/δ)

)
,

and set σ2 = 1 + 2/n, the uncertain-inputs cumulative regret satisfies:

R̂n ∈ O(
√
nγ̂n(b+

√
γ̂n + ln(1/δ))) (23)

with probability at least 1− δ.

Note that although the original theorem restricted to the case when k̂(p, q) = ⟨ψP , ψQ⟩k, the results
can be easily generated to other kernels over P , as long as its universal w.r.t C(P) given that X is
compact and the mean map ψ is injective [11, 22].

B.2 Error Estimates for Inexact Kernel Approximation

Now let us derivative the inference under the introduce of inexact kernel estimations.
Theorem 3. Under the Assumption 1 for ε > 0, let µ̃n, σ̃n, Ĩ(yn; f̂n|{Pt}nt=1) as defined in
(13),(14),(21) respectively, and µ̂n, σ̂n, Î(yn; f̂n|{Pt}nt=1) as defined in (18),(19),(20). Assume
maxx∈X f(x) =M , and assume the observation error ζi = yi − f(xi) satisfies |ζi| < A for all i.
Then we have the following error bound holds with probability at least 1− nε:

|µ̂n(P∗)− µ̃n(P∗)| < (
n

σ2
+
n2

σ4
)(M +A)eε +O(e2ε) (24)

|σ̂2
n(P∗)− σ̃2

n(P∗)| < (1 +
n

σ2
)2eε +O(e2ε) (25)∣∣∣Ĩ(yn; f̂n|{Pt}nt=1)− Î(yn; f̂n|{Pt}nt=1)

∣∣∣ < n3/2

2σ2
eε +O(e2ε) (26)
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Proof. Denote e(P∗, Q) = k̃(P∗, Q) − k̂(P∗, Q), en(P∗) = [e(P∗, P1), · · · , e(P∗.Pn)]
T , and

[En]i,j = e(Pi, Pj). Now according to the matrix inverse perturbation expansion,

(X + δX)−1 = X−1 −X−1δXX−1 +O(∥δX∥2),

we have

(K̂n + σ2I+En)
−1 = (K̂n + σ2I)−1 − (K̂n + σ2I)−1En(K̂n + σ2I)−1 +O(∥En∥2),

thus

µ̃n(P∗) =(k̂n(P∗) + en(P∗))
T (K̂n + σ2I+En)

−1yn

=µ̂n(P∗) + en(P∗)
T (K̂n + σ2I)−1yn − k̂n(P∗)

T (K̂n + σ2I)−1En(K̂n + σ2I)−1yn

+O(∥En∥2) +O(∥en(P∗))∥ · ∥En∥)
σ̃2
n(P∗) =σ̂

2
n(P∗) + e(P∗, P∗)− (k̂n(P∗) + en(P∗))

T (K̂n + σ2I+En)
−1(k̂n(P∗) + en(P∗))

=σ̂2
n(P∗) + e(P∗, P∗)− 2en(P )

T (K̂n + σ2I)−1k̂n(P∗)

+ k̂n(P )
T (K̂n + σ2I)−1En(K̂n + σ2I)−1k̂n(P∗)

+O(∥En∥2) +O(∥en∥ · ∥En∥) +O(∥en∥2 · ∥En∥)

Notic that the following holds with a probability at least 1− nε, according to the Assumption 1,

|en(P∗)
T (K̂n + σ2I)−1yn| ≤ ∥en(P∗)∥2∥(K̂n + σ2I)−1∥2∥yn∥2 ≤ n

σ2
(M +A)eε,

|k̂n(P∗)
T (K̂n + σ2I)−1En(K̂n + σ2I)−1yn| ≤ ∥k̂n(P∗)∥2∥(K̂n + σ2I)−1∥22∥En∥2∥yn∥2

≤
√
nσ−4neε

√
n(M +A) =

n2

σ4
(M +A),

here we use the fact that K̂n semi-definite (which means ∥(K̂n + σ2I)−1∥2 ≤ σ−2), k̂(P∗, P∗) ≤ 1,
|yi| ≤M +A. Combining these results, we have that

|µ̃n(P∗)− µ̂n(P∗)| < (
n

σ2
+
n2

σ4
)(M +A)eε +O(e2ε),

holds with a probability at least 1− nε.

Similarly, we can conduct the same estimation to en(P )
T (K̂n + σ2I)−1k̂n(P∗) and k̂n(P )

T (K̂n +

σ2I)−1En(K̂n + σ2I)−1k̂n(P∗), and get

|σ̃2
n(P∗)− σ̂2

n(P∗)| < (1 +
n

σ2
)2eε +O(e2ε)

holds with a probability at least 1− nε.

It remains to estimate the error for estimating the information gain. Notice that, with a probability at
least 1− nε,∣∣∣Ĩ(yn; f̂n|{pt}nt=1)− Î(yn; f̂n|{pt}nt=1)

∣∣∣ = ∣∣∣∣∣12 log
det(I+ σ−2K̃n)

det(I+ σ−2K̂n)

∣∣∣∣∣
=

∣∣∣∣12 log det(I− (σ2I+ K̂n)
−1En)

∣∣∣∣
=

∣∣∣∣12Tr(log(I− (σ2I+ K̂n)
−1En))

∣∣∣∣
=

∣∣∣∣12Tr(−(σ2I+ K̂n)
−1En) +O(∥En∥2)

∣∣∣∣
≤ n3/2

2σ2
eε +O(∥En∥2),
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here the second equation uses the fact that det(AB−1) = det(A) det(B)−1, and the third and fourth
equations use log det(I + A) = Tr log(I + A) = Tr(A − A2

2 + · · · ). The last inequality follows
from the fact

Tr(σ2I+ K̂n)
−1En) ≤ ∥(σ2I+ K̂n)

−1∥F ∥En∥F ≤ n3/2σ−2eε

and K̂n is semi-definite.

With the uncertainty bound given by Lemma 3, let us prove that under inexact kernel estimations, the
posterior mean is concentrated around the unknown reward function f̂
Theorem 4. Under the former setting as in Theorem 3, with probability at least 1 − δ − nε, let
σν =

√
σ2
ζ + σ2

E , taking σ = 1 + 2
n , the following holds for all x ∈ X :

|µ̃n(Px)− f̂(Px)| ≤βnσ̃n(Px) + βn(1 + n)e1/2ε +
(
n+ n2

)
(M +A)eε, (27)

where βn =
(
b+ σν

√
2(γ̂n − ln(δ) + 1)

)
Proof. According to Lemma 2, equation (22), we have

|µ̂n(Px)− f̂(Px)| ≤ β̂nσ̂n(Px)

with

β̂n = b+ σν

√
2
(
Î(yn; f̂n|{Pt}nt=1) + 1 + ln(1/δ)

)
≤ βn.

Notice that
|µ̃n(Px)− f̂(Px)| ≤ |µ̃n(Px)− µ̂n(Px)|+ |µ̂n(Px)− f̂(Px)|, (28)

We also have (25), which means

σ̂n(Px) =
√
σ̂n(Px)2 ≤

√
σ̃n(Px)2 + (1 + n)2eε ≤ σ̃n(Px) + (1 + n)e1/2ε , (29)

combining (24), (28) and (29), we finally get the result in (27).

B.3 Proofs for Theorem 1

Now we can prove our main theorem 1.

Proof of Theorem 1. Let x∗ maximize f̂(Px) over X . Observing that at each round n ≥ 1, by the
choice of xn to maximize the aquisition function α̃(x|Dn−1) = µ̃n−1(Px) + βn−1σ̃n−1(Px), we
have

r̃n = f̂(Px∗)− f̂(Pxn
)

≤ µ̃n−1(Px∗) + βn−1σ̃n−1(Px∗)− µ̃n−1(Pxn
) + βn−1σ̃n−1(Pxn

) + 2Err(n− 1, eε)

≤ 2βn−1σ̃n−1(Pxn
) + 2Err(n− 1, eε).

Here we denote Err(n, eε) :=
(
βn(1 + n) + σ̃n(Px)σνn

3/4
)
e
1/2
ε +

(
n+ n2

)
(M + A)eε. The

second inequality follows from (27),

f̂(Px∗)− µ̃n−1(Px∗) ≤ βn−1σ̃n−1(Px∗) + Err(n− 1, eε)

µ̃n−1(Pxn
)− f̂(Pxn

) ≤ βn−1σ̃n−1(Pxn
) + Err(n− 1, eε),

and the third inequality follows from the choice of xn:

µ̃n−1(Px∗) + βn−1σ̃n−1(Px∗) ≤ µ̃n−1(Pxn
) + βn−1σ̃n−1(Pxn

).
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Thus we have

R̃n =

n∑
t=1

r̃t ≤ 2βn

n∑
t=1

σ̃t−1(Pxt) +

T∑
t=1

Err(t− 1, eε).

From Lemma 4 in [9], we have that

n∑
t=1

σ̃t−1(Pxt) ≤
√
4(n+ 2) ln det(I + σ−2K̃n) ≤

√
4(n+ 2)(γ̂n +

n
3
2

2
eε),

and thus

2βn

n∑
t=1

σ̃t−1(Pxt) = O

(√
nγ̂n +

√
nγ̂n(γ̂n − ln δ) +

√
n

5
2 eε +

√
n

5
2 (γ̂n − ln δ)eε

)
. (30)

On the other hand, notice that
n∑

t=1

Err(t− 1, eε) = O
(
n2
√
(γ̂n − ln δ)eε + (n2 + n3)eϵ

)
, (31)

we find that the eε term in (30) can be controlled by in (31), thus we immediately get the result.

B.4 Proofs for Theorem 2

Proof. Define the square of the MMD distance between Px1
, Px2

as dM (x1, x2), we have

dM (x1, x2)

=

∫
Rd

k(x, x′)Px1
(x)Px1

(x′)dxdx′ +

∫
Rd

k(x, x′)Px2
(x)Px2

(x′)dxdx′

− 2

∫
Rd

k(x, x′)Px1(x)Px2(x
′)dxdx′

=

∫
Rd

(k(x− x1, x
′ − x1) + k(x− x2, x

′ − x2)− 2k(x− x1, x
′ − x2))P0(x)P0(x

′)dxdx′.

It is not hard to verify that dM is shift invariant: dM (x1, x2) = dM (x1 − x2, 0), and dM has r-th
bounded derivatives, thus k̂∗(x1, x2) := k̂(Px1

, Px2
) = exp(−αdM (x1, x2)) is shift invariant with

r-th bounded derivatives. Then take µ(x) as the Lebesgue measure over X , according to Theorem 4,
[17], the integral operator Tk,µ : Tk,µf(x) =

∫
X K(x, y)f(y)dµ(y) is a symmetric compact operator

in L2(X , µ), and the spectrum of Tk,µ satisfies

λn(Tk,µ) = O(n−1−r/d).

Then according to Theorem 5 in [30], we have γ̂n = O(n
d(d+1)

r+d(d+1) log(n)), which finish the proof.

C Evaluation Details

C.1 Implementation

In our implementation of AIRBO, we design the kernel k used for MMD estimation to be a linear
combination of multiple Rational Quadratic kernels as its long tail behavior circumvents the fast
decay issue of kernel [6]:

k(x, x′) =
∑

ai∈{0.2,0.5,1,2,5}

(
1 +

(x− x′)2

2ail2i

)−ai
, (32)

where li is a learnable lengthscale and ai determines the relative weighting of large-scale and
small-scale variations.
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Depending on the form of input distributions, the sampling and sub-sampling sizes for Nyström
MMD estimator are empirically selected via experiments. Moreover, as the input uncertainty is
already modeled in the surrogate, we employ a classic UCB-based acquisition as Eq. 5 with β = 2.0
and maximize it via an L-BFGS-B optimizer.

D More Experiments

D.1 Comparing with the Other Models

To compare the modeling performances with the other models, we design the input uncertainty to
follow a step-changing Chi-squared distribution: Px = χ2(g(x), σ = 0.01), where g(x) = 0.5
if x ∈ [0.0, 0.6) and g(x) = 7.0 when x ∈ [0.6, 1.0]. Due to this sudden parameter change, the
uncertainty at point x = 0.6 is expected to be asymmetric: 1) on its left-hand side, as the Chi-squared
distribution becomes quite lean and sharp with a small value of g(x) = 0.5, the distance from x = 0.6
to its LHS points, xlhs ∈ [0.0, 0.6), are relatively large, thus their covariances are small, resulting
a fast-growing uncertainty. 2)Meanwhile, when x ∈ [0.6, 1.0], the g(x) suddenly increases to 7.0,
rendering the input distribution a quite flat one with a long tail. Therefore, the distances between
x = 0.6 and its RHS points become relatively small, which leads to large covariances and small
uncertainties for points in [0.6, 1.0]. As a result, we expect to observe an asymmetric posterior
uncertainty at x = 0.6.

Several surrogate models are employed in this comparison, including:

• MMDGP-nystrom(160/10) is our method with a sampling sizem = 160 and sub-sampling
size h = 10. Its complexity is O(MNmh), where M and N are the sizes of training and
test samples (Note: all the models in this experiment use the same training and testing
samples for a fair comparison).

• uGP(40) is the surrogate from [25], which employs an integral kernel with sampling size
m = 40. Due to its O(MNm2) complexity, we set the sampling size m = 40 to ensure a
similar complexity as ours.

• uGP(160) is also the surrogate from [25] but uses a much larger sampling size (m =
160). Given the same training and testing samples, its complexity is 16 times higher than
MMDGP-nystrom(160/10).

• skl is a robust GP surrogate equipped with a symmetric KL-based kernel, which is described
in [20].

• ERBF [13] assumes the input uncertainty to be Gaussians and employs a close-form
expected RBF kernel.

• GP utilizes a noisy Gaussian Process model with a learnable output noise level.

According to Figure 7a, our method, MMDGP-nystrom(160/10), can comprehensively quantify
the sudden change of the input uncertainty, evidenced by its abrupt posterior change at x = 0.6.
However, Figure 7b shows that uGP(40) with the same complexity fails to model the uncertainty
correctly. We suspect this is because uGP requires much larger samples to stabilize its estimation of
the integral kernel and thus can perform poorly with insufficient sample size, so we further evaluate
the uGP(160) with a much larger sampling size m = 160 in Figure 7c. It does successfully alleviate
the issue but also results in a 16 times higher complexity. Apart from this, Figure 7d suggests the
noisy GP model with a learnable output noise level is not aware of this uncertainty change at all as it
treats the inputs as the exact values instead of random variables. Moreover, Figure 7e and 7f show
that both the skl and ERBF fail in this case, this may be due to their misassumption of Gaussian input
uncertainty.

D.2 Ablation Test for Nyström Approximation

In this experiment, we aim to examine the effect of Nyström approximation for optimization. To
this end, we choose to optimize an RKHS function (Figure 4a) under a beta input distribution:
Px = beta(α = 0.4, β = 0.2, σ = 0.1). Several amortized candidates include:
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(a) MMD-GP with a Nystrom es-
timator, in which the sampling
size m = 160 and sub-sampling
size h = 10.

(b) uGP model that uses an inte-
gral kernel [26] and a sampling
size of m = 40.

(c) uGP with an integral ker-
nel [26] and uses a much larger
sampling size (m = 160).

(d) Conventional noisy GP model. (e) GP model with a symmetric
KL-divergence kernel [20].

(f) Robust GP model with an ex-
pected RBF kernel [13]

Figure 7: Modeling performance with a step-changing Chi-squared distribution.

Figure 8: Ablation test for the Nyström approximation.

• MMDGP-nystrom is our method with Nystrom approximation, in which the sampling size
m = 16 and sub-sampling size h = 9. Its complexity is O(MNmh), where M and N
are the sizes of training and test samples respectively, m is the sampling size for MMD
estimation, and h indicates the sub-sampling size during the Nystrom approximation.

• MMDGP-raw-S does not use the Nystrom approximation but employs an empirical MMD
estimator. Due to its O(MNm2) complexity, we set the sampling size m = 12 to ensure a
similar complexity as the MMDGP-nystrom.

• MMDGP-raw-L also uses an empirical MMD estimator, but with a larger sampling size
(m = 16).

• GP utilizes a vanilla GP with a learnable output noise level and optimizes with the upper-
confidence-bound acquisition2.

According to Figure 8, we find that 1) with sufficient computation power, the MMDGP-raw-L can
obtain the best performance by using a large sample size. 2)However, with limited complexity, the
performance MMDGP-raw-S degrades obviously while the MMDGP-nystrom performs much better.
This suggests that the Nyström approximation can significantly improve the efficiency with a mild
cost of performance degradation. 3) All the MMDGP-based methods are better than the vanilla
GP-UCB.

2For a fair comparison, all the methods in this test use a UCB acquisition.
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Figure 9: Optimization regret on 10D bumped-bowl problem.
Figure 10: The input GMM
distribution.

Figure 11: Simulation results of the push configurations found by different algorithms.

D.3 Optimization on 10D Bumped-Bowl Problem

To further evaluate AIRBO’s optimization performance on the high-dimensional problem, we employ
a 10-dimensional bumped bowl function from [27, 19]:

f(x) = g(x1:2)h(x3:),where

{
g(x) = 2 log (0.8∥x∥2 + e−10∥x∥2

) + 2.54

h(x) =
∑d

i 5x
2
i + 1

(33)

Here, xi is the i-th dimension of x, x1:2 represents the first 2 dimensions for the variable, and x3:

indicates the rest dimensions. The input uncertainty is designed to follow a concatenated distribution
of a 2D circular distribution(r = 0.5) and a multivariate normal distribution with a zero mean and
diagonal covariance of 0.01.

Figure 9 shows the mean and std values of the optimization regrets. We note that 1)when it comes
to a high-dimensional problem and complex input distribution, the misassumption of Gaussian
input uncertainty renders the skl and ERBF fail to locate the robust optimum and get stuck at local
optimums. 2)Our method outperforms the others and can find the robust optimum efficiently and
stably, while the uGP with a similar inference cost suffers the instability caused by insufficient
sampling and stumbles over iterations, which can be evidenced by its high std values of optimization
regret.
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D.4 Robust Robot Pushing

This benchmark is based on a Box2D simulator from [31], where our objective is to identify a robust
push configuration, enabling a robot to push a ball to predetermined targets under input randomness.
In our experiment, we simplify the task by setting the push angle to ra = arctan

ry
rx

, ensuring the
robot is always facing the ball. Also, we intentionally define the input distribution as a two-component
Gaussian Mixture Model as follows:

(rx, ry, rt) ∼ GMM
(
µ =

[
0 0 0
−1 1 0

]
,Σ =

 0.12 −0.32 1e− 6
−0.32 0.12 1e− 6
1e− 6 1e− 6 1.02

 , w =

[
0.5
0.5

] )
, (34)

where the covariance matrix Σ is shared among components and w is the weights of mixture
components. Meanwhile, as the SKL-UCB and ERBF-UCB surrogates can only accept Gaussian
input distributions, we choose to approximate the true input distribution with a Gaussian. As shown
in Figure 10, the approximation error is obvious, which explains the performance gap among these
algorithms in Figure 5b.

Apart from the statistics of the found pre-images in Figure 6, we also simulate the robot pushes
according to the found configurations and visualize the results in Figure 11. In this figure, each black
hollow square represents an instance of the robot’s initial location, the grey arrow indicates the push
direction and duration, and the blue circle marks the ball’s ending position after the push. We can
find that, as the GP-UCB ignores the input uncertainty, it randomly pushes to these targets and the
ball ending positions fluctuate. Also, due to the incorrect assumption of the input distribution, the
SKL-UCB and ERBF-UCB fail to control the ball’s ending position under input randomness. On
the contrary, AIRBO successfully recognizes the twin targets in quadrant I as an optimal choice
and frequently pushes to this area. Moreover, all the ball’s ending positions are well controlled and
centralized around the targets under input randomness.
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