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ABSTRACT

Visual understanding is inherently contextual—what we focus on in an image de-
pends on the task at hand. For instance, given an image of a person holding a
bouquet of flowers, we may focus on either the person such as their clothing, or
the type of flowers, depending on the context of interest. Yet, most existing image
encoding paradigms represent an image as a fixed, generic feature vector, over-
looking the potential needs of prioritizing varying visual information for different
downstream use cases. In this work, we introduce FocalLens, a conditional vi-
sual encoding method that produces different representations for the same image
based on the context of interest, expressed flexibly through natural language. We
leverage vision instruction tuning data and contrastively finetune a pretrained vi-
sion encoder to take natural language instructions as additional inputs for produc-
ing conditional image representations. Extensive experiments validate that condi-
tional image representation from FocalLens better pronounce the visual features
of interest compared to generic features produced by standard vision encoders like
CLIP. In addition, we show FocalLens further leads to performance improvements
on a range of downstream tasks including image-image retrieval, image classifi-
cation, and image-text retrieval, with an average gain of 5 and 10 points on the
challenging SugarCrepe and MMVP-VLM benchmarks, respectively.

1 INTRODUCTION

In recent years, vision foundation models that are pretrained with large-scale datasets (Dosovitskiy,
2020; Chen et al., 2022; Radford et al., 2021; Schuhmann et al., 2022) have become the cornerstone
for visual feature extraction, powering downstream applications ranging from classification (Doso-
vitskiy, 2020), segmentation (Caron et al., 2021), retrieval (Radford et al., 2021), to multimodal
large language models (MLLMs) (Ramesh et al., 2021; Li et al., 2022; Liu et al., 2024; Reid et al.,
2024; McKinzie et al., 2024; Driess et al., 2023). Despite the variety of pretraining schemes (Rad-
ford et al., 2021; Caron et al., 2021; He et al., 2022; Oquab et al., 2023; El-Nouby et al., 2024), most
commonly used vision foundation models, such as CLIP (Radford et al., 2021), are designed to en-
code the rich information contained in (a patch of) an image into a single feature vector, wherein
this general feature representation is expected to encapsulate all information that may be leveraged
by various potential downstream tasks.

However, by aiming to extract general-purpose features that can serve as many downstream tasks
as possible, image representations obtained from these task-agnostic vision foundation models may
inevitably compromise relevant information that is specific to the downstream task of interest. For
instance, CLIP models are known to produce image representations that capture the high-level se-
mantics well (Radford et al., 2021; Ramesh et al., 2021), but often struggle with understanding the
finer-grained details and intrinsics of the image, such as attribute associations, spatial relationships,
camera perspective, and so on (Vaze et al., 2023; Hsieh et al., 2024; Tong et al., 2024b).

In this work, instead of aiming to learn a model that produces a fixed image representation in fulfill-
ing different goals, we consider learning an adaptive vision foundation model that encodes an image
differently conditioned on the downstream task of interest, allowing the resultant image represen-
tations to prioritize information relevant to the specified condition over other available semantics.
Furthermore, as opposed to pre-defining the downstream tasks in a priori (Salehi et al., 2024; Wu
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Figure 1: For a given image, the CLIP embedding space is static and structured based on overall
semantics. However, FocalLens dynamically rearranges the embedding space based on the specified
condition, bringing instances that are more similar under that condition closer together. We show
the top-2 nearest neighbors for both CLIP and FocalLens embeddings (once conditioned on “back-
ground” and once on “quantity”).

et al., 2021), our goal is an adaptive generalist model that is able to adapt to broad potential use
cases in a zero-shot fashion. Specifically, we consider utilizing free-form natural language texts as
a rich and flexible interface to condition 1 the model given different downstream purposes, inspired
by recent literature (Wei et al., 2021; Su et al., 2022; Liu et al., 2024). For instance, given a task
of retrieving images of similar background scene to a given query image, by specifying through the
text condition: “What is the background in the image?”, we expect to guide the model in focusing
more on the background features of the image, as illustrated in Fig. 1.

We introduce FocalLens, a contrastive finetuning framework that transforms a pretrained vision-
language model (VLM) into a text-conditioned vision encoder that is able to produce visual rep-
resentations with better “focus” on the information relevant to the given instructions. Specifically,
leveraging visual instruction tuning dataset (Dai et al., 2023; Liu et al., 2024), in the format of
(instruction, image, output), FocalLens aligns the visual representation of image to bet-
ter adhere to instruction, using the corresponding output to guide the alignment. To demon-
strate this approach, we apply FocalLens to representative pretrained MLLM and vision encoder:
LLaVA (Liu et al., 2024) and CLIP (Radford et al., 2021), and name the resultant text-conditioned
vision encoder models FocalLens-MLLM and FocalLens-CLIP respectively, as illustrated in Fig. 2.

Through extensive evaluations on over 60 tasks, we observe that FocalLens models demonstrate a
strong ability to condition representations based on the given text instructions, significantly outper-
forming existing baselines like CLIP. On average, FocalLens achieves up to 9 points higher perfor-
mance, with even greater improvements on specific tasks, for image-image retrieval tasks. In addi-
tion, when used in downstream applications, FocalLens’s conditional image representations further
lead to clear gains compared to existing baselines. For instance, on image-text retrieval bench-
marks, we show an average improvements of 5 and 10 points respectively on SugarCrepe (Hsieh
et al., 2024) and MMVP-VLM (Tong et al., 2024b), comparing favorably to other CLIP models
that are much larger (up to 2.5×) in size. On image classification, FocalLens also shows superior
performances than CLIP, especially in low-data regime. Finally, further qualitative study showcases
various intriguing application scenarios that can be supported by FocalLens.

2 RELATED WORK

Foundation models for vision encoding. Modern vision foundation models trained on web-scale
datasets (Dosovitskiy, 2020; Jia et al., 2021; Schuhmann et al., 2022; Oquab et al., 2023) are used as
the common underlying visual feature extractor to produce image representations that drive various
downstream applications (Radford et al., 2021; Ramesh et al., 2021; Kirillov et al., 2023; Zhou et al.,
2022). While there are many pretraining objectives (Oquab et al., 2023; He et al., 2022; El-Nouby
et al., 2024; Radford et al., 2021), existing schemes typically train the vision models to produce a
single “general” image representation. Nonetheless, as an image naturally contains rich and dense
information, a fixed and general-purpose representation may not sufficiently pronounce information
relevant to specific downstream contexts of interest (Kar et al., 2024; Wang et al., 2024; Tong et al.,

1We use “condition (conditional)” and “adapt (adaptive)” interchangeably in this paper.
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2024b; Hsieh et al., 2024). Our work aims to learn vision encoder that is capable of extracting
different representations from a single image conditioned on downstream use cases at test-time.

Conditional vision representations. Implicit and task-specific conditioning of visual features
have been studied in the literature (Liu et al., 2024; Dai et al., 2023; Tong et al., 2024a; Eftekhar
et al., 2023; Vani et al., 2024; Chameleon Team, 2024). For instance, the hidden representations in
MLLMs may be interpreted as a type of conditional image representation, where the visual features
are fused with text instructions for producing different output responses. Nonetheless, conditional
visual representations considered in prior work are designed specifically to their model and respec-
tive applications, e.g., generative conversations (Dai et al., 2023). In this work, we are interested
in conditional visual representations that may be used for various downstream applications, such as
classifications, image-image or image-text retrieval, and so on.

Vision-language joint representation learning. There is a rich literature in vision-language (joint)
representation learning (Lu et al., 2019; Li et al., 2019; Kim et al., 2021; Radford et al., 2021; Jiang
et al., 2024). Our work is related as we aim for a model that can comprehend both images and
natural language conditions. Concurrent to our work, E5-V (Jiang et al., 2024) considers MLLM’s
output space as a universal representation space for both the vision and language inputs. Relatedly,
composed image retrieval (Wu et al., 2021; Saito et al., 2023; Zhang et al., 2024) considers develop-
ing models of underlying similar capabilities that generate image embeddings given both image and
text. However, different from our goal to use text conditioning to extract downstream-specific intrin-
sic visual features, their goal is to extrinsically “compose” semantics from both texts and images,
largely towards image-retrieval purposes.

3 CONDITIONAL EMBEDDINGS VIA INSTRUCTION CONTRASTIVE TUNING

Our goal is to develop an adaptive vision foundation model that is capable of encoding an image into
tailored embeddings conditioned on the downstream task of interest, as specified through natural
language texts.

We consider the visual instruction tuning data (Liu et al., 2024), which covers diverse tasks, and has
demonstrated great generalization of MLLMs in different benchmarks. The visual instruction tuning
data is in the triplet format of (image, instruction, output). For instance, given an image
of “a Yorkshire Terrier wearing a green cloth”, the output is “The dog is wearing a green cloth
with strawberry prints on it” with the instruction “What is the dog wearing?”. Alternatively,
when the instruction is “What is the type of the dog”, the output is “The dog is a Yorkshire Terrier”
correspondingly. MLLMs (Dai et al., 2023; Liu et al., 2024) leverage the triplet instruction tuning
for text generation: given (image, instruction), generating output. Instead, we propose to
utilize contrastive learning (Radford et al., 2021) on the triplet instruction tuning data. Specifically,
given an image encoder conditioned on the instruction, we match the output embedding with a text
embedding of output. We call the proposed method as FocalLens, which leverage instruction tuning
data to contrastively tune the pretrained image encoder, such that it can better focus on desired infor-
mation and generalize to diverse downstream tasks. We explore tuning two different representative
vision-language models with FocalLens: MLLMs (Section 3.1) and CLIP (Section 3.2).

3.1 FOCALLENS WITH MLLMS

MLLMs (Liu et al., 2024; Dai et al., 2023) generate textual responses regarding an image based on
the given input text instructions. Given (instruction, image), the goal is to generate output.
However, as the original model objective is text generation rather than producing explicit represen-
tation for downstream tasks, the conditional visual information may be dispersed throughout the
model, and there is no direct access to them by design.

In FocalLens, instead of training the MLLM to generate output given (image, instruction)
as in the original auto-regressive objective, we append a special indicator token <eos token>
to MLLM’s input sequence, and consequently train the indicator’s output token to align with the
CLIP text embedding of the targeted output in a constrative manner. Here, we use an off-the-shelf
frozen CLIP text encoder to obtain the target output embedding. With the contrastive objective, we
encourage the model to condense information relevant to the image, with the specified instructions,
into a single output representation. We show the overall model architecture in Fig. 2a.
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Figure 2: FocalLens is applied to two vision-language models to extract text-conditioned visual fea-
tures: (a) modifying Llava-like VLMs, which already have text-conditioning capabilities, to produce
a global visual feature, and (b) modifying ViT (Dosovitskiy, 2020) based CLIP-like VLMs, which
already produce a global visual feature, to condition their output feature based on a text condition.

3.2 FOCALLENS WITH CLIP

Unlike MLLMs, CLIP models by design generate image representations (Radford et al., 2021),
where these image embeddings are already widely utilized in a variety of downstream tasks (Ramesh
et al., 2021; Liu et al., 2024). However, CLIP models are inherently limited to producing a fixed
representation for each image, regardless of the downstream task of interest. Although strong in
capturing high-level semantics, these general visual features are shown to lack various aspects of
fine-grained image details that can be critical for downstream tasks (Hsieh et al., 2024; Tong et al.,
2024b). To tackle this, we propose to make CLIP’s vision encoder task-aware, such that it is able
to adapt its representations based on specific requirements, thereby capturing specific aspects of the
image essential for different applications.

To incorporate natural language instructions into CLIP’s vision encoder, we consider first convert-
ing instruction into a “condition text embedding”, which is then treated as an additional token
that is fed into the image encoder alongside the standard image tokens and the CLS token. Af-
terwards, the model is trained as in standard CLIP using a contrastive loss, aligning the resultant
text-conditioned image representations with their corresponding textual outputs. By instruction tun-
ing, we aim to allow the vision encoder to generalize to a broad range of scenarios of interest that
can be described via natural language at test-time (Wei et al., 2021; Su et al., 2022). We illustrate
the FocalLens-CLIP training setup in Fig. 2b.

4 EXPERIMENTS

In this section, we first demonstrate the benefits of conditional image representations (Section 4.1)
over the generic representations produced by CLIP, using a toy dataset. We then extensively eval-
uate FocalLens models’ capability in characterizing downstream conditions on a variety of tasks,
compared to existing baselines (Section 4.2). By zooming in on FocalLens-CLIP, we demonstrate
that its conditional image representations improve performance across a range of downstream tasks,
including image-text retrieval, image classification, and image-image retrieval (Section 4.4).

Setup. We train FocalLens models with the visual instruction tuning data used in LLaVA (Liu
et al., 2024). The dataset contains around 150k examples, wherein 60k examples are multi-turn
conversations and thus can be treated as multiple triplets of (image, instruction, output),
where the image remains the same. During training, we expand conversation data within batches to
encourage models to output different representations given the same image but different instructions.
For FocalLens-MLLM, we follow the training recipe of LLaVA (Liu et al., 2024) to obtain a base
MLLM before further training with the proposed contrastive loss. For FocalLens-CLIP, we initialize
the base CLIP model with OpenAI’s CLIP-ViT-L-14-336 (Radford et al., 2021), which is also the
underlying vision encoder used in LLaVA. We initialize the additional text encoder for instructions
to have the same weight as the original text encoder.
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For contrastive instruction tuning, given a batch of triplet instruction data (x
(i)
img,x

(i)
ins ,y

(i)), where
y(i) is the expected output for sample i, we form the pair-wise similarity matrix S, such that

Si,j = ϕ(x
(i)
img,x

(i)
ins )

TT (y(j)), (1)

where ϕ is the encoding process that produce the conditional image embedding from both image
ximg and instruction xins, and T is the (frozen) text encoder that generates the target embedding
from y. We apply scaled Softmax to the rows of similarity matrix and compute the contrastive loss
following CLIP (Radford et al., 2021). We report further training details in Appendix C. In addition,
we report all prompts used for conditioning FocalLens models during evaluation in Appendix D.

Image-image retrieval as an evaluation protocol. We consider the common image-image re-
trieval evaluation to measure the quality of image representations produced from different vision
encoders (Google Research, 2023; Caron et al., 2021). Specifically, given a query image, image-
image retrieval tasks the model to retrieve other images from a gallery that are “similar” to the query
image. We are especially interested in the scenario wherein the very definition of “similar” changes
as the downstream tasks vary (Vaze et al., 2023). To facilitate such evaluations, we adopt datasets
where we may define various similarities between images based on test-time interest determined
through a text condition. We introduce these datasets in the following sections. For each dataset,
when not otherwise specified, we report mean Average Precision (mAP) as the evaluation metric.

4.1 CONDITIONAL REPRESENTATIONS BETTER CHARACTERIZE TASK-SPECIFIC DETAILS

We empirically validate the benefits of having the flexibility to encode an image based on the given
condition of interest over using a fixed representation when downstream purpose varies, as consid-
ered in most prevailing vision encoding paradigms (Radford et al., 2021; Caron et al., 2021). Here,
we restrict ourselves to a toy dataset to demonstrate the idea, and we shall expand our studies in the
following sections.

A toy ColorShape dataset. ColorShape is a synthetic dataset where each image contains a certain
colored shape. There are in total 4 different colors and shapes respectively. We generate 500 different
images with random position and size of the object for each combination of color and shape. At test-
time, we may define the intent for retrieval based on different aspects. Specifically, we may group
each image into different categories based on either only its color, only its shape, or both. Fig. 3
shows some examples from the dataset.

The pretrained CLIP model (Radford et al., 2021) serves as the standard encoder baseline where the
image representations are fixed even when the test-time condition varies. For the conditional vision
encoders, we consider both FocalLens-MLLM and FocalLens-CLIP models discussed in Section 3.
We show their retrieval performances on the ColorShape dataset when the test-time condition varies.

Non-adapative image representations overlook specific aspects of images. From Table 1, on
the simple ColorShape dataset, CLIP yields almost perfect retrieval performances when we define
image categories based on both color and shape. However, in the context where we are specifically
interested in categorizing images based only on the color, CLIP’s performance drops significantly
to 57 mAP point. On the other hand, when we define similarity based only on shape, CLIP achieves
relatively better performances at 90 mAP point. Combining the results, while CLIP can produce
general representation that is strong at grouping objects of certain shape and color together, its
overall representation space is biased towards the “shape” of objects, and much less discriminative
over the “color” aspect. This also echos the observations made in recent works (Tong et al., 2024b;
Hsieh et al., 2024), suggesting that CLIP’s representation, while powerful for general tasks, may
overlook fine-grained details such as color, highlighting a need for approaches to better adapt and
capture the nuanced visual characteristics, depending on the task at hand.

Conditional image representations better capture information relevant to the downstream
task. In Table 1, as opposed to CLIP model, the conditional image representations produced from
both adaptive vision encoders, the MLLM-based and the CLIP-based model, achieve much more
balanced (and superior) results than CLIP’s representation when the downstream condition varies.
When averaged across three different scenarios (“color”, “shape”, and “both”), both conditional vi-
sion encoders improve over 10 mAP point compared to CLIP. The conditional CLIP-based model
also always outperforms CLIP, when evaluated separately on the three respective conditions.

5



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Figure 3: ColorShape examples
with a query image, three condi-
tions, and corresponding positives
and distractors.

ColorShape Cont.
ColorModel Color Shape Both Avg.

CLIP (task-agnostic) 57.10 90.24 99.36 82.23 0.158

FocalLens-MLLM 99.94 82.56 98.92 93.80 0.560
FocalLens-CLIP 87.28 93.51 99.99 93.59 0.405

Table 1: Image-image retrieval results on ColorShape dataset.
Conditional representations from FocalLens better capture the
given conditions compared to the task-agnostic representations
of CLIP.

In addition to using discrete color labels (e.g., “red”, “blue”) to define image similarity, we also
consider a more sophisticated setup where image similarity is measured based on L2 distance in
RGB space. Specifically, in this Continuous Color variant, we assign randomly sampled RGB colors
to the objects. During evaluation, our goal is to retrieve images with colors closer to that of the
query image. We compute the rank correlation between the similarity measured in the model’s
image representation space and the ground-truth similarity defined in RGB space. In this setup, both
FocalLens models significantly outperform CLIP as show in the last column of Table 1.

4.2 FOCALLENS IMPROVES IMAGE REPRESENTATIONS ACROSS BENCHMARKS

Using the ColorShape toy dataset, we validated the benefits of adapting image representations for
downstream tasks. We now compare FocalLens to existing vision encoders and relevant baselines
across a comprehensive set of evaluation benchmarks.

Evaluation benchmarks. We consider a total of 49 different tasks across 4 coarse-grained cate-
gories in our evaluation suite as briefly described below. We include dataset details in Appendix A.

CelebA-Attribute (Liu et al., 2015): CelebA is a dataset consisting of celebrity face images. Each
face image is associated with various properties spanning from the hair color of the person, the
eyebrow shape, and so on. We vary the downstream condition of interest across different properties
for retrieval. We report scaled performances w.r.t. random guess by: p−r

1−r , where p is the original
mAP and r is the random guess mAP.

GeneCIS (Vaze et al., 2023): GeneCIS presents various image retrieval tasks for evaluating condi-
tional image similarity. Given a query image (“a white laptop”) and a condition (“color”), the goal
is to retrieve the most similar image (another “white laptop”) from a gallery that contains implicitly
similar distractors with wrong conditions (e.g., “a black laptop”). We report the “Focus attribute”
and “Focus object” tasks from GeneCIS. As each query image contains only a single positive in the
gallery, we report Recall@3 following prior work (Zhang et al., 2024).

ImageNet-Subset (Deng et al., 2009): In addition to the above benchmarks with specific down-
stream conditions of interest, we as well evaluate our models on standard ImageNet classes, where
the condition corresponds to the image “classes” as defined by ImageNet. Specifically, we create 14
different retrieval sub-tasks based on coarse-grained categories from WordNet (Miller, 1995) hier-
archy (e.g., ball, bird, dog, etc.). In each task (e.g., dog), the goal is to retrieve images (from all dog
images) with the same type of instance (same breed of dog) as the query image.

Fine-grained classification datasets: Similar to ImageNet, we incorporate 4 finer-grained classifica-
tion datasets, including Oxford Flowers (Nilsback & Zisserman, 2008), Stanford Cars (Krause et al.,
2013), FGVC Aircraft (Maji et al., 2013), and Food-101 (Bossard et al., 2014).

Baselines. We consider CLIP (Radford et al., 2021) as the task-agnostic vision encoder model. We
also compare to models that are able to generate conditional visual representations, including the Q-
former used in InstructBLIP (Li et al., 2023; Dai et al., 2023), and MagicLens (Zhang et al., 2024)
that is designed specifically for composed image-retrieval with open-ended instructions. We include
details of the baselines in Appendix B.
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Table 2: Results on CelebA-Attribute and GeneCIS.
CelebA-Attribute GeneCIS

Model Blond Hair Smiling Wavy Hair Lipstick Avg. 29 tasks Attribute Object Avg.

CLIP 6.20 8.68 7.54 41.45 13.59 43.10 25.81 34.46
InstructBLIP 21.03 21.71 13.91 34.64 16.19 47.00 34.03 40.52
MagicLens 8.24 9.98 10.76 54.12 13.42 39.00 35.50 37.25

FocalLens-MLLM 25.76 34.43 17.61 68.07 22.67 45.35 30.20 37.78
FocalLens-CLIP 32.22 22.11 16.89 62.50 21.32 43.30 43.72 43.51

Table 3: Results on ImageNet-Subset and fine-grained classification datasets.
ImageNet-Subset Fine-grained classification datasets

Model Ball Cat Dog Fish Avg. 14 tasks Flower Car Aircraft Food Avg.

CLIP 64.63 53.00 16.55 61.79 51.03 83.87 45.14 25.96 58.66 53.41
InstructBLIP 66.44 51.22 9.60 59.16 47.67 80.26 25.97 13.47 54.32 43.51
MagicLens 68.10 50.14 17.28 58.84 46.36 74.88 23.95 17.55 65.13 45.38

FocalLens-MLLM 78.99 53.24 29.25 57.40 52.34 43.92 18.59 14.73 50.93 32.04
FocalLens-CLIP 70.01 56.80 33.15 65.37 55.29 80.23 54.72 21.44 64.16 55.14

FocalLens improves significantly over existing baselines given specific downstream conditions.
From Table 2, both variants of FocalLens provide significant gains over the task-agnostic CLIP
baseline on CelebA-Attribute and GeneCIS, when there are specific conditions to respect. We see
an overall gain of 9 points on CelebA-Attribute. Looking more closely at the individual conditions
on CelebA-Attribute (complete results reported in Appendix E), we observe that when the condition
of interest is “smiling”, we see a significant gap of 26 points between CLIP and FocalLens, where
the gap is as large as 48 points on certain attributes. Similarly on the GeneCIS benchmark, by
specifying the attribute such as color or certain object to focus on, FocalLens improves over CLIP
by an average of 9 points.

On CelebA-Attribute and GeneCIS, we also see FocalLens models demonstrate outperforming (or
favorable) results when compared to prior task-aware vision encoders (i.e., InstructBLIP and Mag-
icLens), that are also given the downstream condition of interest when generating the image repre-
sentations. Specifically, FocalLens-CLIP achieves the best overall performances, winning over the
stronger InstructBLIP baseline by 5 and 3 points respectively on CelebA-Attribute and GeneCIS,
validating the effectiveness of our proposed strategy.

FocalLens maintains or improves over existing baseline on generic conditions. Here, we com-
pare model performances on ImageNet-Subset and the fine-grained classification datasets, where
the downstream goal is generic instance classification. First, CLIP model demonstrates competitive
performances on both ImageNet-Subset and fine-grained classification tasks, showing that its em-
beddings are indeed strong at representing generic features when it comes to standard “type” classifi-
cation. In contrast, InstructBLIP and MagicLens suffer performance drops on both ImageNet-Subset
and fine-grained tasks. On the other hand, we see FocalLens (especially FocalLens-CLIP) maintains
comparable performances to CLIP on fine-grained datasets and attains even better performances on
ImageNet-Subset. We explain the improvement on ImageNet by that conditioning FocalLens with
instructions such as “What is the type of dog?” helps the model to better focus on the specific object
of interest but not other potential distractors in the image (e.g., the “toy” besides the dog).

4.3 COMPARATIVE ANALYSIS OF FOCALLENS VARIANTS

Both FocalLens-MLLM and FocalLens-CLIP yield promising results in the experiments. One major
difference between FocalLens-MLLM and FocalLens-CLIP is their underlying pretrained models’
output modality. Specifically, the original MLLM model in FocalLens-MLLM is trained to au-
toregressively produce textual outputs, while CLIP’s vision encoder is trained to produce image
embeddings. We are thus interested in understanding whether this difference affects the underlying
characteristics of the output representations in FocalLens-MLLM and FocalLens-CLIP.

To test this, we consider downstream conditions that require visual features beyond semantic con-
cepts that are describable by text. In particular, on CelebA, instead of considering conditions such as
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whether the person is wearing glasses or not, which is answerable in simple words (“yes” or “no”),
we consider a fuzzy condition where the image similarity is defined by the identity of the person.
Textual representations that do not carry visual information may fail at achieving good performance
on this task, as identity is hardly describable through natural language.

Table 4: Comparison between
FocalLens-MLLM and FocalLens-
CLIP on fuzzy conditions with
CelebA-Identity.

Model CelebA-Identity

FocalLens-MLLM 14.48
FocalLens-CLIP 46.84

In Table 4, we see FocalLens-MLLM suffers a clear gap to
FocalLens-CLIP. This suggests FocalLens-MLLM may rely
more on MLLM’s original textual output modality, which is
limited for tasks requiring rich visual information. Similar ob-
servations are also hinted by its relatively low performance on
fine-grained classification tasks in Table 3. In contrast, with its
underlying model being a vision encoder, FocalLens-CLIP is
better suited for tasks requiring richer visual detail. We thus fo-
cus on FocalLens-CLIP for the remainder of the experiments.

4.4 FOCALLENS REPRESENTATIONS IMPROVE DOWNSTREAM APPLICATIONS

In addition to evaluations based only on image representations, we show how image representations
produced from FocalLens-CLIP can drive improvement on downstream tasks including image-text
retrieval and image classification in a low-data regime where only a small amount of downstream
task data is available for training.

Image-text retrieval. A prevailing usage of image representations is to enable cross-modality re-
trieval. Here, we include two image-text prediction benchmarks, where the goal is to predict the
correct textual description of a given image. Specifically, we adopt SugarCrepe (Hsieh et al., 2024)
and MMVP-VLM (Tong et al., 2024b). SugarCrepe presents challenging hard-negative text distra-
tors along with a positive description for the model to select from, where existing models are shown
to struggle with. Similarly, MMVP-VLM particularly collects examples with visual patterns where
CLIP vision encoder are shown to fall short.

In Table 5 on SugarCrepe, we compare FocalLens-CLIP to several standard CLIP models of different
sizes, and trained with different data sizes. First, compared to the underlying CLIP model used in
FocalLens-CLIP (i.e., OpenAI ViT-L-14), FocalLens-CLIP achieves around 4.7 point improvements
on average, with consistent improvements across all different sub-tasks with individual gains up to
9 points on Replace-rel and Add-att. Interestingly, the two sub-tasks test the model’s capability in
understanding fine-grained relationships and attributes in the image, where standard CLIP models
struggle the most (Hsieh et al., 2024). This suggests FocalLens-CLIP’s image representations are
able to better characterize fine-grained visual details. Furthermore, by scaling up the model size
from 428M to 623M, the RN50x64 model still underperform our smaller FocalLens-CLIP model
(551M for both image and text encoders). On the other hand, FocalLens-CLIP shows competitive
performances compared to the 2.5× bigger ViT-g-14 model trained on 5× more data.

From Table 6 on MMVP-VLM, we see FocalLens-CLIP significantly outperforms the baseline ViT-
L-14 model consistently across all sub-tasks, by an average of 9.7 points. Furthermore, we note
that our FocalLens-CLIP model also compares favorably to the much larger ViT-H-14 (1.8× larger)
and ViT-g-14 (2× larger) on individual sub-tasks, where FocalLens-CLIP achieves the best overall
performance with a lead of 5.2 point.
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Figure 4: FocalLens-CLIP outper-
forms CLIP on linear probing.

Linear probing in low-data regime. We evaluate the per-
formance of FocalLens-CLIP in a linear probing setup, where
only a small amount of downstream task data is available for
training. We use the largest dataset in ImageNet-Subset intro-
duced in Section 4.2, focusing on different dog breeds (a total
of 118 classes). In the low-data setup (Henaff, 2020; Luo et al.,
2017; Vemulapalli et al.), we assume there are k instances
available for each class for training and consider k = 5, 10, 15.
We freeze the backbone and replace the CLIP projection layer
with a linear layer to perform 118-way classification. We com-
pare FocalLens-CLIP to OpenAI ViT-L-14 in this setup, as
shown in Fig. 4. In the extreme setting, where only 5 instances
per class is available to train the linear probe, FocalLens-CLIP
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Table 5: Image-Text Retrieval on SugarCrepe for vision-language compositionality evaluation.
SugarCrepe

Model Replace-obj Replace-att Replace-rel Swap-obj Swap-att Add-obj Add-att Avg.

OpenAI ViT-L-14 (2021) 94.49 80.58 66.78 64.08 62.46 80.74 74.27 74.77
OpenAI RN50x64 (2021) 94.49 83.50 70.63 61.79 66.67 83.27 73.99 76.33
LAION ViT-g-14 (2022) 95.76 85.03 72.40 63.01 71.17 91.51 82.08 80.14

FocalLens-CLIP 95.64 84.51 75.53 65.30 66.36 86.12 83.09 79.51

Table 6: Image-Text Retrieval on MMVP-VLM.
MMVP-VLM

Model Orientation Presence State Quantity Spatial Color Structure Text Camera Avg.

OpenAI ViT-L-14 (2021) 6.7 20.0 26.7 6.7 13.3 33.3 46.7 20.0 13.3 20.7
MetaCLIP ViT-H-14 (2023) 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 (2023) 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0

FocalLens-CLIP 6.7 33.3 33.3 40.00 26.7 66.7 20.0 26.7 20.0 30.4

outperforms CLIP-ViT-L by 5.3%. This result further reinforces our observation that conditional
image representations are more efficient in extracting information relevant to downstream tasks.

Qualitative analysis on conditional image-retrieval. We qualitatively compare the top-k images
retrieved by using FocalLens-CLIP’s conditional image embeddings with those retrieved by standard
CLIP, specifically when given various downstream conditions. For this qualitative study, we treat
all images in the 14 coarse-grained categories considered in ImageNet-Subset as the gallery for
retrieval. In Fig. 5, we showcase several intriguing examples across various aspects of conditioning
FocalLens-CLIP captures. In the top-left example, we consider a scenario where we are interested
in retrieving images of similar background to the query image. Given the query image of “a goose
on a grassy field”, although the images retrieved by CLIP do all contain goose, all images have the
background of water instead of grassy field. Conversely, we see images retrieved by FocalLens-CLIP
all have similar grassy background as expected. Similarly, in the top-right, we see FocalLens-CLIP
faithfully reflects the interested condition of quantity, retrieving images with 3 dogs as in the query
image, whereas images retrieved by CLIP is largely based on their instance type (same species of
dog), and cannot reflect the downstream interest. More examples demonstrate that color or even
implicit visual features such as camera angle can also be characterized by FocalLens-CLIP.

Query Condition:  
Background Query

Query Query

CLIP

FocalLens
Condition:  
Quantity

CLIP

FocalLens

Condition:  
Color

CLIP

FocalLens
Condition:  

Camera 
Angle

CLIP

FocalLens

Figure 5: Comparison between CLIP and FocalLens-CLIP on conditional image retrieval.

5 CONCLUSION

In this work, we introduced FocalLens, a zero-shot conditional visual embedding model that focuses
the representation on specific aspects of the image described in the given text. FocalLens is trained
using existing visual instruction tuning datasets to align the conditional image representation with
the textual description. Experiments on a comprehensive set of tasks, including image-to-image
retrieval, image classification, and image-to-text retrieval, demonstrate that FocalLens matches or
exceeds the performance of state-of-the-art models.
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A DATASETS

CelebA-Attribute. There are a total of 40 different binary attributes in CelebA dataset (Liu et al.,
2015), from which we select 29 attributes we consider objective, including: “Arched Eyebrows”,
“Bags Under Eyes”, “Bald”, “Bangs”, “Black Hair”, “Blond Hair”, “Brown Hair”, “Gray Hair”,
“Blurry”, “Bushy Eyebrows”, “Double Chin”, “Eyeglasses”, “Goatee”, “Male”, “Mouth Slightly
Open”, “Mustache”, “No Beard”, “Oval Face”, “Pale Skin”, “Rosy Cheeks”, “Sideburns”, “Smil-
ing”, “Straight Hair”, “Wavy Hair”, “Wearing Earrings”, “Wearing Hat”, “Wearing Lipstick”,
“Wearing Necklace”, “Wearing Necktie”.

ImageNet-Subset. The ImageNet dataset (Deng et al., 2009) is organized according to the nouns
in the WordNet hierarchy (Miller, 1995) and consists of 1000 classes. To evaluate the performance
of conditioned representations, we form multiple subsets of ImageNet using the intermediate nodes
from the WordNet hierarchy. We list all the ImageNet subsets we created in Table 7.

Table 7: ImageNet-Subset datasets and number of classes per each.

Node Name Dog Bird Musical
Instrument Snake Fish Monkey Ball Car Edible

Fruit Beetle Cat Spider Bag Piano

Num classes 118 59 28 17 16 13 10 10 10 8 7 6 5 2

B BASELINES

CLIP. We consider CLIP as a task-agnostic vision encoder baseline. In all experiments, we use
OpenAI’s CLIP-ViT-L-patch14-336 released checkpoint (Radford et al., 2021). The model size is
428M including both vision and text encoder. We consider the same model checkpoint in FocalLens-
MLLM and FocalLens-CLIP.

InstructBLIP. InstructBLIP (Dai et al., 2023) is a MLLM that connects a frozen vision encoder,
CLIP (Fang et al., 2023), to a large language model (LLM) decoder to enable multi-modal capa-
bilities. Specifically, it adopts an instruction-aware Q-former architecture (Li et al., 2023) as the
connector. The Q-former takes in as input the image embedding extracted from the underlying vi-
sion encoder, along with tokenized text instructions. Through cross-attention design, the Q-former
outputs multiple instruction-aware image tokens to be fed into the LLM decoder. In our experiments,
we average over all image tokens to obtain the image representation used in our evaluations. We use
the same instructions as in FocalLens for conditioning InstructBLIP.

MagicLens. MagicLens (Zhang et al., 2024) is a model trained specifically for composed image
retrieval with a web-scale 36M-sized dataset. The model takes in both a reference image and natural
language text to produce image representations that composes the semantics from both the input
image and text. In our experiments, we condition MagicLens model using the same text instructions
used for FocalLens.

C EXPERIMENT DETAILS

Computation resource. We train FocalLens models on single node machines with 8 A100 GPUs.

Hyperparameters. For contrastive training with FocalLens, we report the hyperparameters used
in Table 8.

Table 8: Training hyperparameters.

Model Batch size Epoch Learning rate Weight decay Warmup ratio

FocalLens-MLLM 384 2 2e-5 0. 0.03
FocalLens-CLIP 2048 20 2e-5 0 0.03
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D INSTRUCTIONS USED FOR DIFFERENT TASKS

Here, we detail the instructions we use for different tasks for conditioning FocalLens and other
instruction-aware baselines.

Table 9: Instructions and templates used for different datasets and conditions.

Dataset Condition Instruction
ColorShape Color What is the color of the object in the image?

Shape What is the shape of the object in the image?
Both What is the color and shape of the object in the image?

CelebA-Attribute Noun attributes (e.g., Arched Eyebrows) Does the person in the image have {attribute}?
Adjective attributes (e.g., Bald) Is the person in the image {attribute}?

CelebA-Identity - Gender, age, eye color, hair color, face shape, facial hair of the person.

GeneCIS Focus attribute Focus on the {attribute}.
Focus object Is there {object}?

ImageNet-Subset category (e.g., dog) What type of {category} is in the image?

Fine-grained datasets category (e.g., flower) What type of {category} is in the image?

SugarCrepe Replace-obj Focus on the presence of objects in the image.
Replace-att Focus on the color, patterns and other attributes of the objects in the image.
Replace-rel What are the relationships between the objects in the image?
Swap-obj What are the actions, states, colors, patterns and relationships of the objects in the image?
Swap-att What kind of objects are in the image?
Add-obj What is not in the image?
Add-att What is not in the image?

MMVP-VLM Orientation Describe the orientation, position, or the direction of the object.
Presence Focus on the presence of objects in the image.
State Focus on the specific state or the condition of the objects in the image.
Quantity Focus on the quantity of the objects in the image.
Spatial Describe the spatial relationship and the positions of the objects in the image.
Color Focus on the color of the objects in the image.
Structural Describe the state of the objects in the image.
Text Focus on the texts on the objects in the image.
Camera Describe the perspective and view from which the photo is taken.

E FULL EXPERIMENT RESULTS

E.1 CELEBA-ATTRIBUTE FULL RESULTS

We report full CelebA-Attribute results in Table 10.

Table 10: Full results on CelebA-Attribute.

Model Arched Eyebrows Bags Under Eyes Bald Bangs Black Hair Blond Hair Blurry Brown Hair Bushy Eyebrows Double Chin

CLIP 8.13 12.00 24.52 2.86 7.96 6.20 5.52 -0.58 11.98 18.35
InstructBLIP 7.12 8.35 27.40 4.95 9.50 21.03 14.67 -0.81 3.73 11.01
MagicLens 11.32 12.10 15.14 2.44 7.48 8.24 8.95 -3.22 6.75 13.88
FocalLens-MLLM 15.15 14.98 19.23 4.38 17.95 25.76 6.14 4.44 6.88 15.37
FocalLens-CLIP 13.38 13.00 26.68 8.19 10.24 32.22 11.03 5.53 9.99 15.94

Model Eyeglasses Goatee Gray Hair Male Mouth Slightly Open Mustache No Beard Oval Face Pale Skin Rosy Cheeks

CLIP 17.84 20.16 24.19 54.55 4.72 20.92 27.64 1.63 3.22 -3.15
InstructBLIP 41.83 16.17 22.56 43.66 12.87 19.16 23.75 0.77 2.73 -3.45
MagicLens 15.52 11.28 20.13 64.56 6.04 13.50 27.52 1.83 1.98 1.95
FocalLens-MLLM 47.72 20.96 22.40 96.82 33.41 19.30 34.30 1.66 1.36 5.85
FocalLens-CLIP 24.90 29.04 23.86 95.04 10.82 26.59 41.80 0.94 4.58 -0.90

Model Sideburns Smiling Straight Hair Wavy Hair Wearing Earrings Wearing Hat Wearing Lipstick Wearing Necklace Wearing Necktie

CLIP 18.21 8.68 3.47 7.54 7.32 17.60 41.45 -0.67 21.81
InstructBLIP 12.10 21.71 3.17 13.91 13.51 45.11 34.64 1.94 36.56
MagicLens 11.54 9.98 2.84 10.76 10.92 21.19 54.12 3.58 16.97
FocalLens-MLLM 20.02 34.43 4.50 17.61 21.54 34.32 68.07 5.05 37.86
FocalLens-CLIP 32.35 22.11 2.81 16.89 12.39 33.58 62.50 3.07 29.80

E.2 IMAGENET-SUBSET FULL RESULTS

We report full ImageNet-Subset results in Table 11.
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Table 11: Full results on ImageNet-Subset.

Model Bag Ball Beetle Bird Car Cat Dog

CLIP 55.61 64.63 51.84 66.72 57.73 53.00 16.55
InstructBLIP 60.13 66.44 51.10 45.86 60.54 51.22 9.60
MagicLens 53.22 68.10 43.37 51.69 54.15 50.14 17.28
FocalLens-MLLM 63.95 78.99 41.44 54.14 54.46 53.24 29.25
FocalLens-CLIP 59.44 70.01 46.88 64.62 61.84 56.80 33.15

Model Fruit Fish Monkey Music Instrument Piano Snake Spider

CLIP 60.95 61.79 37.79 39.18 61.97 32.03 54.61
InstructBLIP 49.74 59.16 27.96 41.44 66.17 26.45 51.61
MagicLens 57.40 58.84 26.82 41.18 57.40 25.74 43.76
FocalLens-MLLM 65.98 57.40 34.81 57.83 57.14 29.47 54.69
FocalLens-CLIP 69.78 65.37 38.30 61.29 60.60 32.06 53.93
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