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ABSTRACT

Large Language Models (LLMs) have significantly impacted the field of Math Word
Problems (MWPs), transforming how these problems are approached and solved,
particularly in educational contexts. However, existing evaluations often focus on
final accuracy, neglecting the critical aspect of reasoning capabilities. This work
addresses that gap by evaluating LLMs’ abilities to detect and correct reasoning
mistakes. We present a novel dataset, MWP-MISTAKE, containing MWPs with
both correct and incorrect reasoning steps generated through rule-based methods
and smaller language models. Our comprehensive benchmarking of state-of-the-art
models such as GPT-40 and GPT4 uncovers important insights into their strengths
and limitations. While GPT-40 excels in mistake detection and rectification, gaps
remain, particularly in handling complex datasets and novel problems. Additionally,
we identify concerns with data contamination and memorization, which affect LLM
reliability in real-world applications. While OpenAI’s O1 model demonstrates
90% accuracy in reasoning and final answers on complex tasks, it remains weak
in mistake detection. Our findings highlight the need for improved reasoning
evaluations and suggest ways to enhance LLM generalization and robustness in
math problem-solving.

1 INTRODUCTION

Large Language Models (LLMs) have transformed artificial intelligence applications across diverse
domains, including healthcare, agriculture, and education (OpenAll |bja). Their remarkable capabili-
ties in natural language understanding, question answering, and mathematical problem-have shown
potential to revolutionize various human endeavors (Liu et al., 2024b). Recent advancements have
fueled extensive research into applying LLMs to interpret and solve a wide array of mathematical
tasks, from basic arithmetic to complex algebraic equations and calculus problems (Hendrycks et al.}
2021; Zhang et al.| [2024a). Math Word Problems (MWPs) involve interpreting narrative scenarios
to extract mathematical concepts and apply reasoning for solutions (Srivatsa & Kochmar, 2024).
Studies (Xu et al., 2024} |[He-Yueya et al., 2023} |Deb et al., |2023)) show LLMs can convert text into
mathematical expressions and generate accurate results, but a critical element mathematical reasoning
is often underexplored.

Despite achieving remarkable accuracy rates exceeding 90% on datasets like GSM-8K (Grade School
Math dataset with linguistically diverse word problems) (Cobbe et al.,2021a), foundational LLMs
such as Claude-3-Opus (noal |a)), Gemini Ultra (Team et al., 2024), and OpenAl GPT-4 (OpenAl
et al., [2024) reveal a significant gap in our understanding of their capabilities in mathematical
reasoning (Deb et al.,[2023)). Current research predominantly focuses on evaluating the final accuracy
of MWPs (Luo et al.| 2023} [Yu et al.| 2024), neglecting the intricate reasoning processes necessary to
derive solutions. We argue that the reasoning steps play a pivotal role, and it is imperative to assess
them to comprehensively analyze the foundational capabilities of these models. This necessity is
further underscored by the increasing utilization of LLMs in domains such as education (Gan et al.,
2023)), where they serve as personalized tutors for students, aiding in teaching concepts and solving
mathematical problems. Simply deriving the final answer is insufficient; the ability to guide students
through correct steps, identify errors in their reasoning, and provide corrective guidance is paramount
for such applications.
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Figure 1: Model is prompted with a question along with incorrect reasoning steps to detect any
mistake and correct the to get to the correct final answer. GPT-40 generates the correct
output, while GPT-3.5Turbo fails to identify any mistake in the reasoning step. (Task - T1)

This paper aims to bridge this gap by providing a comprehensive benchmark and evaluation of LLMs’
performance on math word problems, including their capabilities in mistake detection and correction
within the reasoning steps (Figure[I). Analyzing LLMs’ ability to detect and rectify errors along the
reasoning steps yields valuable insights into their overall problem-solving capabilities. Our objectives
are threefold: firstly, to comprehensively evaluate LLMs’ capabilities in mathematical reasoning,
with a particular emphasis on mistake detection and correction; secondly, to identify the specific
strengths and weaknesses of these models in handling various types of mathematical challenges; and
thirdly, to propose potential directions for enhancing LLM capabilities in this domain.

To achieve this comprehensive evaluation, we have developed our own mistake dataset, designed to
include errors in the reasoning steps. This dataset allows the assessment of models’ proficiency not
only in providing correct solutions but also in detecting and correcting mistakes within the reasoning
steps. We evaluate 12 different foundational models including large, small and fine-tuned on math,
language models on our curated dataset MWP-MISTAKE. We are releasing this dataset for further
evaluation and benchmarkingﬂ

Our analysis reveals several key insights into the performance of LLMs on MWPs. Firstly, detecting
mistakes, even trivial ones remains a significant challenge for these models. Secondly, LLMs often
derive correct answers despite this difficulty in mistake detection. This can be attributed to data
memorization and potential contamination in training datasets, where models may have encountered
similar/same problems before. However, the ability to recover from or correct errors in the reasoning
process is generally poor across most models. Our contributions to this paper are as follows:

1. We collect and release to the research community MWP-MISTAKE, a dataset containing MWPs
with both correct and incorrect reasoning obtained from state-of-the-art MWP datasets such as
SVAMP (Patel et al., 2021), GSM-8K (Cobbe et al.| [2021b), MATH (Hendrycks et al., [2021)),
MATHBENCH (Liu et al., [20244a), and JEEBENCH (Arora et al., 2023)). Incorrect reasoning is
derived through meticulously crafted rules to alter the reasoning steps and using smaller models,
leveraging their inherent limitations in solving MWPs.

2. We provide benchmark results for our dataset to evaluate the reasoning capabilities of LLMs
such as GPT-40 (OpenAl, |a), GPT-4 (OpenAl et al.| 2024), GPT-3.5Turbo (noa, b), Claude (noa,
a), as well as smaller language models like Llama (Touvron et al., [2023), Phi (Abdin et al.,
20244), and Mixtral (Jiang et al.}2024) and also models fine-tuned on Math datasets. Our analysis
demonstrates that all SOTA LLMs struggle with mistake detection and correction.

3. Through meticulous evaluation and comparison of different LLMs, we offer a detailed analysis of
their strengths and weaknesses in handling mathematical reasoning tasks. We also provide early
preliminary evaluations with OpenAl ol models, which still does not excel in mistake detection.

2 MWP-MISTAKE DATASET

Most Math Word Problem (MWP) datasets provide math problems with final answers, occasionally
including correct reasoning steps. To evaluate LLMs’ ability to detect and correct errors, we created
the MWP-MISTAKE dataset using five sources: SVAMP (Patel et al.l 2021)), GSM-8K (Cobbe et al.|
2021b), MATH (Hendrycks et al., 2021), MATHBENCH (Liu et al.|[2024a), and JEEBENCH (Arora
et al.,[2023)), with MATHBENCH and JEEBENCH being more recent. These five datasets form the
basis of the MWP-MISTAKE dataset, covering a wide range of complexities from middle, high
school to college levels. While GSM-8K and MATH offer ground truth corect reasoning steps, the
others do not. For those, we used GPT-4 to generate chain-of-thought reasoning steps, which were

! Anonymous repository for source code and dataset: https://anonymous.4open.science/r/
Exposing-the-Achille-Heel-1D11/
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Figure 2: Examples of MWPs with correct reasoning, rule-based incorrect and smaller model based
incorrect reasoning from MATH.

then extensively manually verified for correctness. The final dataset includes MWP questions, correct
reasoning steps, and final answers from all five sources (see Appendix [A]for additional details). To
create incorrect reasoning steps, we propose two approaches: (i) meticulously crafted rules, and (ii)
using smaller models as bad reasoners, which we describe next.

2.1 METICULOUSLY CRAFTED RULES TO PROGRAMMATICALLY INJECT ERRORS

These rules are motivated and derived from common mistakes observed in educational settings,
ensuring the errors introduced are realistic and representative of actual student errors.

1. Shuffle numerical values: Numerical values are shuffled among themselves to verify if models
can correctly understand the question and select appropriate numerical values from the question.

2. Replace numerical values: Numerical values are replaced with random numbers ranging from 0
to 100. It identifies if the model can correctly pick the numerical values present in the question.

3. Shuffle operations: We randomly swap operators with other operators to test the model’s ability
to perform numerical operations.

4. Insert random reasoning steps: A random reasoning step is added at a random position to test
the model’s ability to identify incorrect reasoning.

5. Shuffle reasoning steps: The reasoning steps are shuffled to introduce ambiguity in the thought
process. This tests whether the model can identify changes in reasoning order.

6. Delete reasoning steps: One reasoning step is deleted in solutions that have two or more steps.
This helps to identify if the model can spot omissions in the reasoning process.

These rules mimic real-world student behavior by reflecting tendencies to get the order of steps wrong,
skip steps, misinterpret numerical values, use incorrect numbers, apply the wrong mathematical
operations, and add irrelevant steps in problem-solving. While rules #5 and #6 do not introduce
explicit errors in reasoning, they are considered mistakes in our dataset to prompt the model to
identify scenarios lacking clarity. Table [T] shows the number of questions selected from each of
the five datasets to which these six rules are applied to curate incorrect reasoning. Thus, for every
question selected, we created seven variations of reasoning steps (one correct + six incorrect).

2.2 SMALLER MODELS AS BAD REASONERS
Recently, SLMs are gaining popu- Typle |: Migp-MT STAKE Dataset details with the total number
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answers for all dataset questions. Questions with incorrect final answers, identified by comparing
them to the ground truth, are retained, and their reasoning steps are classified as incorrect. We then
perform an extensive human validation of the answer and reasoning steps to make sure their is a
mistake (as there could few instances where the answer can be incorrect, but reasoning steps could be
correct). We employ state-of-the-art SLMs, such as Llama-2-7b-chat, Phi-3-mini, and Mixtral-8x7B,
to generate COT reasoning steps and Appendix [C| provides examples of such incorrect reasoning
steps with final wrong answer. Table [I] provides statistics for each model across datasets. The entire
dataset, including reasoning steps, was exhaustively manually verified to eliminate errors.

Our dataset includes questions with original correct reasoning, rule-based incorrect reasoning, and
SLM-generated incorrect reasoning. For evaluation, we split the data into two parts: (1) Default,
with correct reasoning and rule-based incorrect steps, and (2) SLM reason, featuring SLM-generated



incorrect reasoning. Table[I] provides the complete details of the curated MWP-MISTAKE dataset
with the above two splits.

3 EXPERIMENTAL SETUP

Task Details. Our aim is to assess the performance of LLMs on MWPs, focusing on their ability to
detect and correct mistakes within the reasoning steps. We have two task variants to accomplish this:

1. Task-1 (T1): Given a question and its reasoning steps, the model must identify correctness, rectify
mistakes if needed and compute the final answer.(Figure [I).

2. Task-2 (T2): The model only needs to identify whether the reasoning steps provided are correct
or incorrect and provide the final answer. No correction of reasoning steps is explicitly required.

In essence, T1 evaluates the model’s ability to detect mistakes, rectify them, and derive the correct
answer, while T2 focuses solely on detecting mistakes and solving MWP correctly. Both tasks operate
under few-shot settings, with specific prompt details provided in Appendix [D]

Models. To evaluate LLMs’ mathematical reasoning capabilities, we utilize foundational LLMs,
SLMs and math-finetuned SLMs.

1. LLMs: We utilize 6 LLMs that have shown tremendous performance in MWPs such
as GPT-40, GPT-4, GPT-3.5Turbo, Claude-3-Opus, Llama-2-70b (Touvron et al., [2023),
Llama-3-70B (Dubey et al., [2024)).

2. SLMs. Additionally, we evaluate six popular SLMs—Phi-3-mini (Abdin et al., 2024b)),
Mixtral-8x7B (Jiang et al., [2024)), Llama-2-7b-chat (Touvron et al., [2023), Qwen2-7B (Yang
et al., [2024), Llama-3-8B (Dubey et al., 2024)), and Llama-3-8b-finetuned (Chen & Lil [2024))
trained on high-quality data to assess their reasoning capabilities. Appendix [E]provides the details
of the models, including their last training date.

Metrics. We compute the F1 score for all experiments as follows: for mistake detection, the model
outputs either "yes" (indicating correct reasoning) or "no" (indicating incorrect reasoning). The
ground truth labels are similarly "yes" for correct reasoning and "no" for incorrect reasoning, and the
model’s predictions are compared against these labels to calculate the F1 score. For performance
evaluation, the generated final answer is compared to the ground truth final answer to compute the F1
score for accuracy.

4 RESULTS AND ANALYSIS
4.1 MISTAKE DETECTION ANALYSIS WITH SIMPLE MWPs

We evaluated the models’ ability to detect reasoning mistakes using the SVAMP dataset, which
contains simple arithmetic word problems (up to a 4th-grade level) and variations testing question
sensitivity, reasoning ability, and structural invariance (Appendix [B] for more details on the variations
included). Mistakes were introduced using both rule-based methods and outputs from SLMs, with
human validation ensuring accuracy.

Table 2: Mistake Detection Performance (F1 score) on SVAMP dataset with all variations

Question Sensitivity ing Ability Structural invariance
Model Same Object, Different Object, Different Object, Add relevant Change Invert Change order | Change order | Add irrelevant
Different Structure | Same Structure | Different Structure | information | Information | Operation of objects of phrases information
GPT-40 0.78 0.70 0.77 0.74 0.78 0.72 0.74 0.75 0.76
GPT-4 0.65 0.58 0.64 0.62 0.66 0.55 0.62 0.60 0.64
GPT-3.5Turbo 0.76 0.77 0.71 0.75 0.77 0.74 0.78 0.72 0.75
Llama-2-7b-chat 0.14 0.09 0.13 0.10 0.17 0.08 0.13 0.15 0.13
Phi-3-mini 0.77 0.64 0.68 0.72 0.73 0.67 0.69 0.68 0.69
Qwen2-7B-Instruct 0.57 0.42 0.62 0.54 0.59 0.46 0.61 0.51 0.59
Llama-3-8b 0.80 0.79 0.79 0.82 0.79 0.75 0.81 0.75 0.78
Llama-3-70b 0.73 0.69 0.73 0.70 0.73 0.69 0.70 0.70 0.73
Ll 3-8b. 0.82 0.79 0.76 0.81 0.83 0.81 0.79 0.79 0.86

Table [/] shows presents the models’ mistake detection performance across these variations. The
results show that none of the models consistently detected mistakes, with F1 scores across all
variations falling below 80%. The highest F1 score, 81%, was achieved by Llama-3-8b-finetuned, a
fine-tuned model specifically trained on 13 math-related datasets, which outperformed even more
advanced models like GPT-40 and GPT-4. This suggests that fine-tuning on domain-specific data
offers significant benefits for mathematical tasks.

Despite these improvements, even the fine-tuned model showed significant sensitivity to problem
variations. When question sensitivity variations were introduced, performance dropped by 0.08,



Table 3: Mistake Detection Performance (F1 score) on MWP-MISTAKE dataset for Task T1. (D-
Default reasoning steps, SM-Smaller model reasoning steps) (Bold: Best)

GSMSK MATH MATHBENCH | JEEBENCH SVAMP AVERAGE
Model D SM D SM D SM D SM D SM D SM  Overall
GPT-40 085 0.86 | 0.83 0.94 | 0.80 0.99 0.79 0.99 0.74 0921080 094 0.87
GPT-4 072 0.72 | 0.78 0.90 | 0.51 0.90 0.81 0.87 0.61 0.89 | 0.69 0.86 0.77
GPT-3.5Turbo 0.80 0.70 | 0.80 0.60 | 0.50 0.34 0.54 046 0.75 0.69 | 0.68 0.56 0.62
Claude-3-Opus 0.79 0.89 | 0.73 0.90 | 0.68 0.92 0.69 0.88 0.77 093 | 0.73 090 0.82
Qwen2-7B 059 026 | 0.64 053|049 0.67 0.60  0.60 0.53 0.61 | 0.57 053 0.55
Phi-3-mini 070 NA | 0.65 NA | 054 NA 0.55 NA 070 NA | 063 NA 0.3
Mixtral-8x7B 073 NA | 079 NA | 0.62 NA 0.70 NA 064 NA | 070 NA 0.70
Llama-2-7b-chat 007 NA | 016 NA | 0.08 NA 036 NA 0.12 NA | 016 NA 0.16
Llama-2-70b 0.63 0.73 | 0.77 0.61 | 0.81 0.98 0.54 075 0.71 045 0.69 0.70 0.70
Llama-3-8B 0.79 0.81 | 0.79 0.79 | 0.56 0.58 0.50 0.67 0.78 0.81 | 0.68 0.73 0.71
Llama-3-8b-finetuned | 0.83 0.82 | 0.83 0.76 | 0.77 0.80 0.55 0.74 081 0.68 | 0.76 0.76 0.76
Llama-3-70B 0.79 0741076 0.78 | 0.55 0.76 0.59  0.61 0.70 0.82 ] 0.68 0.74 0.71

while reasoning ability and structural invariance variations resulted in reductions of 0.06 and 0.02,
respectively. GPT-4o exhibited a similar performance decline, suggesting that even the most advanced
models are vulnerable to small variations in problem structure (See Table[7, Appendix [B).

These findings highlight a key gap: even on relatively simple problems, models fail to generalize
when minor variations are introduced. This suggests that fine-tuning, while beneficial, is insufficient
to fully address the deeper issues in mistake detection across mathematical reasoning tasks. More
robust methods are needed to improve generalization.

4.2 CAN LLMs EFFECTIVELY IDENTIFY MISTAKES IN REASONING STEPS?

We evaluate the ability of various models to detect mistakes in the reasoning steps of MWPs, with F1
scores across five datasets, as shown in Table [3|for both default (D) and smaller models (SM).

GPT-40 Performance. GPT-40 is the top performer, outperforming models like GPT-4,
GPT-3.5Turbo, and several smaller models. However, despite an overall F1 score of 87% across
all datasets, it struggles with consistent mistake detection, particularly on simpler datasets such as
SVAMP, and on more complex datasets like JEEBENCH, where its performance notably declines.
For instance, on JEEBENCH, GPT-40 ’s F1 score drops by 6% compared to its performance on
GSM-8K. This shows that while GPT-40 excels in many areas, its precision for comprehensive
mistake detection is still lacking, especially when faced with varying levels of complexity.

Rule-based vs. SLM-generated Mistakes. One notable observation is that GPT-40 and other models
detect SLM-generated mistakes with higher accuracy compared to rule-based mistakes. For instance,
GPT-40 achieves an F1 score of 94% for SLM errors versus 80% for rule-based errors across all
datasets. This discrepancy suggests potential exposure to SLM-generated data during GPT-40 ’s
training, giving it an advantage in detecting these mistakes. This is an important insight into how
training data might influence the model’s effectiveness in mistake detection.

Performance of GPT-4 vs. GPT-3.5Turbo. While GPT-3.5Turbo performs similarly to GPT-4 and
even surpasses it on certain datasets like GSM-8K, it struggles with errors generated by smaller
models. On these, GPT-4 handles mistakes more effectively, likely due to potential data contamination
or overfitting during its training. For instance, GPT-4 ’s F1 score for smaller model-generated mistakes
is 86%, compared to GPT-3.5Turbo ’s 56%.

Smaller Models and Fine-tuning. Smaller fine-tuned models, such as Llama-3-8b-finetuned, demon-
strate a competitive performance close to that of GPT-4. Llama-3-8b-finetuned achieves an F1 score
of 76%, outperforming other SLMs and even rivaling GPT-4 (77%) in certain cases. This highlights
the effectiveness of domain-specific fine-tuning, especially for mathematical tasks, where tailored
training significantly improves mistake detection accuracy.

Challenges with Newer Datasets. All models, including GPT-4o, face significant challenges with
newer and more complex datasets such as MATHBENCH and JEEBENCH. For instance, GPT-40
’s F1 score drops by 6% on JEEBENCH compared to its performance on GSM-8K. This stark
decline across models shows that their reasoning capabilities do not generalize well to unseen and
more complex problem types. While GPT-4o still leads the pack, its limitations on these datasets
underscore the need for better generalization in handling deeper reasoning challenges. Appendix [
shows additional detailed results showcasing the F1 score analysis on different types of rule-based
reasoning mistakes across different models.



Table 4: Performance in deriving correct answers (F1 score) on MWP-MISTAKE dataset for Task T1.
(D-Default reasoning steps, SM-Smaller model reasoning steps) (Bold: Best)

GSMSK MATH MATHBENCH | JEEBENCH SVAMP AVERAGE
Model D SM D SM D SM D SM D SM D SM__ Overall
GPT-40 0.99 086|090 079 | 0.90 0.69 048 0.47 1.00 078 | 0.85 0.72 0.79
GPT-4 097 0.77 | 0.80 0.65 | 0.88 0.46 020 0.27 098 0.73 | 0.77 057 0.67
GPT-3.5Turbo 089 043|069 023]0.75 020 0.62 0.14 095 037|078 027 053
Claude-3-Opus 0.98 0.86 | 0.89 0.90 | 0.92 0.51 046 0.32 098 0.80 | 0.84 0.68 0.76
Qwen2-7B-Instruct 092 050 | 081 035|085 0.28 072 0.16 090 030|084 032 0.58
Phi-3-mini 088 NA | 051 NA | 0.63 NA 032 NA 076 NA | 062 NA 0.62
Mixtral-8x7b 087 NA | 067 NA | 0.70 NA 0.16 NA 090 NA | 0.66 NA 0.66
Llama-2-7b-chat 080 NA | 027 NA | 040 NA 0.08 NA 066 NA | 044 NA 044
Llama-2-70b 0.67 0.20 | 043 0.08 | 0.56 0.08 031 0.04 0.78 0.06 | 0.55 0.09 0.32
Llama-3-8b 0.84 046 | 0.50 0.19 | 0.70 0.11 0.80  0.06 083 0.30 | 0.74 023 048
Llama-3-8b-finetuned | 0.92 0.37 | 0.52 0.10 | 0.76 0.14 0.77  0.10 094 0.17 | 0.78 0.18 0.48
Llama-3-70b 083 0.72 | 0.78 0.46 | 0.80 0.29 0.63 0.22 0.83 0.69 | 0.77 048 0.62

4.3 CAN LLMS ACCURATELY DERIVE CORRECT ANSWERS DESPITE MISTAKES?

We assess the models’ ability to generate correct answers even when reasoning steps contain mistakes.
Table @] presents the F1 scores for Task 1, where models are explicitly tasked with detecting and
rectifying mistakes to compute the final answer.

GPT-40 Performance. GPT-40 achieves an overall F1 score of 79% across all datasets, demonstrating
an impressive ability to derive correct answers despite flawed reasoning. Specifically, it performs
exceptionally well on simpler datasets like GSM-8K (99%), MATH (90%), and MATHBENCH
(90%) in rectifying rule-based reasoning errors. However, its performance plummets to 48% on
the more complex JEEBENCH dataset. Similar trend is seen in mistakes with SLMs, however
this performance drop highlights a critical limitation: even though GPT-40 detects SLM based
reasoning mistakes with over 90% accuracy, its ability to rectify them and generate correct answers is
inconsistent, with F1 scores falling to 70-80%. This suggests that when faced with simple, rule-based
mistakes, GPT-4o0 can often produce the correct answer, either through error correction or data
memorization. However, when confronted with more intricate, SLM-generated mistakes, GPT-40
struggles to correct the errors and derive the correct answer, exposing significant shortcomings in the
model’s reasoning capabilities.

Performance of Other Models. Similar trends are observed for other models. Claude-3-Opus and
GPT-4 rank second and third, respectively, in terms of performance. SLMs such as Phi, Llama, and
Mixtral perform notably worse, with F1 scores ranging between 40-60%, significantly lower than
GPT-40 and GPT-4. These results suggest that larger models like GPT-40 have a clear advantage in
mistake rectification compared to smaller and fine-tuned models.

Challenges with Complex Datasets. All models, including GPT-40, perform poorly on complex
datasets like JEEBENCH, where the ability to derive correct answers drops significantly. This sharp
decline underscores a critical limitation of current LLMs: their lack of robustness when confronted
with deeper reasoning tasks and more intricate problem sets.

1.00
M GSMBK (SM)T1 M GSMBK (SM)T2 1 MATH (SM)T1 M MATH (SM) T2 B MATHBENCH (SM) T1 B MATHBENCH (SM) T2
JEEBENCH (SM) T1 M JEEBENCH (SM) T2

F1 Score

0.00

GPT40 GPT4
Model

Figure 3: Performance in deriving final answer between T1 and T2. A significant drop in performance
when the model does not rectify the incorrect reasoning steps.

Comparing Performance on Task 2: Identifying Mistakes Without Correction. In Task 2, models
are required to identify the presence of a mistake but are not explicitly tasked with correcting it before
providing the final answer. Figure [3]illustrates the F1 scores of GPT-40, GPT-4, and GPT-3.5Turbo
across all datasets for both Task 1 (detect and rectify mistakes) and Task 2 (identify mistakes and
compute the answer without rectification).

GPT-40 Performance. There is a noticeable drop in GPT-40’s performance between Task 1 and
Task 2 across all datasets. In Task 1, where the model is prompted to both detect and correct mistakes,
GPT-40 achieves higher accuracy, particularly on simpler datasets. However, in Task 2, where it only
identifies whether a mistake is present, its F1 score significantly decreases. This decline suggests that



GPT-4o0 lacks the inherent ability to rectify mistakes unless it is explicitly instructed to do so. This
inability to naturally correct mistakes without guidance reveals a key weakness in its reasoning.

GPT-4 Performance. While GPT-4 follows a similar trend to GPT-4o in showing a performance
drop from Task 1 to Task 2, the gap between its Task 1 and Task 2 performance is smaller. This
indicates that although GPT-4’s overall performance is lower than GPT-4o, it experiences less of a
drop when transitioning between the two tasks. This could suggest that GPT-4 is more consistent in
detecting mistakes but, like GPT-4o, struggles to correct them when not explicitly prompted. The
lower overall performance compared to GPT-40 indicates that GPT-4 is less capable of achieving
high accuracy on both tasks.

4.4 EXPLORING DATA CONTAMINATION AND MEMORIZATION EFFECTS IN MATH
REASONING TASKS

In our analysis of LLMs’ mathematical reasoning performance, we’ve identified potential instances
of data contamination and memorization, both of which can significantly impact the effectiveness of
these models. Data contamination, characterized by the presence of test data from downstream tasks
in LLMs’ training data, poses a major challenge in accurately assessing their real-world performance.
Meanwhile, memorization occurs when models replicate solutions from training data without grasping
the underlying principles, thereby hindering their ability to generalize to new problems.

The presence of data contamination is evident in instances of unexpectedly high performance on
certain datasets. For example, GPT-3.5Turbo’s superior performance over GPT-4 on the GSM-8K
dataset raises concerns about biases in GPT-4’s training data. Similarly, the comparable performance
between smaller and larger models suggests the potential presence of memorization. These findings
underscore the critical need for rigorous evaluation to mitigate the impacts of memorization, ensuring
the reliability and effectiveness of LLMs in real-world applications.

Investigating data contamination and memorization poses challenges due to restricted pre-training
data access and computational limitations. To tackle this, we employ an approach outlined in (Golchin
& Surdeanul, 2024), utilizing an LLM to replicate individual instances of the dataset. This involves
guiding the LLM with instructions containing unique identifiers from the source dataset, like dataset
name, partition (e.g., train, test, or validation), and a fragment of the reference instance. By instructing
the LLM to complete these partial instances, we can evaluate contamination and memorization.

To detect contamination, a heuristic is applied comparing the average overlap score between generated
completions and reference instances using ROUGE-L (Lin, 2004)). This comparison is made between
guided instructions (including dataset and partition identifiers) and general instructions (lacking
such identifiers). If the overlap score is significantly larger with guided instructions, it suggests
contamination. This method relies on the premise that the only distinction between the two instructions
is the inclusion of dataset and partition names in guided instructions, implying any improvement can
be attributed to contamination (Appendix [I| for more details).

Figuredillustrates the difference in ROUGE-L scores between guided and general instructions across
all datasets for various models. The results highlight notable discrepancies, providing early evidence
of data contamination, particularly among the larger models.

GPT-40 Performance. GPT-40 exhibits the highest ROUGE-L scores across all datasets, suggesting
a significant level of data contamination. This is consistent with its earlier performance, where
it excelled in simpler tasks but struggled with more complex datasets, likely due to reliance on
memorized data rather than true reasoning capabilities.

Comparative Contamination Across Models. Following GPT-40, both GPT-4 and GPT-3.5Turbo
show progressively lower ROUGE-L scores, though they still indicate some level of contamination.
This pattern reinforces the earlier performance trends, where these models performed well but not
as dominantly as GPT-40, suggesting that their performance may also benefit from memorized data
(especially on GSM-8K), albeit to a lesser degree.

SLMs’ Minimal Contamination. In contrast, smaller language models (SLMs) such as Llama and
Phi display negative ROUGE-L scores, suggesting minimal to no contamination. These models seem
to rely more on reasoning rather than memorization, as their performance is not inflated by exposure
to the test data during training. However, their lower overall performance on complex tasks highlights
that they lack the advanced reasoning capabilities needed to match the larger models.
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Figure 4: Difference between guided and general instructions rouge-L score across all datasets.
A high positive difference indicates high contamination and a low positive or negative difference
indicates, little to no contamination.

Table 5: Ability to Rectify mistakes and derive correct final answer on MWP-MISTAKE dataset for
Task T1. (D-Default reasoning steps, SM-Smaller model reasoning steps) (Bold: Best)

GSMSK MATH MATHBENCH | JEEBENCH SVAMP AVERAGE
Model D SM D SM D SM D SM D SM D SM  Overall
GPT-40 098 091|087 0.84]0.90 0.64 042 042 1.00 0.86 | 0.83 0.73 0.78
GPT-4 0.96 0.88 | 0.72 0.70 | 0.83 0.45 0.10 024 094 0.77 | 0.71 0.61 0.66
GPT-3.5Turbo 081 0.56 | 0.54 034 ] 0.62 0.34 0.16 0.05 093 0.57 | 0.61 037 049
Claude-3-Opus 097 094 | 0.84 089 | 0.87 0.57 027 033 096 085|078 0.72 0.75
Qwen2-7B-Instruct 0.83 051|077 047 ] 0.69 029 0.29 021 0.78 0.50 | 0.67 040 0.53
Phi-3-mini 079 NA | 037 NA | 041 NA 0.03 NA 063 NA | 045 NA 045
Mixtral-8x7b 077 NA | 056 NA | 057 NA 0.17 NA 0.83 NA | 058 NA 0.8
Llama-2-7b-chat 073 NA | 021 NA | 0.11 NA 0.04 NA 052 NA | 032 NA 032
Llama-2-70b 0.57 025034 0.07 | 046 0.06 0.02 0.03 0.60 0.21 | 0.40 0.12 0.26
Llama-3-8b 0.77 0.51 | 0.39 024 | 0.58 0.08 0.49 0.06 0.65 039|058 026 042
Llama-3-8b-finetuned | 0.85 0.41 | 0.33 0.10 | 0.69 0.18 025 0.13 091 0.26 | 0.60 021 041
Llama-3-70b 0.80 0.88 | 0.72 0.62 | 0.73 0.33 021 0.21 0.83 0.81 | 0.66 0.57 0.61

4.5 CANLLMsS CORRECTLY RECTIFY MISTAKES IN REASONING STEPS?

In Task 1, the model not only detects mistakes but also attempts to rectify them to arrive at the correct
answer. We evaluate the model’s ability to rectify mistakes once detected by examining the number
of questions where mistakes were identified and calculating how many times the model produced the
correct answer after rectification. The assumption is that if the model reaches the correct final answer
after detecting a mistake, it has successfully rectified the incorrect reasoning step. For instance, if the
model identifies mistakes in 90 out of 100 questions and rectifies them in 45 cases (resulting in final
correct answer), the rectification score would be 50% (45/90).

Table[3]illustrates the performance of different models in rectifying reasoning steps and producing
the correct final answer across various datasets.

GPT-40 shows high proficiency in rectifying mistakes, achieving an overall rectification score of 78%
across all datasets. It outperforms GPT-4 by 11% and exceeds other models, including SLMs, by over
35%. Specifically, GPT-40 excels in correcting mistakes caused by rule-based reasoning compared to
those induced by SLMs. However, its ability to fix mistakes decreases with more complex datasets
like MATHBENCH and JEEBENCH. On simpler datasets, such as GSM-8K, MATH, and SVAMP,
GPT-40 demonstrates high accuracy in rectification, potentially due to either data contamination (as
discussed earlier) or the simpler nature of rule-based mistakes.

As observed earlier, Claude-3-Opus performs comparably to GPT-40 in rectifying mistakes. Other
models, however, exhibit poorer rectification abilities, with scores ranging between 30-50%. Notably,
Llama-3-70B achieves performance similar to GPT-4, indicating strong rectification capabilities.

To delve deeper into the rectification process, we also compute the percentage of questions where the
model rectified the reasoning steps but still arrived at incorrect answers. Across the MWP-MISTAKE
dataset, GPT-4o failed to derive the correct answer in 17% of cases after correcting the reasoning,
while other models like GPT-4, GPT-4, Llama-2-7b-chat, Mixtral-8x7B, and Phi-3-mini resulted in
30%, 43.5%, 80.9%, 40.2%, and 55.6% incorrect answers, respectively. Additionally, we evaluated
the rectified reasoning steps by comparing them with ground-truth reasoning steps to assess the
effectiveness and alignment of the rectification process across models (detailed in Appendix [G]and [H].
This comparison is quantified using traditional NLP metrics such as BERTScore.



4.6 How DOES OPENAI 01 MODEL PERFORM ON MWP-MISTAKE DATASET?

OpenAl recently introduced the O1 model, designed to enhance reasoning capabilities by spending
more time processing tasks before responding. In a preliminary analysis comparing the performance
of O1 and GPT-40 on 120 questions from the complex JEEBENCH dataset (38 correct reasoning
steps, 56 rule-based mistakes, and 26 SLM-generated mistakes), several key insights emerged. O1
consistently outperforms GPT-40, particularly in deriving correct final answers, showcasing its
superior reasoning abilities across complex tasks (Table[T5] Appendix [J).

Rule-based mistake identification. both O1 and GPT-40 perform similarly, with F1 scores of
0.4759 and 0.45, respectively. This suggests that both models struggle to consistently identify simple
rule-based errors, detecting them with less than 50% accuracy. However, the significant divergence
becomes apparent when comparing their ability to derive the correct final answer despite the mistakes.
While GPT-40 manages an F1 score of only 0.43, O1 excels with a final answer F1 score of 0.8277,
showing a notable improvement in reasoning capabilities. O1’s ability to achieve such high final
accuracy, despite similar mistake detection rates, underscores its advanced reasoning abilities, which
may benefit from improved rectification strategies or more sophisticated handling of mistakes during
the reasoning process.

SLM-generated mistakes. When analyzing SLM-generated mistakes, both models achieve 100%
mistake detection accuracy, reflecting strong capabilities in identifying these more complex errors.
However, the models diverge significantly in their ability to correct these mistakes and derive the
correct final answer. Ol reaches a final answer F1 score of 0.9, while GPT-40 lags significantly
behind with a score of only 0.62. This stark contrast highlights O1’s substantial advancement not
only in detecting mistakes but also in rectifying them to produce the correct final answer, showcasing
its enhanced reasoning and generalization capabilities on more challenging datasets.

In summary, while both models are comparable in terms of mistake identification, O1 demonstrates
a clear advantage in final answer generation and rectification, particularly on SLM-based mistakes.
These results illustrate the superior reasoning capabilities of O1 over GPT-40, making it a more effec-
tive model for handling intricate reasoning tasks. However, issues like potential data contamination
and inefficiencies in processing time and token usage with O1 remain areas for further optimization.

5 KEY INSIGHTS, TAKEAWAYS, AND POTENTIAL DIRECTIONS FOR
IMPROVING MATHEMATICAL REASONING

1. GPT-40’s Performance Strengths and Limitations: GPT-4o is the top performer across all
datasets, achieving an overall F1 score of 87%. Its foundational capabilities enable strong
performance in both mistake detection and rectification, particularly on simpler datasets like
GSM-8K. However, its performance drops significantly on more complex datasets such as
JEEBENCH and MATHBENCH, indicating limitations in handling highly complex or novel
problems and highlighting the need for improved reasoning capabilities.

2. Data Contamination and Overfitting Concerns: GPT-40’s unexpectedly high performance on
datasets like GSM-8K and SVAMP suggests possible data contamination and overfitting, with
models benefiting from memorized examples. To ensure fair evaluation, cleaner datasets and
rigorous training methods are needed to assess true reasoning abilities rather than memorization.

3. Challenges with Smaller Language Models (SLMs): There is a notable performance gap
between smaller models (SLMs) and larger models like GPT-40. While some SLMs, like
Llama-3-8b-finetuned and Llama-3-70B, show competitive results, this may stem from similar
contamination issues. Enhancing SLMs’ reasoning abilities, is a key area for improvement.

4. Generalization Difficulties Across Datasets: The performance decline on newer datasets such as
MATHBENCH and JEEBENCH points to a generalization issue in LLMs. While models perform
well on familiar datasets, they struggle with novel problems. Addressing this requires improved
training strategies and more diverse datasets to broaden models’ reasoning skills.

5. Inconsistent Rectification Abilities: Despite strong mistake detection, GPT-40 shows inconsis-
tent rectification performance, especially in complex datasets. Its ability to correct errors drops
significantly between simple tasks (like rule-based errors) and more challenging ones (SLM-
generated mistakes). This highlights the need for more robust error correction capabilities in
diverse reasoning scenarios.



Future research should prioritize cleaner datasets and techniques to reduce data contamination and
overfitting, enabling better generalization to new tasks. Improving error rectification and enhancing
smaller models through fine-tuning are key, as is advancing models’ ability to handle complex
rule-based reasoning for better performance on structured problems.

6 RELATED WORK

Current research on large language models (LLMs) for solving math word problems (MWPs)
primarily emphasizes generating correct answers, often focusing on overall accuracy rather than
evaluating the underlying reasoning processes. Studies like MathPrompter (Imani et al., 2023)) and
WizardMath (Luo et al.,|2023)) showcase impressive results in solving MWPs by generating complex
reasoning steps. However, their focus remains heavily centered on achieving the correct answer
without rigorously evaluating the correctness, relevance, or verification of the individual reasoning
steps. For instance, works such as (Liu et al., [2024bj |Yuan et al., 2023 |Schulman et al.} 2017) focus
primarily on enhancing LLMs’ ability to reach accurate answers but do not delve into assessing
whether the reasoning process itself is correct or aligned with logical problem-solving paths.

Several recent works have begun shifting their attention toward reasoning quality, but these efforts
remain limited in scope. Studies like (Sawada et al., [2023) evaluate reasoning by comparing the
similarity of generated and reference reasoning, while others, such as (Xia et al.|[2024), introduce the
idea of assessing reasoning steps through metrics like validity and redundancy. ROSCOE(Golovneva
et al.,|2023) takes this further by offering a suite of unsupervised metrics that evaluate various aspects
of reasoning quality, such as semantic consistency and logicality, rather than just the final answer.
While these methods attempt to scrutinize reasoning steps, they often fall short of addressing the
detection and rectification of specific reasoning mistakes within MWPs, leaving a gap in understanding
how well LLMs can manage flawed reasoning.

A third significant gap in the literature pertains to the limited exploration of LLMs’ foundational
reasoning abilities, particularly in mistake detection and rectification. While some works propose
LLM:s as verifiers for their own reasoning (Zhang et al.,[2024b; Zheng et al.| 2023)), they typically
assess reasoning correctness without tackling the deeper issue of identifying and correcting logical
mistakes. Moreover, studies like (Olausson et al.|[2024) demonstrate that LLMs struggle to find and
correct their own reasoning errors, especially in tasks involving code generation. Recent works such
as Alice in Wonderland (Nezhurina et al., 2024) breakdown the function and reasoning capabilities
of LLMs and show that even small variations in such common sense tasks has drastic performance
reduction. However, there remains a lack of rigorous benchmarking for mistake detection and
correction in MWPs, especially for foundational models.

Our work addresses this gap by introducing the MWP-Mistake dataset, which includes diverse,
systematic reasoning mistakes in MWPs. Unlike prior research, our analysis focuses not only on
models’ ability to detect mistakes but also on their ability to rectify these errors and generate correct
answers. We provide a comprehensive benchmark, comparing state-of-the-art models on both simple
and complex datasets. Through this work, we aim to provide a clearer understanding of current
models’ limitations in handling reasoning mistakes and propose a framework for evaluating LLMs’
true reasoning abilities, rather than relying on answer accuracy alone.

7 CONCLUSIONS

This study evaluates large language models (LLMs) such as GPT-40, GPT-4, GPT-3.5Turbo, along-
side smaller models like Llama-2-7b-chat, Mixtral-8x7B, and Phi-3-mini, on their ability to detect
and correct errors in mathematical reasoning. Using our MWP-MISTAKE dataset, which includes
incorrect reasoning steps generated through both rule-based methods and smaller models, we compre-
hensively assess LLMs’ performance in error detection and rectification. While GPT-40 outperforms
other models, there remains a gap in its ability to consistently detect mistakes, as it struggles with
several simple problems and its performance degrades on more complex tasks. We also uncover
issues of data contamination and overfitting, especially in GPT-4’s performance on GSM8K, and
observe a performance drop on newer datasets like MATHBENCH and JEEBENCH, highlighting
generalization challenges. Addressing these limitations—such as enhancing generalization and mini-
mizing data contamination—is essential for making LLMs more reliable and applicable to real-world
mathematical problem-solving. Future research should focus on refining training processes and
strengthening models’ reasoning abilities to meet these challenges.
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APPENDIX

The dataset and code to run all experiments are provided in this repository,

A MWP-MISTAKE DATASET

MWP-MISTAKE dataset is curated using 4 different types of well-known datasets. Below are the
details of each of the datasets.

* SVAMP Patel et al.|(2021): SVAMP is a MWP dataset created by applying a carefully
chosen variations over examples sampled from existing datasets, AsDiv-A |Miao et al.| (2020)
and MAWPS |[Koncel-Kedziorski et al.|(2016).

* GSM-8K |Cobbe et al.| (2021b):GSM-8K is a dataset of diverse grade school math word
problems created by human writers, involving basic arithmetic operations. Released in
November 2021.
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* MATH |Hendrycks et al.|(2021): The MATH dataset is divided into seven categories, each
with five difficulty levels. For our study, we used levels 1, 2, and 3 from the algebra
and counting and probability categories. Released in November 2021. We focused on
Levels 1 to 3 because the problems in Levels 4 and 5 are more complex, requiring specific
notations, symbols, and equations. Injecting reasoning mistakes into such complex problems
is non-trivial and would require expert knowledge to ensure accuracy in the reasoning chains.

* MATHBENCH [Liu et al.| (2024a): MATHBENCH is a recent dataset with questions divided
by educational stages, from basic arithmetic to college levels. For our experiment, we chose
middle and high-school-level single-choice multiple-choice questions. Released in May
2024.

* JEEBENCH |Arora et al.|(2023): JEEBENCH is a challenging benchmark dataset for
evaluating LLM problem-solving abilities, containing 515 pre-engineering math, physics,
and chemistry problems from the IIT JEE-Advanced Exam. For our experiment, we chose
mathematics single-choice questions only. Released in October 2023.

A.1 PROMPTS TO CURATE REASONING STEPS IN MWP-MISTAKE DATASET

GSM-8K and MATH already contain MWP questions, a chain of thought reasoning steps
and a final answer. To curate chain of thought reasoning step for MATHBENCH and
JEEBENCH we made use of GPT-4. While prompting GPT-4 we made sure that rea-
soning steps did not contain the final answer, so that final answer is not picked di-
rectly from the reasoning step. [Listing 1| prompt is used to curate the reasoning steps.

Strictly follow the below conditions.

1. Output format: \nReasoning Chain: \nFinal Answer:

2. Reasoning Chain should be separated by a new line only.

3. Reasoning chain cannot have the final answer. (Replace the
final answer 1in the reasoning chain with its calculation or
#H#44)

4. Do not include any additional information in the final answer (
only the answer).

Listing 1: Prompt to curate reasoning chain without answers.

Table [6] shows examples of default reasoning steps from GSM-8K dataset.

B SVAMP VARIATIONS

Figure [5|shows the 9 different types of carefully curated variations sampled from existing datasets,
AsDiv-A Miao et al.| (2020) and MAWPS [Koncel-Kedziorski et al.| (2016). Across each category, we
evaluated the mistake detection performance of each model Table [/|shows that Llama-3-8b-finetuned
performed the best due to this preexisting knowledge on solving MWPs, achiving the highest average
F1 score of 81% across the variations. We also evaluated model’s sensitivity to variations, table
shows the max performance change across different models. GPT-40 performance significantly
dropped by 0.08, 0.06, and 0.02 when exposed to variations related to question sensitivity, reasoning
ability, and structural invariance, respectively. Examples of variations are as follows:

* Reasoning ability - Change Information: This involves changing entities, e.g., replacing
"Jack" with "Dorothy."

* Reasoning ability - Invert Operation: Here, operations or calculations are altered while
keeping the rest of the structure the same.

* Structural Invariance - Change Order of Objects: This variation reverses the order of entities,
such as changing "8 marbles and 3 stones" to "3 stones and 8 marbles.

Across all these simple variations, we observed a performance drop of 10% in GPT-4 and around
6% in GPT-40, highlighting the sensitivity of these models. Interestingly, fine-tuned models like
Llama-3-8B-Finetuned demonstrated greater robustness, with just a 2% performance drop.
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Table 6: Example of rule based incorrect reasoning step (GSM-8K dataset)

Question

Gerald spends $100 a month on baseball supplies.

His season is 4 months long.

He wants to use the months he’s not playing baseball

to save up by raking, shoveling, and mowing lawns.

He charges $10 for each. How many chores does he need to average a month
to save up for his supplies?

Final Answer

5

Gold Reasoning step

He needs to save up $400 because 4 x 100 = 400

He has 8 months to earn this money because 12 -4 =8
He needs to earn $50 a month because 400 / 8 = 50
He needs to do 5 tasks a month because 50/ 10 =5

Shuffle reasoning step

He needs to earn $50 a month because 400 / 8 = 50
He needs to save up $400 because 4 x 100 = 400

He needs to do 5 tasks a month because 50/ 10 =5
He has 8 months to earn this money because 12 - 4 =8

Delete reasoning step

He needs to save up $400 because 4 x 100 = 400
He needs to earn $50 a month because 400/ 8 = 50
He needs to do 5 tasks a month because 50/10=5

Shuffle numerical values

He needs to save up $400 because 4 x 100 = 400

He has 50 months to earn this money because 8§ - 8 = 4
He needs to earn $12 a month because 400 / 8 = 50
He needs to do 5 tasks a month because 50/ 10 =5

Replace numerical values

He needs to save up $400 because 4 x 100 = 400

He has 8 months to earn this money because 12 - 4 =8
He needs to earn $6 a month because 32 / 8 = 50

He needs to do 76 tasks a month because 50/ 10 =5

Shuffle Operations

He needs to save up $400 because 4 x 100 = 400

He has 8 months to earn this money because 12 * 4 = 8
He needs to earn $50 a month because 400 - 8 = 50

He needs to do 5 tasks a month because 50/ 10=5

Insert Random Reasoning step

He needs to save up $400 because 4 x 100 = 400
Therefore, Faye has $60 - $30 = $30 left.

He has 8 months to earn this money because 12 -4 =8
He needs to earn $50 a month because 400/ 8 = 50
He needs to do 5 tasks a month because 50/ 10 =5

Table 7: Mistake Detection Performance (F1 score) on SVAMP dataset with all variations)

Question Sensitivity ing Ability Structural invariance
Model Same Object, Different Object, [ Different Object, | Add relevant Change Invert Change order | Change order | Add irrelevant
Different Structure | Same Structure | Different Structure | information | Information | Operation of objects of phrases information
GPT-40 0.70 0.77 0.74 0.78 0.72 0.74 0.75 0.76
GPT-4 0.65 0.58 0.64 0.62 0.66 0.55 0.62 0.60 0.64
GPT-3.5Turbo 0.76 0.77 0.71 0.75 0.77 0.74 0.78 0.72 0.75
Llama-2-7b-chat 0.14 0.09 0.13 0.10 0.17 0.08 0.13 0.15 0.13
Phi-3-mini 0.77 0.64 0.68 0.72 0.73 0.67 0.69 0.68 0.69
Qwen2-7B-Instruct 0.57 0.42 0.62 0.54 0.59 0.46 0.61 0.51 0.59
Llama-3-8b 0.80 0.79 0.79 0.82 0.79 0.75 0.81 0.75 0.78
Llama-3-70b 0.73 0.69 0.73 0.70 0.73 0.69 0.70 0.70 0.73
LI 3-8b-fi 0.82 0.79 0.76 0.81 0.83 0.81 0.79 0.79 0.86

Table 8: Max Performance change with introduction of variations on SVAMP dataset.)

Model Question Sensitivity | Reasoning Ability | Structural invariance

GPT-40 0.08 0.06 0.02
GPT-4 0.07 0.04 0.04
GPT-3.5Turbo 0.06 0.03 0.06
Llama-2-7b-chat 0.05 0.09 0.02
Phi-3-mini 0.09 0.06 0.01
Qwen2-7B-Instruct 0.20 0.13 0.1

Llama-3-8b 0.01 0.07 0.06
Llama-3-70b 0.04 0.04 0.03
Llama-3-8b-finetuned 0.06 0.02 0.07
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CATEGORY  VARIATION EXAMPLES
Original: Allan brought two balloons and Jake brought four balloons to the park. How many balloons
Same Object, Different did Allan and Jake have in the park?
Structure Variation: Allan brought two balloons and Jake brought four balloons to the park. How many more
balloons did Jake have than Allan in the park?
. Original: In a school, there are 542 girls and 387 boys. 290 more boys joined the school. How many
Question Different Object, Same pupils are in the school?
Sensitivity Structure Variation: In a school, there are 542 girls and 387 boys. 290 more boys joined the school. How many
boys are in the school?
Original: He then went to see the oranges being harvested. He found out that they harvest 83 sacks per
. . day and that each sack contains 12 oranges. How many sacks of oranges will they have after 6 days of
g!geren: gtbje?' harvest?
iierent Structure Variation: He then went to see the oranges being harvested. He found out that they harvest 83 sacks
per day and that each sack contains 12 oranges. How many oranges do they harvest per day?
Original: Every day, Ryan spends 4 hours on learning English and 3 hours on learning Chinese. How
Add relevant information many hours does he spend on learning English and Chinese in all?
Variation: Every day, Ryan spends 4 hours on learning English and 3 hours on learning Chinese. If he
learns for 3 days, how many hours does he spend on learning English and Chinese in all?
R . Original: Jack had 142 pencils. Jack gave 31 pencils to Dorothy. How many pencils does Jack have
€asoning X now?
Ability Change Information Variation: Dorothy had 142 pencils. Jack gave 31 pencils to Dorothy. How many pencils does Dorothy
have now?
Original: He also made some juice from fresh oranges. If he used 2 oranges per glass of juice and he
Invert Operation made 6 glasses of juice, how many oranges did he use?
P Variation: He also made some juice from fresh oranges. If he used 2 oranges per glass of juice and he
used up 12 oranges, how many glasses of juice did he make?
Change order of obiects Original: John has 8 marbles and 3 stones. How many more marbles than stones does he have?
& Jects Variation: John has 3 stones and & marbles. How many more marbles than stones does he have?
Original: Matthew had 27 crackers. If Matthew gave equal numbers of crackers to his 9 friends, how
ructural many crackers did each person eat?
Structural Change order of phrases kers did each ?
Invariance & phrases Variation: Matthew gave equal numbers of crackers to his 9 friends. If Matthew had a total of 27

crackers initially, how many crackers did each person eat?

Add irrelevant
information

Original: Jack had 142 pencils. Jack gave 31 pencils to Dorothy. How many pencils does Jack have
now?
Variation: Jack had 142 pencils. Dorothy had 50 pencils. Jack gave 31 pencils to Dorothy. How many

Figure 5: Variations in SVAMP dataset on simple Math Problems

pencils does Jack have now?
2021)

C SLMS REASONING STEPS

SLMs were used to generate chain of thought (COT) reasoning step and final answers for all dataset
questions. Each model Llama-2-7b-chat, Mixtral-8x7B, Phi-3-mini where prompted using
to curate the reasoning step without an answer. If the final answer was incorrect we filtered out
the reasoning steps as incorrect. Table 9] shows examples of SLM incorrect reasoning steps from

GSM-8K dataset.

Table 9: Example of incorrect reasoning steps generated using SLM’s (GSM-8K dataset)

Question

Gerald spends $100 a month on baseball supplies.

His season is 4 months long.

He wants to use the months he’s not playing baseball to save up by raking, shoveling, and mowing lawns.
He charges $10 for each. How many chores does he need to average a month to save up for his supplies?

Final Answer

5

Gold Reasoning step

He needs to save up $400 because 4 x 100 = 400.

He has 8 months to earn this money because 12 - 4 =8
He needs to earn $50 a month because 400 / 8 = 50
He needs to do 5 tasks a month because 50 /10 =5
H#iti 5

Llama-2-7b-chat Incorrect reasoning step

Gerald spends $100 on baseball supplies per month.

Season is 4 months long.

To save up for baseball supplies, Gerald needs to earn more than the cost of supplies per month.
Gerald charges $10 for each chore he does.

To calculate the number of chores Gerald needs to do per month,

divide the cost of supplies by the amount he charges per chore.

Llama-2-7b-chat Predicted Answer

g

Mixtral-8x7B Incorrect reasoning step

Gerald spends $100 a month for 4 months, so his total spending for the season is 100%4 = $400
Now, we need to find out how many chores he needs to do to earn this amount
He charges $10 per chore, so we divide the total amount by the cost per chore: 400 / 10 = #####

Mixtral-8x7B Predicted Answer

40

Phi-3-mini Incorrect reasoning step

Gerald’s total expenditure for baseball supplies = $100 per month * 4 months = $400
Gerald earns $10 per chore.

To find out how many chores he needs to do to save up $400,

we divide his total expenditure by the amount he earns per chore.= $400 / $10= ##HH#

Phi-3-mini Predicted Answer

40
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Task T1 evaluates the model’s ability to detect mistakes rectify them and derive the correct answer.

was used in a few shot settings for task T1.

You are a mathematics educator with a deep understanding of

elementary and middle school mathematics. You are experienced

in teaching multi-step problem-solving techniques and have a

knack for breaking down complex problems into manageable steps
Your expertise lies in basic arithmetic operations such as

addition, subtraction, multiplication, and division. You can

provide clear, step-by-step solutions to mathematical problems
that require multi-step reasoning.

You are provided with a mathematical question and a step-by-step

solution along with it. The solution might have some mistakes.
Identify if the solution is correct or incorrect. If the

solution is correct, output the final answer with the help of
the solution provided. If the solution is incorrect, correct
the existing solution and determine the final answer with the
help of the corrected solution.

Reasoning chain Correct (Yes/No):

Corrected reasoning chain or NA:

Final answer (just the number):

Listing 2: Prompt for Task T1

Task T2 evaulates the model’s ability to detect mistake and solve MWP based on the provided
reasoning step. [Cisting 3| was used in a few shot setting for task T2. Here we insure that final answer
is generated with the help of the reasoning steps provided, which may or may not be correct.

You are a mathematics educator with a deep understanding of

elementary and middle school mathematics. You are experienced

in teaching multi-step problem-solving techniques and have a

knack for breaking down complex problems into manageable steps
Your expertise lies in basic arithmetic operations such as

addition, subtraction, multiplication, and division. You can

provide clear, step-by-step solutions to mathematical problems
that require multi-step reasoning.

You are provided with a mathematical question and a step-by-step
solution along with it. The solution might have some mistakes.
Identify if the solution is correct or incorrect and output
the final answer based on the provided solution.
Reasoning chain Correct (Yes/No):
Final answer (just the number) :

Listing 3: Prompt for Task T2

E MODEL USED

Below are brief details of the models we have used for benchmarking our MWP-MI STAKE dataset.

1. GPT-40: GPT-40 is a multimodal model by OpenAl, and it has the same high intelligence
as GPT-4 Turbo but is much more efficient—it generates text 2x faster and is 50% cheaper.
Additionally, GPT-40 has the best vision and performance across non-English languages of
any OpenAl model. Last training data: October 2023.

2. GPT-4: GPT-4 is a large multimodal model by OpenAl that can solve difficult problems
with greater accuracy than any of OpenAl previous models, thanks to its broader general
knowledge and advanced reasoning capabilities. Last training data: September 2021.
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Table 10: F1 Score Analysis on Different Types of Rule-Based Reasoning Mistakes on GSM8k

Dataset.

Model Correct Shuffle Delete Shuffie N Replace | Shuffle O Random SLM Combined
GPT-40 0.69 0.84 0.87 0.92 0.96 0.93 0.67 0.73
GPT-4 0.95 0.38 0.54 0.85 0.89 0.72 0.33 0.52
GPT-3.5Turbo 0.83 0.65 0.71 0.82 0.87 0.78 0.76 0.52
Llama-2-7b-chat 1.00 0.00 0.01 0.00 0.02 0.00 0.09 NA
Mixtral-8x7b 0.83 0.59 0.60 0.77 0.75 0.63 0.63 NA
Phi-3-mini 0.85 0.72 0.42 0.60 0.52 0.58 0.82 NA
Claude-3-Opus 0.94 0.51 0.71 0.84 0.94 0.79 0.54 0.76
Qwen2-7B-Instruct 0.95 0.45 0.36 0.53 0.45 0.34 0.62 0.13
Llama-2-70b 0.85 0.55 0.49 0.45 0.44 041 0.78 0.55
Llama-3-8b 0.77 0.76 0.62 0.68 0.82 0.63 0.98 0.68
Llama-3-70b 0.75 0.52 0.60 0.83 0.93 0.87 0.84 0.54

! 3-8b- 0.77 0.91 0.80 0.77 0.75 0.65 0.99 0.68

. GPT-3.5Turbo: GPT-3.5Turbo is a large language model by OpenAl GPT-3.5 that can

understand and generate natural language or code and has been optimized for chat using
the Chat Completions API but work well for non-chat tasks as well. Last training date:
September 2021.

. Claude-3-Opus: Claude-3-Opus is Anthropic’s most capable and intelligent model yet,

ideal for navigating complex tasks like in-depth analysis, research, and task automation.
Last training data: August 2023.

. Llama-2-7b-chat: Llama 2 is a collection of pretrained and fine-tuned generative text

models ranging in scale from 7 billion to 70 billion parameters from meta. This is the 7B
fine-tuned model, optimized for dialogue use cases. Training date: September 2022.

. Mixtral-8x7B: Mixtral is a Mixture of Experts (MoE) model with 8 experts per MLP,

with a total of 45 billion parameters. Despite the model having 45 billion parameters, the
compute required for a single forward pass is the same as that of a 14 billion parameter
model. This is because even though each of the experts have to be loaded in RAM (70B
like ram requirement) each token from the hidden states are dispatched twice (top 2 routing)
and thus the compute (the operation required at each forward computation) is just 2 X
sequence_length.

. Phi-3-mini: The Phi-3-Mini-128K-Instruct is a 3.8 billion-parameter by microsoft,

lightweight, state-of-the-art open model trained using the Phi-3 datasets. This dataset
includes both synthetic data and filtered publicly available website data, with an emphasis
on high-quality and reasoning-dense properties. Last training data: October 2023.

F CATEGORIES WISE RESULTS

Table[I0]shows the F1 score analysis on different types of Rule-based reasoning mistakes on GSM-8K
dataset. Furthermore Figure [6] [7} [B]and [J]shows the GPT-40 Mistake detection and Performance F1
score on different type of rule based and SLM based mistakes on GSM-8K, MATH, MATHBENCH
andJEEBENCH respectively.

GSM8K

W Mistake Identification (F1 Score) M Performance (F1 Score)

reasoning chain shuffle reasoning delete reasoning shuffle numerical replace half numerical  shuffle i random ing step SLM
values values

type

Figure 6: Category Wise mistake detection and performance results on GSM-8K dataset.
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MATH

W Mistake Identification (F1 Score) M Performance (F1 Score)

reasoning chain shuffle delete i shuffle i replace half i shuffle i random ing step SLM
values values

type
Figure 7: Category Wise mistake detection and performance results on MATH dataset.

MATHBENCH

W Mistake Identification (F1 Score) M Performance (F1 Score)

reasoning chain shuffle i delete i shuffle i replace half i shuffle i random ing step SLM.
values values

type
Figure 8: Category Wise mistake detection and performance results on MATHBENCH dataset.

JEEBENCH

W Mistake Identification (F1 Score) M Performance (F1 Score)

reasoning chain shuffle delete i shuffle i replace half i shuffle i random ing step SLM.
values values

type

Figure 9: Category Wise mistake detection and performance results on JEEBENCH dataset.
G METEOR AND BERTSCORE RESULTS

BertScore computes a similarity score for each token in the candidate sentence with each token
in the reference sentence using the BERT embeddings. Metric for Evaluation of Translation with
Explicit Ordering (METEOR) score is a metric that measures the quality of generated text based on
the alignment between the generated text and the reference text. The metric is based on the harmonic
mean of unigram precision and recall, with recall weighted higher than precision.

Table[TT]and Table[T2] present the BertScore and Meteor Score respectively for all the datasets across
all models. We observed that these two metric evaluations where not fully able to capture the nuance
capabilities of LLMs in rectifying the mistakes within reasoning steps. This can be seen in the
results. GPT-40 has a consistently high performance across all the dataset, but when you compare the
BERTScore between the corrected reasoning step and ground truth reasoning step you see the rest of
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the models clearly performing better than GPT-40. GPT-4 has performed better than GPT-3.5Turbo
in most datasets.

Table 11: BERTscores for correct and incorrect final answers derived after mistake rectification across
all models and datasets.

Datasets Models | GPT-40 GPT-4 GPT-3.5Turbo Llama-2-7b-chat Mixtral-8x7B Phi-3-mini
Correct  Incorrect | Correct Incorrect | Correct Incorrect | Correct Incorrect | Correct Incorrect | Correct Incorrect

GSML8K D 0.95 0.91 0.98 0.93 0.97 0.95 0.96 0.98 0.97 0.94 0.94 0.91

SM 0.83 0.82 0.84 0.82 0.84 0.82 NA NA NA NA NA NA
MATH D 0.88 0.90 0.96 0.93 0.95 0.93 0.96 0.88 0.95 0.92 0.90 0.87

SM 0.84 0.80 0.83 0.81 0.84 0.81 NA NA NA NA NA NA
MATHBENCH | D 0.88 0.83 0.97 0.95 0.97 0.94 0.90 0.89 0.96 0.95 0.93 0.90

SM 0.82 0.82 0.85 0.82 0.84 0.83 NA NA NA NA NA NA
JEEBENCH D 0.89 0.89 0.88 0.87 0.94 0.95 0.86 0.82 0.85 0.87 0.70 0.85

SM 0.86 0.87 0.85 0.86 0.78 0.86 NA NA NA NA NA NA

Table 12: Meteor Score for correct and incorrect final answers derived after mistake rectification
across all models and datasets.

Datasets Models | GPT-40 GPT-4 GPT-3.5Turbo Llama-2-7b-chat Mixtral-8x7B Phi-3-mini
Correct  Incorrect | Correct Incorrect | Correct Incorrect | Correct Incorrect | Correct Incorrect | Correct Incorrect
GSM-8K D 0.81 0.54 0.92 0.62 0.88 0.77 0.87 0.83 0.85 0.74 0.77 0.66
SM 0.33 0.27 0.37 0.31 0.37 0.32 NA NA NA NA NA NA
MATH D 0.48 0.54 0.76 0.70 0.76 0.67 0.78 0.59 0.73 0.66 0.55 0.48
SM 0.32 0.28 0.30 0.26 0.33 0.28 NA NA NA NA NA NA
MATHBENCH | D 0.55 0.35 0.82 0.63 0.82 0.68 0.49 0.57 0.81 0.68 0.67 0.53
SM 0.33 0.30 0.32 0.25 0.32 0.29 NA NA NA NA NA NA
JEEBENCH D 0.37 0.31 0.30 0.22 0.49 0.54 0.15 0.13 0.53 0.46 0.20 0.25
SM 0.28 0.26 0.21 0.21 0.08 0.25 NA NA NA NA NA NA

H AVERAGE REASONING STEP LENGTH

We noticed that the average word length of rectified reasoning for correct and incorrect for GPT-40
was higher than other models. Table [I3]presents the average word length of the rectified reasoning
step for all datasets across the models.

Table 13: Average length of rectified reasoning steps on MWP-MISTAKE dataset

GSM-8K MATH MATHBENCH | JEEBENCH Average
Model D SM D SM D SM D SM D SM Overall
GPT-40 100.14  131.47 | 14750 182.69 | 312.11 323.45 | 647.66 619.09 | 301.85 314.18 308.01
GPT-4 66.59 12224 | 79.32  121.59 | 146.54 14043 | 356.71 322.53 | 16229 176.69 169.49

GPT-3.5Turbo 66.58 12630 | 94.17 124.56 | 140.50 177.36 | 670.34 338.53 | 24290 191.69 217.29
Llama-2-7b-chat | 44.73 NA 113.35 NA 177.67 NA 137.05 NA 118.20 NA 118.20
Mixtral-8x7B 63.04 NA 88.26 NA 140.57 NA 402.79 NA 173.67 NA 173.67
Phi-3-mini 84.92 NA 115.10 NA 172.57 NA 293.90 NA 166.62 NA 166.62
Claude-3-Opus 62.18 13891 | 70.60 134.05 | 144.85 192.84 | 561.88 438.44 | 209.88 226.06 217.97

I DATA CONTAMINATION AND MEMORIZATION

Two different types of prompts were used to test out memorization of individual instances of the
dataset. The reasoning step was split into two halves, and models were prompted in two different
ways (general and guided) to complete the second half of the reasoning step. To detect contamination
we evaluated the overlap score between generated and reference instances using ROUGE-L Score.
[Listing 4] and [Listing 5|shows the prompt used for guided and generation instructions respectively.

You are provided with a full question and the first answer piece
from the test split of the GSM8K dataset. Finish the second
answer piece of the instance as exactly appeared in the
dataset. Only rely on the original form of the instance in the

dataset to finish the second answer piece. Output only the
second answer piece.

Listing 4: Guided instruction for dataset GSM8K
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Based on the provided question, finish the second answer piece
based on the first answer piece, such that these two pieces
become a single instance answer. Output only the second answer

piece.

Listing 5: General instruction for dataset GSM8K

Here GSM-8K and test are the extra information provided for the model to uniquely identify instances
from the source dataset and complete the reasoning step.

Table [I4] presents the complete result for the average ROUGE-L score of guided and general for all
datasets across all models.

Table 14: Rouge L score between guided and general instructions on MWP-MISTAKE dataset

Datasets Models | GPT-4o0 GPT-4 GPT-3.5Turbo Llama-2-7b-chat Mixtral-8x7B Phi-3-mini
Guided General | Guided General | Guided General | Guided General | Guided General | Guided General
GSM-8K D 0.57 0.44 0.67 0.56 0.53 0.49 0.26 0.28 0.46 0.44 0.32 0.32
SM 0.55 0.51 0.57 0.55 0.49 0.47 0.30 0.32 0.55 0.50 0.42 0.41
MATH D 0.44 0.25 0.52 0.48 0.39 0.38 0.25 0.26 0.39 0.32 0.26 0.27
SM 0.51 0.38 0.54 0.54 0.45 0.44 0.30 0.29 0.48 0.46 0.38 0.39
MATHBENCH | D 0.43 0.41 0.48 0.46 0.38 0.36 0.26 0.28 0.36 0.36 0.30 0.30
SM 0.40 0.38 0.43 0.42 0.39 0.38 0.30 0.33 0.40 0.38 0.29 0.30
JEEBENCH D 0.43 0.39 0.42 0.40 0.34 0.33 0.27 0.25 0.38 0.34 0.33 0.31
SM 0.32 0.29 0.34 0.35 0.31 0.24 0.22 0.25 0.26 0.27 0.20 0.22

J OPENAI 01 MODEL ANALYSIS

Table 15: Performance of ol vs GPT4o on 120 sample questions from JEEBENCH with
MWP-MISTAKE

ol GPT4o0 | ol GPT4o0
D D SLM SLM
Mistake 047 045 1 1

Final answer | 0.82 043 0.9 0.62

K RUNNING EXPERIMENT MULTIPLE TIMES

While running experiments on all models (LLMs and SLMs) we used the default hyperparameters to
generate tokens. We ran a subset of the dataset on different prompt variations and saw comparable
performance for various prompts. Due to the limitation of the API key, we were only able to run
GPT-40 model on the GSM-8K dataset. On rerun we got very similar results, with an error rate of <=
0.01.

L  OUTPUT FROM EACH MODEL

The raw output of each model has been provided in this repository. Additional details are present in
the README.md file of the repository.
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